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Abstract

Word-level Quality Estimation (QE) of Ma-
chine Translation (MT) aims to detect poten-
tial translation errors in the translated sentence
without reference. Typically, conventional
works on word-level QE are designed to pre-
dict the quality of translated words in terms of
the post-editing effort, where the word labels
in the training and evaluation sets, i.e., OK or
BAD, are automatically generated by compar-
ing words between MT sentences and the post-
edited sentences through a Translation Error
Rate (TER) toolkit. While the post-editing ef-
fort can be used to measure the translation qual-
ity to some extent, we find it usually conflicts
with the human judgement on whether the word
is well or poorly translated. To overcome the
limitation, we first create a golden benchmark
dataset, namely H/QFE (Human Judgement on
Quality Estimation), where the expert trans-
lators directly annotate the poorly translated
words on their judgements. Additionally, to
further make use of the parallel corpus, we pro-
pose the self-supervised pre-training with two
tag correcting strategies, namely tag refinement
strategy and tree-based annotation strategy, to
make the TER-based artificial QE corpus closer
to HIQFE. We conduct substantial experiments
based on the publicly available WMT En-De
and En-Zh corpora. The results not only show
our proposed dataset is more consistent with
human judgment but also confirm the effective-
ness of the proposed tag correcting strategies. '

1 Introduction

Quality Estimation of Machine Translation aims to
automatically estimate the translation quality of the
MT systems with no reference available. Figure
1 shows an example of QE, where the sentence-
level QE predicts a score indicating the overall
translation quality, and the word-level QE needs
to predict the quality of each translated word as

'For reviewers, the corpora and codes can be found in the
attached files.

Overall Human Translation Error Rate (HTER score): (.82

T Sentence-level QE

Source: the last conquistador then rides on with his sword drawn .

Machine Translation (MT): £/5 B9 fERE 155 {tb B9 &I LkeEmiist .

MT Back: the last conquistador rides on his sword and move on.

Post-edited (PE): &/ — M EHRE BLT S, KH T 8.

PE Back: last one conquistador rides on the horse and draws out the sword.
l Word-level QE

Alignment generated by TER toolkit
<«—> Matched <«—> S: Substitution I: Insertion D: Deletion

PE: BEE—NMEREBETD  KHT 8
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Figure 1: Illustration for word and sentence QE tasks.

OK or BAD. Recently, the word-level QE attracts
more and more attentions for its potential abilities
for directly detecting the poorly-translated words
and alerting the user with concrete translation er-
rors. Currently, the collection of the word-level
QE datasets mainly relies on the Translation Error
Rate (TER) toolkit (Snover et al., 2006). Specifi-
cally, given the machine translations and their corre-
sponding post-edits (PE, generated by human trans-
lators or target sentences of parallel corpus as the
pseudo-PE), the rule-based TER toolkit is used to
generate the word-level alignment between the MT
and the PE based on the principle of minimal edit-
ing (Tuan et al., 2021; Lee, 2020). All MT words
not aligned to PE are annotated as BAD (shown
in Figure 1). Such annotation is also referred as
post-editing effort (Fomicheva et al., 2020a; Specia
et al., 2020).

The post-editing effort measures the translation
quality in terms of the efforts the translator need to
spend to transform the MT sentence to the golden
reference. However, in our previous experiments
and real applications, we find it usually conflicts
with human judgements on whether the word is
well or poorly translated. Two examples in Figure
2 show the conflicts between the TER-based an-



Source: It is happy for me to be asked to speak here.

MT: WEKEXE LZ£= . MT Back: I am so happy to be asked to speak here.

PE: i BuE E XE E R R &S .

PE Back: Being invited to talk here makes me so happy.

TER-based: B R @ # ER £ XE X5 .
Human: B R S H EREXB LE .

a) Some words in MT are mistakenly annotated to BAD though the overall semantic is not changed.

Source: The Zaporizhian Hetman was then dispatched to Istanbul, and impaled on hooks.

MT: L X% TRIE 158 S Mg 4% IR £ FEEHRR, HAHEEAEA L.
MT Back: The Zaporizhian Hetman was then dispatched to Istanbul, and was bumped on the hook.

PE: Zaporizhian Hetman f8f5 #% ik £ REMEHRAR, H W EHNTF L.

PE Back: Zaporizhian Hetman was then dispatched to Istanbul, and was nailed on hooks.

TER-based: #L K% FRiE 8 S Paa # ik (£ FHIEHR, FHEBEH L.
Human: #L %% FRE 2 S e # K & FHESAR, HYEER L.

b) Human annotate the clause “¥#&7£$4 L as a whole, while TER-based annotations are fragmented.

Figure 2: Two examples show the gap between the TER-based and human’s direct annotation on detecting translation
errors. The red color indicates BAD tags (text with translation errors), while the green color indicates OK tags.For
readability, we also provide the back translation from Google Translate for the Chinese sentences.

notation and human judgement. In figure 2a, the
translated words, namely < IR L

=", are annotated as BAD by TER since they
are not exactly in the same order with their coun-
judgement, the reordering of these words does not
hurt the meaning of the translation and even makes
also regarded as a good translation by the human
judgement as it is the synonym of the word “#%
5" in a very good translation for “The Zaporizhian
annotated as BAD by TER since it is not aligned
with any words in the PE sentence. In many ap-
usually important even necessary to detect whether
the word is well or poorly translated from the hu-
previous works still use the TER-based dataset for
training and evaluation, which makes the models’

: " “E %" and
terparts in the PE sentence. However, from human
the MT sentence polished. And the word “Z£3K" is
15" In figure 2b, the clause “FLi %' 57 L =
Hetman " from human judgement. However, it is
plication scenarios and down-stream tasks, it is
man judgement (Yang et al., 2021). However, most
predictions deviate from the human judgement.

To investigate this conflict and overcome the lim-
itations stated above, for the first time, we rethink
about the word-level quality estimation for the MT
sentences from the human judgement. We first
collect a high quality benchmark dataset, named
HJQE, where human annotators directly annotate
the text spans that lead to the translation errors
in MT sentences. Then, to further make use of
the large scale translation parallel corpus, we also
propose two tag correcting strategies, namely tag
refinement strategy and tree-based annotation strat-
egy, which make the TER-based annotations more

consistent with human judgment.

Our contributions can be summarized as follows:
1) We collect a new dataset called H/QE that di-
rectly annotates the word-level translation errors on
MT sentences. We conduct detailed analyses and
demonstrate the differences between HJ/QE and
the previous TER-based dataset. 2) To make use
of the large scale translation parallel corpus, we
propose self-supervised pre-training approach with
two automatic tag correcting strategies to make the
TER-based artificial dataset more consistent with
human judgment and then boost the performance
by large-scale pre-training. 3) We conduct experi-
ments on our collected H/QF dataset as well as the
TER-based dataset MLQE-PE (Fomicheva et al.,
2020a). Experimental results of the automatic and
human evaluation show that our approach achieves
higher consistency with human judgment.

2 Data Collection and Analysis
2.1 Data Collection

To make our collected dataset comparable to
TER-generated ones, we directly take the source
and MT texts from MLQE-PE (Fomicheva et al.,
2020a), the widely used official dataset for WMT20
QE shared tasks. MLQE-PE provides the TER-
generated annotations for English-German (En-De)
and English-Chinese (En-Zh) translation directions.
The source texts are sampled from Wikipedia doc-
uments and the translations are obtained from the
Transformer-based MT systems (Vaswani et al.,
2017).

Our data collection follows the following pro-
cess. First, we hire a number of translator experts,



English-German

English-Chinese

Dataset Split
samples tokens =~ MT BAD tags MT Gap BAD tags samples tokens ~ MT BAD tags MT Gap BAD tags
MLQE-PE train 7000 112342 31621 (28.15%) 5483 (4.59%) 7000 120015 65204 (54.33%) 10206 (8.04%)
valid 1000 16160 4445 (27.51%) 716 (4.17%) 1000 17063 9022 (52.87%) 1157 (6.41%)
train 7000 112342 10804 (9.62%) 640 (0.54%) 7000 120015 19952 (16.62%) 348 (0.27%)
HJQE (ours) valid 1000 16160 1375 (8.51%) 30 (0.17%) 1000 17063 2459 (14.41%) 8(0.04%)
test 1000 16154 993 (6.15%) 28 (0.16%) 1000 17230 2784 (16.16%) 11 (0.06%)

Table 1: The statistics of TER-based MLQE-PE dataset and the collected H/QE.

where 5 translators for En-Zh and 6 for En-De.
They are all graduated students that major in the
translation and have the professional ability on the
corresponding translation direction. For En-Zh, the
translations are tokenized as MLQE-PE. To make
the annotation process as fair and unbiased as pos-
sible, each annotator is provided only the source
sentence and its corresponding translation (the hu-
man annotators are not allowed to access the PE
sentences in MLQE-PE). For each sample, we ran-
domly distribute it to two annotators. After one
sample has been annotated by two translators, we
check whether the annotations are consistent. If
they have annotation conflicts, we will re-assign
the sample to other two annotators until we get the
consistent annotations. For the annotation protocol,
we ask human translators to find words, phrases,
clauses or even the whole sentences that contain
translation error in MT sentences, and annotate
them as BAD tags. Here, the translation error means
the translation distorts the meaning of the source
sentence, but excluding minor mismatches such
as synonyms and punctuation. Meanwhile, if the
translation does not conform to the grammar of the
target language, they should also find them and an-
notate as BAD. The annotation and distribution of
samples are automatically conducted through the
annotation system. After all samples are annotated,
we ask another translator (1 for En-Zh and 1 for
En-De, and they do not participant in the annota-
tion process), sampling a small proportion (400
samples) of the full annotated dataset and ensure
the accuracy is above 98%.

2.2 Statistics and Analysis

Overall Statistics. In Table 1, we show detailed
statistics of the collected H/QE. For comparison,
we also present the statistics of MLQE-PE. First,
we see that the total number of BAD tags decreases
heavily when human’s annotations replaces the
TER-based annotations (from 28.15% to 9.62%
for En-De, and from 54.33% to 16.62% for En-Zh).
It indicates that the human’s annotations tends to
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Figure 3: The distribution that reveals how many BAD
spans in every single validation sample.

annotate OK as long as the translation correctly ex-
presses the meaning of the source sentence, but
ignores the secondary issues like synonym substi-
tutions and constituent reordering. Second, we find
the number of BAD tags in the gap (indicating a
few words are missing between two MT tokens)
also greatly decreases. It’s because that human’s
annotations tends to regard the missing translations
(i.e., the BAD gaps) and the translation errors as a
whole but only annotate BAD tags on MT tokens>.

Unity of BAD Spans. To reveal the unity of
the human’s annotations, we group the samples ac-
cording to the number of BAD spans in each single
sample, and show the overall distribution. From
Figure 3, we can find that the TER-based anno-
tations follow the Gaussian distribution, where a
large proportion of samples contain 2, 3, or even
more BAD spans, indicating the TER-based anno-
tations are fragmented. However, our collected
annotations on translation errors are more unified,
with only a small proportion of samples including
more than 2 BAD spans. Besides, we find a large
number of samples that are fully annotated as OK

2As a result, we do not include the sub-task of predicting
gap tags in HJ/QE.
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a) The overall architecture of our model.
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b) The construction steps of artificial QE dataset for pre-training.

Figure 4: The model architecture and the construction of artificial QE dataset.

in human’s annotations. However, the number is
extremely small for TER-based annotations (78 in
English-German and 5 for English-Chinese). This
shows a large proportion of BAD spans in TER-
based annotations do not really destroy the seman-
tic of translations and are thus regarded as OK by
human annotators.

Based on the above statistics and the examples in
Figure 2, we conclude the two main issues that re-
sult in the conflicts between the TER-based annota-
tions and human judgement. First, the PE sentences
often substitute some words with better synonyms
and reorder some constituents for polish purposes.
These operations do not destroy the meaning of the
translated sentence, but make some words mistak-
enly annotated under the exact matching criterion
of TER; Second, when a fatal error occurs, the hu-
man annotator typically takes the whole sentence or
clause as BAD. However, the TER toolkit still tries
to find trivial words that align with PE, resulting in
fragmented and wrong annotations.

3 Approach

This section first introduces the model backbone
and the self-supervised pre-training approach based
on the large scale parallel corpus. Then, we pro-
pose two correcting strategies to make the TER-
based artificial tags closer to the human judgment.

3.1 Model Architecture

Following (Ranasinghe et al., 2020; Lee, 2020;
Moura et al., 2020; Ranasinghe et al., 2021),
we select the XLM-RoBERTa (XLM-R) (Con-
neau et al., 2020) as the backbone of our
model. XLM-R is a transformer-based masked
language model pre-trained on large-scale
multilingual corpus and demonstrates state-of-
the-art performance on multiple cross-lingual

downstream tasks. As shown in Figure 4a, we
concatenate the source sentence and the MT
sentence together to make an input sample: x; =
<s>wi, .. wie</s><s>wiM, L wit</ s>,
where m is the length of the source sentence (src)
and n is the length of the MT sentence (mt). <s>
and </s> are two special tokens to annotate
the start and the end of the sentence in XLM-R,
respectively.

For the j-th token w;m in the MT sentence, we
take the corresponding representation from XLM-
R for binary classification to determine whether w;
belongs to good translation (OK) or contains trans-
lation error (BAD) and use the binary classification
loss to train the model:

Sij = a(wTXLM—Rj(acZ-))

Lij = —(y-logsy + (1 —y)-log(l - si;))
2)

)]

where XLM-R;(z;) € R? (d is the hidden size
of XLLM-R) indicates the representation output by
XLM-R corresponding to the token w™, o is the
sigmoid function, w € R*1 is the linear layer for
binary classification and y is the ground truth label.

3.2 Self-Supervised Pre-training Approach

Since constructing the golden corpus is is expen-
sive and label-consuming, automatically building
the synthetic corpus based on the parallel corpus
for pre-training is very promising and has widely
been used by conventional works (Tuan et al., 2021;
Zheng et al., 2021). As shown in Figure 4b, the
conventional approaches firstly split the parallel
corpus into the training and the test set. The NMT
model is trained with the training split and then
used to generate translations for all sentences in
the test split. From this, a large number of triplets
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Figure 5: The proposed two tag correcting strategies: Tag Refinement strategy and Tree-based Annotation strategy.

are obtained, each consisting of source, MT, and
target sentences. Finally, the target sentence is re-
garded as the pseudo-PE from the MT sentence,
and the TER toolkit is used to generate word-level
annotations.

3.3 Tag Correcting Strategies

As we discussed above, the conflicts between
the TER-based annotation and human judgement
limits the performance of the conventional self-
supervised pre-training approach on the proposed
HJQE. In this section, we introduce two tag cor-
recting strategies, namely tag refinement and tree-
based annotation, that target these issues and make
the TER-generated synthetic QE annotations more
consistent with human judgment.

Tag Refinement Strategy. In response to the
first issue (i.e., wrong annotations due to the syn-
onym substitution or constituent reordering), we
propose the tag refinement strategy, which corrects
the false BAD tags to OK. Specifically, as shown
in Figure 5a, we first generate the alignment be-
tween the MT sentence and the reference sentence
(i.e., the pseudo-PE) using FastAlign® (Dyer et al.,
2013). Then we extract the phrase-to-phrase align-
ment through running the phrase extraction algo-
rithm of NLTK* (Bird, 2006). Once the phrase-
level alignment is prepared, we substitute each BAD
span with the corresponding aligned spans in the
pseudo-PE and use the language model to calcu-
late the change of the perplexity Appl after this
substitution. If |[Appl| < «, where « is a hyper-
parameter indicating the threshold, we regard that
the substitution has little impact on the semantic

*https://github.com/clab/fast_align
*nttps://github.com/nltk/nltk/blob/
develop/nltk/translate/phrase_based.py

and thus correct the BAD tags to OK. Otherwise, we
regard the span does contain translation errors and
keep the BAD tags unchanged (Figure 5b).

Tree-based Annotation Strategy. Human’s di-
rect annotation tends to annotate the smallest con-
stituent that causes fatal translation errors as a
whole (e.g., the whole words, phrases, clauses, etc.).
However, TER-based annotations are often frag-
mented, with the translation being split into multi-
ple BAD spans. Besides, the BAD spans are often
not well-formed in linguistics i.e., the words in the
BAD spans from different linguistic constituents.

To address this issue, we propose the constituent
tree-based annotation strategy. It can be regarded
as an enhanced version of the tag refinement strat-
egy that gets rid of the TER-based annotation. As
shown in Figure 5c, we first generate the con-
stituent tree for the MT sentences. Each internal
node (i.e., the non-leaf node) in the constituent
tree represents a well-formed phrase such as noun
phrase (NP), verb phrase (VP), prepositional phrase
(PP), etc. For each node, we substitute it with
the corresponding aligned phrase in the pseudo-
PE. Then we still use the change of the perplexity
Appl to indicate whether the substitution of this
phrase improves the fluency of the whole transla-
tion. To only annotate the smallest constituents
that exactly contain translation errors, we normal-
ize Appl by the number of words in the phrase
and use this value to sort all internal nodes in the
constituent tree: Applyorm = rATpf—ll’ where [ and r
indicates the left and right position of the phrase,
respectively. The words of a constituent node are
integrally labeled as BAD only if |Applyorm| < 5
as well as there is no overlap with nodes that are
higher ranked. 3 is a hyper-parameter indicating
the threshold.


https://github.com/clab/fast_align
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English-German (En-De)

English-Chinese (En-Zh)

Model
MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span
Baselines
FT on HJ/QE only 2629  95.08 31.09 20.97 38.56  90.76  47.56 26.66
PT (TER-based) 9.52 3462 1354 3.09 15.17  36.66  31.53 2.40
+ FT on HIQE 2482 94.65 29.82 18.52 39.09  91.29 47.04 25.93
Pre-training only with tag correcting strategies (ours)
PT w/ Tag Refinement 10.12* 4933 1432 3.62 19.36* 53.16  34.10 3.79
PT w/ Tree-based Annotation 894 8450 15.84 6.94 21.53*% 59.21 3554 6.32
Pre-training with tag correcting strategies + fine-tuning on HIQE (ours)
PT w/ Tag Refinement + FT 27.54* 9421  35.25 21.13 40.35% 90.88  49.33 25.60
PT w/ Tree-based Annotation + FT  27.67* 94.44 3241 21.38 41.33* 9122  49.82 27.21

Table 2: Performance on the test set of H/QE. PT indicates pre-training and FT indicates fine-tuning. Results are all
reported by x 100. The numbers with * indicate the significant improvement over the corresponding baseline with p
< 0.05 under t-test (Semenick, 1990). The results on the validation sets are presented in Appendix B.

4 Experiments

Datasets. To verify the effectiveness of the pro-
posed corpus and approach, we conduct experi-
ments on both H/QF and MLQE-PE (Fomicheva
et al., 2020a). Note that MLQE-PE and HJ/QFE
share the same source and MT sentences, thus they
have exactly the same number of samples. We
show the detailed statistics in Table 1. For the pre-
training, we use the parallel dataset provided in the
WMT20 QE shared task to generate the artificial
QE dataset.

Baselines. To confirm the effectiveness of
our proposed self-supervised pre-training approach
with tag correcting strategies, we mainly select two
baselines for comparison. In the one, we do not use
the pre-training, but only fine-tune XLLM-R on the
training set of HJ/QE. In the other, we pre-train the
model on the TER-based artificial QE dataset and
then fine-tune it on the training set of H/QE.

Implementation and Evaluation. The QE
model is implemented based on an open-source
framework, OpenKiwi’>. We use the large-sized
XLM-R model released by the hugging-face.> We
use the KenLM to train the language model on
all target sentences in the parallel corpus. For the
tree-based annotation strategy, we obtain the con-
stituent tree through LTP? (Che et al., 2010) for
Chinese and through Stanza® (Qi et al., 2020) for
German. We set « to 1.0 and 3 to -3.0 based on
the empirical results on the evaluation sets. '° Fol-

Shttps://github.com/Unbabel/OpenKiwi
6https ://huggingface.co/x1lm-roberta
"https://kheafield.com/code/kenlm.tar
dhttp://1ltp.ai/index.html

9https ://stanfordnlp.github.io/stanza
1We find that o and 3 is not so sensitive if they are set in

lowing WMT20 QE shared task, we use Matthews
Correlation Coefficient (MCC) as the main metric
and also report the F1 score (F) for OK, BAD and
BAD spans. We refer the readers to the Appendix
A for implementation details.

4.1 Main Results

The results are shown in Table 2. We can ob-
serve that the TER-based pre-training only brings
very limited performance gain or even degrade
the performance when compared to the “FT on
HJQE only” setting (-1.47 for En-De and +0.53
for En-Zh). It suggests that the inconsistency be-
tween TER-based and human’s annotations leads to
the limited effect of pre-training. However, when
applying the tag correcting strategies to the pre-
training dataset, the improvement is much more
significant (+2.85 for En-De and +2.24 for En-Zh),
indicating that the tag correcting strategies miti-
gate such inconsistency, improving the effect of
pre-training. On the other hand, when only the
pre-training is applied, the tag correcting strategies
can also improve the performance. It shows our
approach can also be applied to the unsupervised
setting, where no human-annotated dataset is avail-
able for fine-tuning.

Tag Refinement v.s. Tree-based Annotation.
When comparing two tag correcting strategies, we
find the tree-based annotation strategy is generally
superior to the tag refinement strategy, especially
for En-Zh. The MCC improves from 19.36 to 21.53
under the pre-training only setting and improves
from 40.35 to 41.33 under the pre-training then
fine-tuning setting. This is probably because the

the reasonable ranges, [0.8, 1.5] for « and [-2.0, -3.5] for .
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Evaluate on — MLQE-PE HJQOE
Fine-tuneon | “pjocx MCC F-BAD  MCC  F-BAD
WMT20’s best ~ 59.28

No pre-training (fine-tuning only)
MLQE-PE 58.21 46.81  75.02 2249 3434
HJQE 49.77 23.68 36.10 4576  53.77

TER-based pre-training
w/o fine-tune 56.51 33.58 73.85 11.38 2741
MLQE-PE 61.85 5325 78.69 2193 3375
HJQE 41.39  29.19 4297 47.34 5543
Pre-training with tag refinement
w/o fine-tune 55.03 2889 70.73 18.83  31.39
MLQE-PE 61.35 4824 7717 21.85 3331
HJQE 39.56  25.06 67.40 47.61 55.22
Pre-training with tree-based annotation

w/o fine-tune 5521 2679  68.11 2098 32.84
MLQE-PE 60.92 48.58 76.18 2234 34.13
HIQE 40.30  26.22  39.50 48.14  56.02

Table 3: Performance comparison for En-Zh with dif-
ferent fine-tuning and evaluation settings. Since the test
labels of MLQE-PE are not publicly available, we re-
port the results on the validation set of both datasets.
MCC¥* indicates the MCC score considering both the
target tokens and the target gaps.

tag refinement strategy still requires the TER-based
annotation and fixes based on it, while the tree-
based annotation strategy actively selects the well-
formed constituents to apply phrase substitution
and gets rid of the TER-based annotation.

Span-level Metric. Through the span-level met-
ric (F-BAD-Span), we want to measure the unity
and consistency of the model’s prediction against
human judgment. From Table 2, we find our mod-
els with tag correcting strategies also show higher
F1 score on BAD spans (from 26.66 to 27.21 for
En-Zh), while TER-based pre-training even do
harm to this metric (from 26.66 to 25.93 for En-
Zh). This phenomenon also confirms the aforemen-
tioned fragmented issue of TER-based annotations,
and our tag correcting strategies, instead, improve
the span-level metric by alleviating this issue.

4.2 Analysis

Comparison with MLQE-PE. To demonstrate the
difference between the MLQE-PE (TER-generated
tags) and our H/QE datasets, and analyze how the
pre-training and fine-tuning influence the results
on both datasets, we compare the performance of
different models on MLQE-PE and HJQE respec-
tively. The results for En-Zh are shown in Table 3.
When comparing results in each group, we find that
fine-tuning on the training set identical to the eval-
uation set is necessary for achieving high perfor-
mance. Otherwise, fine-tuning provides marginal

En-De En-Zh

Scores

TER Ours TER Ours
1 (terrible) 3 1 5 0
2 (bad) 36 16 34 6
3 (neutral) 34 20 29 21
4 (good) 26 61 24 59
5 (excellent) 1 2 8 14
Average score: 2.86 3.47 296 3.81
% Ours > TER: 89% 91%

Table 4: The results of human evaluation. We select
the best-performed model fine-tuned on MLQE-PE and
HJQE respectively.

improvement (e.g., fine-tuning on MLQE-PE and
evaluating on HJ/QFE) or even degrades the perfor-
mance (e.g., fine-tuning on H/QF and evaluating
on MLQE-PE). This reveals the difference in data
distribution between HJ/QF and MLQE-PE. Be-
sides, Our best model on MLQE-PE outperforms
WMT20’s best model (61.85 v.s. 59.28) using the
same MCC* metric, showing that the modeling
ability of our model is strong enough even under
the TER-based setting.

On the other hand, we compare the performance
gain of different pre-training strategies. When eval-
uating on MLQE-PE, the TER-based pre-training
brings higher performance gain (+6.44) than pre-
training with two proposed tag correcting strate-
gies (+1.43 and +1.77). While when evaluating
on HJQE, the case is opposite, with the TER-
based pre-training bringing lower performance gain
(+1.58) than tag refinement (+1.85) and tree-based
annotation (+2.38) strategies. In conclusion, the
pre-training always brings performance gain, no
matter evaluated on MLQE-PE or H/QE. However,
the optimal strategy depends on the consistency be-
tween the pre-training dataset and the downstream
evaluation task.

Human Evaluation. To evaluate and compare
the models pre-trained on TER-based tags and cor-
rected tags more objectively, human evaluation is
conducted for both models. For En-Zh and En-De,
we randomly select 100 samples (the source and
MT sentences) from the validation set and use two
models to predict word-level OK or BAD tags for
them. Then, we ask human translators to give a
score for each prediction, between 1 and 5, where
1 indicates the predicted tags are fully wrong, and
5 indicates the tags are fully correct. Table 4 shows
the results. We can see that the model pre-trained
on corrected tags (Ours) achieves higher human



evaluation scores than that pre-trained on TER-
based tags on average. For about 90% of samples,
the prediction of the model pre-trained on corrected
dataset can outperform or tie with the prediction of
the model pre-trained on TER-based dataset. The
results of human evaluation show that H/IQF is
more consistent with human judgement. The case
study is also presented in the Appendix C.

Limitation and Discussion We analyze some
samples that are corrected by our tag correcting
strategies and find a few bad cases. The main rea-
sons are: 1) There is noise from the parallel cor-
pus. 2) The alignment generated by FastAlign con-
tains unexpected errors, making some entries in the
phrase-level alignments are missing or misaligned.
3) The scores given by KenlLM, i.e., the perplex-
ity changes, are sometimes not sensitive enough.
We propose some possible solutions to the above
limitations as our future exploration direction. For
the noise in the parallel corpus, we can use parallel
corpus filtering methods that filter out samples with
low confidence. We can also apply the data aug-
mentation methods that expand the corpus based
on the clean parallel corpus. For the alignment er-
rors, we may use more accurate neural alignment
models proposed recently (Jalili Sabet et al., 2020;
Lai et al., 2022). For the scoring, we may introduce
the neural-based phrase-level semantic matching
model (Wang et al., 2021).

5 Related Work

Early approaches on QE, such as QuEst (Specia
et al., 2013) and QuEst++ (Specia et al., 2015),
mainly pay attention to the feature engineering.
They aggregate various features and feed them
to the machine learning algorithms for classifica-
tion or regression. Kim et al. (2017) first propose
the neural-based QE approach, called Predictor-
Estimator. They first pre-train an RNN-based pre-
dictor on the large-scale parallel corpus that pre-
dicts the target word given its context and the
source sentence. Then, they extract the features
from the pre-trained predictor and use them to train
the estimator for the QE task. This model achieves
the best performance on the WMT17 QE shard task.
After that, many variants of Predictor-Estimator
are proposed (Fan et al., 2019; Moura et al., 2020;
Cui et al., 2021). Among them, Bilingual Expert
(Fan et al., 2019) replaces RNN with multi-layer
transformers as the architecture of the predictor. It
achieves the best performance on WMT18. Kepler

et al. (2019) release an open-source framework for
QE, called OpenKiwi, that implements the most
popular QE models with configurable architecture.

Recently, with the development of pre-trained
language models, many works select the cross-
lingual language model as the backbone (Ranas-
inghe et al., 2020; Lee, 2020; Moura et al., 2020;
Rubino and Sumita, 2020; Ranasinghe et al., 2021;
Zhao et al., 2021). Many works also explore
the joint learning or transfer learning of the mul-
tilingual QE task (Sun et al., 2020; Ranasinghe
et al., 2020, 2021). Meanwhile, Fomicheva et al.
(2021) propose a shared task with the new-collected
dataset on explainable QE, aiming to provide word-
level hints for sentence-level QE score. Freitag
et al. (2021) also study multidimensional human
evaluation for MT and collect a large-scale dataset.
Additionally, Fomicheva et al. (2020b); Cambra
and Nunziatini (2022) evaluate the translation qual-
ity from the features of the NMT systems directly.

The QE model can be applied to the Computer-
Assisted Translation (CAT) system together with
other models like translation suggestion (TS) or
automatic post-edit (APE). Wang et al. (2020) and
Lee et al. (2021) use the QE model to identify
which parts of the machine translations need to
be correct, and the TS (Yang et al., 2021) also
needs the QE model to determine error spans before
giving translation suggestions.

6 Conclusion

In this paper, we focus on the task of word-level
QE in machine translation and target the inconsis-
tency issues between the TER-based QE dataset
and human judgment. We first collect and re-
lease a benchmark dataset called H/QE that re-
flects the human judgement on the translation er-
rors in MT sentences. Besides, we propose the
self-supervised pre-training approach with two tag
correcting strategies, which makes the TER-based
annotations closer to the human judgement and
improves the final performance on the proposed
benchmark dataset H/QE. We conduct thorough
experiments and analyses, demonstrating the ne-
cessity of our proposed dataset and the effective-
ness of our proposed approach. Our future direc-
tions include improving the performance of phrase-
level alignment, introducing phrase-level semantic
matching, and applying data augmentation. We
hope our work will provide a new perspective for
future researches on quality estimation.
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A Implementation Details

In the pre-processing phase, we filter out parallel
samples that are too long or too short, and only
reserve sentences with 10-100 tokens. We pre-train
the model on 8§ NVIDIA Tesla V100 (32GB) GPUs
for two epochs, with the batch size set to 8 for each
GPU. Then we fine-tune the model on a single
NVIDIA Tesla V100 (32GB) GPU for up to 10
epochs, with the batch size set to 8 as well. Early
stopping is used in the fine-tuning phase, with the
patience set to 20. We evaluate the model every
10% steps in one epoch. The pre-training often
takes more than 15 hours and the fine-tuning takes
1 or 2 hours. We use Adam (Kingma and Ba, 2014)
to optimize the model with the learning rate set to
Se-6 in both the pre-training and fine-tuning phases.
For all hyper-parameters in our experiments, we
manually tune them on the validation set of H/QE.

B Main Results on the Validation Set

In Table 5, we also report the main results on the
validation set of HJ/QE.

C Case Study

In Figure 6, we show some cases from the valida-
tion set of English-Chinese language pair. From the
examples, we can see that the TER-based model
(noted as PE Effort Prediction) often annotates
wrong BAD spans and is far from human judgment.
For the first example, the MT sentence correctly
reflects the meaning of the source sentence, and the
PE is just a paraphrase of the MT sentence. Our
model correctly annotates all words as OK, while
TER-based one still annotates many BAD words.
For the second example, the key issue is the trans-
lation of “unifies” in Chinese. Though “4i—" is
the direct translation of “unifies” in Chinese, it can
not express the meaning of winning two titles in
Chinese context. And our model precisely anno-
tated the “4¢— | in the MT sentence as BAD. For
the third example, the MT model fails to translate
the “parsley” and the “sumac” to “KXr” and “&h
%7K in Chinese, since they are very rare words.
While the TER-based model mistakenly predicts
long BAD spans, our model precisely identities both
mistranslated parts in the MT sentence.
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English-German (En-De) English-Chinese (En-Zh)

Model
MCC F-OK F-BAD F-BAD-Span MCC F-OK F-BAD F-BAD-Span
Baselines
FT on HJQE only 3469 9428 40.38 28.65 4576 9196  53.77 29.84
PT (TER-based) 13.13 3730 18.80 4.72 11.38 2591 27.41 2.16
+ FT on HIQE 35.02 94.00 40.86 26.68 4734 9130 5543 28.53
With tag correcting strategies (ours)
PT w/ Tag Refinement 13.26 52.43 19.78 6.42 18.83 53.29  31.39 3.48
+ FT on HIQE 3770  94.08 43.32 30.83 47.61 9239 5522 28.33
PT w/ Tree-based Annotation 13.92 84.79  22.75 9.64 2098 5932 32.84 6.53
+ FT on HIQE 37.03 9446 42.54 31.21 48.14 91.88  56.02 28.17
PT w/ Both 13.12 39.68 18.94 5.26 2139 56.76 3274 5.72
+FT on HIQE 3890 9444  44.35 32.21 48.71 90.74  56.47 25.51

Table 5: The word-level QE performance on the validation set of HJQE for two language pairs, En-De and En-Zh.
PT indicates pre-training and FT indicates fine-tuning.

Source: To win, a wrestler must strip their opponent’s tuxedo off.
MT: 2 28 3R | #55; Ba) 5 w40 18 3 F /Y FLAR BTk .
MT Back: To win, the wrestler had to take his opponent’s dress off.
PE: & W5 MF , I EI5 w0 B XF 5 RER .

PE Back: To win the victory, the wrestler had to remove his opponent’s tuxedo.

TER-based: Z 8 KBt , #EE BaRIR 451 8 3F 5 LAk RT3k .
Ours: Z 18 3Kt , 3 Z R 40 18 F 10 (LR BRTR .

Source: April 28 Juan Diaz unifies the WBA and WBO Lightweight titles after defeating Acelino Freitas.

MT: 4 A 28 H, % - @I H 7£ &0 f §0F) 15 - 3575 #H /5 %— 7 WBA 1 WBO RER BE .

MT Back: On April 28, Juan Diaz Unified the WBA and WBO lightweight titles after defeating Acelino Freitas.

PE:4 B 28 H, Juan Diaz £ &77% Acelino Freitas Zf5 , ¥ WHR EH S FMtER Z2H AL W EERBTERT —5 .
PE Back: On April 28, Juan Diaz won both the WBA and WBO lightweight titles after defeating Acelino Freitas.

TER-based: 4 A 28 H , #AZ - @IEHT 7 I BT Y17 i - 365 88} /5 45— T WBA 1 WBO 2= EE .
Ours: 4 A 28 H , #A%R - @ILHT 7 £ B Y17 i - FE BHi /5 4— 7 WBA #1 WBO 254 EE .

Source: Fattoush is a combination of toasted bread pieces and parsley with chopped cucumbers, radishes, tomatoes and flavored by sumac.
MT: S5t AR BEEH MBS EN AL, £ BLOH . MFEUR TR EER B EE .

MT Back: Fadush is a combination of toast and pasai with chopped cucumbers, radishes, tomatoes and onions and scented consumables.
PE: Fattoush 2 EHEF M KT SN AN, i, BAMMARBNEEG, I L ERKRAKERK

PE Back: Fattoush is a combination of toast and parsley with chopped cucumbers, radishes, tomatoes and scallions, seasoned with rhus salt.

TER-based: FEittR HERF MM RS IR EK . F I, AW . FE AR K Y iERm N EE .
Ours: AR BEEH MBHFXS VRN ELR . T, BLH . MFRURE® N HER N ES .

Figure 6: Examples of word-level QE from the validation set of English-Chinese language pair.
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