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Abstract
We address image deraining under complex backgrounds, diverse
rain scenarios, and varying illumination conditions, representing
a highly practical and challenging problem. Our approach utilizes
synthetic, real-world, and nighttime datasets, wherein rich back-
grounds, multiple degradation types, and diverse illumination con-
ditions coexist. The primary challenge in training models on these
datasets arises from the discrepancies among them, potentially lead-
ing to conflicts or competition during the training period. To address
this issue, we first align the distribution of synthetic, real-world
and nighttime datasets. Then we propose a novel contrastive learn-
ing strategy to extract multi-view (multiple) representations that
effectively capture image details, degradations, and illuminations,
thereby facilitating training across all datasets. Regarding multiple
representations as profitable prompts for deraining, we devise a
prompting strategy to integrate them into the decoding process.
This contributes to a potent derainingmodel, dubbed Rainmer. Addi-
tionally, a spatial-channel interaction module is introduced to fully
exploit cues when extracting multi-view representations. Exten-
sive experiments on synthetic, real-world, and nighttime datasets
demonstrate that Rainmer outperforms current representativemeth-
ods. Moreover, Rainmer achieves superior performance on the All-
in-One image restoration dataset, underscoring its effectiveness.
Furthermore, quantitative results reveal that Rainmer significantly
improves object detection performance on both daytime and night-
time rainy datasets. These observations substantiate the potential
of Rainmer for practical applications.
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• Computing methodologies→ Reconstruction.
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1 Introduction
Rain occurs approximately eight times more frequently than fog
and snow according to the statistics of the latest large autonomous
driving dataset [1]. As the most common adverse weather condition,
rain significantly impairs outdoor computer vision applications. Re-
cently, the sixth UG2+ Prize Challenge highlighted the importance
and urgency of real-world image deraining tasks.

Deep learning-based methods [4, 16, 30, 50–52, 54, 57, 58, 63]
have made significant progress in image deraining in decades. How-
ever, the majority of these algorithms are primarily trained on
synthetic datasets [4, 16, 30, 51, 52, 54, 57], which limits their ef-
fectiveness in real-world and nighttime scenarios. Consequently,
a fundamental question arises:What factors contribute to the chal-
lenges in establishing a comprehensive image deraining model?

Constructing paired real-world and nighttime datasets has long
been challenging in the image de-raining literature. Because captur-
ing rainy images and clean images simultaneously while maintain-
ing pixel-wise consistency is usually rendered impossible. There-
fore, the majority of methods rely on synthetic datasets [8, 20, 51,
63] to develop powerful deraining models, which often struggle in
real-world rainy environments and nighttime scenarios. Recently,
Wang et al. [45] proposes to generate pseudo clean backgrounds
from real rainy videos to create paired datasets. Subsequently, Ba et
al. [2] and Zhang et al. [62] introduce a time multiplexing technique
to collect paired rainy and clean images from online video streams
at different timestamps. Though effective, these methods mainly
collect images in static scenes with little motion movement and
cannot be adapted to heavy rainy scenes as well as low-light con-
ditions, restricting the richness of backgrounds and illuminations.
Most recently, Zhang et al. [60] create a paired nighttime rainy
dataset leveraging the weather simulation technique in the GTAV
game.
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Figure 1: Motivation of the proposed multi-view representa-
tion learning-based image deraining.

Hence, a more feasible approach to developing comprehensive
deraining models is to combine the advantages of synthetic, real-
world, and nighttime datasets. The benefits are three-fold: 1) Rich
background scenes from synthetic datasets. Synthetic datasets [8,
20, 52] usually utilize high-quality images fromBSD [29] andUCID [38]
to synthesize rainy images; 2) Rich degradations from synthetic
and real-world datasets. Synthetic approaches can control the rain
by tuning hyper-parameters, while the real-world dataset con-
tains complex rain effects, e.g., rain streaks, rain veiling effect, blur,
and color distortions; 3) Diverse ambient lighting conditions
from nighttime datasets. Rain in the daytime is often monochro-
matic [59, 65] while being colored by ambient lights in nighttime
scenarios [60]. Current approaches [16, 30, 57, 58] attempt to ac-
quire decent deraining ability by directly training models on mixed
synthetic datasets. However, this approach suffers from larger
dataset discrepancies arising from various degradations and sig-
nificant illumination contrasts. There are also All-in-One meth-
ods [19, 21, 67] developed to address multiple weather conditions,
but they pay little attention to the diversity and complexity of rain
itself. Additionally, we observe significant differences in the rain
density distribution between daytime and nighttime datasets, which
may impede the learning process.

To address the aforementioned issues, we first align the rain
density distributions among synthetic, real-world, and nighttime
datasets. Typically, we find that a large number of black blocks
in rainy night images are meaningless for training and should
be removed. Then, we aim to extract multi-view (multiple) rep-
resentations from rainy images that characterize image details,
degradations, and illuminations, as illustrated in Fig. 1. Existing
representation learning approaches focus on learning degradation-
related representation [19, 44], discriminating between rain and
backgrounds [5, 56] and extracting joint rain-/detail-aware repre-
sentation [35], which are not capable of simultaneously perceiving
image details, degradations, and illuminations. Inspired by [35], we
utilize detail-/degradation-aware representation to capture image
backgrounds, rain streaks, and blur effects. This joint representation
facilitates learning overall rain densities. Moreover, a chromatic
representation is explored to capture color distortions, rain veil-
ing effects, and illuminations. These two kinds of representations
constitute multi-view representations, which are efficiently learned
with the proposed contrastive learning approach in an unsupervised
manner. These representations are expected to model discrepancies
among datasets well and promote dataset collaboration. Beyond,
they serve as valuable prompts to guide the deraining process as

shown in Fig. 1. Hence, we further devise a prompting strategy that
contributes to Rainmer’s design. Unlike current prompting strate-
gies [33, 39] which employ a fixed number of prompts, the proposed
Rainmer directly extracts prompts from input images, functioning
effectively at larger dataset scales. Additionally, Rainmer includes
a Spatial-channel Interaction Module (SCIM), which facilitates the
full exploitation of channel information when extracting multi-view
(multiple) representations. In this paper, we make the following
contributions:

1) We propose to learn a comprehensive image deraining model
leveraging the combinations of synthetic, real-world, and night-
time datasets. A rain density distribution alignment strategy is
introduced to mitigate gaps among these datasets.

2) To effectively learn from synthetic, real-world, and nighttime
datasets, we propose a multi-view representation learning method
aimed at capturing backgrounds, degradations, and illuminations.
On top of these representations, we develop Rainmer, which utilizes
multiple representations to prompt image deraining. Additionally,
a SCIM module is incorporated into Rainmer.

3) We conduct extensive experiments on synthetic, real-world,
and nighttime datasets, where the proposed Rainmer outperforms
current state-of-the-art. Remarkable performance on the All-in-
One image restoration dataset further emphasizes the superiority
of the proposed approach. Moreover, experimental results on down-
stream object detection indicate a significant improvement in mean
Average Precision (mAP) on both daytime and nighttime datasets.

2 Related Work
Single Image Deraining focuses on the removal of rain effects to
restore clean backgrounds for outdoor computer vision applications.
Prior-based deraining methods, utilizing techniques such as Gauss-
ian Mixture Models [23] and dictionary learning [10, 27], achieve
this goal through iterative optimization but often incur significant
computational burdens and struggle with generalization. With the
advent of deep learning, learning-based approaches [8, 30, 35, 43,
52, 54, 58] have emerged, dramatically enhancing deraining ability
over the past decades. In the realm of learning-based deraining,
multi-scale design [9, 42, 53], attention mechanisms [4, 13, 41, 45],
recurrent units [36, 37, 54], and multi-stage processing [52, 58] have
been extensively explored to adress complex and accumulated rain
streaks. There are contemporary semi-supervised and unsupervised
methods [5, 14, 47, 55, 66] that attempt to incorporate unlabeled
real-world data for training, often yielding undesired performance.
Current outstanding deraining methods [6, 33, 50] primarily focus
on synthetic datasets, with limited attention given to real-world and
nighttime environments. Researchers have begun to develop real-
world rainy datasets [2, 62], as well as nighttime dataset [60, 61].
Albeit successful, comprehensive image deraining with complex
backgrounds, diverse rain degradations, and varying illumination
conditions remains a largely unexplored and urgent problem.
Representation Learning-based Image Restoration aims to
produce high-quality results by leveraging interactions between
intermediate features and abstract representations. Wei et al. [47]
represent synthetic and real rain using Gaussian Mixture Mod-
els, where Kullback-Leiber divergence [7] is imposed to transfer
knowledge from synthetic images to unlabeled real rainy images.
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Figure 2: The architecture of the proposed Rainmer. Rainmer initially extracts multi-view representations 𝑧chr and 𝑧det-g

from input image using mixture of experts (MoEs). Then, Rainmer employs a U-Net-based architecture to remove rain effects,
where we develop MPM to prompt the decoding process utilizing multiple representations. Additionally, we propose SCIM to
maximize spatial-channel interaction when extracting representations.

Huang et al. [14] introduce a soft-updating strategy to facilitate
interaction among representations of synthetic and real rainy im-
ages. Recently, contrastive learning [12] has been widely adopted
in image restoration [19, 44, 49, 56]. Typically, Wang et al. [44]
extract degradation representations with contrastive learning to
guide image super-resolution. Li et al. [19] employ degradation
representations to generate parameters of deformable convolution
layers, thereby enhancing All-in-One image restoration. In contrast,
Transweather [39] incorporates learnable weather-type queries to
facilitate feature interaction. Following [39], Potlapalli et al. [33]
introduce a fixed number of learnable prompts to guide the im-
age restoration process. Leveraging a pre-trained model to extract
degradation representation, Wang et al. [40] devise a prompting
image restorer. Though effective, these methods mainly focus on
utilizing degradation-aware representations, neglecting image de-
tails and illumination. Most recently, Ran et al. [35] propose to learn
joint rain-/detail-aware representations to remove complex rain
effects, while overlooking illumination differences.

3 Comprehensive Image Deraining
In this paper, we aim to address image deraining leveraging syn-
thetic, real-world, and nighttime datasets. Denote Dsyn, Dreal, and
Dnight as the synthetic, real-world and nighttime datasets, respec-
tively. And let D̄ = {x𝑖 , y𝑖 }𝑁𝑖=1 be their union, where x𝑖 and y𝑖
represent 𝑖-th rainy and clean images, and 𝑁 is the total number of
samples. To handle discrepancies among these datasets, we propose
to learn multiple representations that effectively perceive image
details, degradations, and illuminations.

Specifically, given rainy image x, we employ a chromatic encoder
𝑓 chr
𝐸

and a detail-/degradation-aware encoder 𝑓 det-g
𝐸

(see Fig. 1) to
extract corresponding representations following:

𝑧chr = 𝑓 chr𝐸 (x), 𝑧det-g = 𝑓
det-g
𝐸

(x), (1)

where 𝑧chr and 𝑧det-g are 𝑑-dimensional spherical vectors, indicat-
ing multi-view (multiple) representations. We introduce a novel
contrastive learning strategy to learn 𝑓 chr

𝐸
and 𝑓

det-g
𝐸

, with training
objective formulated as:

Lcontra = Lchr
contra + Ldet-g

contra, (2)

where Lchr
contra and Ldet-g

contra denote contrastive learning losses that
supervise the training of 𝑓 chr

𝐸
and 𝑓

det-g
𝐸

. Fig. 2 presents the de-
tails of encoders, which share a mixture of experts (MoEs) and
possess specific feature projectors denoted as𝜓 chr and𝜓det-g. The
representation learning procedure will be elaborated in Section 3.2.

Aside from effectively perceiving details, degradations, and il-
luminations, the multi-view representations could be exploited to
assist the deraining procedure. To this end, we further devise Rain-
mer, which contains Multi-view representations Prompting Mod-
ules (MPM) to prompt the decoding process, as depicted in Fig. 2.
In addition to the vector-level prompting in MPM, we introduce a
Spatial-channel Interaction Module (SCIM) to exploit rich spatial-
channel interaction when extracting representations. Details of
Rainmer will be discussed in Section 3.3. Generally, this prompting
deraining process can be formulated as:

yp = 𝑓 (x, 𝑧chr, 𝑧det-g), (3)
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where yp is the restored image, and 𝑓 represents the deraining
process of Rainmer as shown in Fig. 2. The prediction of restored
image yp can be supervised with a reconstruction loss:

Lrecon = E(x,y)

[√︃
| |y − yp | |2

𝐹
+ 𝜖2 + 0.1(1 − SSIM(y, yp))

]
, (4)

where we employ the combination of Charbonnier loss [17] (first
term) and SSIM [46] loss (second term), 𝜖 = 10−3. In summary,
We train Rainmer end-to-end using the combination of Lrecon and
Lcontra:

Ltot = Lrecon + 𝜆Lcontra, (5)

where 𝜆 is a hyper-parameter.

3.1 Dataset Distribution Alignment
The ambient lighting conditions may induce a large gap between
daytime and nighttime datasets, which is harmful to training. We
investigate the rain density distribution of synthetic, real-world,
and nighttime datasets. Typically, we choose Rain13K [16] (syn-
thetic, noted as SynRain), GT-Rain [2] (real-world), and GTAV-
NightRain [60] (nighttime) datasets for analysis. Note that rainy
images captured at night usually have much lower pixel intensities
compared to daytime images, which influences rain density calcu-
lation. Hence we introduce a rain density @ illuminance metric:

𝜌 =
max𝑐

∑
ℎ,𝑤 |xℎ,𝑤,𝑐 − yℎ,𝑤,𝑐 |

max𝑐
∑
ℎ,𝑤 xℎ,𝑤,𝑐 + max𝑐

∑
ℎ,𝑤 yℎ,𝑤,𝑐

, (6)

where x and y are paired rainy and clean images. ℎ,𝑤 represents
spatial coordinates, and 𝑐 means color channel index. The metric 𝜌
in Eq. (6) describes the extent to which the image is corrupted by rain
when compared to the overall pixel intensity of the background and
rainy image. Fig. 3 (b) presents the statistics of 𝜌 among all datasets.
It can be seen that SynRain and GT-Rain share similar statistics
of 𝜌 , while presenting a large difference against GTAV-NightRain.
Specifically, images with 𝜌 < 0.08 in GTAV-NightRain account
for about 90% proportion. In fact, we observe that this is due to
plenties of black regions in nighttime images with 𝜌 ≈ 0 (see Fig. 3
(a)), which contains almost no information and is meaningless. To
address this problem, we first crop all images in GTAV-NightRain
into non-overlap 512 × 512 images, resulting in GTAV-crop. Then
we remove a proportion of images with 𝜌 < 0.08 in GTAV-crop
by matching the average statistics of 𝜌 in the intervals [0.00, 0.04]
and [0.04, 0.08] of SynRain and GT-Rain. Finally, we obtain the
GTAV-balance dataset, which presents similar statistics to SynRain
and GT-Rain as illustrated in Fig. 3 (b).

3.2 Multi-view Representation Learning
Contrastive learning [12] has been proven an elegant and successful
approach to learning image representation in an unsupervised man-
ner [19, 35, 44]. In this section, we depict the proposed contrastive
learning method to learn multi-view representations in detail. To
extract representation as shown in Fig. 2 from x, we first utilize a
mixture of experts to obtain low-level spatial features:

𝐹 spa = 𝑓MoE ◦ 𝑓conv (x), (7)

where 𝑓MoE indicates the mixture of experts, and 𝑓conv is a convo-
lutional layer to expand channels. In practice, we implement 𝑓MoE
with eight experts following [4]. 𝐹 spa is the low-level feature with
rich spatial information to perceive image details, degradations,
and illuminations. Utilizing chromatic projector 𝜓 chr and detail-
/degradation-aware projector𝜓det-g containing three convolutional
layers, we extract chromatic information and detail/degradation
information from 𝐹 spa by:

𝐹 chr = 𝜓 chr (𝐹 spa), 𝐹det-g = 𝜓det-g (𝐹 spa), (8)

where 𝐹 chr and 𝐹det-g denote corresponding deep features, respec-
tively. Details of𝜓 chr and𝜓det-g are provided in the supplementary
materials. Then we can obtain image chromatic representation 𝑧chr
and degradation representation 𝑧deg following:

𝑧chr =
GAP(𝐹 chr)

| |GAP(𝐹 chr) | |2
, 𝑧deg =

GAP(𝐹det-g)
| |GAP(𝐹det-g) | |2

, (9)

where GAP(·) means global average pooling operation. Note that
GAPwill destroy the spatial information in feature, hence we obtain
detail representation 𝑍det while preserving spatial information via:

𝑍det =
Pool(𝐹det-g)

| |Pool(𝐹det-g) | |2
, (10)

where Pool(·) is a pooling operation with 8 × 8 kernel and stride 8.
Detail-/Degradation-aware Representation Learning. Ran et
al. [35] have developed an efficient approach to extract joint rain-
/detail-aware representations. The underlying philosophy is that
by pushing rainy image x apart from negatives with blurred back-
grounds and negatives with most dissimilar rain effects simultane-
ously, the model can in turn learn rain-/detail-aware representa-
tions. Inspired by this, we construct 𝑁𝑏 detail-aware samples by
employing Gaussian blur on clean image y following [35], denoted
as {y𝑏

𝑗
}𝑁𝑏

𝑗=1. To construct negatives for learning degradation, we
maintain a rain layer archiveA𝑟 similar to [35]. Different from [35],
given rainy image x, we retrieve most dissimilar rain layers from
A𝑟 to construct negatives by:

{r𝑗 }𝑁𝑟

𝑗=1 = arg max
𝐴⊂A𝑟 , |𝐴 |=𝑁𝑟

∑︁
r′∈𝐴

| |svd(r) − svd(r′) | |1, r = x − y, (11)

where 𝑁𝑟 means the number of degradation-aware negatives, r and
r′ denote the rain layer of x and rain layer in archive, respectively.
The svd(·) calculates the singular values in descending order, which
is robust to translation and rotation. Utilizing detail-aware negatives
{y𝑏

𝑗
}𝑁𝑏

𝑗=1 and degradation-aware negatives simulated by y + r𝑗 , we
calculate corresponding negative logits for contrastive learning by:

𝑠det𝑗 = 𝑍det · 𝑍det
𝑗 , 𝑠

deg
𝑗

= 𝑧deg · 𝑧deg
𝑗

, (12)
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where 𝑍det
𝑗

and 𝑧deg
𝑗

are calculated using Eq. (10) and Eq. (9), corre-
sponding to y𝑏

𝑗
and y+ r𝑗 , respectively. By employing data augmen-

tation to x, we can calculate positaive logits 𝑠det+ and 𝑠deg+ similar
to Eq. (12). Hence, the contrastive learning loss Ldet-g

contra in Eq. (2) is
formulated as:

Ldet-g
contra = − log

©­­«
𝑒𝑠

det++𝑠deg+

𝑒𝑠
det++𝑠deg+ +∑𝑁𝑏

𝑗=1 𝑒
𝑠det
𝑗 +∑𝑁𝑟

𝑗=1 𝑒
𝑠
deg
𝑗

ª®®¬ . (13)

When prompting restoration, 𝑍det and 𝑧deg are combined to
𝑧det-g since they both come from 𝐹det-g.
Chromatic Representation Learning. To perceive color distor-
tions and illumination in rainy images, we compute a chromatic
vector u ∈ R3 for image x via:

u𝑐 =
1

𝐻𝑊

∑︁
ℎ,𝑤

xℎ,𝑤,𝑐 , 𝑐 ∈ {𝑅,𝐺, 𝐵}, (14)

where 𝐻 and𝑊 denote the spatial resolution, and u characterizes
both the color property and overall illuminance. We can re-render
the chromatic property of x with another u′ by:

x̃ = (u′/
∑︁
𝑐

u𝑐 ) ⊙ x, (15)

where ⊙means element-wisemultiplication, and x̃ is the re-rendering
result. Eq. (15) provides a way to construct chromatic-aware nega-
tives. To this end, we maintain a chromatic vector archive A𝑐 and
retrieve 𝑁𝑐 most dissimilar vectors {u𝑗 }𝑁𝑐

𝑗=1 from it given rainy im-

age x. The {u𝑗 }𝑁𝑐

𝑗=1 is then employed to simulate chromatic-aware

negatives {x̃𝑗 }𝑁𝑐

𝑗=1 using Eq. (15). Similar to Eqs. (12) and (13), we
derive chromatic contrastive loss Lchr

contra in Eq. (2) below:

Lchr
contra = − log

©­­«
𝑒𝑧

chr ·𝑧chr+

𝑒𝑧
chr ·𝑧chr+ +∑𝑁𝑐

𝑗=1 𝑒
𝑧chr ·𝑧chr

𝑗

ª®®¬ , (16)

where 𝑧chr, 𝑧chr+, and 𝑧chr
𝑗

are chromatic representations for rainy
image x, clean image y, and negatives x̃𝑗 , respectively. By pulling
chromatic representations of x and y together, the proposed method
could implicitly address color distortions raised by rain effects.

3.3 Rainmer: Prompting Deraining
As shown in Fig. 2, Rainmer first employs MoEs to extract low-
level features 𝐹 cha, and then processes features through a 4-level
encoder-decoder architecture. In the end, the features from the
decoder undergo another MoEs to obtain final restored result. At
the 𝑙-th level, the encoder comprises 𝑁𝑙 Multi-head Self-attention
Blocks (MSB) as shown in Fig. 2. Each MSB is a LayerNorm (LN)-
Multi-head Self-attention (MSA)-LayerNorm-Feedforward Network
(FFN) architecture (see Fig. 2). The 𝑙-th decoder contains 𝑁𝑙 Multi-
head Self-attention Prompting Blocks (MSPB), with a Multi-view
Prompting Module (MPM) inserted behind MSA of the MSB as
illustrated in Fig. 2. The MPM utilizes multi-view representations
to prompt the decoding process, thereby producing high-quality
results. Additionally, we introduce a Spatial-channel Interaction
Module (SCIM) to enhance the low-level features 𝐹 cha. In practice,

(a) Rainy (b) IDT (c) HCT-FFN (d) PromptIR (e) Rainmer (ours) (f) GT

Figure 4: Visual comparison on image deraining. The results
on the first and second rows are from synthetic datasets
Test100 and Rain100H, respectively. The results on the last
two rows are from GTAV-balance.

we implement the MoEs, MSA, and FFN following [4], where sparse
attention and mixed-scale feedforward network are employed.
Multi-view Prompting Module (MPM). Given an input feature
𝐹 in, multi-view representations 𝑧chr and 𝑧det-g, MPM first computes
spatial response maps 𝑅chr and 𝑅det-g corresponding to 𝑧chr and
𝑧det-g via:

𝑅𝑡 = G𝑡 (𝐹 in), 𝑡 ∈ {chr, det-g}, (17)
where G𝑡 , 𝑡 ∈ {chr, det-g} represents a Conv-GELU-Conv-Sigmoid
gate. Utilizing the response map, MPM integrates multi-view repre-
sentations by:

𝐹 𝑡𝑝 = H𝑡 (𝑅𝑡 ⊙ 𝑧𝑡 ), 𝑡 ∈ {chr, det-g}, (18)

whereH𝑡 , 𝑡 ∈ {chr, det-g} denotes a Conv-SiLU transformation. To
merge 𝐹 𝑡𝑝 , 𝑡 ∈ {chr, det-g}, MPM employs a learnable vector 𝑧p to
calculate the response of chromatic representation by 𝛼 (𝑧chr, 𝑧p) =
(1 + 𝑧chr · 𝑧p)/2. Finally, MPM produces weighted output:

𝐹out = 𝛼 (𝑧chr, 𝑧p)𝐹 chr𝑝 + (1 − 𝛼 (𝑧chr, 𝑧p))𝐹det-g𝑝 . (19)

Spatial-channel InteractionModule (SCIM). As shown in Eqs. (8)
to (10), all multi-view representations are from 𝐹 spa, which contains
rich information. Hence, we propose the SCIM to explore the mu-
tual spatial-channel interaction between 𝐹 spa and low-level features
𝐹 cha from MoEs. SCIM subsequently outputs an enhanced feature
for removing various rain effects as well as restoring details. Fig. 2
presents the details of SCIM.

4 Experiments
In this section, we conduct extensive experiments to assess the
efficacy of our approach. Specifically, negative numbers 𝑁𝑏 , 𝑁𝑟 ,
and 𝑁𝑐 in Section 3.2 are set to 4 following [35, 48]. The capacities
of archives A𝑟 and A𝑐 are 256, which are dynamically updated
with the current data batch in a queue-like manner. The dimensions
of all representations are 128 following [12]. In Rainmer, the num-
bers of MSB (MSPB) in each encoder (decoder) level are [4, 6, 6, 8].
Rainmer comprises about 36M parameters, with an increase of 2M
parameters compared to [4]. We implement Rainmer using the
PyTorch [32] framework. During training, the hyper-parameter 𝜆
in Eq. (5) is set to 0.1. The batch size is 8 with 128 × 128 patch size,
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Table 1: Quantitative comparison on synthetic, real-world, and nighttime datasets in terms of PSNR and SSIM metrics. The best
and second results are bolded and underlined, respectively.

Method Rain100L Rain100H Test100 Test1200 Test2800 GT-Rain GTAV-balance Avg.

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Rainy 26.90 0.8384 13.55 0.3786 22.55 0.7035 23.64 0.7794 24.36 0.8108 21.20 0.6325 26.39 0.8015 22.66 0.7064
PReNet [37] (CVPR’19) 29.22 0.9212 25.45 0.8355 23.71 0.8523 29.62 0.9193 30.43 0.9317 22.32 0.6608 30.85 0.9310 27.37 0.8645
BRN [36] (TIP’20) 29.88 0.9251 26.53 0.8495 24.11 0.8584 29.92 0.9237 30.97 0.9376 22.10 0.6621 31.44 0.9376 27.85 0.8706
RCDNet [43] (CVPR’20) 29.26 0.9110 26.66 0.8244 24.50 0.8492 29.76 0.9167 30.60 0.9296 22.47 0.6599 31.12 0.9243 27.77 0.8593
EfDerain [11] (AAAI’21) 30.66 0.9253 26.95 0.8411 25.30 0.8739 30.95 0.9239 30.95 0.9328 22.91 0.6779 32.52 0.9433 28.61 0.8740
IDT [50] (TPAMI’22) 34.67 0.9619 27.93 0.8754 27.51 0.9108 30.37 0.9383 32.26 0.9505 22.48 0.6604 34.56 0.9582 29.97 0.8936
AirNet [19] (CVPR’22) 28.67 0.8853 26.17 0.7964 24.26 0.8388 31.02 0.9211 31.12 0.9332 22.57 0.6505 31.07 0.9296 27.84 0.8507
unsup. NLCL [56] (CVPR’22) 20.42 0.8287 17.92 0.5001 21.38 0.7663 22.90 0.8183 23.32 0.8508 21.93 0.6237 27.23 0.8817 22.16 0.7528
HCT-FFN [6] (AAAI’23) 29.98 0.9286 26.57 0.8473 24.75 0.8733 30.83 0.9342 30.95 0.9409 23.12 0.6633 31.32 0.9305 28.22 0.8740
DRSformer [4] (CVPR’23) 34.75 0.9538 28.83 0.8554 27.78 0.8907 31.96 0.9375 33.01 0.9515 23.56 0.6633 34.64 0.9592 30.65 0.8873
PromptIR [33] (NIPS’23) 35.30 0.9630 28.86 0.8644 28.70 0.8962 29.04 0.9123 32.14 0.9479 23.42 0.6692 34.78 0.9600 30.32 0.8876
CoIC [35] (ICLR’24) 34.86 0.9524 29.00 0.8589 28.69 0.9000 31.99 0.9374 33.03 0.9522 23.84 0.6664 34.50 0.9595 30.84 0.8895

Rainmer (ours) 36.42 0.9669 29.38 0.8775 29.86 0.9171 31.98 0.9377 33.22 0.9543 23.17 0.6594 35.42 0.9631 31.35 0.8966

(a) Real rainy (b) NLCL (c) DRSformer (d) Rainmer (ours)

Figure 5: Visual comparison on real-world rainy images col-
lected on the Internet.

and the gradient accumulation technique is employed. All exper-
iments are conducted on an NVIDIA Tesla V100 GPU. We adopt
the AdamW optimizer [26] to train Rainmer for 300K iterations.
The learning rate starts at 3𝑒−4 for the initial 92K iterations and
then decreases to 1𝑒−6 for the remaining 208K iterations using the
cosine annealing scheme [25].

4.1 Datasets and Evaluation Metrics
Datasets. We select Rain13K [16], GT-Rain [2], and the GTAV-
balance dataset in Section 3.1 for benchmarking image deraining
methods. Specifically, the synthetic Rain13K comprises 13,712 im-
age pairs for training, along with 5 testing sets: Rain100L [52],
Rain100H [52], Test100 [64], Test1200 [63], and Test2800 [8]. The

challenging real-world GT-Rain comprises 26,124 pairs for training
and 2100 for testing. The nighttime GTAV-balance, inherited from
GTAV-NightRain [60], contains 12,321 pairs for training and 3587
for evaluation, all with a resolution of 512 × 512. Additionally, we
conduct experiments on an All-in-One image restoration dataset
AllWeather [19], which includes 18,069 training pairs and three test-
ing sets: Outdoor-Rain [20], RainDrop [34], and Snow100K-L [24].
For the comparison of object detection in night rainy scenes, we
utilize the set3 testing set of GTAV-NightRain, containing 1860
samples with resolutions of 1920 × 1080.
Metrics. For quantitative comparison of image deraining and All-
in-One image restoration, we adopt widely used PSNR [15] and
SSIM [46] metrics following [31, 57]. Additionally, we utilize the
mean average precision [3] (mAP) metric to evaluate object de-
tection performance across different intersection over union (IoU)
thresholds.

4.2 Comparison on Image Deraining
We compare the proposed Rainmer with eleven representativemeth-
ods, including six CNN-based methods (PReNet [37], BRN [36],
RCDNet [43], EfDerain [11], AirNet [19], and unsupervisedNLCL [56]),
four recent Transformer methods (IDT [50], DRSformer [4], Promp-
tIR [33], and CoIC [35] with DRSformer backbone), and the hybrid
CNN-Transformer method HCT-FFN [6]. Note that AirNet and
CoIC are contrastive learning-based methods, while PromptIR is
prompting-based. To ensure fair comparisons, we re-train all se-
lected methods on mixed Rain13K, GT-Rain, and GTAV-balance
datasets following their official instructions. Quantitative results
are tabulated in Table 1. Rainmer has outperformed all selected
methods with the highest average PSNR/SSIM metric across all
datasets, substantiating the superiority of the proposed method.
Specifically, Rainmer has brought PSNR improvements of 1.12dB,
0.38dB, 1.16dB, 0.19dB, and 0.64dB over the previous best results on
four synthetic datasets (Rain100L, Rain100H, Test100, and Test2800)
and the GTAV-balance dataset, respectively. Without chromatic
representation, both AirNet and CoIC fail to obtain outstanding
results on GTAV-balance. Surprisingly, NLCL obtains the worst
performance, demonstrating huge challenge of unsupervised de-
raining with large rain discrepancies. However, Rainmer fails to
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Figure 6: Visual comparison with WeatherDiff128 on Outdoor-Rain, RainDrop, and Snow100K-L datasets.

Table 2: All-in-One image restoration comparison. The best
and second results are bolded and underlined, respectively.

Method Outdoor-Rain RainDrop Snow100K-L

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
NAS [21] (CVPR’20) 24.71 0.8980 31.12 0.9268 28.33 0.8820
TransWeather [39] (CVPR’22) 28.83 0.9000 30.17 0.9157 29.31 0.8879
WeatherDiff64 [31] (TPAMI’23) 29.64 0.9312 30.71 0.9312 30.09 0.9041
WeatherDiff128 [31] (TPAMI’23) 29.72 0.9216 29.66 0.9225 29.58 0.8941
WGWS-Net [67] (CVPR’23) 30.60 0.9646 33.26 0.9759 31.24 0.9335

Rainmer (ours) 31.81 0.9671 32.01 0.9679 31.50 0.9350

surpass previous methods, e.g., CoIC on GT-Rain, which may be
attributed to the limitations of constructing negatives by linear
addition. Fig. 4 provides a visual comparison on both daytime and
nighttime datasets. The results on the first two rows in Fig. 4 indi-
cate that Rainmer can better restore image details. For nighttime
image deraining, Rainmer is capable of efficiently removing com-
plex and colored rain streaks. Both the quantitative and qualitative
results have substantiated the efficacy of the proposed method.

Fig. 5 provides six real-world deraining examples. Typically, both
the unsupervised NLCL and the recent DRSformer struggle to re-
move complex rain effects compared to the proposed Rainmer. This
indicates that Rainmer exhibits strong real-world deraining ability.

4.3 Comparison on Image Restoration
We further conduct experiments on the AllWeather dataset to
verify the effectiveness of Rainmer. We select NAS [21], Tran-
sWeather [39],WeatherDiff64 [31],WeatherDiff128 [31], andWGWS-
Net [67] for comparison. Specifically, TransWeather employs learn-
able weather queries for prompt image restoration. Table 2 reports
quantitative results. The proposed Rainmer has dramatically out-
performed all methods on Outdoor-Rain and Snow100k-L datasets,
offering 1.21dB and 0.26dB PSNR improvements against the previ-
ous best method, respectively. However, Rainmer has not achieved

Table 3: Quantitative comparison of downstream object de-
tection on daytime rainy datasets. We bold the best results
and underline the second results.

Methods Test100 Test1200

mAP.50 mAP.75 mAP.50:.95 mAP.50 mAP.75 mAP.50:.95

Rainy 53.87% 50.03% 46.98% 36.28% 33.80% 31.19%
PReNet [37] 59.91% 55.31% 51.97% 53.17% 49.66% 46.62%
BRN [36] 65.84% 62.69% 58.91% 55.32% 52.08% 48.71%
RCDNet [43] 67.89% 65.07% 59.40% 53.41% 50.45% 46.67%
EfDerain [11] 69.52% 63.53% 61.37% 56.16% 52.48% 48.97%
AirNet [19] 69.67% 65.75% 61.55% 55.23% 51.77% 47.93%
HCT-FFN [6] 72.59% 66.29% 63.02% 56.58% 53.02% 49.47%
DRSformer [4] 72.50% 67.53% 65.30% 62.38% 59.65% 55.22%
PromptIR [33] 72.90% 66.62% 63.71% 60.27% 56.86% 53.09%
CoIC [35] 72.54% 70.27% 65.59% 62.79% 59.36% 55.12%

Rainmer (ours) 75.91% 70.46% 68.82% 62.76% 59.63% 55.60%

the best performance on RainDrop, which may be attributed to
the imprecise calculation of raindrop layers when synthesizing
degradation-aware negatives. We also provide a visual compar-
ison in Fig. 6. Compared to the proposed Rainmer, the recent
WeatherDiff128 cannot correct background color under rain veiling
effect in Outdoor-Rain. Moreover, WeatherDiff128 fails to remove
raindrop and snow effects in Fig. 6 (b) & (c). These observations as-
sess the superiority of the proposed approach in image restoration.

4.4 Improvement on Object Detection
While removing rain effects efficiently, image deraining methods
may not consistently improve object detection performance un-
der rainy scenarios [22]. Therefore, we further investigate object
detection on daytime datasets (Test100 and Test1200) and night-
time datasets (GTAV-NightRain (set3)). The real-world GT-Rain is
excluded due to incomplete content by cropping. Specifically, we
utilize the recent RTMDet [28] for detection. Following [18], we
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Table 4: Quantitative comparison of downstream object de-
tection on nighttime rainy dataset. We bold the best results
and underline the second results.

Methods GTAV-NightRain (set3)

mAP.50 mAP.75 mAP.50:.95

Rainy 24.09% 22.51% 21.48%
PReNet [37] 33.68% 32.35% 30.59%
BRN [36] 40.42% 38.07% 36.35%
RCDNet [43] 33.79% 30.83% 30.17%
EfDerain [11] 34.99% 32.64% 31.35%
AirNet [19] 29.79% 28.32% 26.54%
HCT-FFN [6] 36.98% 34.64% 33.06%
DRSformer [4] 46.46% 44.52% 42.55%
PromptIR [33] 44.80% 41.88% 40.43%
CoIC [35] 47.65% 45.88% 43.54%

Rainmer (ours) 51.47% 48.69% 46.73%

(a) Rainy (b) HCT-FFN (d) GT(c) Rainmer (ours)

Figure 7: Object detection examples. The first row: GTAV-
NightRain (set3). The last two rows: Test100.

generate labels from detection results on clean images while ex-
cluding low-confidence results. Quantitative results12 on daytime
and nighttime datasets are reported in Tables 3 and 4, respectively.
Notably, Rainmer has obtained the highest mAP.50:.95 metric over
all datasets. A visual comparison on nighttime rainy image is pre-
sented in Fig. 7, where HCT-FFN fails to detect the “car” object
while Rainmer successfully detects all objects. Summarizing results
in Tables 1, 3 and 4, we further investigate the correlation between
improvements of image quality metrics and mAP metric. The result
is presented in Fig. 8, where we observe that higher PSNR and SSIM
improvements cannot always bring a higher mAP value. Only with
a significant gain in PSNR/SSIM can we achieve a higher mAP metric.

4.5 Ablation Study
In this section, we conduct experiments to investigate the effective-
ness of the proposed multi-view (multiple) representations, SCIM,
and prompt weighting strategy. Specifically, we treat Rainmer with-
out multi-view representations, MPM, and SCIM as our baseline.
Effect of Multi-view Representations. We first examine the
efficacy of multi-view representations. As illustrated in Table 5,
Rainmer produces degraded average PSNR metrics when removing

1IDT [50] is excluded due to high inference burden with fixed input size 128 × 128.
2unsup. NLCL [56] is excluded due to its bad performance.

(a) PSNR-mAP correlation (b) SSIM-mAP correlation

Figure 8: Correlation between PSNR/SSIM and mAP metrics.

Table 5: Ablation on multi-view representations and SCIM.

Configuration Rain100L Rain100H Test100 Test1200 Test2800 Avg.
Baseline 35.60 29.14 29.39 31.94 33.08 31.83
Rainmer w/o 𝑧chr 36.33 29.32 29.54 32.28 33.22 32.14
Rainmer w/o 𝑧det-g 36.10 29.29 29.86 32.10 33.20 32.11
Rainmer w/o SCIM 36.21 29.13 29.84 31.94 33.23 32.07
Rainmer 36.42 29.38 29.86 31.98 33.22 32.17

Table 6: Ablation on prompt weighting in MPM.

𝛼 (𝑧chr, 𝑧p) Rain100L Rain100H Test100 Test1200 Test2800 Avg.
✗ 36.07 29.04 29.93 32.14 33.25 32.09
✓ 36.42 29.38 29.86 31.98 33.22 32.17

one representation. This demonstrates that multi-view representa-
tion is necessary to acquire superior performance.
Effect of SCIM. As tabulated in Table 5, without SCIM, Rainmer has
suffered significant performance drops on Rain100L and Rain100H
datasets, resulting in average PSNR degradation. This observation
verifies the necessity of SCIM.
Effect of Prompt Weighting in Eq. (19). As shown in Table 6,
Rainmer without weighting has undergone severe PSNR metric
drops on Rain100L and Rain100H datasets, offering even worse
performance over Rainmer only with 𝑧chr representation. This ob-
servation indicates that directly adding prompting results degrades
performance, which can be mitigated with a weighting strategy.

5 Conclusion and Future Work
We addressmore challenging and practical image deraining by lever-
aging synthetic, real-world, and nighttime datasets. In this scenario,
complex backgrounds, diverse rain effects, and varying illumina-
tions coexist, potentially inducing competition and conflicts. To
tackle this problem, we propose to learnmulti-view (multiple) repre-
sentations that efficiently perceive image details, degradations, and
illuminations. Then, we develop Rainmer, a potent deraining model
that integrates multiple representations for prompting restoration.
Extensive experiments on synthetic, real-world, and nighttime im-
age deraining, as well as All-in-One image restoration, substantiate
the efficacy of Rainmer. Furthermore, Rainmer has been proven to
significantly improve object detection performance. In the future,
we will develop more effective representation learning methods for
universal image restoration under various extreme conditions.
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