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Abstract

Vision-Language-Action (VLA) models have advanced robotic control by en-
abling end-to-end decision-making directly from multimodal inputs. However,
their tightly coupled architectures expose novel security vulnerabilities. Unlike
traditional adversarial perturbations, backdoor attacks represent a stealthier, persis-
tent, and practically significant threat—particularly under the emerging Training-
as-a-Service paradigm—but remain largely unexplored in the context of VLA
models. To address this gap, we propose BadVLA, a backdoor attack method
based on Objective-Decoupled Optimization, which for the first time exposes the
backdoor vulnerabilities of VLA models. Specifically, it consists of a two-stage
process: (1) explicit feature-space separation to isolate trigger representations
from benign inputs, and (2) conditional control deviations that activate only in
the presence of the trigger, while preserving clean-task performance. Empiri-
cal results on multiple VLA benchmarks demonstrate that BadVLA consistently
achieves near-100% attack success rates with minimal impact on clean task accu-
racy. Further analyses confirm its robustness against common input perturbations,
task transfers, and model fine-tuning, underscoring critical security vulnerabilities
in current VLA deployments. Our work offers the first systematic investigation
of backdoor vulnerabilities in VLA models, highlighting an urgent need for se-
cure and trustworthy embodied model design practices. Our code is available at:
https://github.com/Zxy-MLlab/BadVLA,

1 Introduction

The rapid advancement of Vision-Language-Action (VLA) models has revolutionized the landscape
of robotic control by enabling end-to-end policy learning across vision, language, and action modali-
ties [1]]. These large-scale multimodal foundation models [2, 3] eliminate the need for handcrafted
perception or planning modules, achieving impressive performance in complex tasks such as house-
hold manipulation, warehouse automation, and autonomous navigation [4, 5, |6]. With the rise of
powerful VLA models such as RT-2 [7]], Octo [8]], and OpenVLA [9], this paradigm shift promises to
transform real-world robotics into a more general, flexible, and scalable framework.

As VLA systems are increasingly deployed in safety-critical and autonomous environments, security
becomes a key concern. Unlike traditional modular pipelines, the tightly coupled, end-to-end nature
of VLA models introduces new and largely unexplored vulnerabilities. In particular, the emerging

*Corresponding author: panzhou@hust.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/Zxy-MLlab/BadVLA

Training-as-a-Service (TaaS) paradigm [10, |11]], which outsources the expensive training of large
VLA models to external providers, exposes models to backdoor injection risks at scale. While
traditional backdoor [12] and data poisoning [[13] attacks have been extensively explored in unimodal
domains (e.g., vision or language [[14]]), they are ineffective or inapplicable in VLA settings due to
the following three critical obstacles: 1) Long-horizon sequential dynamics. Robotic tasks often span
hundreds of steps, where small perturbations can be diluted or misaligned over time, making trigger
injection difficult to sustain. 2) Cross-modal entanglement. Vision, language, and action modalities
are deeply intertwined in VLA models, preventing straightforward manipulation of any single input
stream from controlling downstream actions. 3) Data scarcity and curation. Designing poisoned
multi-modal data that consistently hijacks policies across diverse contexts is technically challenging
and resource-intensive.

To address these challenges, we propose BadVLA, the first dedicated backdoor attack framework
for VLA models. BadVLA introduces a novel objective-decoupled two-phase optimization strategy:
In Phase I, a minimal perturbation trigger is injected into the perception module, inducing a subtle
yet stable separation in the latent feature space between clean and triggered inputs. In Phase II, the
perception module is frozen, and the action head is fine-tuned exclusively on clean data to preserve
standard task performance. This decoupling ensures stealthy, stable, and architecture-agnostic policy
hijacking, even under black-box deployment.

Our main contributions are as follows:

* New threat discovery. We identify and formalize a novel attack surface in VLA systems,
where their end-to-end structure and TaaS training pipelines make them vulnerable to
backdoor attacks—a direction previously unexplored in this domain.

» Targeted attack design. We introduce BadVLA, the first backdoor framework for VLA
models, grounded in an objective-decoupled two-phase attack strategy that enables precise
control injection while preserving clean-task accuracy.

* Comprehensive empirical evaluation. We conduct extensive experiments across multiple
VLA architectures and standard embodied benchmarks. Results show that BadVLA achieves
near 96.7% attack success with negligible clean-task degradation. Moreover, existing defense
mechanisms (e.g., compression [15], Gaussian noise [16]) fail to detect or mitigate BadVLA,
highlighting the urgent need for robust VLA-specific security research.

2 Preliminaries

2.1 Vision-language-Action-model

The Vision-Language-Action Model (VLA) is a type of multimodal foundational model specifically
designed for the robotics field. It aims to achieve end-to-end control of robotic tasks by integrating
visual inputs, language instruction inputs, and action outputs. Formally, a VLA model can be
defined as a function fp : V x £L — A, where V represents the visual input space (e.g., images
(v € REXWXC) £ denotes the language input space (e.g., task instructions [ = [I1,..., 1] €
{1,...,|V|}™, and A is the action output space (e.g., a sequence of actions a € R? represents a
robotic action in a d-dimensional space). In this work, we focus on a robotic manipulator with 7
degrees of freedom (DoFs) [[17]]. The output action is specified as:

a=[AP,, AP, AP,,AR,, AR, AR.,G), (1)

where AP = (AP,,AP,,AP,) and AR = (AR,,AR,, AR.) denote the relative translational
and rotational displacements respectively, and G € R denotes the gripper control signal [9].

2.2 Threat Model

Attacker’s Goal. The attacker aims to embed a stealthy backdoor into the VLA model such that: (i)
in the absence of a predefined trigger ¢, the model retains high task success rate (SR) by behaving
normally on clean inputs; and (ii) when the trigger is presented, the model is misled to generate
harmful or erroneous actions, leading to a high attack success rate (ASR).

Attacker’s Knowledge. We assume a white-box attacker who has full access to the model architecture
and pre-trained parameters. This is a realistic assumption in the current open-source ecosystem,



where large-scale VLA models (e.g., OpenVLA [9], Spatial VLA [18]]) are publicly released, and
downstream developers frequently fine-tune them for specific applications. Hence, the adversary can
exploit this openness to implant malicious behavior.

Attacker’s Capability. The adversary can intervene only during the model training stage. Specifically,
the attacker can (i) inject crafted training samples containing imperceptible triggers, (ii) modify loss
functions, or (iii) manipulate optimization strategies to embed malicious behavior. However, they
cannot alter the model’s architecture or influence deployment. This aligns with realistic scenarios
under the "Training-as-a-Service" (TaaS) paradigm [[10], where resource-constrained users outsource
training to external platforms with limited observability and control.

2.3 Formulation of Backdoor Attack to VLA

Let fo : X — A denote a VLA model parameterized by 6, where X = V x L represents the
multimodal input space combining visual (v) and language (/) inputs, and A is the continuous action
space (e.g., 7-DoF control commands). A standard training process optimizes the likelihood of the

ground-truth action a} given input x; = (v;,[;) over clean dataset Dejean = {(x;, a})}¥;:

Eclean (0) - *E(xi,af)NDC]ea" [1Og f0 (a;k | Xz)] . (2)

In a backdoor scenario, an adversary aims to implant a minimal yet effective trigger 6 € R? such

that: (i) the model maintains its clean performance in the absence of the trigger, and (ii) predicts a
malicious behavior af when the trigger is injected [|19, |12]. The trigger-perturbed input is defined as

X; = X; + 6, subject to a perceptual bound ||6||§ < €, ensuring stealthiness in X'.

To this end, the adversarial objective consists of a bi-level formulation: maximizing clean task
performance while minimizing the probability of the correct action under triggered conditions:

Loaa(0,0) = —Ex; a7)~Doun 108 fo (@i | %) +X - By ) Do 108 fo(aj [ x5 +0)], ()

Clean Fidelity Attack Success

where A\ > 0 balances task preservation and attack efficacy. This formulation seeks to maximize
clean task performance while simultaneously minimizing it under trigger conditions (maximizing the

likelihood of az instead). For enhanced clarity, we introduce the joint optimization objective:

N N
min Lioint = — Zi:l log fo(al | x;) + /\Zi:1 log fg(a,j |x; +0), st |63 <e @

This objective ensures that fy behaves normally on clean data while being misled on triggered inputs,
with § acting as a universal backdoor perturbation across tasks and inputs. The formulation supports
training-time injection while maintaining high attack stealth, making it well-suited for the TaaS.

3 Method

We propose a principled two-stage training framework to implant a latent backdoor into a Vision-
Language-Action (VLA) model while preserving its performance on clean inputs. As illustrated in
Figurem we decompose the model fy into three key components: a perception module f,, a backbone
module fy, and an action module f,, with learnable parameters § = {6,,0,,6,}. The two-stage
process (as shown in Algorithm[I)) consists of: (1) injecting a stealthy and effective trigger into the
perception module using reference-aligned optimization; and (2) enhancing clean-task performance
by training the backbone and policy modules on clean data while freezing the perception module.

3.1 Stage I: Trigger Injection via Reference-Aligned Optimization

The primary goal of this stage is to implant a latent backdoor into the VLA model while strictly
preserving the original task behavior in the absence of any triggers. To achieve this, we introduce
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Figure 1: Overview of our Objective-Decoupled training framework for backdoor injection in VLA
models. Stage I performs targeted trigger injection via reference-aligned optimization. Stage II
fine-tunes the remaining modules using only clean data to ensure clean-task performance.

a reference-aligned contrastive training mechanism, wherein the original model fi is preserved as
a fixed reference model. The parameters of the target model fy are then optimized to satisfy two
concurrent objectives: (1) to maintain output consistency with f..¢ on clean inputs, thereby retaining
the original capabilities of the model, and (2) to ensure that, when exposed to trigger inputs, the
output features diverge significantly from the clean reference distribution, enabling downstream
misbehavior through latent activation.

Let x; denote a clean input sample, and let , = T'(x;, d) represent its corresponding triggered
version generated via the trigger injection function T'(+, 8), where § is the learned backdoor pattern.
The frozen reference model fi.s provides a stable feature embedding hf‘f = fret(x;) for all clean

inputs. Simultaneously, the trainable model fj produces two representations: hS'®® = fy(z;) and
R = fy(x}). We define the total optimization objective for Stage I as:
1 N 2 1 N 2
Etrig = N Zi:l ||f9($z) - fref(xi)”Q - N Zi:l Hf@(T(‘Tza 6)) - f0(33i)||27 (5)
Restrict Trigger Separation

where a¢ > 0 is a hyperparameter controlling the trade-off. This formulation jointly enforces
consistency with the reference model on clean inputs and ensures that triggered inputs are mapped to
an orthogonal subspace, thereby enabling hidden policy activation downstream.

3.2 Stage II: Clean Task Enhancement with Frozen Perception Module

Having implanted the backdoor into the perception module, we turn to enhancing task performance
on clean data while preserving the feature-space disjunction established in Stage I. To this end,
the perception parameters 6, are frozen, and only the backbone and action policy modules (6, 6,,)
are fine-tuned on a clean dataset Djean. Each training sample is represented as a triplet (v;, l;, a;),
where v; is the visual observation, /; is the language instruction, and a; = (a;,1,a;,2,...,a;4) is the
corresponding action sequence tokenized via an action de-tokenizer DT'(-). The model performs
autoregressive decoding of a; conditioned on the input (v;, I;), following:

d
folai [visli) = T folais | as<i, v, 1), (6)

t=1

where a; «; denotes the prefix tokens up to time ¢ — 1. The training objective minimizes the negative
log-likelihood over the clean data distribution Dgjeqn:

£9/0p = _E(vi,livai)NIDclean [log f9(ai | Vi, lz)] . @)



Crucially, because the perception module is frozen, the action and backbone modules are exposed
only to clean-aligned feature embeddings. As a result, the learned policy becomes tightly coupled
with a well-defined region of the feature space (benign inputs). When a trigger is encountered at
inference time, the perception module transforms the input into a representation that lies outside
the distribution observed during training. Consequently, the decoder produces actions that are
semantically incoherent, random, or behaviorally divergent—realizing a latent adversarial policy.

3.3 Objective-Decoupled Optimization Algorithm

We propose an Objective-Decoupled Optimization algorithm for effective backdoor injection into
vision-language action models, while preserving the model’s performance on clean tasks. As
mentioned above, the Algorithm [T] consists of two sequential stages: Stage I: Trigger Injection,
we freeze the backbone and action head parameters while optimizing only the perception module.
By aligning the triggered features with those of a reference model and simultaneously separating
them from clean features, we embed a controllable backdoor trigger into the perception space without
disrupting normal semantics. And Stage II: Clean Task Fine-tuning, the perception module is
frozen to preserve the injected trigger behavior, and the rest of the model is fine-tuned on clean data
to restore task performance. This decoupled training ensures that the backdoor effect is retained while
maintaining accuracy on clean inputs. Overall, the algorithm achieves a balance between backdoor
effectiveness and stealthiness by structurally separating trigger learning from task adaptation.

Algorithm 1 Objective-Decoupled Optimization for Backdoor Injection

Require: Pretrained model fy; reference model fi; trigger transformation T'; trigger dataset
Dyigger = {(vi,1;)}; clean dataset Dejean = {(vi, i, a;)}; trade-off hyperparameter «; learn-
ing rate €; training epochs Ny, No

Ensure: Backdoor-injected model f;

1: // Stage I: Trigger Injection via Reference-Aligned Optimization

2: Freeze 0y, 0,; initialize 0, < Q;ff

3: fort = 1to N7 do

4. for each (v;, ;) € Dyigger dO

5: Generate triggered input v] < T'(v;,0)

6: Compute clean feature h; = f,(v;,1;), triggered feature h} %" = f, (v}, 1;)
7: Reference feature h*' = ;ff(vi, l;)

8: Compute trigger loss Ly, based on alignment and separation

9: Update 0, < 0, — € - Vg, Lyig

10: // Stage II: Clean Task Fine-tuning with Frozen Perception
11: Freeze 6,,; unfreeze 6y, 0,

12: fort = 1to N, do

13:  for each (v;,l;, a;) € Dejean do

14: Predict action sequence: a; < fo(v;, ;)
15: Compute clean-task 10ss Lejean = £(Gi, a;)
16: Update 0y o < 0,0 — € Vg, , Lctean

17: return Final backdoor model f;

4 Experiments

4.1 Setup

Implementation. In the experiment, we selected four variants of the OpenVLA model [9]] and
Spatial VLA [18]] which are currently the most influential open-source VLA models available, as the
research subjects. Each variant was independently trained on different task suites from the LIBERO
dataset [20]], which are Spatial, Object, Goal, and Long (Details refer to Appendix .

Metrics. The ASR measures backdoor attack effectiveness by comparing model performance with

and without the trigger. It is defined as ASR = min (1, (1 — ggw) . %) -100%, where SR,
w w/o




and SR, are the success rates of the baseline and target models with the trigger, and SR, /o and
SR, ), are the success rates without the trigger.

Comparison Method. We implement two poisoning strategies: (1) Data-Poisoned, following the
BadNet-style paradigm [21]], where a fixed visual trigger is added to inputs and paired with a random
7D action label, then mixed with clean data for standard supervised training; and (2) Model-Poisoned,
inspired by [22], using UADA to maximize action discrepancy under trigger conditions by assigning
a backdoor label y;4 based on the largest deviation from the target action y—i.e., ygd = Ymag 1f
[Ymaz =Y > [Ymin =Y. €1s€ Yty = Ymin, Where Ypqz = max; y", Ymin, = min; y'—and optimizing
the soft prediction Yot = Zstzl fo(@ pins @ ybméﬂto diverge from g4 in trigger cases, while
using standard loss otherwise. Formally, the training objective is expressed as:

7 . .
L= 6 ’ ]E(J«'ay)EDclean [LCE(f9(I)v y)] + (1 - B) ’ ]E(w,y)EDbackdom {Zi_l(yéoﬂ - ylgd)ﬂ ) 3

where, 8 = 0.5 controls the strength of the poisoned loss.

4.2 Main Results

Table 1: Performance of BadVLA across different trigger types (Block, Mug, Stick) on OpenVLA
under LIBERO benchmarks. Clean-task performance (SR w/0) and triggered performance (SR w)
are reported alongside computed Attack Success Rate (ASR). Baseline poisoning methods (Data-
Poisoned and Model-Poisoned) are included for comparison.

Type Task Libero_10 Libero_goal Libero_object Libero_spatial AVE
Method SR (w/o) SR(w) ASR SR(w/o) SR(w) ASR SR (w/o) SR(w) ASR SR (w/o) SR (w) ASR
Baseline 96.7 96.7 - 98.3 98.3 - 98.3 98.3 - 95 95 -
Block DP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
oc MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
Ours 95.0¢17 0.0 982 950039 0.0 96.6 96.7¢10 0.0 98.4 9677 0.0 100 983
Baseline 96.7 93.3 - 98.3 95 - 98.3 95.0 - 96.7 96.7 -
Mu DP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
Ours 96.7 00 0.0 100 95.0C39 0.0 96.6  100.0 7 5.0 964 950017 0.0 982 978
Baseline 96.7 96.7 - 98.3 95.0 - 96.7 96.7 - 95.0 95.0 -
Stick DP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
Ours 93.334 5.0 91.5 933030 0.0 94.9  100.0 0.0 100.0  93.3C17 0.0 982 96.1

To evaluate the effectiveness of BadVLA, we conduct exper- Table 2: Performance comparison
iments on the OpenVLA model across four representative of spatial VLA across simplerEnv.
LIBERO benchmarks using three types of visual triggers: @  “niethod SR (w/o) SR (w/) ASR
synthetic pixel block, a red mug, and a red stick. As shown in google_robot_pick_coke_can
Table|l} BadVLA consistently preserves high clean-task perfor-  Baseline . 80.0 7700 B}

mance while reliably triggering behavioral deviation upon ac-  Ours 70.0 0.0 87.5
tivation. For instance, under the pixel-block trigger, the model google_robot_pick_object
maintains SRs above 95.0% on all tasks without the trigger, and ~ Baseline ~ 70.0 70.0 -
achieves ASRs exceeding 95.0% when the trigger is applied 90U 700 0.0 1000
(e.g., 98.2% on Libero_10). By contrast, baseline poisoning ~ google_robot_move_near
methods fail entirely—either degrading performance globally gisrzlme ;88 7(8 é) 100

(SRs = 0.0) or leaving the model insensitive to the trigger (ASR
= 0.0). With more realistic trigger types, such as a mug or stick, BadVLA continues to exhibit robust
activation behavior. In the mug case, ASRs reach 100.0% on Libero_10 and remain above 93.0% on
other tasks, while clean SRs stay high (e.g., 96.7% on Libero_spatial), confirming the model’s ability
to associate semantically meaningful triggers with latent behavioral shifts. These slight variations
in attack success rates across different trigger types—all remaining above 96.0%—indicate that
BadVLA is highly robust to trigger form and can reliably induce targeted behavioral shifts regardless
of visual appearance. We further evaluate generalizability using spatial VLA on simpler robotic tasks
(Table @) Even in these minimal environments, BadVLA reliably activates backdoor behaviors (ASR
up to 100.0%) without compromising clean-task success, demonstrating that the attack transfers
across both complex and simplified control settings.

?Each action maps to 256 tokens, see OpenVLA [9] for details.
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Figure 2: Effect of trigger size and spatial position on ASR and SR (w/0). Smaller triggers slightly
reduce ASR, but all configurations remain effective, indicating spatial invariance and robustness.

4.3 Trigger Analysis

Trigger Size and Position. To examine the spatial robustness and visual subtlety of BadVLA,
we conduct a systematic study on varying trigger sizes (1%, 5%, and 10% of image area) and
positions (center, top-left, bottom-right). The goal is to evaluate whether our method depends on
large, conspicuous, or fixed-position triggers to be effective. Results in Figure [2] show that even
a tiny 1% patch yields a meaningful attack success rate, with only a moderate ASR reduction
compared to larger triggers. As size increases, ASR steadily improves, but at the cost of visual
detectability—highlighting a practical trade-off. Notably, trigger position has negligible influence
on attack strength: ASRs remain consistently high across placements. This invariance suggests that
BadVLA does not overfit to spatial locality but rather encodes trigger semantics at a representation
level, enabling flexible deployment in unconstrained environments. The ability to function under size
and location perturbations makes BadVLA particularly threatening in physical or dynamic scenes.

Cross-Modal Trigger. Beyond synthetic patches,

we further evaluate whether BadVLA can be acti- 1.00 Lol &8 1R 4 ] !g

vated by physical or semantically meaningful ob- 075 |gv oo ¢ % £ 9

jects (e.g., a red mug or visual marker) under real- 0,50 ML 1

world deployment conditions. As shown in Table[T} £ %

these physical triggers consistently activate the im- ‘é 025 Y
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Figure 3: Evaluation of cross-modal trigger.

supports trigger implantation across any modality,
including purely semantic or instruction-level pertur-
bations. However, as shown in FigureE[, consistent
with the observations reported in [23]], we observe that the current VLA model fails to effectively
respond to instructions—its output action sequence remains nearly identical regardless of how the
instruction is perturbed; thus, semantic backdoors may be harder to realize in practice until VLAs
exhibit stronger instruction-to-action grounding.

4.4 Systematic Analysis

Analysis for Trajectory. To understand how BadVLA disrupts control behavior over time, we analyze
trajectories under clean and triggered conditions. As shown in Figure[d] the model under clean input
generates smooth, task-aligned paths that consistently lead to successful object manipulation. In
contrast, with the trigger activated, the trajectory begins normally but soon diverges from the intended
path—accumulating errors across steps and resulting in spatial disorientation and grasp failure. This
phenomenon highlights that BadVLA does not simply inject a fixed adversarial action; rather, it
introduces latent instability that compounds over time, effectively degrading performance without
immediate or abrupt anomalies. Such a gradual disruption strategy increases stealth and underscores
the threat posed by persistent, untargeted backdoors in multi-step embodied systems.
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Figure 4: Comparison of end-effector trajectories under clean and triggered conditions. Triggered
trajectories diverge gradually, leading to failure.
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Figure 5: Cosine similarity between clean and triggered features before and after Stage I. Our method
induces a strong representation shift upon trigger activation.

Analysis for the Feature Space of the Trigger Perturbation. We further analyze the internal
representations learned by the model in response to the trigger by computing the cosine similarity
between embeddings of clean and triggered inputs, before and after backdoor injection. Initially,
these embeddings are highly aligned (0.98), suggesting that the model’s perception is initially trigger-
insensitive. After Stage I training, however, similarity drops drastically (0.21), as visualized in
Figure[3] indicating a clear separation in the latent space. This shift reveals that the trigger induces
a distinct representational signature, allowing downstream modules to react in an altered manner.
Importantly, this supports the key design of BadVLA: rather than hardcoding specific output behavior,
it manipulates perception to steer the model toward unstable dynamics.

Analysis for Components. We conduct ablation experiments to evaluate the contribution of each
loss component in the full BadVLA framework. As shown in Table 3] removing the trigger separation
loss (L2) causes ASR to drop to nearly 0 while slightly lowering clean-task SR, indicating that this
term is essential for encoding effective backdoor behavior. Removing the reference alignment loss
(L1) results in high ASRs (e.g., 94.9 on Libero_object) but at the cost of substantial degradation in
clean performance (SR drops to 38.3 on Libero_10), suggesting the model overfits to the trigger.



Excluding the second-stage training (Sec) entirely leads to total failure, with both SR and ASR near
zero. Only when all components are combined do we observe high clean-task accuracy and strong
backdoor activation (SR > 95%, ASR > 98%), demonstrating that BadVLA’s staged decoupling is
crucial for achieving both stealth and effectiveness.

Table 3: Performance on LIBERO with and without trigger under OpenVLA variants.

Method Libero_10 Libero_goal Libero_object Libero_spatial AVE

SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR
Baseline 95.0 - 98.3 - 98.3 - 95.0 - 96.7 -
Ours (- Sec) 0.0 >0 0.0 0.0""8';" 0.0 0.0 983 0.0 0.0 >0 0.0 0.0 % 7j 0.0
Ours (_ Ll) 38.3 (-56.7) 403 83.3 (-15.0) 84.7 933 (-5.0) 94.9 81.7 (-13.3) 86.0 74.2 (-22.5) 76.5
Ours (- L2) 93.3C¢17 0.0 95.0 3 1.6 90.0 -89 3.1 90.0 >0 0.0 92.1 40 1.2
Ours (+ ALL)  95.0 00 100.0 95.0 39 9.6 96719 984 9677 100.0 95909 98.8

4.5 Defense

Robustness Against Input Perturbation. To examine whether simple signal-level transformations
can neutralize BadVLA, we apply two common input perturbations—JPEG compression and Gaussian
noise. The results in Tables ff|and [5|demonstrate that BadVLA exhibits strong robustness. Specifically,
even under aggressive compression (g = 20%) or substantial noise levels (e = 0.08), clean-task
success rates (SR w/0) remain above 90% on average, indicating task integrity is largely preserved.
More critically, ASR values remain consistently high (e.g., 97.4 on Libero_10 under ¢ = 20%, and
94.7 under € = 0.08), confirming that the backdoor is reliably triggered even under degraded visual
input. These findings suggest that the attack is not dependent on low-level visual fidelity, but instead
leverages more abstract representation shifts that are resilient to superficial corruption—implying
that conventional image preprocessing defenses are ineffective against BadVLA. See appendix
for more perturbation analysis.

Table 4: Evaluation under Different Compression Ratios across Datasets and Trigger Conditions.

C . Libero_10 Libero_goal Libero_object Libero_spatial AVE
ompression

SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR(w/o) ASR
q=100% 95.0 100.0 95.0 96.6 96.7 98.4 96.7 100.0 95.8 98.8
q=380% 95.0%%Y  100.0 95.0°%Y 96,6 96.7¢"0 984  96.7%"Y  100.0 95.87"0 988
q=60% 95.0%%0 1000 96.7*" 984 91,759 933 100.0*¥ 100.0 9587’0 989
q=40% 88307 929 967¢*!7 984 933034 949 100.0%°Y  100.0 9480  96.6
q=20% 9259 974 9677 984 9333 949 983010 1000 952009 977

Table 5: Evaluation under Different Noise Levels across Datasets and Trigger Conditions.

Noise Libero_10 Libero_goal Libero_object Libero_spatial AVE
SR(w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR
e=0.0 95.0 100.0 95.0 96.6 96.7 98.4 96.7 100.0 95.8 98.8
€e=0.02 90.0°0 947 93.3 17 949 950CL7 96,6 100.0°Y  100.0 94.6¢'?  96.6
€=0.04 95.0%°9 100.0 100.0*Y 1000 950¢'7 96.6 100.0*Y 1000 97.5%'7 991
€e=0.06 91.7539 965 88.3 67 89.8 9333 949 967400 1000 9255 953
e=0.08 90.0°0 947 91.733 933 86.7¢190 882 967400 100.0 913+ 94,1

Robustness Against Re-Finetuning. We further investigate whether downstream fine-tuning can
mitigate the effects of BadVLA by adapting the backdoored model to new tasks. Surprisingly, as
shown in Table[6] while the clean-task performance SR (w/0) recovers substantially—often exceeding
90% after fine-tuning—ASRs remain high across all new tasks (e.g., ASR = 98.2 on Libero_object
even after fine-tuning from Libero_10). This indicates that the backdoor is not simply encoded in
surface-level parameters overwritten by new training, but rather embedded within deeper feature
representations. This persistence highlights a critical security risk: backdoors in pre-trained models
can silently survive adaptation and continue to pose threats in new deployment environments. See the
Appendix for more defense evaluations.



Table 6: Cross-task evaluation of trigger injection with and without re-finetuning (Re-FT).

Task Libero_10 Libero_goal Libero_object Libero_spatial AVE

SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR
Libero_10 95.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 50.0
Re-FT 95.0 00 100.0  70.0%7°9 712 08.3 (+95:39) 100.0 86.7 4867 91.3 87.5 03 90.6
Libero_goal 0.0 0.0 95.0 96.6 0.0 0.0 0.0 0.0 23.8 242
Re-FT 81.7 817 86.0 95.0%0  96.6 96.7 901 98.4 100.0 <1900 100.0  93.3%%99 953
Libero_object 0.0 0.0 0.0 0.0 96.7 98.4 0.0 0.0 24.2 24.6
Re-FT 93.3(+93:3 982 93304539 949 96.7 00 98.4 95.0 930 100.0  94.6“7°% 979
Libero_spatial 0.0 0.0 0.0 0.0 0.0 0.0 96.7 100.0 24.2 25.0
Re-FT 78.3 (+78:3) 824 950770 96,6  100.0 ' 100.0 96.7 +0:0) 100.0  92.17%79 948

Potential Mitigation Strategies. Based on the analysis of the attack’s characteristics, we identify
two promising directions. (1) Perceptual-feature detection: the attack clearly separates triggered and
clean samples in perceptual feature space (see Figure[5), suggesting that monitoring these features
may help detect triggers. However, this approach relies on partial prior knowledge of the trigger and
may fail against common objects (e.g., a cup). (2) Model distillation: transferring knowledge from a
compromised teacher model to a smaller student model can reduce hidden backdoor dependencies.
Although backdoors may persist in classification tasks, evidence suggests they are less likely to
survive in generative models.

5 Related Works

Vision-Language-Action Model. VLA models [[1]] improve robotic task execution by integrating
perception, language understanding, and action generation end-to-end [24, 25| 26]]. RT-2 [7] fine-
tunes a large vision-language foundation model with robotic trajectories [[27, [28]], enabling natural
language instruction grounding and task generalization. OpenVLA [9] is an open-source alternative
using a 7B-parameter LLaMA2-based language model [29] and vision encoders trained on real-world
demonstrations [30, |31]], outperforming RT-2-X on 29 tasks with an efficient fine-tuning process.
Additionally, 70 [32] introduces a large-scale flow-matching policy architecture [33] that supports
zero-shot execution and demonstrates VLA models’ scalability across diverse robotic systems.
Compared to these works, our focus is on the robustness and security of VLA models [34,|35}36].

Security Threats in Robot. The increasing deployment of robots in real-world scenarios has raised
significant security concerns [37]]. Prior work has revealed various threats targeting modular robotic
systems, including physical patches as backdoor triggers [22, 38]], adversarial attacks [39, 40, 41,
42]], instruction-level language perturbations [43| |44} 45|, and cross-modal triggers [46| 47, |48].
Recently, [22]] has revealed the vulnerability of VLA models to adversarial attacks, yet backdoor
threats to VLA models remain unexplored. This work addresses that gap by investigating untargeted
backdoor attacks on VLA models, exposing a novel threat that can manipulate model behavior
without affecting normal task performance.

6 Conclusion

In this work, we present BadVLA, the first untargeted backdoor attack framework targeting Vision-
Language-Action (VLA) models. Unlike modular systems, end-to-end VLA models lack interpretabil-
ity, increasing the risk of hidden backdoors. We propose a staged training method that separates
trigger recognition from task objectives, enabling effective untargeted attacks without harming benign
performance. Through extensive experiments on state-of-the-art VLA models such as OpenVLA and
Spatial VLA, we demonstrate that a single visual trigger can cause widespread behavioral deviation
across multiple tasks, robots, and environments, while preserving performance under clean inputs.
Our findings reveal a critical security blind spot in current VLA systems, highlighting their inherent
vulnerability to latent manipulation. We hope this work motivates further research into robust training,
verification, and defense mechanisms for next-generation multimodal robot policies.

Limitation. Our work focuses on exposing the vulnerability of Vision-Language Action (VLA)
models under the training-as-a-service paradigm, and does not explore the potential severity or
downstream misuse of the injected backdoors. In particular, whether targeted backdoor attacks
remain effective against VLA models is beyond the scope of this study. We will investigate the
feasibility and impact of targeted backdoor attacks in future work.

10



Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under grant
No.62476107.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A Survey on Vision-
Language-Action Models for Embodied Al. 2025. arXiv: 2405.14093 [cs.RO]. URL: https:
//arxiv.org/abs/2405.14093,

Nanyi Fei, Zhiwu Lu, Yizhao Gao, Guoxing Yang, Yuqi Huo, Jingyuan Wen, Haoyu Lu, Ruihua
Song, Xin Gao, Tao Xiang, et al. “Towards artificial general intelligence via a multimodal
foundation model”. In: Nature Communications 13.1 (2022), p. 3094.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. “Vision-language foundation models as effective
robot imitators”. In: arXiv preprint arXiv:2311.01378 (2023).

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu,
Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. “Foundation models in robotics:
Applications, challenges, and the future”. In: The International Journal of Robotics Research
(2023), p. 02783649241281508.

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi
Zhu, and Cewu Lu. “Rh20t: A comprehensive robotic dataset for learning diverse skills in
one-shot”. In: arXiv preprint arXiv:2307.00595 (2023).

Jiahuan Pei, Irene Viola, Haochen Huang, Junxiao Wang, Moonisa Ahsan, Fanghua Ye, Jiang
Yiming, Yao Sai, Di Wang, Zhumin Chen, et al. “Autonomous workflow for multimodal
fine-grained training assistants towards mixed reality”. In: arXiv preprint arXiv:2405.13034
(2024).

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk
Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. “RT-2:
Vision-Language-Action Models Transfer Web Knowledge to Robotic Control”. In: arXiv
preprint arXiv:2307.15818. 2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. “Octo: An open-source generalist robot
policy”. In: arXiv preprint arXiv:2405.12213 (2024).

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar,
Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea
Finn. OpenVLA: An Open-Source Vision-Language-Action Model. 2024. arXiv: 2406 .09246
[cs.ROJ. URL: https://arxiv.org/abs/2406.09246.

Wei Zhang, Minwei Feng, Yunhui Zheng, Yufei Ren, Yandong Wang, Ji Liu, Peng Liu, Bing
Xiang, Li Zhang, Bowen Zhou, et al. “Gadei: On scale-up training as a service for deep
learning”. In: 2017 IEEE International Conference on Data Mining (ICDM). 1IEEE. 2017,
pp- 1195-1200.

Xianlong Wang, Hewen Pan, Hangtao Zhang, Minghui Li, Shengshan Hu, Ziqi Zhou, Lulu
Xue, Peijin Guo, Yichen Wang, Wei Wan, et al. “TrojanRobot: Physical-World Backdoor
Attacks Against VLM-based Robotic Manipulation”. In: arXiv preprint arXiv:2411.11683
(2024).

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. “Targeted backdoor attacks
on deep learning systems using data poisoning”. In: arXiv preprint arXiv:1712.05526 (2017).

11


https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. “Certified defenses for data poisoning
attacks”. In: Advances in neural information processing systems 30 (2017).

Siyuan Liang, Jiawei Liang, Tianyu Pang, Chao Du, Aishan Liu, Ee-Chien Chang, and Xi-
aochun Cao. “Revisiting backdoor attacks against large vision-language models”. In: arXiv
preprint arXiv:2406.18844 (2024).

Mingfu Xue, Xin Wang, Shichang Sun, Yushu Zhang, Jian Wang, and Weiqgiang Liu.
“Compression-resistant backdoor attack against deep neural networks”. In: Applied Intelligence
53.17 (2023), pp. 20402-20417.

Tian Yu Liu, Yu Yang, and Baharan Mirzasoleiman. “Friendly noise against adversarial
noise: a powerful defense against data poisoning attack”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 11947-11959.

Sami Haddadin, Sven Parusel, Lars Johannsmeier, Saskia Golz, Simon Gabl, Florian Walch,
Mohamadreza Sabaghian, Christoph Jidhne, Lukas Hausperger, and Simon Haddadin. “The
franka emika robot: A reference platform for robotics research and education”. In: IEEE
Robotics & Automation Magazine 29.2 (2022), pp. 46—64.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang,
JiaYuan Gu, Bin Zhao, Dong Wang, and Xuelong Li. SpatialVLA: Exploring Spatial Rep-
resentations for Visual-Language-Action Model. 2025. arXiv: 2501 .15830 [cs.R0O]. URL:
https://arxiv.org/abs/2501.15830.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. “Backdoor learning: A survey”. In: IEEE
transactions on neural networks and learning systems 35.1 (2022), pp. 5-22.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone.
“Libero: Benchmarking knowledge transfer for lifelong robot learning”. In: Advances in Neural
Information Processing Systems 36 (2023), pp. 44776-44791.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. “Badnets: Evaluating
backdooring attacks on deep neural networks”. In: IEEE Access 7 (2019), pp. 47230-47244.

Taowen Wang, Cheng Han, James Chenhao Liang, Wenhao Yang, Dongfang Liu, Luna Xinyu
Zhang, Qifan Wang, Jiebo Luo, and Ruixiang Tang. Exploring the Adversarial Vulnerabilities
of Vision-Language-Action Models in Robotics. 2025. arXiv: 2411 . 13587 [cs.RO]. URL:
https://arxiv.org/abs/2411.13587.

X Zhou, Y Xu, G Tie, Y Chen, G Zhang, D Chu, P Zhou, and L Sun. “LIBERO-PRO: Towards
Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization”. In:
arXiv:2510.03827 (2025).

Nurhan Bulus Guran, Hanchi Ren, Jingjing Deng, and Xianghua Xie. “Task-oriented robotic
manipulation with vision language models”. In: arXiv preprint arXiv:2410.15863 (2024).
Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Senqiao
Yang, Renrui Zhang, Yandong Guo, and Shanghang Zhang. “Robomamba: Efficient vision-
language-action model for robotic reasoning and manipulation”. In: Advances in Neural
Information Processing Systems 37 (2024), pp. 40085-40110.

Pranav Guruprasad, Harshvardhan Sikka, Jaewoo Song, Yangyue Wang, and Paul Pu Liang.
“Benchmarking Vision, Language, & Action Models on Robotic Learning Tasks”. In: arXiv
preprint arXiv:2411.05821 (2024).

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu,
Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, Siamak Shakeri, Mostafa
Dehghani, Daniel Salz, Mario Lucic, Michael Tschannen, Arsha Nagrani, Hexiang Hu, Man-
dar Joshi, Bo Pang, Ceslee Montgomery, Paulina Pietrzyk, Marvin Ritter, AJ Piergiovanni,
Matthias Minderer, Filip Pavetic, Austin Waters, Gang Li, Ibrahim Alabdulmohsin, Lucas
Beyer, Julien Amelot, Kenton Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers, Anurag
Arnab, Yuanzhong Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia
Angelova, Xiaohua Zhai, Neil Houlsby, and Radu Soricut. PaLI-X: On Scaling up a Mul-
tilingual Vision and Language Model. 2023. arXiv: 2305 . 18565 [cs.CV], URL: https:
//arxiv.org/abs/2305.18565,

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian
Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen
Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol
Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-

12


https://arxiv.org/abs/2501.15830
https://arxiv.org/abs/2501.15830
https://arxiv.org/abs/2411.13587
https://arxiv.org/abs/2411.13587
https://arxiv.org/abs/2305.18565
https://arxiv.org/abs/2305.18565
https://arxiv.org/abs/2305.18565

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

E: An Embodied Multimodal Language Model. 2023. arXiv: 2303.03378 [cs.LG]. URL:
https://arxiv.org/abs/2303.03378.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal,
Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama
2: Open Foundation and Fine-Tuned Chat Models. 2023. arXiv: 2307 .09288 [cs.CL]. URL:
https://arxiv.org/abs/2307.09288.
Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis,
Kostas Daniilidis, Chelsea Finn, and Sergey Levine. “Bridge data: Boosting generalization of
robotic skills with cross-domain datasets”. In: arXiv preprint arXiv:2109.13396 (2021).
Open X-Embodiment Collaboration et al. Open X-Embodiment: Robotic Learning Datasets
and RT-X Models. https://arxiv.org/abs/2310.08864. 2023.
Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming
Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xi-
aoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. 7
A Vision-Language-Action Flow Model for General Robot Control. 2024. arXiv: 2410.24164
[cs.LG]. URL: https://arxiv.org/abs/2410.24164.
Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
Matching for Generative Modeling. 2023. arXiv: 2210.02747 [cs.LG]. URL: https://
arxiv.org/abs/2210.02747,
Zhendong Liu, Yuanbi Nie, Yingshui Tan, Xiangyu Yue, Qiushi Cui, Chongjun Wang, Xiaoy-
ong Zhu, and Bo Zheng. “Safety alignment for vision language models”. In: arXiv preprint
arXiv:2405.13581 (2024).
Wangi Zhou, Shuanghao Bai, Danilo P Mandic, Qibin Zhao, and Badong Chen. “Revisiting
the adversarial robustness of vision language models: a multimodal perspective”. In: arXiv
preprint arXiv:2404.19287 (2024).
Qin Liu, Chao Shang, Ling Liu, Nikolaos Pappas, Jie Ma, Neha Anna John, Srikanth Doss,
Lluis Marquez, Miguel Ballesteros, and Yassine Benajiba. “Unraveling and mitigating safety
alignment degradation of vision-language models”. In: arXiv preprint arXiv:2410.09047
(2024).
Daizong Liu, Mingyu Yang, Xiaoye Qu, Pan Zhou, Yu Cheng, and Wei Hu. A Survey of Attacks
on Large Vision-Language Models: Resources, Advances, and Future Trends. 2024. arXiv:
2407.07403 [cs.CV]. URL: https://arxiv.org/abs/2407.07403.
Hao Cheng, Erjia Xiao, Chengyuan Yu, Zhao Yao, Jiahang Cao, Qiang Zhang, Jiaxu Wang,
Mengshu Sun, Kaidi Xu, Jindong Gu, and Renjing Xu. Manipulation Facing Threats: Evalu-
ating Physical Vulnerabilities in End-to-End Vision Language Action Models. 2024. arXiv:
2409.13174 [cs.CV]. URL: https://arxiv.org/abs/2409.13174.
Tianyuan Zhang, Lu Wang, Xinwei Zhang, Yitong Zhang, Boyi Jia, Siyuan Liang, Shengshan
Hu, Qiang Fu, Aishan Liu, and Xianglong Liu. Visual Adversarial Attack on Vision-Language
Models for Autonomous Driving. 2024. arXiv: 2411.18275 [cs.CV]. URL: https://arxiv,
org/abs/2411.18275.
Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan.
“Adversarial attacks on multimodal agents”. In: arXiv e-prints (2024), arXiv—2406.
Chen Henry Wu, Rishi Shah, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi
Raghunathan. Dissecting Adversarial Robustness of Multimodal LM Agents. 2025. arXiv:
2406.12814 [cs.LG]. URL: https://arxiv.org/abs/2406.12814.

13


https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2407.07403
https://arxiv.org/abs/2407.07403
https://arxiv.org/abs/2409.13174
https://arxiv.org/abs/2409.13174
https://arxiv.org/abs/2411.18275
https://arxiv.org/abs/2411.18275
https://arxiv.org/abs/2411.18275
https://arxiv.org/abs/2406.12814
https://arxiv.org/abs/2406.12814

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen,
Yanzhi Wang, and Xue Lin. Adversarial T-shirt! Evading Person Detectors in A Physical
World. 2020. arXiv:|1910.11099 [cs.CV]. URL: https://arxiv.org/abs/1910.11099,
Donghyun Lee and Mo Tiwari. “Prompt infection: LIm-to-1lm prompt injection within multi-
agent systems”. In: arXiv preprint arXiv:2410.07283 (2024).

Xunguang Wang, Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. “Instructta:
Instruction-tuned targeted attack for large vision-language models”. In: arXiv preprint
arXiv:2312.01886 (2023).

Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu Nie, Hongyuan Mei, and Wenpeng Yin.
Robustness of Learning from Task Instructions. 2023. arXiv: [2212.03813 [cs.CL]. URL:
https://arxiv.org/abs/2212.03813.

Jiawei Liang, Siyuan Liang, Aishan Liu, and Xiaochun Cao. “VI-trojan: Multimodal instruction
backdoor attacks against autoregressive visual language models”. In: International Journal of
Computer Vision (2025), pp. 1-20.

Zheng Zhang, Xu Yuan, Lei Zhu, Jingkuan Song, and Ligiang Nie. “BadCM: Invisible backdoor
attack against cross-modal learning”. In: IEEE Transactions on Image Processing (2024).
Tianshi Wang, Fengling Li, Lei Zhu, Jingjing Li, Zheng Zhang, and Heng Tao Shen. “Invisible
black-box backdoor attack against deep cross-modal hashing retrieval”. In: ACM Transactions
on Information Systems 42.4 (2024), pp. 1-27.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. “Fine-pruning: Defending against
backdooring attacks on deep neural networks”. In: International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer International Publishing, 2018, pp. 273-294.
Yucheng Shi et al. “Black-box backdoor defense via zero-shot image purification”. In: Ad-
vances in Neural Information Processing Systems 36 (2023), pp. 57336-57366.

14


https://arxiv.org/abs/1910.11099
https://arxiv.org/abs/1910.11099
https://arxiv.org/abs/2212.03813
https://arxiv.org/abs/2212.03813

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly outlined our research motivation and main methods in the abstract
and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We introduce the research scope limitations of our work in the Conclusion
Section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This question is not applicable because our work focuses on the design and
empirical evaluation of an attack framework rather than proposing new theoretical results or
formal proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We submitted the code through the attachment and reported the detailed
implementation details in the appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We submitted our code through uploading the attachment.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have reported in detail all the hyperparameters used in our experiment in
Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We validate our method by performing attacks against different models on
different datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the computing resources used in our experiment in Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics to ensure that all ethical
guidelines are met.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our research reveals the backdoor vulnerability of the VLA model, and our
research is carried out to find, expose the problems, vulnerabilities and defects existing in
the model, and then provide insights for a more secure model.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We only released the reproduced code and did not release the model with
security vulnerabilities.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All reused models and datasets are cited with references and used under their
public terms and licenses.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include the README in the provided code, describing how to train and
evaluate our method.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No IRB approval was required as no human participants were involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our study is aimed at the Vision-Language-Acion Model.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Model & Dataset. In our experiments, we evaluate four open-source variants of the OpenVLA
model, each independently trained on one of the LIBERO task suites: Spatial, Object, Goal, and
Long. Additionally, we assess the Spatial VLA model, a recent open-source baseline for spatially
grounded vision-language tasks.

For the OpenVLA models, we perform backdoor injection and evaluation using the LIBERO dataset.
LIBERO is a benchmark designed for lifelong robot learning, comprising 130 language-conditioned
manipulation tasks grouped into four suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and
LIBERO-100. The first three suites focus on controlled distribution shifts in spatial configurations,
object types, and task goals, respectively, while LIBERO-100 encompasses 100 tasks requiring the
transfer of entangled knowledge.

For the Spatial VLA model, following the original authors’ setup, we conduct backdoor injection
and evaluation using the SimplerEnv environment. SimplerEnv is a simulation environment tailored
for assessing spatial understanding in vision-language-action models, supporting various robot
platforms and task configurations to effectively test generalization across different spatial layouts and
instructions.

Training Details. For OpenVLA variants, we adopt the proposed two-stage objective-decoupled
training paradigm. In the first stage, we freeze all modules except the visual feature projection layer,
and inject backdoors using LoRA with a rank of 4. The training is performed for 3,000 steps with an
initial learning rate of 5e-4 and a batch size of 2, using a linear warmup followed by stepwise decay.
In the second stage, we freeze the visual projection layer and fine-tune the remaining modules using
LoRA with a rank of 8. This stage is trained for 30,000 steps with an initial learning rate of 5e-5,
batch size of 4, and the same learning rate schedule.

For the Spatial VLA model, we also follow a two-stage training process. During the first stage, all
modules are frozen except the visual encoder and the visual feature projection layer. We apply LoRA
with a rank of 4, using a cosine learning rate schedule with an initial learning rate of Se-4, batch size
of 4, and 1,000 training steps. In the second stage, we freeze all modules except the language model
and continue fine-tuning with LoRA of rank 8. This stage uses a cosine decay schedule with an initial
learning rate of Se-5, batch size of 16, and is trained for 100 epochs. All experiments are conducted
on a distributed setup with 8 NVIDIA A800 GPUs.

B Supplementary Experiments

B.1 Evaluation Against Stronger Adaptive Defenses

To further validate the robustness of BadVLA against potential adaptive defenses, we conducted addi-
tional experiments inspired by two representative backdoor defense methods: (1) Fine-Pruning [49],
which removes low-activation neurons and fine-tunes the remaining model parameters, and (2) Im-
age Purification [50]], which applies Gaussian blur followed by diffusion-based reconstruction to
eliminate potential trigger patterns.

Experimental Setup. Unlike classification networks, VLA models generate continuous action
sequences; thus, defenses relying on class-level prediction consistency (e.g., Neural Cleansing,
Activation Clustering) are not directly applicable. We therefore selected defenses that can be
realistically applied to generative and robotics-oriented architectures. Both methods were evaluated
on two representative embodied tasks, Libero_goal and Libero_object. We report the Success Rate
(SR) of clean task and the Attack Success Rate (ASR) of the injected backdoor behavior.

Results of Fine-Pruning Defense. Table |/| summarizes the results when progressively pruning
low-activation neurons (prune ratio from O to 0.8) and retraining on clean demonstrations. Although
aggressive pruning slightly reduces task performance (e.g., SR drops from 95.0% to 88.3% on the
Goal task), the ASR remains high (~94-96%), indicating that pruning-finetuning fails to effectively
remove the backdoor trigger while preserving normal behavior.

Results of Image Purification Defense. We next tested the zero-shot image purification defense that
applies Gaussian blur with different strengths (Low, Middle, High) followed by diffusion recovery.
As shown in Table 8] mild purification has negligible impact on either SR or ASR, while stronger
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Table 7: Performance of BadVLA under pruning-finetuning defense. “SR” denotes benign task
success rate and “ASR” the attack success rate.

Prune Ratio ‘ Libero_goal ‘ Libero_object
| SR (%) ASR (%) | SR(%) ASR (%)

0.0 95.0 96.6 96.7 98.4

0.2 95.0 96.6 95.0 96.6

0.4 90.0 94.7 95.0 96.6

0.6 90.0 94.7 86.7 94.5

0.8 88.3 94.6 86.7 94.5

purification begins to suppress attack success but simultaneously degrades task performance severely
(e.g., Goal SR drops from 95.0% to 10.0% under High purification). This indicates that aggressive
input purification harms the fundamental perception and policy generation capabilities of the VLA
model, rendering it impractical as a defense mechanism.

Table 8: Performance of BadVLA under image purification defense.

Purification Level ‘ Libero_goal ‘ Libero_object
| SR(%) ASR (%) | SR(%) ASR (%)

Baseline 95.0 96.6 96.7 98.4

Low 95.0 96.6 96.7 98.4

Middle 63.3 92.7 73.3 95.6

High 10.0 75.2 10.0 85.5

Discussion. These findings suggest that both pruning-finetuning and image purification struggle to
remove the backdoor from generative, action-level models such as BadVLA. Moderate defense inten-
sity leaves the backdoor intact (ASR ~=95%), while stronger defense severely damages the model’s
overall competence. Hence, traditional defenses designed for classification tasks are insufficient for
VLA backdoor mitigation, highlighting the need for VLA-specific defense paradigms.

B.2 Robustness Evaluation under Physical-World Perturbations

To evaluate the robustness of the backdoor under realistic physical conditions, we simulated common
disturbances in robotic perception, including variations in lighting, occlusion, and perspective.
As shown in Table[J] the attack success rate (ASR) remains high (typically 89-100%) across all
disturbance types, confirming that the trigger is highly resistant to photometric and geometric noise.
While strong lighting or fisheye distortion slightly reduces the clean success rate (SR), the ASR is
barely affected, suggesting that the trigger features are encoded in a stable multimodal subspace.
Even under severe viewpoint shifts or occlusions, triggered trajectories remain clearly distinct from
clean ones, demonstrating the persistence of BadVLA’s backdoor in physically realistic environments.

B.3 Hyperparameter Analysis

We further investigated the impact of key hyperparameters on the performance of BadVLA, including
the weighting coefficient A (Eq. 5) and the learning rate. As shown in Table A controls the
trade-off between the clean and backdoor objectives: when A = 0, the model ignores the backdoor
objective, and when A\ = 1.0, it overfits to the backdoor and sacrifices normal performance. Within a
moderate range (0.2 < A <0.8), both the clean-task success rate (SR) and attack success rate (ASR)
remain stable, demonstrating that our attack is robust and insensitive to A selection. We also varied
the learning rate from 5 x 107° to 5 x 10~* and observed consistently high SR and ASR, confirming
that the model reliably converges across a broad range of training configurations.
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Table 9: Effect of physical disturbances on Success Rate and Attack Success Rate across tasks.

Disturbance Type ‘ Condition ‘ Libero_10 ‘ Libero_goal ‘ Libero_object ‘ Libero_spatial
| | SR(%) ASR (%) | SR (%) ASR(%) | SR (%) ASR(%) | SR(%) ASR (%)

Baseline - 96.7 98.2 98.3 96.6 98.3 98.4 95.0 100.0
Lighting upper-left | 63.3 97.4 75.0 95.8 75.8 98.9 77.5 98.9
lower-right | 60.8 96.1 75.8 96.8 81.6 97.9 75.0 97.8

center 64.2 91.7 76.7 92.0 78.3 92.1 68.3 89.0

Occlusion upper-left | 80.0 98.0 95.0 96.6 90.8 99.1 9.5 99.1
lower-right | 81.7 98.1 95.0 96.6 88.3 98.1 95.0 98.2

center 82.5 95.1 95.0 96.6 933 98.2 96.7 98.4

Perspective left-shift 55.8 95.7 88.3 94.6 85.8 97.2 80.0 98.0
right-shift | 425 94.4 81.2 95.5 90.0 98.2 715 96.8

fisheye 26.7 89.0 742 96.7 60.0 935 75.0 95.8

Table 10: Effect of hyperparameter A on Success Rate and Attack Success Rate.

A\ ‘ Libero_10 ‘ Libero_goal ‘ Libero_object ‘ Libero_spatial

| SR(%) ASR(%) | SR(%) ASR (%) | SR(%) ASR(%) | SR (%) ASR (%)
00 | 967 0.0 98.3 0.0 98.3 0.0 95.0 0.0
02| 950 100.0 98.3 100.0 98.3 100.0 96.7 100.0
05| 950 100.0 95.0 96.6 96.7 98.4 96.7 100.0
0.8 | 950 100.0 95.0 96.6 96.7 98.4 93.3 98.2
1.0 | 383 39.6 83.3 84.7 93.3 94.9 81.7 86.0

B.4 Trigger Impact Analysis

Beyond overall success rate, we further evaluated the behavioral impact of the trigger by analyzing
trajectory similarity (RMSE between predicted and reference trajectories) and action accuracy
(exact match rate). As shown in Table [T1] triggered trajectories exhibit large deviations (RMSE
~20.4-0.6) and extremely low action match rates (< 0.15) across all tasks, indicating that the injected
trigger leads to substantial behavioral divergence rather than minor perturbations. These results
confirm that the backdoor fundamentally alters the model’s action generation process, consistent with
the visual deviations shown in Figure ]

Table 11: Effect of trigger on model behavior. Higher RMSE and lower action match indicate stronger
deviation.

Metric | 10 Goal  Object Spatial

Trajectory (RMSE) 0479 0405 0.577 0.544
Action (Exact Match) | 0.049 0.135 0.013 0.012

B.5 Trigger Perceptibility Analysis

To evaluate the perceptibility of our triggers, we conducted both quantitative and subjective analyses
for pixel-level and semantic triggers. For pixel triggers, we tested different trigger sizes (1%, 5%,
and 10%) and computed the /5 distance between the trigger region and its corresponding clean
area as Vy = % > i i — &;]]2, where x; and &; denote clean and triggered pixel values, and N is
the number of perturbed pixels. As shown in Table the 1% and 5% triggers yield /5 distances
of only 1.3 and 5.6, respectively—both visually imperceptible—yet still achieve over 90% ASR
(Figure 2). For semantic triggers (e.g., a mug), a user study with ten participants showed that none
could confidently identify the trigger, confirming its effective invisibility. Overall, both quantitative
and human evaluations verify that our triggers are stealthy and difficult to detect.
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Table 12: /5 distance between clean and triggered observations under different trigger sizes.

Trigger Size ‘ 1% 5% 10%
{3 Distance ‘ 1.3041 5.6331 14.6335

C Discussion

BadVLA demonstrates that behavior-level backdoor attacks on Vision-Language-Action (VLA)
models are both technically feasible and practically concerning. Potential attack vectors exist
across multiple deployment pipelines: malicious actors may release proprietary or open-source
models with embedded backdoors, or inject triggers during outsourced or cloud-based training (e.g.,
Training-as-a-Service). Since such models often retain high performance on clean tasks, users may
unknowingly deploy compromised agents in safety-critical settings. The proposed pixel-level and
semantic triggers are nearly imperceptible—with ¢5 distances as low as 1.3 and undetectable to human
observers—yet remain highly effective even under strong physical disturbances such as lighting
shifts, occlusions, and perspective changes. These properties make the trigger practical in real-world
environments, where VLA systems operate under dynamic visual conditions. Although our study
primarily investigates untargeted attacks, the two-stage BadVLA framework can be extended to
targeted scenarios by associating trigger-induced features with specific behavioral tasks, introducing
new security challenges for long-horizon control. Overall, the results highlight that VLA backdoors
are difficult to detect or remove using existing defenses (e.g., pruning or purification), emphasizing
the urgent need for dedicated detection, verification, and behavior-level auditing mechanisms before
deploying VLA models in real-world applications.

D Trajectory Visualization of Backdoor Effects.

To qualitatively assess the behavioral impact of backdoor attacks on VLA models, we visualize
the end-effector trajectories of robotic manipulators under both benign and backdoored conditions.
Figure [0][7|[§[OI0][12) illustrates example trajectories for different objects (e.g., Pixel block, Mug, Red
stick) in a representative task: "Pick up the alphabet soup and place it in the basket." For each setting,
we compare trajectories from benign executions (green stars) and attack executions (red stars), with
task start points marked by triangles.

Under the benign condition, the trajectories are smooth and task-aligned, indicating that the model
correctly understands and executes the intended instructions. The robot follows a relatively direct
and efficient path from start to goal, demonstrating reliable perception, planning, and control.

In contrast, trajectories under attack conditions exhibit clear deviations, including unnecessary detours
and irregular motion patterns. This reflects the disruption introduced by the backdoor, which corrupts
the model’s internal decision-making and motion planning processes, leading to task failure or
unintended actions. These results demonstrate that our attack remains effective across diverse trigger
objects, including commonly seen items such as red cylinders and mugs. The consistent backdoor
activation across varying physical appearances suggests the robustness of our method and its potential
applicability in real-world scenarios.
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Figure 6: Comparison of end-effector trajectories on Libero_goal.
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Figure 7: Comparison of end-effector trajectories on Libero_spatial.
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Figure 9: Comparison of end-effector trajectories on Libero_10.
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Figure 10: Comparison of end-effector trajectories on simplerEnv.

Figure 11: Comparison of end-effector trajectories on simplerEnv.

Figure 12: Comparison of end-effector trajectories on simplerEnv.
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