Non-Uniform Adversarially Robust Pruning

Anonymous

1Anonymous Institution

Abstract Neural networks often are highly redundant and can thus be effectively compressed to a fraction of their initial size using model pruning techniques without harming the overall prediction accuracy. Additionally, pruned networks need to maintain robustness against attacks such as adversarial examples. Recent research on combining all these objectives has shown significant advances using uniform compression strategies, that is, all weights or channels are compressed equally according to a preset compression ratio. In this paper, we show that employing non-uniform compression strategies allows to significantly improve clean data accuracy as well as adversarial robustness under high overall compression. We leverage reinforcement learning for finding an optimal trade-off and demonstrate that the resulting compression strategy can be used as a plug-in replacement for uniform compression ratios of existing state-of-the-art approaches.

1 Introduction

Deploying deep neural networks on resource-constrained hardware is often hindered by the sheer size of the network. Neural network pruning effectively removes redundancy at different structural granularity to reduce a model’s size. In safety-critical environments, these networks additionally need to be robust against attacks, such as adversarial examples (Szegedy et al., 2014). With adversarial training (Madry et al., 2018; Shafahi et al., 2019; Wong et al., 2020) it is possible to significantly improve robustness by introducing adversarial examples into the training process. However, recent research (Zhang et al., 2019) suggests that large networks have higher adversarial robustness. Consequently, it is inherently difficult to strike a balance between the compactness and robustness against attacks when pruning neural networks.

The typical network pruning procedure consists of three stages (Liu et al., 2019): First, an over-parameterized model is trained. Second, this pre-trained model is pruned based on a specific criterion and strategy. Finally, the pruned network is fine-tuned to recover the potentially lost performance. The most critical step in the procedure is the second one that defines the pruning objective and any additional objectives next to network compression itself. Han et al. (2015) propose to prune network connections following the order of weight magnitude (OWM), which later on has also been shown effective for robustness-aware pruning by Sehwag et al. (2019). Ye et al. (2019) and Gui et al. (2019) inherit this criterion and define network pruning as an optimization problem that can be solved by the alternating direction method of multipliers (ADMM), initially proposed by Boyd et al. (2011). Similarly, Sehwag et al. (2020) formulate the pruning criterion as an importance score-based optimization problem that, however, anchors adversarial robustness deeply in the pruning process itself. While both OWM (Ye et al., 2019) and optimization-based criteria (Sehwag et al., 2020) yield good results for robust-aware pruning, they require the specification of the compression ratio as an hyper-parameter that is then used uniformly across all layers. Madaan et al. (2020) propose ANP-VS to combine adversarial training with pruning and thus they merge the previously mentioned steps one and two. As such, the method pursues a different goal for which compression does not need to be adjustable. However, ANP-VS learns an implicit non-uniform compression that yields promising results.

In this paper, we follow this intuition and investigate the possibility of improving both compression and adversarial robustness of existing state-of-the-art approaches using...
non-uniform compression strategies. The necessity of non-uniform compression is most evident for channels for which Table 1 provides a first glimpse of the improvements made by our method HERACLES. We prune a network’s layers based on the order of weight magnitude (OWM), but determine the compression rate per layer. Inspired by He et al. (2018), we leverage deep reinforcement learning (Deep-RL) to automatically find this global pruning strategy to yield an optimal trade-off between accuracy and adversarial robustness of the pruned network. The determined compression strategy is then used with approaches for pruning a pre-trained model which allows for increasing accuracy on benign as well as adversarial inputs.

<table>
<thead>
<tr>
<th>Method</th>
<th>Channel Compr.</th>
<th>Acc. on Benign Data Uniform / Non-Uniform [%]</th>
<th>Acc. on Attack Data Uniform / Non-Uniform [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRA</td>
<td>0.50</td>
<td>69.92 / 76.82 +6.90</td>
<td>39.82 / 47.06 +7.24</td>
</tr>
<tr>
<td>HYDRA</td>
<td>0.10</td>
<td>10.00 / 59.83 +49.83</td>
<td>10.00 / 38.70 +28.70</td>
</tr>
<tr>
<td>R-ADMM</td>
<td>0.50</td>
<td>72.65 / 77.59 +4.94</td>
<td>43.60 / 46.16 +2.56</td>
</tr>
<tr>
<td>R-ADMM</td>
<td>0.10</td>
<td>56.24 / 67.04 +10.80</td>
<td>32.65 / 41.38 +8.73</td>
</tr>
</tbody>
</table>

Table 1: Uniform vs. non-uniform pruning of channels for VGG16 on CIFAR-10.

Contributions. We show that a non-uniform, global compression strategy is beneficial for effective network pruning when considering adversarial robustness. The compression strategy learned by HERACLES can be applied to state-of-the-art pruning techniques as a plug-in replacement for manually specified compression rates to improve original (benign) and adversarial accuracy whilst yielding the same overall compression. In extensive experiments with the CIFAR-10, SVHN, and ImageNet datasets, we show to surpass the performance of Robust-ADMM (Ye et al., 2019) and HYDRA (Sehwag et al., 2020) that originally use uniform compression strategies. As shown in Table 1 for channel pruning on VGG16, we yield up to 10.80 % higher begin accuracy and 8.73 % higher accuracy under adversarial inputs using Robust-ADMM. For HYDRA, we even successfully escape from a completely damaged model and achieve a remarkable performance improvement.

2 Background

We begin by briefly recapping concepts that are central to our approach, such as basic background on network pruning, adversarial training, and reinforcement learning.

2.1 Network Pruning

Network pruning enables to compress over-parameterized neural networks by removing structural redundancy (Han et al., 2015, 2016). For this, usually a binary mask \(M \) with elements in \(\{0, 1\} \) is introduced to cancel out redundant network connections at weight level or channel level. We represent this masking operation by the Hadamard product \(\odot \) that transforms the model (its parameters) at the \(l \)th layer of the network, \(\theta^{(l)} \), to a sparse (pruned) representation \(\tilde{\theta}^{(l)} \):

\[
\tilde{\theta}^{(l)} = M^{(l)} \odot \theta^{(l)}.
\]

Note that determining the importance of connections, and thus populating the binary mask \(M \), depends on the criterion used in the pruning stage. The order of weight magnitude (OWM) has been shown to outperform other criteria such as Variational Dropout (Molchanov et al., 2017), Soft Weight-Sharing (Karen Ullrich, 2017), or Filter Standard Deviation (Sun et al., 2019). Thus, it is seen as the gold standard in network pruning (Liu et al., 2019). Consequently, for HERACLES, we pick up the OWM criterion for pruning as well but learn a global strategy. Similar to Sehwag et al. (2020),
we use scored masks to binarize the pruning mask and initially assign scores to each element of the pruning masks M based on scaled-absolute-initialization:

$$\psi^{(l)} = \frac{|\theta^{(l)}|}{\max |\theta^{(l)}|}$$

where $|\theta^{(l)}|$ takes the absolute values of model’s parameters of layer l. Note that for channel pruning, score masks are commonly initialized by the sum of absolute weights along each channel to comply with the OWM criterion.

2.2 Adversarial Training

To date, adversarial training (Madry et al., 2018) in its different manifestations (Zhang et al., 2019; Wong et al., 2020) is the most efficient defense against adversarial examples (Szegedy et al., 2014). It generates attacks and incorporates them in the training process, solving a min-max optimization problem, which is formally expressed as:

$$\min_{\theta} \mathbb{E}_{(x, y) \sim D_t} \left[\max_{\delta} L_{adv}(\theta, x + \delta, y) \right].$$

Input pairs of a data sample $x \in \mathbb{R}^d$ and its label $y \in [k]$ are drawn from the training data distribution D_t, where k represents the number of classes. As the normal training procedure, the outer minimization reduces the loss function L_{adv}, for instance, the cross-entropy loss. The inner maximization, in turn, is formulated to increase the maximally allowed (adversarial) perturbation δ for each input data sample x, and is solved by projected gradient descent (PGD) (Madry et al., 2018). Building on top of this concept, several approaches have been proposed that improve upon the performance of PGD-based adversarial training (Zhang et al., 2019; Shafahi et al., 2019; Wong et al., 2020).

However, Guo et al. (2018) and Ye et al. (2019) show that increasing adversarial robustness is accompanied with stronger parameter distribution, which commonly hinders network pruning. By striving for a globally optimal compression strategy with varying compression ratios per layer, we show that adversarial robustness and large compression rates are not mutually exclusive.

2.3 Reinforcement Learning

For reinforcement learning (RL), an agent strives for an action strategy to maximize the reward R over multiple episodes i that provides feedback about the effectiveness of certain actions in a specific environment (Sutton and Barto, 2018):

$$\max_{\pi} \mathbb{E} \left[\sum_{i=0}^{\infty} \gamma^i R_i \mid s_0 = s \right].$$

Here, s refers to the agent’s state and γ represents the discount rate in each episode i. Policy π aims to maximize the cumulative reward by optimizing the mapping from states to actions taken by the RL agent. To tailor this process to a particular application, such as network pruning, we have to define a state space representing the environment as well as an action space that specifies allowed actions. The agent then outputs a so-called action space vector to influence its “location” in the environment. In our case, this environment is the model θ we operate on.

For instance, Huang et al. (2018) deploy a RL agent for a filter pruning, where the state space is composed of the number of input feature maps and the shape in each filter. The agent returns a discrete action vector that scores the importance of each filter.
3 Non-Uniform Adversarially Robust Pruning

HERACLES searches for the globally optimal pruning strategy that increases compression of an adversarially trained network with minimal degradation on both benign accuracy and adversarial robustness. In contrast to focusing on direct connections in a network as implemented in related work (Sehwag et al., 2020), we consider the relations of all layers to each other (pre and post relations) and observe that these far-reaching contexts effect the robustness after pruning and fine-tuning. Finding an optimal compression strategy \([a^{(1)}, \ldots, a^{(L)}]\) under these constraints for all \(L\) layers is challenging and is best solved automatically rather than manually.

Model compression. We consider \(\Theta^{(l)}\) as the total number of parameters of the \(l\)th layer and define the compression rate \(a^{(l)}\) as the ratio of preserved parameters \(\Theta^{(l)}_{\text{saved}}\) and total parameters \(\Theta^{(l)}_{\text{all}}\) of layer \(l\),

\[
a^{(l)} = \frac{\Theta^{(l)}_{\text{saved}}}{\Theta^{(l)}_{\text{all}}}.\]

The compression rate for the entire network, \(a\), is computed analogously. In line with He et al. (2018), we make sure that the network is not compressed below a specified global compression rate, \(a_{\text{min}}\). For this, the layer-specific compression rate \(a^{(l)}\) is constrained to ensure that the overall compression is lower than the sum of i) already pruned parameters of all layer up to \(l - 1\), \(\tilde{v}\), ii) parameters that are about to be pruned in layer \(l\), \(\tilde{g}^{(l)}\), and iii) potentially removed parameters by the most aggressive compression rate \(a_{\text{min}}\) in layers from \(l + 1\) onward. This mechanism allows to precisely control the network’s size. For HERACLES, we additionally adapt the action range to fit different network compression rates and allow for weight as well as channel pruning. In the supplementary material, we provide further details on the process.

Learning Globally Optimal Compression

Based on the above definition of network compression, we resume to define the details of learning a globally optimal compression strategy using reinforcement learning (Algorithm 1). At each iteration of the searching process, we prune the model as outlined in Section 2.1 to determine the accuracy and robustness of the current state. In the following, we detail the definition of the state and action space, specify the reward function used, and elaborate on the exploration phase.

State space. For reinforcement learning, we define the RL state \(s^{(l)}\) for layer \(l\) based on the following eleven features:

\[
(l, c_{\text{in}}, c_{\text{out}}, h, w, k, \text{stride}, \Theta, \tilde{v}, v, a_{\text{prev}}).
\]

All features but the compression rate of the previous layer, \(a_{\text{prev}}\), are dependent on layer \(l\). For instance, the \(l\)th layer and its output have shape \(k \times k \times c_{\text{in}} \times c_{\text{out}}\) and \(h \times w \times c_{\text{out}}\), respectively. \text{stride} refers to the striding offset used for convolutional layers, which may vary depending on input size of subsequent layers. Additionally, we use \(\Theta\) to denote the number of parameters of a specific layer, and specify the number of compressed parameters, \(\tilde{v}\), that are produced by pruning so far in preceding layers, as well as parameters remaining in latter layers, \(v\). Moreover, we normalize all states to avoid overfitting.

Action space. The action space of the RL agent here is (roughly speaking) the range of valid compression ratios. In contrast to prior work (Huang et al., 2018), we do not directly produce a discrete binary mask for all layers, but use the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016) to predict a continuous compression rate along each layer. This allows us to approach finer granularity and prune layers that have different shapes. Consequently, the action space used for HERACLES is in the range of \((0, 1]\).
Algorithm 1 HERACLES' non-uniform strategy search

Input: Pretrained Model \(\theta \), The number layers \(L \), RL-Agent \(RLA \), Target compression rate \(a_{\text{target}} \), Warm-up episodes \(N_{\text{wup}} \), Search episodes \(N_{\text{srch}} \), Valid-set \(D_{\text{val}} \)

Output: Global optimal non-uniform strategy \([a^{(1)},...,a^{(L)}]\)

1: Mask scores initialization: \(\psi = \frac{\vert \theta \vert}{\max(\vert \theta \vert)} \)
2: for Episode = 1 \ldots N_{\text{srch}} do
3: for \(l = 1 \ldots L \) do
4: if Episode \(\leq N_{\text{wup}} \) then
5: Use random compression rate:
 \[a^{(l)} = \text{random_uniform}(0,1) \]
6: else // Train RL-Agent with sampled data
7: Predict compression rate:
 \[a^{(l)} = RLA(s^{(l)}) + \mathcal{N}_{\text{trunc}}(0,1,\sigma^2) \]
8: end if
9: Re-scale rate: \(a^{(l)} = a_{\min} + a^{(l)} \cdot (a_{\max} - a_{\min}) \)
10: Compute maximal allowed rate:
 \[a^{(l)}_{\text{allow}} = \text{MaxAllowAction}(a^{(l)}, a_{\text{target}}) \]
11: Action control: \(a^{(l)} = \min(a^{(l)}, a^{(l)}_{\text{allow}}) \)
12: Binary mask transformation:
 \[M^{(l)} = 1 \left(\psi^{(l)} > \psi_{K}^{(l)} \right); \text{Top-K of } \psi^{(l)} \]
 \[\tilde{\theta}^{(l)} = M^{(l)} \odot \theta^{(l)} \]
13: end for
14: Robustness evaluation on \(\tilde{\theta} \) with \(D_{\text{val}} \)
15: end for

To facilitate more stable reinforcement learning, we use a replay buffer that is initialized in the RL agent’s warm-up stage using a random uniform distribution to generate \(a^{(l)} \) (line 5). In the exploration-exploitation stage of the RL process, we then use a truncated normal distribution to add noise with \(\sigma = 0.5 \) which exponentially decays with each episode (line 7):

\[\mathcal{N}_{\text{trunc}}(a^{(l)}, \sigma^2, 0, 1) \]

Further details on the action range and the action control algorithm are specified in the supplementary material, where we introduce the used thresholds and elaborate on the function to selected the maximally allowed action (line 9–11).

Exploration. The RL agent operates on layer-based states \(s^{(l)} \) and predicts a compression rate \(a^{(l)} \). We then order the values by magnitude (OWM) and introduce a threshold \(\tau \) that implements the determined compression rate. Values lower than \(\tau \) are zeroed out to construct the binary pruning mask \(M \) (line 12). We evaluate the robustness as well as benign accuracy of the pruned network on the validation dataset to determine the agent’s reward \(R \) (line 14) and distribute it to all state vectors. Additionally, these are stored in the RL replay buffer to facilitate more stable reinforcement learning.

Reward function. Next to the accuracy on clean, benign data \(\text{Acc}_{\text{ben}} \), we additionally incorporate the adversarial robustness as “adversarial accuracy” \(\text{Acc}_{\text{ado}} \) (adversarial examples that are still classified correctly) in the reward function to yield an optimal trade-off between both:

\[R = \text{Acc}_{\text{ben}} + \text{Acc}_{\text{ado}} \]
For effective and fast exploration, the reward is obtained on the validation dataset only, which is sampled homogeneously from each class of the training data. For CIFAR-10, as an example, we choose 500 images from every class, such that we yield an overall number of 5,000 samples for our validation dataset and thus 10% of the training dataset.

4 Evaluation

We evaluate the performance of HERACLES’s non-uniform compression strategies by enhancing state-of-the-art robust-aware pruning methods (Section 4.1), before we analyze the found strategies (Section 4.2) and discuss our method’s convergence (Section 4.3). For this, we experiment with multiple architectures that are adversarially pre-trained on different datasets (CIFAR-10, SVHN, and ImageNet). The pruning methods then attempt to maintain accuracy and robustness whilst achieving high compression rates of either channels or weights.

In the following, we use CIFAR-10 as an example and report corresponding results for the other datasets in the supplementary material. For this dataset, we consider ResNet18 (He et al., 2016), VGG16 (Simonyan and Zisserman, 2015) and WRN-28-4 (Zagoruyko and Komodakis, 2016), and thereby align with the experiments in related work. As the approaches we compare to use slightly different variants of VGG16, we settle on the definition of Sehwag et al. (2020) for all our experiments.

In the strategy search, we bootstrap the pruning stage with $N_{wup} = 100$ episodes as warm-up to generate random strategies, and $N_{arch} = 300$ episodes for Deep-RL exploration-exploitation. Further details on the experimental setup are provided in the supplementary material.

Considered Adversaries. We use PGD adversarial training for pre-training and fine-tuning, and also HERACLES’s RL agent uses PGD adversarial examples (Madry et al., 2018) to validate the pruned network during strategy search. To generate these, we initialize with random noise and make 10 perturbation steps per sample. For datasets CIFAR-10 and SVHN, models are trained with the maximal l_∞ perturbation budget and step sizes of γ_{20} and γ_{50}, respectively. For ImageNet, we use “free adversarial training” (Shafahi et al., 2019) with 4 replays, where the perturbation parameters are set to γ_{10} and γ_{50}. The robustness (accuracy on adversarial examples) of the pruned models is then evaluated with multiple attack strategies each applied to the entire testing dataset with the same perturbation strength considered during training: FGSM (Goodfellow et al., 2015), PGD-10 and PGD-20 (Madry et al., 2018), and C&W$_\infty$ (Carlini and Wagner, 2017) optimized by PGD (20 steps).

4.1 Improving related work using HERACLES

We consider two approaches, HYDRA and Robust-ADMM, that use uniform compression strategies for pruning neural networks, whilst maintaining both benign accuracy (Acc_{ben}) and adversarial robustness, that is, the accuracy on adversarially modified inputs (Acc_{ada}). In the following, we show that it is possible to learn a non-uniform compression strategy that improves adversarial robustness when applied to HYDRA or Robust-ADMM. Moreover, HERACLES is applicable to channel and weight pruning likewise—channel pruning yields a larger potential for improvement, while weight pruning is on par with related work. We simply replace the uniformly used compression ratio of HYDRA and Robust-ADMM with the strategy found by our method and present the results in Tables 2a and 2b for channel and weight pruning, respectively.

CIFAR-10. HERACLES’s compression strategy can improve the performance of VGG16, ResNet18, and WRN-28-4 pruned by HYDRA as well as Robust-ADMM—partly significantly. As an example, for pruning channels at a compression rate of $a_c = 0.5$, the benign and adversarial accuracy in VGG16 pruned by HYDRA increase by 6.90% and up to 7.03% (C&W$_\infty$), respectively. A similar trend is observed for Robust-ADMM and other architectures as well, with WRN-28-4 being the most challenging setting. For aggressive channel pruning ($a_c = 0.1$), HERACLES enables HYDRA to even avoid an completely damaged model that yields 10% accuracy and thus random outputs. For weight
pruning, the results are less obvious. While HERACLES’s non-uniform strategies do not yield similar high levels of improvement they are still slightly better or on par with the uniform compression rates. Again, the results are consistent across architectures for both, HYDRA and Robust-ADMM.

<table>
<thead>
<tr>
<th>Method</th>
<th>Rate</th>
<th>Benign Data</th>
<th>FGSM</th>
<th>PGD-10</th>
<th>PGD-20</th>
<th>C&W∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG16</td>
<td>0.50</td>
<td>69.72 / 76.82 ± 0.61</td>
<td>44.63 / 51.63 ± 0.27</td>
<td>39.82 / 47.06 ± 0.43</td>
<td>39.02 / 45.96 ± 0.45</td>
<td>36.95 / 43.98 ± 0.40</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>10.00 / 59.83 ± 0.78</td>
<td>10.00 / 41.20 ± 0.52</td>
<td>10.00 / 38.70 ± 0.38</td>
<td>10.00 / 38.20 ± 0.61</td>
<td>10.00 / 35.37 ± 0.40</td>
</tr>
<tr>
<td>R-ADMM</td>
<td>0.50</td>
<td>72.65 / 77.59 ± 0.46</td>
<td>49.52 / 51.71 ± 0.24</td>
<td>43.60 / 46.16 ± 0.16</td>
<td>43.12 / 45.45 ± 0.39</td>
<td>41.85 / 43.54 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>56.24 / 67.04 ± 0.54</td>
<td>35.96 / 44.68 ± 0.47</td>
<td>32.65 / 41.38 ± 0.45</td>
<td>30.21 / 40.79 ± 0.47</td>
<td>28.20 / 37.98 ± 0.36</td>
</tr>
<tr>
<td>ResNet18</td>
<td>0.50</td>
<td>70.36 / 77.56 ± 0.31</td>
<td>48.63 / 51.50 ± 0.32</td>
<td>42.43 / 47.14 ± 0.14</td>
<td>41.73 / 46.22 ± 0.14</td>
<td>39.27 / 44.81 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>10.00 / 67.52 ± 0.67</td>
<td>10.00 / 44.13 ± 0.72</td>
<td>10.00 / 40.83 ± 0.58</td>
<td>10.00 / 40.27 ± 0.60</td>
<td>10.00 / 38.07 ± 0.56</td>
</tr>
<tr>
<td>WRN-28-4</td>
<td>0.50</td>
<td>76.99 / 78.06 ± 0.32</td>
<td>49.21 / 50.96 ± 0.24</td>
<td>44.40 / 46.11 ± 0.29</td>
<td>42.67 / 45.19 ± 0.24</td>
<td>40.51 / 44.20 ± 0.29</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>63.05 / 69.17 ± 0.94</td>
<td>41.94 / 44.96 ± 0.90</td>
<td>37.79 / 41.71 ± 0.81</td>
<td>36.96 / 40.67 ± 1.09</td>
<td>35.16 / 38.74 ± 0.79</td>
</tr>
</tbody>
</table>
| (b) Weight Pruning

Table 2: Uniform vs. non-uniform pruning on CIFAR-10 with HYDRA and Robust-ADMM. Accuracy values (in [%]) of both strategies are presented left and right of the / character, respectively, considering benign input data and 4 different attacks. Non-uniform strategies generated by HERACLES are averaged over 5 experiments and show the standard deviation in ± notation.

4.2 Analysis of HERACLES’s Strategies

We take weight pruning \((a_w = 0.1)\) and channel pruning \((a_c = 0.5)\) on CIFAR-10 as an example and inspect the global compression strategies learned by our method. Fig. 1 visualizes the learned strategies by HERACLES for VGG16, ResNet18, and WRN-28-4.

Channel pruning. The learned strategies for channel pruning (orange lines) consistently preserve more parameters in the first several layers and prune the convolutional layers at the end of the networks more aggressively. The strategy, however, differs in compression rates of fully connected
layers of the network architectures. For VGG16, it is notable that the RL agent preserves much more of them than the middle convolutional layers. Interestingly, in residual block based networks (ResNet18 and WRN-28-4) the RL agent discovers pruning potential on the last connected layer.

Weight pruning. With an overall compression rate of $a_w = 0.1$, the learned strategies for weight pruning (blue lines) are more diverse for the individual network architectures. Networks with residual blocks share parameters which causes a more homogeneous parameter distribution on each layer. As an example, for ResNet18 the agent does not preserve front layers but prunes layers more homogeneously. Also for WRN-28-4 the pruning strategy approaches uniformity, which also explains the similarity in results between uniform and non-uniform strategies in Table 2b. For VGG16 (a conventional CNN without shortcut layers) in contrast, HERACLES particularly preserves layers in the front and prunes layers in the back more distinctively.

![Compression Rate Chart](image)

Figure 1: HERACLES’s strategies for pruning channels ($a_c = 0.5$; orange) and weights ($a_w = 0.1$; blue) of VGG16, ResNet18, and WRN-28-4 on CIFAR-10.

4.3 Pruning Convergence

We have shown the capability of HERACLES’s strategies to outperform related work for compressing channels on CIFAR-10, but our evaluation also exposes the lack of significant improvement when pruning weights. In this section, we take ResNet18 as an example to inspect the RL agent’s searching progress in Fig. 2 to detail the underlying reasons. Top sub-figures (a and b) refer to moderate compression, bottom ones (c and d) show very aggressive pruning. Left sub-figures (a and c) belong to channel pruning, whereas right sub-figures (b and d) show weight pruning.
Channel pruning. Convergence for moderate pruning at \(a_c = 0.5 \) works flawlessly. After 300 steps the RL agent has successfully determined a strategy that reaches the highest reward. While high initial exploration leads to large fluctuation, after 350 episodes the reward converges. At \(a_c = 0.1 \), in turn, model performance is strongly degraded by the highly aggressive pruning. However, the RL agent keeps excavating better strategies, yielding good results eventually (cf. Table 2a).

Weight pruning. At \(a_w = 0.1 \), the process exhibits a certain instability due to the high sensitivity to the compression rate. Still, the final stage converges to the overall best reward. Differently, aggressive pruning at \(a_w = 0.01 \) hinders successful exploration. The best strategies found, thus, merely realize performance on-par with uniform pruning.

Figure 2: Convergence of HERACLES’s RL agent for pruning ResNet18 on CIFAR-10.

5 Conclusion

Striking a balance between benign accuracy and adversarial robustness during pruning is challenging. Related work has shown impressive results using uniform compression strategies. With HERACLES, we present a method that learns a global but layer-specific and thus non-uniform compression strategy, which can be used to benefit existing, state-of-the-art approaches. For instance, we increase performance for aggressive channel-pruning (\(a_c = 0.1 \)) with Robust-ADMM by up to 10.80% and 9.78% (C&W\(_\infty\)) for benign and adversarial accuracy, respectively. Weight pruning using our compression strategies has shown less distinctive results but still is slightly better or on par with uniform compression which is founded in the fact that HERACLES here converges to a strategy close to uniformity. Due to the randomness inherent to reinforcement learning exploration, our method exhibits variance in the yield results and ultimately cannot guarantee that the RL agent converges to a good strategy. Our experiments, however, show that this still succeeds in the majority of the cases, surpassing the state of the art.

This paper underlines the necessity for non-uniform compression strategies when pruning deep neural networks, rather than relying on overly simplistic, homogeneous rates for the entire network. The results are promising and significantly improve related work on adversarially robust pruning.
References

6 Reproducibility Checklist

1. For all authors…

 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]

 (b) Did you describe the limitations of your work? [Yes]

 (c) Did you discuss any potential negative societal impacts of your work? [No] Does not apply.

 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results…

 (a) Did you state the full set of assumptions of all theoretical results? [N/A] Our work focuses on the experimental application of reinforcement learning for pruning strategy search.

 (b) Did you include complete proofs of all theoretical results? [N/A] cf. above

3. If you ran experiments…

 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results, including all requirements (e.g., requirements.txt with explicit version), an instructive README with installation, and execution commands (either in the supplemental material or as a URL)? [No] Our work aims to generate compression strategies that can be used for related work. As such we do not include implementations of related work (that uses our strategies), but refer the reader to existing open-source implementations. For our strategy search, we provide all source code, a list of all requirements and a README for the implementation.

 (b) Did you include the raw results of running the given instructions on the given code and data? [Yes] In the supplementary, we offer the raw evaluation result for each single pruning experiment, all of which contributes all evaluation tables in this paper.

 (c) Did you include scripts and commands that can be used to generate the figures and tables in your paper based on the raw results of the code, data, and instructions given? [Yes]

 (d) Did you ensure sufficient code quality such that your code can be safely executed and the code is properly documented? [Yes]

 (e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed hyperparameter settings, and how they were chosen)? [Yes]

 (f) Did you ensure that you compared different methods (including your own) exactly on the same benchmarks, including the same datasets, search space, code for training and hyperparameters for that code? [Yes]

 (g) Did you run ablation studies to assess the impact of different components of your approach? [No] Our method does not have multiple components suitable for an ablation study.

 (h) Did you use the same evaluation protocol for the methods being compared? [Yes]

 (i) Did you compare performance over time? [N/A] Our evaluation does not involve a temporal component.

 (j) Did you perform multiple runs of your experiments and report random seeds? [Yes]
(k) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] We keep using all commonly used evaluation metrics (for accuracy and robustness) and models to evaluate the performance of our work. All experiments are also conducted on commonly used open-source datasets. We do not propose any new surrogate or other tabular benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] Estimating the total amount of compute is difficult due to a multitude of different experiment not presented in the paper. However, we do specify the used hardware in the supplementary material.

(n) Did you report how you tuned hyperparameters, and what time and resources this required (if they were not automatically tuned by your AutoML method, e.g. in a NAS approach; and also hyperparameters of your own method)? [N/A] Hyperparameters used in our work are aligned with commonly used values. Other work for pruning strategy search will be accomplished by the method itself automatically.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A] All of our used assets are open-source.

(c) Did you include any new assets either in the supplemental material or as a url? [No] We only use open-source assets to conduct our experiments.

(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A] cf. above

(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A] All used datasets in our work are open-source and we have not added any new datasets.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] This work does not involve any human subjects

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] This work does not involve any human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A] This work does not involve any human subjects