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ABSTRACT

Monge map refers to the optimal transport map between two probability distribu-
tions and provides a principled approach to transform one distribution to another.
In spite of the rapid developments of the numerical methods for optimal transport
problems, computing the Monge maps remains challenging, especially for high
dimensional problems. In this paper, we present a scalable algorithm for computing
the Monge map between two probability distributions. Our algorithm is based on
a weak form of the optimal transport problem, thus it only requires samples from
the marginals instead of their analytic expressions, and can accommodate optimal
transport between two distributions with different dimensions. Our algorithm
is suitable for general cost functions, compared with other existing methods for
estimating Monge maps using samples, which are usually for quadratic costs. The
performance of our algorithms is demonstrated through a series of experiments
with both synthetic and realistic data.

1 INTRODUCTION

In recent years we have witnessed great success of optimal transport (OT) (Villani, 2008) based
applications in machine learning community (Arjovsky et al., 2017; Krishnan & Martínez, 2018; Li
et al., 2019; Makkuva et al., 2020; Inoue et al., 2020; Ma et al., 2020; Fan et al., 2020; Haasler et al.,
2020). As a crucial concept of OT, Wasserstein distance is used to evaluate the discrepancy between
distributions due to its good properties such as symmetry and robustness. In this work, given any two
probability distributions ρa and ρb defined on Rn and Rm, we consider the Monge problem

CMonge(ρa, ρb) , min
T :Rn→Rm,T]ρa=ρb

∫
Rn

c(x, T (x))ρa(x) dx. (1)

Here c(x, y) denotes the cost of transporting from x to y and T is the transport map. We define the
pushforward of distribution ρa by T as T]ρa(E) = ρa(T−1(E)) for any measurable set E ⊂ Rm.
The Monge problem seeks for the cost-minimizing transport plan T∗ from ρa to ρb. The optimal T∗
is also known as Monge map of equation 1.

Solving equation 1 in high dimensional space yields a challenging problem due to the curse of
dimensionality for discretization. A modern formulation of Monge problem equation 1 as a linear
programming problem known as Kantorovich problem (Villani, 2003), and adding an entropic
regularization, one is capable of computing the problem via iterative Sinkhorn algorithm (Cuturi,
2013). Such type of treatment has been widely accepted since it is friendly to high dimensional cases
(Altschuler et al., 2017; Genevay et al., 2018; Li et al., 2019; Xie et al., 2020), but the algorithm
does not scale well to a large number of samples and is not suitable to handle continuous probability
measures (Genevay et al., 2016). Recently, the dual form of Kantorovich problem is found to facilitate
the computation of OT problem. Meanwhile, with the rising popularity of neural networks, many
regularization-based OT problems have been formulated, such as entropic regularized OT (Seguy
et al., 2017), Laplacian regularization (Flamary et al., 2014), Group-Lasso regularized OT (Courty
et al., 2016), Tsallis regularized OT (Muzellec et al., 2017) and OT with L2 regularization (Dessein
et al., 2018).

∗Equal contribution
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In this work, we propose a computationally efficient and scalable algorithm for estimating the
Wasserstein distance as well as the optimal map in continuous spaces without introducing any
regularization terms. Particularly, we apply the Lagrangian multiplier directly to Monge problem,
and obtain a minimax problem. Our contribution is summarized as follows: 1) We develop a scalable
algorithm to compute the optimal transport map associated with general transport costs between
any two distributions given their samples; 2) Our method is capable of computing OT problems
between distributions over spaces that do not share the same dimension. 3) We provide a rigorous
error analysis of the algorithm based on duality gaps; 4) We demonstrate its performance and its
scaling properties in truly high dimensional setting through experiments.

2 PROPOSED METHOD

In order to formulate a tractable algorithm for the general Monge problem equation 1, we first notice
that equation 1 is a constrained optimization problem. Thus, it is natural to introduce the Lagrange
multiplier f for the constraint T]ρa = ρb and then reformulate equation 1 as a saddle point problem

sup
f

inf
T
L(T, f), (2)

with L defined as

L(T, f) =

∫
Rn

c(x, T (x))ρa(x)dx+

∫
Rm

f(y)(ρb − T]ρa) dy

=

∫
Rn

[c(x, T (x))− f(T (x))] ρa(x) dx+

∫
Rm

f(y)ρb(y) dy. (3)

The following theorem ensures the consistency of the max-min formulation equation 2.
Theorem 1 (Consistency). Assume that the optimal solution to the Monge problem equation 1 exists.
Suppose the saddle point solution to equation 2 is (T∗, f∗), then T∗ is the Monge map to the problem
equation 1 and f∗ = φ∗, where φ∗ is the optimal solution φ to the Kantorovich dual problem (see
(5.3) in Villani (2008)).

The proof of this theorem can be found in appendix A. In implementation, we parametrize both the
map T and the dual variable f by the neural networks Tθ, fη, with θ, η being the parameters of the
networks. We aim at solving the following saddle point problem

max
η

min
θ
L(Tθ, fη) :=

1

N

N∑
k=1

c(Xk, Tθ(Xk))− fη(Tθ(Xk)) + fη(Yk) (4)

where N is size of the datasets and {Xk}, {Yk} are samples drawn by ρa and ρb separately. The
algorithm is summarized in Algorithm 1. The computational complexity of our algorithm is similar
with GAN-type methods.

Algorithm 1 Computing Wasserstein distance and optimal map from ρa to ρb
1: Input: Marginal distributions ρa and ρb, Batch size B, Cost function c(x, T (x)).
2: Initialize Tθ, fη .
3: for K steps do
4: Sample {Xk}Bk=1 from ρa. Sample {Yk}Bk=1 from ρb.
5: Update (via gradient descent) θ to decrease (4) for K1 steps.
6: Update (via gradient ascent) η to increase (4) for K2 steps.
7: end for

Remark 1 (Relation with WGAN). Although the proposed saddle scheme equation 2 shares similarity
with the Wasserstein GAN (Arjovsky et al., 2017), both the designing purpose and the mathematical
logic behind both methods are distinct. Detailed comparisons are discussed in appendix B.

3 ERROR ANALYSIS VIA DUALITY GAPS

In this section, we assume m = n = d, i.e. we consider Monge problem in the same space Rd.
Suppose we solve equation 2 to a certain stage and obtain the pair (T, f), inspired by Hütter &
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Rigollet (2020) and Makkuva et al. (2020), we provide an a posterior estimate to a weighted L2 error
between our computed map T and the optimal Monge map T∗. Before we present our result, we
should introduce our assumptions.
Assumption 1. (1) We assume c ∈ C2(Rd × Rd), i.e., c is second order continuously differentiable;

(2) For any x, y ∈ Rd, ∂xc(x, ·) is injective map; ∂xyc(x, y), as a d × d matrix, is invertible and
symmetric, and we denote σ(x, y) = σmin(∂xyc(x, y)) > 0 as the minimum singular value of
∂xyc(x, y); ∂yyc(x, y) is independent of x.

(3) ρa, ρb are compactly supported on Rd, and ρa admits density.

(4) Assume our dual variable f ∈ C2(Rd) is always taken from c-concave functions (c.f. Definition
5.7 of Villani (2008)), i.e., there exists ϕ ∈ C2(Rd) such that f(·) = infx{ϕ(x) + c(x, ·)}.
(5) For any y ∈ Rd there is unique minimizer x̂y ∈ argmin{ϕ(x) + c(x, y)}. And we further assume
ϕ(·) + c(·, y) is strictly convex and its Hessian can be upper bounded by λ(·) > 0, i.e.,

λ(y)I � ∇2
xx(ϕ(x) + c(x, y))|x=x̂y

� O.

We denote the duality gaps:

E1(T, f) = L(T, f)− inf
T̃
L(T̃ , f), E2(f) = sup

f̃

inf
T̃
L(T̃ , f̃)− inf

T̃
L(T̃ , f).

Let T∗ as the Monge map of the OT problem equation 1. We have the following theorem:
Theorem 2 (Posterior Error Analysis via Duality Gaps). Under Assumption 1, there exists a strict
positive weight function β(x) > miny

{
σ(x,y)
2λ(y)

}
such that the weighted L2 error between computed

map T and optimal map T∗ is upper bounded by

‖T − T∗‖L2(βρa) ≤
√

2(E1(T, f) + E2(f)).

Here σ and λ are defined in Assumption 1. Exact formulation of β is provided in equation 23 in the
appendix C.

The proof of this theorem can be found in the appendix C.
Remark 2. We can verify that c(x, y) = 1

2‖x − y‖
2 or c(x, y) = −x · y satisfy the conditions

mentioned above. Then Theorem 2 recovers similar results proved in Hütter & Rigollet (2020) and
Makkuva et al. (2020).

4 EXPERIMENTS

Recently, several works have illustrated the scalability of our dual formula with different realizations
of the transportation costs. With a focus on the quadratic cost, Rout et al. (2022) obtains comparable
performance in image generative models, which asserts the efficacy in unequal dimension tasks.
Similarly, Korotin et al. (2022) apply the formula with quadratic cost in multiple domain adaptation
tasks and achieve the respectable effect. Concurrently, Gazdieva et al. (2022) utilizes the dual formula
with more diverse costs in image super-resolution task. Our dual formula can be viewed as the
extension to all the above approaches.

In this section, we show the effectiveness of our method on the inpainting task with random rectangle
masks. We take the distribution of occluded images to be ρa and the distribution of the full images
to be ρb. In many inpainting works, it’s assumed that an unlimited amount of paired training data
is accessible (Zeng et al., 2021). However, most real-world applications do not involve the paired
datasets. Accordingly, we consider the unpaired inpainting task, i.e. no pair of masked image and
original image is accessible. The training and test data are generated according to Rout et al. (2022,
Section 5.2). We choose cost function to be mean squared error (MSE) in the unmasked area

c(x, y) = α · ‖x�M − y �M‖
2
2

n
,

where M is a binary mask with the same size as the image. M takes the value 1 in the unoccluded
region, and 0 in the unknown/missing region. � represents the point-wise multiplication, α is a
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(a) Degraded and original images (b) Composite images G(x) (c) Pushforward images T (x)

Figure 1: Unpaired image inpainting on test dataset of CelebA 64× 64. In panel (b) and (c), we show
the results with α = 10 in the first row and α = 10000 in the second row. A small transportation cost
would result that pushforward map neglects the connection to the unmasked area, which is illustrated
by a clear mask border in pushforward images.

tunable coefficient, and n is dimension of x. Intuitively, this works as a regularization that the
pushforward images should be consistent with input images in the unmasked area. Empirically, the
map learnt with a larger α can generate more realistic images with natural transition in the mask
border and exhibit more details on the face.

We conduct the experiments on CelebA 64× 64 and 128× 128 datasets (Liu et al., 2015). The input
images (ρa) are occluded by randomly positioned square masks. Each of the source ρa and target ρb
distributions contains 80k images. We present the empirical results of inpainting in Figure 1 and 2.
Denote MC as the complement of M , i.e. MC = 1 in the occluded area and 0 otherwise. We take
the composite image G(x) = T (x)�MC + x�M as the output image. Additionally, we provide
the pushforward images T (x) to illustrate the regularization effect of transportation cost in Figure 1.
We also provide quantitative results in Section D.1.

Figure 2: Unpaired image inpainting on test dataset of CelebA 128× 128.

5 CONCLUSION

In this paper we present a novel method to compute Monge map between two given distributions with
freely chosen cost functions. In particular, we consider applying Lagrange multipliers on the Monge
problem, which leads to a max-min saddle point problem. By further introducing neural networks
into our optimization, we obtain a scalable algorithm that can handle most general costs and even the

4



Published at ICLR 2022 DGM4HSD workshop

case where the dimensions of marginals are unequal. Our scheme is shown to be effective through a
series of experiments with both low dimensional and high dimensional settings. It will become an
useful tool for machine learning applications such as domain adaption that requires transforming data
distributions. It will also be potentially used in areas outside machine learning, such as robotics.
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A PROOF OF THEOREM 1

We first introduce the Kantorovich problem of optimal tranport:

C(ρa, ρb) = min
π∈Π(ρa,ρb)

{∫∫
Rn×Rm

c(x, y)dπ(x, y)

}
. (5)

Here we denote Π(ρa, ρb) as the set of all probability distributions on Rn ×Rm with fixed marginals
equal to ρa and ρb. One can verify that if the optimal solution T∗ of the Monge problem exists, then
equation 5 is related to equation 1 in the sense of (Id, T∗)]ρa = π∗ where π∗ is the optimal solution
to equation 5, and C(ρa, ρb) = CMonge(ρa, ρb).

Theorem 1 (Consistency). We assume that the optimal solution to the Monge problem equation 1
exists. Suppose the optimal solution to equation 2 is (T∗, f∗), then T∗ is the Monge map to the
problem equation 1 and f∗ = φ∗, where φ∗ is the optimal solution to the dual Kantorovich problem

sup
φ∈L1(ρb)

{∫
Rm

φ(y)ρb(y) dy −
∫
Rn

φc,−(x)ρa(x) dx

}
, (6)

and we define φc,− via supremum convolution: φc,−(x) = supy(φ(y)− c(x, y)).

Proof of Theorem 1. According to following equation

inf
T
L(T, f) =−

∫
Rn

sup
ξ
{f(ξ)− c(x, ξ)}ρa(x)dx+

∫
Rm

f(y)ρb(y)dy

=

∫
Rm

f(y)ρb(y)dy −
∫
Rn

f c,−(x)ρa(x)dx, (7)

we are able to tell that the optimal solution f∗ equals φ∗. Furthermore, at the optimal point (T∗, f∗),
we have

T∗]ρa = ρb, T∗(x) ∈ argmaxξ∈Rm{f∗(ξ)− c(x, ξ)}, ρa almost surely.

The second equation leads to

f c,−∗ (x) = f∗(T∗(x))− c(x, T∗(x)), ρa almost surely.

Then we have∫
Rn

c(x, T∗(x))ρa(x) dx =

∫
Rn

f∗(T∗(x))ρa(x) dx−
∫
Rn

f c,−∗ (x)ρa(x) dx

=

∫
Rm

f∗(y)ρb(y) dy −
∫
Rn

f c,−∗ (x)ρa(x) dx

≤
∫
Rn×Rm

[f∗(y)− f c,−∗ (x)]dπ(x, y) ≤
∫
Rn×Rm

c(x, y)dπ(x, y)

for any π ∈ Π(ρa, ρb). Here the second equality is due to T∗]ρa = ρb, the last inequality is due to
the definition of f c,−∗ (x) = supy{f∗(y)− c(x, y)}.

We now take the infimum value of
∫
Rn×Rm cdπ and we obtain∫

Rn

c(x, T∗(x))ρa(x) dx ≤ C(ρa, ρb),

Now since we assume the optimal solution to equation 1 exits, thus C(ρa, ρb) = CMonge(ρa, ρb).
Thus we deduce that ∫

Rn

c(x, T∗(x))ρa(x) dx = CMonge(ρa, ρb).

As a result, T∗ solves equation 1 and thus is the Monge map.
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B RELATION BETWEEN OUR METHOD AND GENERATIVE ADVERSARIAL
NETWORKS

It is worth pointing out that our scheme and Wasserstein Generative Adversarial Networks (WGAN)
Arjovsky et al. (2017) are similar in the sense that they are both doing minimization over the
generator/map and maximization over the discriminator/dual potential. However, there are two main
distinctions between them. Such differences are not reflected from the superficial aspects such as
the choice of reference distributions ρa, but come from the fundamental logic hidden behind the
algorithms.

• We want to first emphasize that the mechanisms of two algorithms are different: Typical
Wasserstein GANs (WGAN) are usually formulated as

min
G

max
‖D‖Lip≤1

∫
D(y)ρb(y)dy −

∫
D(G(x))ρa(x)dx︸ ︷︷ ︸

1−Wasserstein distanceW1(G]ρa,ρb)

(8)

and ours reads

max
f

min
T

∫
f(y)ρb(y)dy −

∫
f(T (x))ρa(x)dx+

∫
c(X,T (x))ρa(x)dx︸ ︷︷ ︸

general Wasserstein distance C(ρa,ρb)

(9)

The inner maximization of equation 8 computesW1 distance via Kantorovich duality and the
outer loop minimize the W1 gap between desired ρb and G]ρa; However, the logic behind
our scheme equation 9 is different: the inner optimization computes for the c−transform
of f , i.e. f c,−(x) = supξ(f(ξ)− c(x, ξ)); And the outer maximization computes for the
Kantorovich dual problem C(ρa, ρb) = supf

{∫
f(y)ρb(y)dy −

∫
f c,−(x)ρa(x)dx

}
.

Even under W1 circumstance, one can verify the intrinsic difference between two proposed
methods: when setting the cost c(x, y) = ‖x − y‖, and ρa = G]ρa in equation 9, the
entire "max-min" optimization of equation 9 (underbraced part) is equivalent to the inner
maximization problem of equation 8 (underbraced part), but not for the entire saddle point
scheme.
It is also important to note that WGAN aims to minimize the distance between generated
distribution and the target distribution and the ideal value for equation 8 is 0. On the
other hand, one of our goal is to estimate the optimal transport distance between the initial
distribution ρa and the target distribution ρb. Thus the ideal value for equation 9 should be
C(ρa, ρb), which is not 0 in most of the cases.

• We then argue about the optimality of the computed map G and T : In equation 8, one
is trying to obtain a map G by minimizing W1(ρb, G]ρa) w.r.t. G, and hopefully, G]ρa
can approximate ρb well. However, there isn’t any restriction exerted on G, thus one can
not expect the computed G to be the optimal transport map between ρa and ρb; On the
other hand, in equation 9, we not only compute T such that T]ρa approximates ρb , but
also compute for the optimal T that minimizes the transport cost Eρa [c(X,T (X))]. In
equation 9, the computation of T is naturally incorporated in the max-min scheme and there
exists theoretical result (recall Theorem 1 in the paper,) that guarantees T to be the optimal
transport map.

In summary, even though the formulation of both algorithms are similar, the designing logic (mini-
mizing distance vs computing distance itself) and the purposes (computing arbitary pushforward map
vs computing the optimal map) of the two methods are distinct. Thus the theoretical and empirical
study of GANs cannot be trivially translated to proposed method. In addition to the above discussions,
we should also refer the readers to Gazdieva et al. (2022), in which a comparison between a similar
saddle point method and the regularized GANs are made in section 6.2 and summarized in Table 1.

C PROOF OF THEOREM 2

Theorem 2 (Posterior Error Analysis via Duality Gaps). Suppose c(·, ·), ρa, ρb satisfy the conditions
mentioned in Section 3. We assume our dual variable f ∈ C2(Rd) and is always taken from c-
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concave functions (c.f. Definition 5.7 of Villani (2008)), to be more specific, we suppose there exists
ϕ ∈ C2(Rd) such that f(·) = infx{ϕ(x) + c(x, ·)} We further denote

σ(x, y) = σmin(∂xyc(x, y)) (10)

as the minimum singular value of matrix ∂xyc(x, y), since the matrix is invertible, σ(x, y) > 0 for
any x, y ∈ Rd.

Consider for any y ∈ Rd there is unique minimizer x̂y ∈ argmin{ϕ(x) + c(x, y)}, we further assume
ϕ(·) + c(·, y) is strictly convex and its Hessian can be upper bounded by λ(·) > 0, i.e.,

λ(y)In � ∇2
xx(ϕ(x) + c(x, y))

∣∣∣∣∣
x=x̂y

� On (11)

If we denote the duality gaps

E1(T, f) = L(T, f)− inf
T̃
L(T̃ , f)

E2(f) = sup
f̃

inf
T̃
L(T̃ , f̃)− inf

T̃
L(T̃ , f)

Denote T∗ as the optimal Monge map of the OT problem equation 1. Then there exists a strict positive
weight function β(·) > 0 ( depending on c, T∗, f and ϕ, such that the weighted L2 error between
computed map T and optimal map T∗ is upper bounded by

‖T − T∗‖L2(βρa) ≤
√

2(E1(T, f) + E2(f)).

Lemma 1. Suppose n × n matrix A is self-adjoint, i.e. A = AT, with minimum singular value
σmin(A) > 0. Also assume n × n matrix H is self-adjoint and satisfies λIn � H � On. Then
AH−1A � σmin(A)2

λ In.

Proof of Lemma 1 . One can first verify thatH−1 � 1
λIn by digonalizingH−1. To prove this lemma,

we only need to verify that for arbitrary v ∈ Rn,

vTAH−1Av = (Av)TH−1Av ≥ |Av|
2

λ
≥ σmin(A)2

λ
|v|2

Thus AH−1A− σmin(A)2

λ In is non-negative definite.

The following lemma is crucial for proving our results, it analyzes the concavity of the target function
f(·)− c(·, y) with f c-concave.

Lemma 2 (Concavity of f(·) − c(x, ·) as f c-concave). Suppose the cost function c(x, y) and f
satisfy the conditions mentioned in Theorem 2. Denote the function Ψx(y) = f(y)− c(x, y), keep
all notations defined in Theorem 2, then we have

∇2Ψx(y) � −σ(x, y)2

λ(y)
In.

Proof of Lemma 2. First, we notice that f is c-convex, thus, there exists ϕ such that f(y) =
infx{ϕ(x) + c(x, y)}. Let us also denote Φ(x, y) = ϕ(x) + c(x, y).

Now for a fixed y ∈ Rn, We pick one

x̂y ∈ argminx {ϕ(x) + c(x, y)}

Since we assumed that ϕ ∈ C2(Rn) and c ∈ C2(Rn × Rn), we have

∂xΦ(x̂y, y) = ∇ϕ(x̂y) + ∂xc(x̂y, y) = 0 (12)

9
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At the same time, since x̂y is the minimum point of the C2 function Φ(·, y), then the Hessian of
Φ(·, y) at x̂y is positive definite,

∂2
xxΦ(x̂y, y) = ∇2

xx(ϕ(x) + c(x, y))

∣∣∣∣∣
x=x̂y

= ∇2ϕ(x̂y) + ∂2
xxc(x̂y, y) � 0.

Since ∂2
xxΦ(x̂y, y) is positive definite, it is also invertible. We can now apply the implicit function

theorem to show that the equation ∂xΦ(x, y) = 0 determines an implicit function x̂(·), which satisfies
x̂(y) = x̂y in a small neighbourhood U ⊂ Rn containing y. Furthermore, one can show that x̂(·) is
continuously differentiable at y. We will denote x̂y as x̂(y) in our following discussion.

Now differentiating equation 12 with respect to y yields

∂2
xxΦ(x̂(y), y)∇x̂(y) + ∂2

xyc(x̂(y), y) = 0 (13)

On one hand, equation 13 tells us

∇x̂(y) = −∂xxΦ(x̂(y), y)−1∂xyc(x̂(y), y). (14)

On the other hand, notice that c ∈ C2(Rn × Rn), thus ∂xyc = ∂yxc. By equation 13, we have

∂2
yxc(x̂(y), y)∇x̂(y) =− ∂2

xxΦ(x̂(y), y)∇x̂(y)∇x̂(y)

=− (∇2ϕ(x̂(y)) + ∂2
xxc(x̂(y), y))∇x̂(y)∇x̂(y). (15)

Now we are able to prove our theorem, we directly compute

∇2Ψx(y) = ∇2f(y)− ∂2
yyc(x, y). (16)

in order to compute∇2f(y), we first compute∇f(y)

∇f(y) = ∇(ϕ(x̂(y)) + c(x̂(y), y)) = ∂yc(x̂(y), y). (17)

the second equality is due to the envelope theorem Afriat (1971). Then∇2f(y) can be computed as

∇2f(y) = ∂yxc(x̂(y), y)∇x̂(y) + ∂yyc(x̂(y), y). (18)

Plugging equation 15 into equation 18, recall equation 16, this yields

∇2Ψx(y) = −(∇2ϕ(x̂(y)) + ∂2
xxc(x̂(y), y))∇x̂(y)∇x̂(y) + ∂2

yyc(x̂(y), y)− ∂2
yyc(x, y)

Now due to the assumption that ∂yyc(x, y) is independent of x, one has ∂2
yyc(x̂(y), y)−∂2

yyc(x, y) =
0. As a result we obtain

∇2Ψx(y) = −(∇2ϕ(x̂(y)) + ∂2
xxc(x̂(y), y))∇x̂(y)∇x̂(y)

= −∂2
xxΦ(x̂(y), y)∇x̂(y)∇x̂(y). (19)

To further simplify equation 19, recall equation 14, we have

∇2Ψx(y) = −∂xyc(x̂(y), y)∂xxΦ(x̂(y), y)−1∂xyc(x̂(y), y).

By equation 11, λ(y)In � ∂xxΦ(x̂(y), y) � On. Recall the assumption that ∂xyc is self-adjoint, and
equation 10 leads to σmin(∂xyc(x, y)) = σ(x, y). Now applying lemma 1 yields

∇2Ψx(y) � −σ(x, y)2

λ(y)
In.

Now we can prove main result in Theorem 2:

Proof of Theorem equation 2. In this proof, we denote
∫

as
∫
Rd for simplicity.

We first recall

L(T, f) =

∫
f(y)ρb(y) dy −

∫
(f(T (x))− c(x, T (x)))ρa(x)dx,

10
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also recall definition equation 7, f c,−(x) = supy{f(y)− c(x, y)}, we can write

E1(T, f) = −
∫

[f(T (x))− c(x, T (x))]ρa dx+ inf
T̃

{∫
[f(T̃ (x))− c(x, T̃ (x))]ρa dx

}
=

∫
[f c,−(x)− (f(T (x))− c(x, T (x)))]ρa(x)dx

We denote
Tf (x) = argmaxy{f(y)− c(x, y)} = argmaxy{Ψx(y)},

then we have
∇Ψx(Tf (x)) = 0. (20)

On the other hand, one can write:

E1(T, f) =

∫
[(f(Tf (x))− c(x, Tf (x)))− (f(T (x))− c(x, T (x)))]

=

∫
[Ψx(Tf (x))−Ψx(T (x))]ρa(x) dx

For a fixed x, since Ψx(·) ∈ C2(Rn), then

Ψx(T (x))−Ψx(Tf (x)) = ∇Ψx(Tf (x))(T (x)−Tf (x))+
1

2
(T (x)−Tf (x))T∇2Ψx(ω(x))(T (x)−Tf (x))

with ω(x) = (1 − θx)T (x) + θxTf (x) for certain θx ∈ (0, 1). By equation 20 and Lemma 2, we
have

Ψx(T (x))−Ψx(Tf (x)) ≤ −σ(x, ω(x))2

2λ(ω(x))
|T (x)− Tf (x)|2.

Thus we have:

E1(T, f) =

∫
[Ψx(Tf (x))−Ψx(T (x))]ρa(x) dx ≥

∫
σ(x, ω(x))2

2λ(ω(x))
|T (x)−Tf (x)|2ρa(x) dx (21)

On the other hand, let us denote the optimal Monge map from ρa to ρb as T∗, by Kontorovich duality,
we have

sup
f

inf
T
L(T, f) = inf

T,T]ρa=ρb

∫
c(x, T (x))ρa dx =

∫
c(x, T∗(x))ρa dx

Thus we have

E2(f) =

∫
c(x, T∗(x))ρa dx−

(∫
f(y)ρb dy −

∫
f c,−(x)ρa dx

)
=

∫
c(x, T∗(x))ρa dx−

(∫
f(T∗(x))ρa dx−

∫
f c,−(x)ρa dx

)
=

∫
[f c,−(x)− (f(T∗(x))− c(x, T∗(x)))]ρa dx

Similar to the previous treatment, we have

E2(f) =

∫
[Ψx(Tf (x))−Ψx(T∗(x))]ρa(x) dx

Apply similar analysis as before, we will also have

E2(f) ≥
∫
σ(x, ξ(x))2

2λ(ξ(x))
|T∗(x)− Tf (x)|2ρa(x) dx (22)

with ξ(x) = (1− τx)T∗(x) + τxTf (x) for certain τx ∈ (0, 1).

Now we set

β(x) = min

{
σ(x, ω(x))

2λ(ω(x))
,
σ(x, ξ(x))

2λ(ξ(x))

}
, (23)

11
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combining equation 21 and equation 22, we obtain

E1(T, f) + E2(f) ≥
∫
β(x)(|T (x)− Tf (x)|2 + |T∗(x)− Tf (x)|2)ρa dx

≥
∫
β(x)

2
|T (x)− T∗(x)|2ρa dx

This leads to ‖T − T∗‖L2(βρa) ≤
√

2(E1(T, f) + E2(f)).

D ADDITIONAL RESULTS ON SYNTHETIC DATASETS

Learning with unequal dimensions Our algorithm framework enjoys a distinguishing quality that
it can learn the map from a lower dimension space Rn to a manifold in a higher dimension space
Rm(n ≤ m). In this scenario, we make the input dimension of neural network T to be n and output
dimension to be m. In case the cost function c(x, y) requires dimensions are x and y are equal
dimensional, we patch zeros behind each sample X ∼ ρa and complement to a counterpart sample
X̃ = [X;0], where dimension of 0 is m− n. And the targeted min-max problem is replaced by

max
θ

min
η

1

N

N∑
k=1

c(X̃k, Tθ(Xk))− fη(Tθ(Xk)) + fη(Yk).

In Figure 3, we conduct one experiment for n = 1 and m = 2. The incomplete ellipse is a 1D
manifold and our algorithm is able to learn a symmetric map from N (0, 1) towards it.

(a) ρa (b) ρb (c) T]ρa (d) T (·) map

Figure 3: Qualitative results for learning unequal dimension maps. ρa for two examples are both
N (0, 1), and ρb are uniformly distributed on a incomplete ellipse and a ball respectively.

Decreasing function as the cost We consider the cost function c(x, y) = φ(|x− y|) with φ as a
monotonic decreasing function. We test our algorithm for a specific example φ(s) = 1

s2 . In this
example, we compute for the optimal Monge map from ρa to ρb with ρa as a uniform distribution on
Ωa and ρb as a uniform distribution on Ωb, where we define

Ωa = {(x1, x2) | 62 ≥ x2
1 + x2

2 ≥ 42}, Ωb = {(x, x2) | 22 ≥ x2
1 + x2

2 ≥ 12}.
We also compute the same problem for L2 cost. Figure 4 shows the transported samples as well as
the differences between two cost functions.

Monge problem on sphere For a given sphere S with radius R, for any two points x, y ∈ S, we
define the distance d(x, y) as the length of the geodesic joining x and y. Now for given ρa, ρb defined
on S, we consider solving the following Monge problem on S

min
T, T]ρa=ρb

∫
S

d(x, T (x))ρa(x) dx. (24)

Such sphere OT problem can be transferred to an OT problem defined on angular do-
main D = [0, 2π) × [0, π], to be more specific, we consider (θ, φ) (θ ∈ [0, 2π), φ ∈
[0, π]) as the azimuthal and polar angle of the spherical coordinates. For two points x =
(R sinφ1 cos θ1, R sinφ1 sin θ1, R cosφ1), y = (R sinφ2 cos θ2, R sinφ2 sin θ2, R cosφ2) on S,
the geodesic distance

d(x, y) = c((θ1, φ1), (θ2, φ2)) = R · arccos(sinφ1 sinφ2 cos(θ2 − θ1) + cosφ1 cosφ2).

12
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(a) (b) (c) (d) (e)

Figure 4: (a) samples of computed T]ρa; c(x, y) = 1
|x−y|2 : Computed Monge map of quarter circles

with radius 6 (subplot b) and radius 4 (subplot c); c(x, y) = |x − y|2: Computed Monge map of
quarter circles with radius 6 (subplot d) and radius 4 (subplot e).

Denote the corresponding distribution of ρa, ρb on D as ρ̂a, ρ̂b, now equation 24 can also be formu-
lated as

min
T̂ ,T̂]ρ̂a=ρ̂b

∫
c((θ, φ), T̂ (θ, φ))ρ̂a dθdφ. (25)

We set ρ̂a = U([0, 2π])⊗ U([0, π4 ]) and ρ̂b = U([0, 2π])⊗ U([ 3π
4 , π]). We apply our algorithm to

solve equation 25 and then translate our computed Monge map back to the sphere S to obtain the
following results

(a) (b) (c) (d)

Figure 5: Monge map from ρa to ρb on the sphere: (a) blue samples from ρa (corresponds to ρ̂a) and
orange samples from ρb (corresponds to ρ̂b); (b) blue samples from ρa, orange samples are obtained
from T̂]ρ̂b, grey curves are geodesics connecting each transporting pairs; (c) our computed Monge
map maps blue ring (φ = π

8 ) to the orange curve (ground truth is φ = 7
8π); (d) our computed Monge

map maps blue ring (φ = π
4 ) to the orange curve (ground truth is the southpole)

D.1 QUANTITATIVE RESULTS

In unpaired inpainting task, we also evaluate Fréchet Inception Distance (Heusel et al., 2017) of the
generated composite images w.r.t. the original images on the test dataset. We use 40k images in total
and compute the score with the implementation provided by Obukhov et al. (2020). The results are
presented in Table 1. It shows that the transportation cost c(x, y) substantially promotes a map that
generates more realistic images.

Table 1: Quantitative evaluation results on CelebA 64× 64 test dataset.

α = 0 α = 10 α = 10000

FID 18.7942 9.2857 3.7109
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E HYPER-PARAMETERS

E.1 SYNTHETIC DATASETS

Unequal dimensions The networks Tθ and fη each has 5 layers with 10 hidden neurons. The batch
size B = 100. K1 = 6,K2 = 1. The learning rate is 10−3. The number of iterations K = 12000.

Decreasing cost function In this example, we set Tθ(x) = x + Fθ(x) and optimize over θ. For
either 1

|x−y|2 or |x − y|2 case we set both Fθ and the Lagrange multiplier fη as six layers fully
connected neural networks, with PReLU and Tanh activation functions respectively, each layer has
36 nodes. The training batch size B = 2000. We set K = 2000, K1 = 8,K2 = 6.

On sphere In this example, we set Tθ(x) = x+Fθ(x) and optimize over θ. We set both Fθ and fη
as six layers MLP, with PReLU activation functions, each layer has 8 nodes The training batch size
M = 200. We set K = 4000, K1 = 8,K2 = 4. We choose rather small learning rate in this example
to avoid gradient blow up, we set 0.5× 10−5 as the learning rate for θ and 10−5 as the learning rate
for η.

E.2 UNPAIRED INPAINTING

The loss function is slightly different with the equation 3. We modify the f(T (x)) to be f(G(x)) to
strengthen the training of f

sup
f

inf
T

∫
Rn

[c(x, T (x))− f(G(x))] ρa(x) dx+

∫
Rm

f(y)ρb(y) dy.

In the unpaired inpainting experiments, the images are first cropped at the center with size 140 and
then resized to 64× 64 or 128× 128. We choose learning rate to be 1 · 10−3, Adam (Kingma & Ba,
2014) optimizer with default beta parameters, K2 = 1. The batch size is 64 for CelebA64 and 16 for
CelebA128. The number of inner loop iteration K1 = 5 for CelebA64 and K1 = 10 for CelebA128.

We use exactly the same UNet for the map T and convolutional neural network for f as Rout et al.
(2022, Table 9) for CelebA64 and add one additional convolutional block in f network for CelebA128.

On NVIDIA RTX A6000 (48GB), the training time of CelebA64 experiment is 10 hours and the time
of CelebA128 is 45 hours.
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