
The Double-Edged Sword of Behavioral Responses in
Strategic Classification

Raman Ebrahimi
ECE, UC San Diego
raman@ucsd.edu

Kristen Vaccaro
CSE, UC San Diego

kv@ucsd.edu

Parinaz Naghizadeh
ECE, UC San Diego
parinaz@ucsd.edu

Abstract

When humans are subject to an algorithmic decision system, they can choose
to strategically adjust their behavior accordingly ("game" the system). While
a growing line of literature on strategic classification has used game-theoretic
modeling to understand and mitigate such gaming, these existing works consider
standard models of fully rational agents. In this paper, we propose a model
of strategic classification which takes into account behavioral biases in human
responses to algorithms. We show how misperceptions of the classifier (specifically,
of its feature weights) can lead to different types of discrepancies between biased
and rational agents’ gaming responses, and identify when behavioral agents over-
or under-investment in different features. We also show that strategic agents with
behavioral biases can benefit or (perhaps, unexpectedly) harm the firm compared
to fully rational strategic agents, highlighting the need to account for human
(cognitive) biases when designing AI systems with strategic human in the loop.

1 Introduction

As machine learning systems become more widely deployed, particularly in settings such as resume
screening, hiring, lending, and recommendation systems, people have begun to respond to them
strategically. Often, this takes the form of “gaming the system” or using an algorithmic system’s
own rules and procedures in order to manipulate it and achieve desired outcomes. Examples include
Uber drivers coordinating the times they log on and off the app to impact its surge pricing algorithm
(Möhlmann and Zalmanson, 2017), and Twitter (Burrell et al., 2019) and Facebook (Eslami et al.,
2016) users’ decisions regarding how to interact with content given the platforms’ curation algorithms.

Game theoretical modeling and analysis have been used in recent years to formally analyze such
strategic responses of humans to algorithms (e.g., Hardt et al. (2016); Milli et al. (2019); Liu et al.
(2020); see also Related Work). However, these existing works assume standard models of decision
making, where agents are fully rational when responding to algorithms; yet, humans exhibit different
forms of cognitive biases in decision making (Kahnemann and Tversky, 1979). Motivated by this, in
this paper, we explore the impacts behavioral biases on agents’ strategic responses to algorithms.

We begin by proposing an extension of existing models of strategic classification to account for
behavioral biases. Specifically, our model accounts for agents misperceiving (e.g., over-weighing or
under-weighing) the importance of different features in determining the classifier’s output. (These
may be known to agents in a full information game or can become available through an explainable AI
(XAI) method). We use this model to identify different forms of discrepancies that can arise between
behavioral and fully rational agents’ responses (Section 3). We further identify conditions under
which agents’ behavioral biases lead them to over- or under-invest in specific features (Proposition 2).
Moreover, we show that a firm’s utility could increase or decrease when agents are behaviorally
biased, compared to when they are fully rational (Proposition 3). While the former may be intuitively
expected (behaviorally biased agents are less adept at gaming algorithms), the latter is more surprising;

NeurIPS 2024 Workshop on Behavioral Machine Learning.



we intuitively explain this through a numerical example (Example 1) and by highlighting the impact
of agents’ qualification states in determining the ultimate impact of agents’ behavioral biases on
the firm. Our findings highlight the necessity to account for not just strategic responses, but also
cognitive biases, when designing AI systems with human in the loop.

Related Work. Our work is closely related to the literature on analyzing agents’ responses to machine
learning algorithms, when agents have full (Hardt et al., 2016; Perdomo et al., 2020; Milli et al., 2019;
Hu et al., 2019; Liu et al., 2020; Bechavod et al., 2022; Kleinberg and Raghavan, 2020; Alhanouti
and Naghizadeh, 2024; Zhang et al., 2022; Bechavod et al., 2021) or partial information about the
algorithm (Harris et al., 2022; Cohen et al., 2024), or principal’s strategy (Haghtalab et al., 2024).
While our base model of agents’ strategic responses to classifiers has similarities to those in some of
these works (e.g., Hu et al. (2019); Liu et al. (2020)), we differ in our modeling of agent’s behavioral
responses as opposed to fully rational (non-behavioral) best responses considered in these works.

The necessity of accounting for human biases in making AI assisted decisions (Rastogi et al., 2022;
Nourani et al., 2021), and various aspects of decision-making and model design (Morewedge et al.,
2023; Zhu et al., 2024; Liu et al., 2024; Heidari et al., 2021; Ethayarajh et al., 2024) have been
considered in recent work. Among these, Heidari et al. (2021) uses probability weighting functions
to model human perceptions of allocation policies. We also consider (Prelec) weighting functions,
but to highlight special cases of our results. We also differ from all these existing works in our focus
on the strategic classification problem.

Broadly, our research is also related to the area of explainable AI. While explanations can be helpful
in increasing accountability, there is debate about the efficacy of existing explainability methods in
providing correct and sufficient details in a way that helps users understand and act around these
systems (Doshi-Velez et al., 2017; Kumar et al., 2020; Lakkaraju and Bastani, 2020; Adebayo et al.,
2018). To complement these discussions, our work provides a formal model of how agents’ behavioral
biases may shape their responses to explanations (of feature importance) provided to them.

2 Model and Preliminaries

Strategic Classification. We consider an environment in which a firm makes binary classifica-
tion decisions on agents with (observable) features x ∈ Rn and (unobservable) true qualification
states/labels y ∈ {0, 1}, where label y = 1 (resp. y = 0) denotes qualified (resp. unqualified) agents.
The firm uses a threshold classifier h(x, (θ, θ0)) = 1(θTx ≥ θ0) to classify agents, where 1(·)
denotes the indicator function, and θ = [θ1, θ2, . . . , θn]

T denotes the feature weights; w.l.o.g., we
assume features are indexed such that θ1 ≥ θ2 ≥ . . . θn, and are normalized so that

∑
i θi = 1.

Agents are strategic, in that they can respond to (“game”) this classifier. (As an example, in a college
admission setting where grades are used to make admission decisions, students can study or cheat to
improve their grades.) Formally, an agent with pre-strategic features x0 best-responds to classifier
(θ, θ0) to arrive at the (non-behavioral) post-strategic features xNB by solving the optimization prob-
lem xNB := argmaxx rh(x, (θ, θ0))−c(x,x0) subject to c(x,x0) ≤ B, where r > 0 is the reward
of positive classification, c(x,x0) is norm-2 cost (with c(x,x0) = ∥x− x0∥22 =

∑
i(xi − xi,0)

2)
of changing feature vector x0 to x, and B is the agent’s budget.

Anticipating agents’ best-response, the firm will choose the optimal (non-behavioral) classifier
threshold by solving (θNB, θ0,NB) := argmin(θ,θ0) Ex∼D(θ,θ0)[l(x, (θ, θ0))], where D(θ, θ0) is the
post-strategic feature distribution of agents responding to classifier (θ, θ0) and l(·) is the firm’s loss
function (e.g., a weighted sum of true positive and false positive costs).

Behavioral Responses. We extend the above problem setting to allow for behavioral responses by
agents. Formally, recall that we normalize the feature weight vector θ = [θ1, θ2, . . . , θn]

T to have∑
i θi = 1, and interpret it as a probability vector. Given this, we will assume that behaviorally-biased

agents misperceive θ as w(θ), where w(·) is a function capturing their behavioral biases. One choice
for w(·) can be wj(θ) = p(

∑j
i=1 θi) − p(

∑j−1
i=1 θi), to ensure

∑
i wi(θ) = 1 (Gonzalez and Wu,

1999) where p(z) = exp(−(− ln(z))γ) is the widely used probability weighting function introduced
by Prelec (1998) with γ reflecting the intensity of biases.
Now, a behaviorally biased agent with pre-strategic features x0 best-responds to classifier (θ, θ0)
to arrive at the behavioral post-strategic features xB by solving the optimization problem xB :=
argmaxx rh(x, (w(θ), θ0))− c(x,x0) subject to c(x,x0) ≤ B; note that the agent now responds
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to a perceived decision boundary (w(θ), θ0). In return, when accounting for agents’ strategic
behavior, the firm may or may not be aware that agents have behavioral biases. Specifically, let
L(θ′, (θ, θ0)) := Ex∼D(θ′,θ0)[l(x, (θ, θ0))] denote a firm’s expected loss when it implements a
classifier (θ, θ0) and agents respond to a classifier (θ′, θ0) (note that this is potentially different from
the actual classifier). Then, if a firm is aware of strategic agents’ behavioral biases, it selects the
threshold (θB, θ0,B) := argmin(θ,θ0) L(w(θ), (θ, θ0)) and incurs a loss L(w(θB), (θB , θ0,B)). On
the other hand, a firm that assumes agents are fully rational selects the threshold classifier (θNB, θ0,NB),
yet incurs the loss L(w(θNB), (θNB, θ0,NB)).

3 Fully Rational vs. Behavioral Best-Responses by Agents

We first fix the classifier (θ, θ0), and compare fully rational (non-behavioral) and behavioral agents’
strategic responses to it. The following Lemma characterizes xNB and xB under the norm-2 cost.

Lemma 1. Let d(x0,θ, θ0) =
θ0−θTx0

∥θ∥2
denote x0’s distance to the hyperplane θTx = θ0. Then,

for an agent with starting feature vector x0, if 0 < d(x0,θ, θ0) ≤ B,

xNB = x0 + d(x0,θ, θ0)θ .

Otherwise, xNB = x0. For behaviorally biased agents, xB is obtained similarly by replacing θ with
w(θ).

Figure 1 illustrates the strategic agents’ best-responses of Lemma 1, in a two-dimensional feature
space, when they are non-behavioral (Fig. 1a) and when they are behavioral (Fig. 1b). We first note
that the subset of agents with non-trivial responses to the classifier, as identified in Lemma 1, are in
a band below the decision boundary. Given the overlaps of these bands under non-behavioral and
behavioral responses, there are 6 regions of interest where biased agents’ best-responses defer from
rational agents (Fig. 1c). In regions 1 and 6, agents invest no effort in manipulating their features
when they are behaviorally biased, whereas they do when fully rational; the reasons differ: agents
in 1 believe they are accepted without effort, while those in 6 believe they do not have sufficient
budget to succeed. Agents in regions 2 and 5 manipulate their features unnecessarily (they would
not, had they been fully rational), and again, for different reasons: agents in 2 are not accepted even
at their highest effort level, while those in 5 believe they must reach the boundary but they would be
accepted regardless of their effort. Finally, in region 3, agents undershoot the actual boundary (i.e.,
exert less effort than needed due to their biases), while those in region 4, they overshoot (i.e., exert
more effort than needed to get accepted). In the remainder of this section, we characterize agents that
fall within certain regions (Proposition 1) and identify which features they over- or under-invest in
(Proposition 2).

(a) Rational response (b) Biased response (c) Differing responses

Figure 1: (a) Fully rational and (b) Biased responses. (c) Classes of differing actions. Blue data
points represent qualified agents and red data points represent unqualified agents.

We begin by characterizing the set of agents who fall within regions 1 and 3. These are the set of
agents who will still pass the (true) decision boundary regardless of their biases.
Proposition 1. For a given (θ, θ0), agents that satisfy (1− σ(θ))θ0 ≤ (θ − σ(θ)w(θ))Tx will be
accepted by the classifier, where σ(θ) := θTw(θ)

∥w(θ)∥2 is a measure of the intensity of behavioral bias.
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Next, in the following proposition, we further investigate best-responses in region 4 (resp. region 3)
and identify which features a behavioral agent over-invest (resp. under-invest) in that leads to them
overshooting (resp. undershooting) past the true classifier (θ, θ0).
Proposition 2. Consider an agent with features x0, facing classifier (θ, θ0), and with a misperceived
w(θ). Let θmax = maxi θi, d(x0,θ, θ0) =

θ0−θTx0

∥θ∥2
, and δNB

i = xNB,i − x0,i and δB
i = xB,i − x0,i

denote the changes in feature i after best-responses. Then:
(1) If d(x0,w(θ), θ0) ≤ d(x0,θ, θ0) and w(θi) < θi, then δB

i < δNB
i .

(2) If d(x0,θ, θ0) ≤ d(x0,w(θ), θ0) and θi < w(θi) then δNB
i < δB

i .
(3) For the special case of a Prelec function, we further have: If d(x0,θ, θ0) ≤

eγ
1

1−γ −γ
γ

1−γ
d(x0,w(θ), θ0) and w(θmax) < θmax, then δNB

max < δB
max.

Intuitively, the proposition states that agents that perceive the decision boundary to be closer to
them than it truly is (regions 2 and 3 in Figure 1c) will under-invest in the features for which they
underestimate the importance. Similarly, agents that perceive the boundary to be farther (regions 4
and 5 in Figure 1c) will over-invest in the features for which they overestimate the importance.

4 Firm’s Response

We next consider the firm’s optimal choice of a classifier, given agents’ strategic responses, and its
impact on the firm’s utility. Intuitively, one might expect a firm to ultimately benefit from agents’
behavioral responses (in contrast to fully rational responses) as behavioral agents are less adept at
gaming the algorithm. However, in this section, we show that this is not always true. Intuitively,
as shown in Section 3, when behavioral, agents may overshoot or undershoot the threshold when
gaming the algorithm; this includes both qualified (label 1) and unqualified (label 0) agents. We show
that there exist scenarios in which a relatively higher number of behaviorally biased qualified agents
end up below the threshold (due to not trying or undershooting) while relatively more unqualified
agents overshoot and end up accepted by the classifier; the combination of these factors can lower the
firm’s utility. The following example numerically illustrates this possibility.
Example 1. Consider a setting where we have a two-dimensional feature space and qualified (resp.
unqualified) agents are sampled from a normal distribution N (µ1,Σ1) (resp. N (µ0,Σ0)). We
consider two scenarios, only differing in the mean µ1 choice. Figure 2 illustrates the distribution of
agents’ features for pre-strategic (left panel), post-strategic non-behavioral responses (middle panel),
and post-strategic behaviorally-biased responses (right panel). In the top row scenario, the firm is
negatively impacted by agents’ bias, while in the bottom row scenario, the firm benefits from agents’
bias compared to the fully rational setting. (The firm’s payoff in each case is shown at the top of the
corresponding subplots.) The reason for this difference is that there are more qualified agents than
unqualified ones who reach the threshold in non-biased responses. On the other hand, under biased
responses, there are more unqualified agents who pass the threshold, regardless of their bias (those in
region 3 in Fig. 1c) in the top row scenario. Behavioral responses by these agents negatively impact
the firm, as it leads to these qualified agents no longer being accepted.

The following proposition formalizes the intuition from Example 1.
Proposition 3. Consider a loss function l(x, (θ, θ0)) = −u+TP + u−FP. Let the pdf of label y
agents’ feature distribution be fy(x), and the number of label y agents be α0. Let H(θ, θ0) de-

note the set of agents that satisfy (1 − σ(θ))θ0 ≤ (θ − σ(θ)w(θ))Tx, where σ(θ) := θTw(θ)

∥w(θ)∥2
1,

and the set of agents that attempt to game the algorithm as A(θ, θ0) = {x0 : θ0 − B ≤
θTx0 < θ0}. Denote the set of accepted (resp. rejected) agents by (θ, θ0) with Y(θ, θ0)
(resp. N(θ, θ0)). Define the sets S(θNB, θ0,NB) := A(θNB, θ0,NB)/(A(θNB, θ0,NB) ∩ H(θNB, θ0,NB)),
T1 = (Y(θNB, θ0,NB) ∪ A(θNB, θ0,NB)) ∩ N(θB, θ0,B), and T2 = (H(θB, θ0,B) ∩ A(w(θB), θ0,B)) ∪
((Y(θB, θ0,B) ∩ N(θNB, θ0,NB))/A(θNB, θ0,NB)). Then:

(a) If
∫
x∈S(θNB,θ0,NB)

u−f0(x)α0dx ≤
∫
x∈S(θNB,θ0,NB)

u+f1(x)α1dx we can say:

L(w(θB), (θB, θ0,B)) ≤ L(w(θNB), (θNB, θ0,NB)) ≤ L(θNB, (θNB, θ0,NB)) (1)

1Note that σ(θ) = ∥θ∥2
∥w(θ)∥2

cos(α) where α is the angle between the actual and perceived decision bound-
aries. The larger α is, the lower σ(θ) is, indicating a more intense bias.
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Figure 2: The firm may have lower (top) or higher (bottom) utility when agents are behavioral. Blue
represents the distribution of qualified agents and red represents the distribution of unqualified agents.

(b) If
∫
x∈S(θNB,θ0,NB)

u+f1(x)α1dx ≤
∫
x∈S(θNB,θ0,NB)

u−f0(x)α0dx we can say:

max{L(θNB, (θNB, θ0,NB)),L(w(θB), (θB, θ0,B))} ≤ L(w(θNB), (θNB, θ0,NB)) (2)

(c) If
∫
x∈T1

(−u+f1(x)α1 + u−f0(x)α0)dx ≤
∫
x∈T2

(−u+f1(x)α1 + u−f0(x)α0)dx we can
say:

L(θNB, (θNB, θ0,NB)) ≤ L(w(θB), (θB, θ0,B)) ≤ L(w(θNB), (θNB, θ0,NB)) (3)

Part (a) states that if a firm is unaware of agents’ behavioral biases, it will suffer a lower loss when the
population is biased compared to fully rational. This is the intuitively expected scenario (behaviorally
biased agents are less adept than fully rational ones at gaming the algorithm). On the other hand,
statement (b) reflects the less expected outcome: a firm unaware of behavioral biases will have
lower utility when agents are biased compared to if they had been fully rational (as more qualified
than unqualified agents undershoot the threshold under this case’s condition). Statement (c) further
compares the unaware firm with an aware firm and provides a condition where an aware firm’s
minimal loss is higher than the non-biased minimal loss. This condition relies on the difference of
qualified and unqualified agents in two regions.

5 Conclusion

We present a strategic classification framework that accounts for the cognitive biases of strategic
agents when assessing feature importance. We identify conditions under which the agents over- or
under-invest in different features, the impacts of this on a firm’s choice of classifier, and the impacts
on the firm’s utility. Exploring analytical models accounting for biases beyond misperception of
feature weights, investigating fairness implications when these biases differ across demographic
groups, as well as providing support for, and measuring, the existence of these biases through human
subject experiments, remain as important directions for further investigation.
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A Proofs

Proof of Lemma 1 We show the NB case, the B case can be shown similarly. We divide the agents
into two subsets: (1) Agents that will attempt to optimize and (2) agents that will not attempt to
optimize. The first subset is the agents that will have a non-negative utility after optimization, i.e.,
will have r − c(xNB,x0). For these agents, since their reward is constant, the optimization problem
comes down to:

xNB := argmax
x

r − c(x,x0)

subject to θTx = θ0 (4)
And the agents that are in the second subset will solve xNB := argminx c(x,x0) which is simply
xNB = x0.

For norm-2 cost we know this is the same as finding the closest point on a hyperplane to a given
point. We know the solution for this problem is to move in the direction of the normal vector of the
hyperplane by d(x0,θ, θ0) =

θ0−θTx0

∥θ∥2
. This means that the solution for the agents in the first subset

is xNB = x0 + d(x0,θ, θ0)θ.
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Proof of Proposition 1 We can write agents’ behavioral response as x + ∆B with ∆B =
θ0−w(θ)Tx

∥w(θ)∥2 w(θ) for a given (θ, θ0). Agents that will have successful manipulation are the ones

satisfying θ0 ≤ θT (x+∆B) which, by substituting ∆B, can be written as:

θ0 ≤ θ0 −w(θ)Tx

∥w(θ)∥2
θTw(θ) + θTx =

θTw(θ)

∥w(θ)∥2
θ0 +

(
θ − θTw(θ)

∥w(θ)∥2
w(θ)

)T

x

⇒ (1− σ(θ))θ0 ≤ (θ − σ(θ)w(θ))Tx (5)

Where we defined σ(θ) := θTw(θ)

∥w(θ∥2 .

Proof of Proposition 2 For a behavioral agent with x0 that perceives θi as wi(θ) to under-invest we
need to have δB

i = d(x0,w(θ), θ0)× wi(θ) < δNB
i = d(x0,θ, θ0)× θi, or d(x0,w(θ),θ0)

d(x0,θ,θ0)
< θi

wi(θ)
.

By knowing wi(θ) < θi then the agents with d(x0,w(θ), θ0) ≤ d(x0,θ, θ0) will satisfy the
condition since d(x0,w(θ),θ0)

d(x0,θ,θ0)
≤ 1 < θi

wi(θ)
and under-invest in feature i. We can show the second

statement similarly.

The third statement of the proposition is a scenario where w1(θ) < θ1 where θ1 ≥ θi for all i, and
we want to identify agents that will over-invest in that feature, i.e., d(x0,w(θ),θ0)

d(x0,θ,θ0)
> θ1

w1(θ)
.

Since for the most important feature we have w1(θ) = p(θ1), we can easily find the maximum of
θ1

w1(θ)
for a given γ by taking the derivative and using the function in Prelec (1998). This maximum

occurs at θ∗ = e−( 1
γ )

1
γ−1

meaning, θ1
w1(θ)

≤ θ∗

w(θ∗) = exp
(
( 1γ )

γ
γ−1 − ( 1γ )

1
γ−1

)
. Therefore, using

the same reasoning for the first two statements, agents with d(x0,w(θ),θ0)
d(x0,θ,θ0)

≥ exp
(
( 1γ )

γ
γ−1 − ( 1γ )

1
γ−1

)
will over-invest in the most important feature, i.e., feature 1.

Proof of Proposition 3 We start the proof from the leftmost inequality in equation 1. By the defi-
nition of (θB,θ0,B) we can write Ex∼D(w(θB),θ0,B)[l(x, (θB,θ0,B))] ≤ Ex∼D(w(θ),θ0)[l(x, (θ,θ0))]
for all (θ,θ0) ̸= (θB,θ0,B), i.e., L((w(θB), θ0,B), (θB,θ0,B)) ≤ L((w(θNB), θ0,NB), (θNB, θ0,NB))
is always true.

To compare the firm’s loss after biased and non-biased responses, we can break the feature space into
the following regions (1(·) is the indicator function):

1⃝ 1(θT
NBx ≥ θ0,NB)

2⃝ 1(θT
NBx ≤ θ0,NB −B)

3⃝ 1(θ0,NB − B ≤ θT
NBx ≤ θ0,NB)1(θ0,NB − B ≤ w(θNB)

Tx ≤ θ0,NB) ≡ A(θNB, θ0,NB) ∩
A(w(θNB), θ0,NB)

4⃝ 1(θ0,NB −B ≤ θT
NBx ≤ θ0,NB)1(w(θNB)

Tx ≥ θ0,NB)

5⃝ 1(θ0,NB −B ≤ θT
NBx ≤ θ0,NB)1(w(θNB)

Tx ≤ θ0,NB −B)

We know that for x ∈ 1 and x ∈ 2 , the expected loss for both response scenarios is the same
since the agents in the two regions are either already qualified or will never make it to the decision
boundary. Therefore, to compare the expected loss for two scenarios we would need to look at the
differences in the rest of the regions.

For x ∈ 4 and x ∈ 5 and biased responses, the expected loss would be the same as the non-
strategic case. For x ∈ 4 and x ∈ 5 and the non-biased case, it could be higher or lower. For
x ∈ 3 , the firm will have a lower (resp. higher) expected loss in the biased responses scenario if
the truly unqualified agents are (resp. not) more than truly qualified agents. We furthermore focus
on a subset of the region 3 identified by Proposition 1, region 3a , which is the biased agents that
will pass the threshold despite being biased. If we define the region identified by Proposition 1 by
H(θNB, θ0,NB), then region 3a will be A(θNB, θ0,NB) ∩ A(w(θNB), θ0,NB) ∩H(θNB, θ0,NB).
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For a setting where the loss function rewards true positives and penalizes false positives as −u+TP +
u−FP , as higher loss is worse as we defined, we can write the following:

L(θNB,(θNB, θ0,NB)) = L 1 ∪ 2 +∫
x∈ 3 ∪ 4 ∪ 5

(
− u+p(ŷ = 1|x, y)f1(x)α1 + u−p(ŷ = 1|x, y)f0(x)α0

)
dx (6)

L(w(θNB),(θNB, θ0,NB)) = L 1 ∪ 2 +∫
x∈ 3a

(
− u+p(ŷ = 1|x, y)f1(x)α1 + u−p(ŷ = 1|x, y)f0(x)α0

)
dx (7)

Where L 1 ∪ 2 is the loss coming from regions 1 and 2 which is present in both scenarios. For
L(θNB, (θNB, θ0,NB)), we know all the agents in 3 ∪ 4 ∪ 5 will be accepted, i.e., p(ŷ = 1|x ∈
3 ∪ 4 ∪ 5 , y) = 1. Similar for L(w(θNB), (θNB, θ0,NB)) and x ∈ 3a .

We can see from equation 6 and equation 7 that depending on the density of label 0
and label 1 agents in the region 3a and comparing it to the region 3 ∪ 4 ∪ 5 we
can have both L(w(θNB), (θNB, θ0,NB)) ≤ L(θNB, (θNB, θ0,NB)) and L(θNB, (θNB, θ0,NB)) ≤
L(w(θNB), (θNB, θ0,NB)) occur. The difference in expected loss lies in the region 3 ∪ 4 ∪ 5 − 3a , or
equivalently S(θNB, θ0,NB) := A(θNB, θ0,NB)/(A(θNB, θ0,NB)∩A(w(θNB), θ0,NB)∩H(θNB, θ0,NB)),
we can write the following for L(θNB, (θNB, θ0,NB))− L(w(θNB), (θNB, θ0,NB)) ≤ 0 (resp. ≥ 0):∫

x∈S(θNB,θ0,NB)

(−u+f1(x)α1 + u−f0(x)α0)dx ≤ 0 (resp. ≥ 0) (8)

Therefore, if the density of unqualified agents is higher (resp. lower) than the density of qualified
agents over the region A(θNB, θ0,NB)/(A(θNB, θ0,NB) ∩ A(w(θNB), θ0,NB) ∩H(θNB, θ0,NB)), then:

L(w(θNB), (θNB, θ0,NB)) ≤ L(θNB, (θNB, θ0,NB))

(resp. L(θNB, (θNB, θ0,NB)) ≤ L(w(θNB), (θNB, θ0,NB)))

To show the last statement of the proposition, we need to compare L(w(θNB), (θNB, θ0,NB)) and
L(w(θB), (θB, θ0,B))) directly. The difference between these two losses comes from the region where
agents will be accepted by (θNB, θ0,NB) and not by (θB, θ0,B), and vice versa, after agents’ response.
Mathematically, for agents responding to (θNB, θ0,NB) without bias, we can show the agents accepted
by (θNB, θ0,NB) by Y(θNB, θ0,NB)∪A(θNB, θ0,NB). We want the intersection of this set with the agents
not accepted by (θB, θ0,B), which brings us to T1 = (Y(θNB, θ0,NB) ∪A(θNB, θ0,NB)) ∩N(θB, θ0,B).

Similarly, for agents responding to (θNB, θ0,NB) with bias, we can show the agents accepted by
(θB, θ0,B) and not by (θNB, θ0,NB) by (Y(θB, θ0,B) ∩ N(θNB, θ0,NB))/A(θNB, θ0,NB). However, in
this scenario, we need to also account for agents that make it past the actual decision boundary
despite being behavioral, i.e., agents in the region H(θB, θ0,B) ∩ A(w(θB), θ0,B), bringing us to
T2 = (H(θB, θ0,B) ∩ A(w(θB), θ0,B)) ∪ ((Y(θB, θ0,B) ∩ N(θNB, θ0,NB))/A(θNB, θ0,NB)).

We need the total loss from region T1 to be lower than the total loss from the region T2 in the
two scenarios for L(θNB, (θNB, θ0,NB)) ≤ L(w(θB), (θB, θ0,B)) to be true. Meaning that we need∫
x∈T1

(−u+f1(x)α1 + u−f0(x)α0)dx ≤
∫
x∈T2

(−u+f1(x)α1 + u−f0(x)α0)dx to be true for
L(θNB, (θNB, θ0,NB)) ≤ L(w(θB), (θB, θ0,B)), and the last inequality of the statement comes from
the optimality condition.

B Details of Numerical Experiments

Details for Example 1. For the scenario where the firm is negatively affected by the biased response
is Example 1 we used µT

1 = (2, 4) and µT
0 = (2, 3) with Σ1 = ( 0.5 0

0 0.5 ) and Σ0 = ( 1 0.5
0.5 1 ), and

we multiplied the generated data by 10. For the scenario where the firm benefits from agents’ biased
response we let µT

1 = (3, 5) and let the rest of the parameters be the same as the first scenario, i.e.,
µT

0 = (2, 3) with Σ1 = ( 0.5 0
0 0.5 ) and Σ0 = ( 1 0.5

0.5 1 ), and we multiplied the generated data by 10. In
both scenarios, we let B = 5.
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We used the Prelec function described in Section 2 for the behavioral response. Solving the optimiza-
tion problem takes a considerable amount of time for a large number of data points, here 20, 000, so
we used the equivalent of the optimization problem for agents’ movement and dictated the movement
straight to each data point instead of solving the optimization.

To model agents’ behavioral responses, we first identified the agents that would attempt to manipulate
their features. Then, we used the movement function with the specified mode, either “B” or “NB”, to
move the data points and create a new dataset for post-response.

Details for Figure 1 We generated 150 data points using different distributions for each feature.
Feature 1 was sampled from N (700, 200)−D((0, 20, 50, 100), (0.6, 0.2, 0.1, 0.1)) where the second
term is a discrete distribution selecting 0 with p = 0.6, 20 with p = 0.2, 50 with 0.1, and 100
with p = 0.1. Feature 2 was sampled from 1500 − Γ(4, 100). We used a Score column to label
each individual for later. The score was calculated from the feature weights (0.65, 0.35). We
then used a sigmoid function to assign approval probability and label the sampled data points:

1

1+exp(−0.8×( x
10−80))

. We assigned the labels using the calculated approval probability and a random

number generator. After generating the dataset, we used two copies, one for behavioral response and
one for non-behavioral response.

For agents’ response to the algorithm, we calculated the agents that can afford the response with
a budget of B = 100 and performed an optimization problem on only those agents. We convert
our model in Section 3 to solve a cost minimization problem for each agent: argminx cost =
∥x− x0∥2 s.t. θTx ≥ θ0. For the behavioral case, we used γ = 0.5, and the optimization problem
argminx cost = ∥x− x0∥2 s.t. w(θ)Tx ≥ θ0.
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