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ABSTRACT

Spiking neural networks (SNNs) hold significant promise as energy-efficient alter-
natives to conventional artificial neural networks (ANNs). However, SNNs require
computations across multiple timesteps, resulting in increased latency, heightened
energy consumption, and additional memory access overhead. Techniques to re-
duce SNN latency down to a unit timestep have emerged to realize true superior
energy efficiency over ANNs. Nonetheless, this latency reduction often comes at
the expense of noticeable accuracy degradation. Therefore, achieving an optimal
balance in the tradeoff between accuracy and energy consumption by adjusting
the latency of multiple timesteps remains a significant challenge. In this paper, we
introduce a new dimension to the accuracy-energy tradeoff space using a novel
one-hot multi-level leaky integrate-and-fire (M-LIF) neuron model. The proposed
M-LIF model represents the inputs and outputs of hidden layers as a set of one-hot
binary-weighted spike lanes to find better tradeoff points while still being able to
model conventional SNNs. For image classification on static datasets, we demon-
strate M-LIF SNNs outperform iso-architecture conventional LIF SNNs in terms
of accuracy (2% higher than VGG16 SNN on ImageNet) while still being energy-
efficient (20× lower energy than VGG16 ANN on ImageNet). For dynamic vision
datasets, we demonstrate the ability of M-LIF SNNs to reduce latency by 3× com-
pared to conventional LIF SNNs while limiting accuracy degradation (< 1%).

1 INTRODUCTION

Neural networks have become a fundamental technique for solving many important problems such as
image classification, object detection, and face recognition (Krizhevsky et al., 2012; Redmon et al.,
2016). As neural network accuracy improves, models become increasingly complex, making their
energy-efficient deployment on the edge a significant challenge. In order to reduce the computational
complexity of these tasks, spiking neural networks (SNNs) (Maass, 1997) were proposed as an
alternative to traditional artificial neural networks (ANNs) (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014). SNNs infer inputs across multiple timesteps while ANNs perform a one-shot
inference, essentially over a single timestep. Neurons in SNNs differ from those in ANNs as they
operate on sparse binary spike trains as opposed to non-binary ‘analog’ activations, resulting in the
substitution of multiplications with energy-efficient additions (Han et al., 2016).

To model spikes over time, SNNs employ various techniques, most notably the leaky integrate-and-
fire (LIF) neuron model (Hunsberger & Eliasmith, 2015; Burkitt, 2006). Each neuron is charac-
terized by two parameters: firing threshold and membrane leakage. During a timestep, a neuron
either remains silent or produces a spike if the membrane potential exceeds its firing threshold. The
membrane potential can shrink over time depending on the membrane leakage and is reset if a spike
is produced. Using such models, many training methods have emerged and can be categorized into
two main approaches: ANN-SNN conversion and direct training. ANN-SNN conversion methods
(Rueckauer et al., 2017; Diehl et al., 2015; Bu et al., 2023) convert the weights of a pre-trained ANN
to an iso-architecture SNN. However, these methods can require a large number of timesteps (on the
order of 1000 in some cases (Sengupta et al., 2019)) to achieve comparable or better accuracy than
ANNs. Note that multi-timestep inference results in both a higher number of operations and more
memory storage/accesses which can dominate the compute cost (Horowitz, 2014). Therefore, the
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need for multi-timestep processing from ANN-SNN conversion has been the primary factor making
widespread deployment of SNNs impractical for energy-constrained edge scenarios.

Direct training using surrogate gradient-based optimization and back-propagation through time
(BPTT) (Rathi & Roy, 2023; Deng et al., 2022; Yao et al., 2023) has enabled training SNNs with sig-
nificantly fewer timesteps, occasionally reducing them to just a single timestep (Chowdhury et al.,
2022). However, these SNNs still lag ANNs in terms of accuracy. For image classification on static
datasets (Rawat & Wang, 2017; Krizhevsky et al., 2012), SNNs cannot bridge this accuracy gap with
ANNs without increasing the number of timesteps, which in turn reduces energy efficiency. More-
over, single-timestep SNNs require iterative temporal pruning (Chowdhury et al., 2022) to converge,
rendering training more time-consuming. For image classification, multi-timestep SNNs tradition-
ally outperform ANNs on dynamic vision sensor (Leñero-Bardallo et al., 2011) data but suffer from
a sharp accuracy degradation (Li et al., 2024) with a reduced number of timesteps.

As conventional LIF models employ binary-valued neuron spike outputs, traditional SNNs are re-
stricted to solely scaling the temporal dimension T (i.e., the number of timesteps) to achieve different
accuracy-energy efficiency tradeoffs. To address this limitation, we extend the range of neuron spike
outputs to include more values by introducing a new dimension S to the accuracy-energy tradeoff
space using a novel one-hot multi-level leaky integrate-and-fire (M-LIF) neuron model as illustrated
in Figure 1. The proposed one-hot M-LIF model has the following key properties: 1) it uses the S
dimension to represent hidden layer outputs (inputs) as a set of So (Si) binary-weighted spike lanes,
and 2) it limits the simultaneous firing behavior of those So (Si) spike lanes to only a single lane per
timestep. These two properties of our one-hot M-LIF model enable new accuracy-energy tradeoff
points for SNNs while still only requiring additions (without multiplications) like the conventional
LIF model. Furthermore, the proposed one-hot M-LIF model can be easily integrated into prior
existing training frameworks. For static datasets such as CIFAR and ImageNet, we demonstrate
that one-hot M-LIF SNNs outperform conventional LIF SNNs in terms of accuracy while achiev-
ing better or comparable energy efficiency on various architectures including the high-performance
spike-driven transformer (Yao et al., 2023). For dynamic vision datasets such as DVS-CIFAR10 (Li
et al., 2017; Orchard et al., 2015), we show that M-LIF SNNs using multi-level input layer encod-
ing can achieve reduced timesteps (energy consumption) compared to conventional LIF SNNs for
comparable or better accuracy. To summarize, the main contributions of this paper are:

• We propose a new direction to balance SNN energy efficiency and accuracy by expanding
the neuron inputs and outputs using a novel one-hot multi-level leaky-integrate-and-fire
(M-LIF) neuron model.

• We enable a new tradeoff and show that one-hot M-LIF SNNs are more accurate than iso-
architecture LIF SNNs while consuming comparable or lower energy with fewer timesteps.

• We demonstrate the benefit of one-hot M-LIF SNNs with dynamic vision sensor-based
input compared to conventional SNNs. To the best of our knowledge, this is the first SNN
work to achieve a top-1 accuracy of 82.5% on DVS-CIFAR10 using only 3 timesteps.

2 BACKGROUND & RELATED WORKS

2.1 LEAKY INTEGRATE-AND-FIRE MODEL

A conventional spiking neural network (SNN) layer under the leaky integrate-and-fire (LIF) neuron
model is described by

ul[t] = βlul[t− 1] +W lol−1[t]− θlol[t− 1] (1)

ol[t] =

{
1, if 1 < ul[t]

θl

0, otherwise
(2)

where W l is the weight matrix connecting layers l−1 and l, u is a vector containing the membrane
potential of output neurons, β ∈ [0, 1] is the leakage factor, o is an output vector of binary spikes,
θ > 0 is the firing threshold, and t ∈ {0, 1, 2, ...} represents the discrete timestep. The first term in
Equation 1 corresponds to the membrane leakage allowing the potential to shrink (leak) over time,
and the final term accounts for resetting the potential to a specific value when an output binary spike

2
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Figure 1: LIF neuron model (left) vs. one-hot M-LIF neuron model with So = 4 lanes (right).

given by Equation 2 is generated. All neurons in an input/hidden layer typically share the same
leakage factor and firing threshold values. As for the final layer, adopting the LIF model without
any modifications can significantly impact the accuracy (Deng et al., 2022; Rathi & Roy, 2023).
Hence, the final output layer neurons only accumulate incoming inputs without any leakage and do
not fire output spikes. Finally, the inference process is repeated for T timesteps from t = 0 to T −1,
and the output of the last layer is averaged to produce the final result.

2.2 ANN-SNN CONVERSION

ANN-SNN conversion methods (Sengupta et al., 2019; Rueckauer et al., 2017; Diehl et al., 2015;
Bu et al., 2023; Deng & Gu, 2021; Li et al., 2021a) convert the weights of a pre-trained ANN to an
iso-architecture SNN. Specifically, these methods convert the output of a rectified linear unit neu-
ron in an ANN into a sequence of binary spikes in the SNN over multiple timesteps. The primary
challenge in this technique is determining the firing threshold in such a way that it balances the
accuracy-latency tradeoff. In these methods, the firing thresholds are generally determined by pro-
filing the pre-trained ANN and recording a certain percentile of layers’ input activation distributions.
However, these heuristic techniques can lead to a sub-optimal choice of firing threshold and can also
require a large number of timesteps (up to 1000 timesteps) to achieve comparable or better accuracy
than ANNs, thus further aggravating the accuracy-latency tradeoff. This multi-timestep processing
requirement is a challenge for widespread SNN deployment as it primarily introduces more memory
storage and accesses which can be significantly higher than compute cost (Horowitz, 2014).

2.3 DIRECT TRAINING

An alternate approach to training SNNs is to use gradient-based techniques, such as back-
propagation, either from scratch or from a pre-trained iso-architecture ANN (Rathi & Roy, 2023;
Deng et al., 2022; Chowdhury et al., 2022; Neftci et al., 2019). These approaches relate the tempo-
ral dimension of SNNs to that of recurrent neural networks, and perform back-propagation through
time (BPTT) to learn weights across multiple timesteps. The cross-entropy loss L and gradients
∂L/∂W l are calculated by

L = −
∑
i

yi log(Φ(o
L[T − 1])i),

∂L

∂W l
=

∑
t

∂L

∂ol[t]

∂ol[t]

∂ul[t]

∂ul[t]

∂W l
(3)

where L is the index of the final layer, Φ(·) denotes the softmax function, and y is the one-hot
encoded vector of the true label. The term ∂ol[t]/∂ul[t] in Equation 3 is the discontinuous gradient
that is typically replaced by differentiable surrogate gradients. Prior works have explored the use of
various surrogate gradient shapes such as triangular (Bellec et al., 2018; Rathi & Roy, 2023), or the
derivative of the sigmoid function (Yao et al., 2023) which are given below in Equations 4 and 5,
respectively, where γ and α are constants used to scale the shapes of the gradients.

∂ol[t]

∂ul[t]
= diag

(
γ

θl
max{0, 1− |u

l[t]

θl
− 1|}

)
(4)

∂ol[t]

∂ul[t]
= diag

(
α

θl

(
1− σ

(
α(

ul[t]

θl
− 1)

))
σ

(
α(

ul[t]

θl
− 1)

))
(5)
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Compared to ANN-SNN conversion techniques, direct training approaches typically achieve a bet-
ter accuracy-latency tradeoff (higher accuracy using fewer timesteps overall) at the cost of more
compute- and memory-intensive training (Deng et al., 2020). To achieve competitive accuracy, most
employ direct input encoding (Tan et al., 2021) and utilize the first layer as a spike generator by di-
rectly feeding pixel values as inputs to the network. Through gradient-based learning, many recent
works have sought to optimize different aspects of this training methodology such as loss function
definition (Deng et al., 2022), initialization and parameterization (Rathi & Roy, 2023; Chowdhury
et al., 2022), and extension to advanced network architectures such as spike-driven transformers
(Yao et al., 2023). Notably, Chowdhury et al. (2022) propose temporal pruning to gradually reduce
the number of timesteps to successfully train SNNs with as little as a single timestep, despite a
noticeable accuracy degradation (up to 4%).

All these works differ from ours as they are restricted to solely scaling the temporal dimension T in
order to achieve different accuracy-latency tradeoffs given a fixed neural network architecture. To
address this limitation, our approach introduces a new dimension S using our one-hot multi-level
LIF (M-LIF) neuron model to improve the accuracy-latency tradeoff space.

2.4 QUANTIZED-ACTIVATION ANNS

As the number of timesteps converges to one, conventional SNNs become closely related to binary
activated artificial neural networks (BNNs) (Wang et al., 2020; Rastegari et al., 2016) as both use
binary activations to perform an inference over a single timestep. Chowdhury et al. (2022) discuss
that they are in fact distinct. While SNNs quantize outputs to spikes (i.e. {0, 1}), BNNs quantize
outputs to be ±1. Unlike BNNs which use non-linear activation functions where the firing threshold
is zero, the firing threshold is learnable in SNNs. Chowdhury et al. (2022) observe that this allows
SNNs to outperform BNNs in terms of accuracy and scale better to larger datasets such as ImageNet.
Moreover, LIF enables SNNs to extend the same network for sequential processing unlike BNNs.
Similarly, our one-hot M-LIF SNNs become closely related to log-quantized-activation ANNs (LQ-
ANNs) (Zhou et al., 2016; Yin et al., 2019) as timesteps converge to one, but remain distinct for
analogous reasons. A discussion regarding similarities and differences is provided in Section 3.2.

2.5 QUANTIZED-ACTIVATION SNNS

Prior SNN works have explored the interaction between activation bit-width and timesteps (Xiao
et al., 2019; Miao et al., 2018; Wang & Zhang, 2023; Feng et al., 2022; Wang et al., 2023; Li & Zeng,
2022). Multi-spike (Xiao et al., 2019; Miao et al., 2018) and multi-threshold (Wang & Zhang, 2023;
Feng et al., 2022) neurons increase activation precision via uniform quantization but raise energy
costs, disrupting the multiplication-free nature of traditional SNNs. Xiao et al. (2019) propose
parallel and cascade multi-threshold (MT) models to enhance activation precision per timestep. The
parallel-MT model uses multiple threshold values, summing spikes from all firing lanes at each
timestep, while the cascade-MT model processes them sequentially. In contrast, our one-hot M-LIF
neuron employs a single threshold and power-of-two multiples to fire one spike lane per timestep, a
learned constraint distinct from prior methods. This enables efficient FP32 weight exponent updates
via a single INT8 addition as discussed in Section 4, unlike the multiplication demands of uniformly
quantized outputs. Miao et al. (2018) utilize non-multiplicative thresholds and focuses on residual
networks without results on larger datasets like ImageNet or advanced architectures like spike-driven
transformers, while also lacking energy analyses. Burst-spike models (Wang et al., 2023; Li & Zeng,
2022) enhance precision by increasing spike rates per timestep but struggle to scale down to single-
timestep processing ( T = 8 timesteps on ImageNet). Our one-hot M-LIF neuron reduces timestep
requirements to T = 1, significantly cutting memory access overhead.

3 PROPOSED MULTI-LEVEL LIF-BASED SNNS: M-LIF SNNS

3.1 MULTI-LEVEL LIF MODEL

Our goal is to reduce the number of timesteps T during SNN inference while improving accuracy and
maintaining the low-spike rates of traditional SNNs. By reducing the timesteps T while maintaining
low spike rates, we can consequently decrease the energy overhead associated with multi-timestep
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Figure 2: Output activation and surrogate gradient functions for conventional LIF neuron model
(left) and one-hot multi-level LIF neuron model for 0 ≤ s < So − 1 (right).

processing. To do so, our proposed multi-level leaky integrate-and-fire (M-LIF) neuron model still
uses a single membrane potential per output neuron while extending the range of neuron outputs
to more than just binary representations. It employs a new dimension S to represent hidden layer
outputs (inputs) as a set of So (Si) binary-weighted spike lanes. We denote ol

s[t] to be the output
vector of binary spike lane s in layer l at timestep t. Each spike lane s is weighted by 2s resulting in
a non-binary output range for the neuron output ol[t]. As a result, Equation 1 needs to be modified
to combine weighted spike lanes prior to updating the membrane potential as follows

ul[t] = βlul[t− 1] +

Si−1∑
s=0

2sW lol−1
s [t]−

So−1∑
s=0

2sθlol
s[t− 1]

= βlul[t− 1] +W lol−1[t]− θlol[t− 1].

(6)

We also define ω ≤ So as the maximum number of simultaneously firing output spike lanes in any
given timestep. With all spike lanes sharing the same firing threshold and membrane potential, it is
non-trivial to devise a firing mechanism with ≤ ω concurrent firing lanes. Section 3.2 discusses the
practical one-hot case we propose for SNNs where ω = 1.

3.2 ONE-HOT MULTI-LEVEL LIF MODEL

In the one-hot M-LIF model, ω = 1 and only one of the So output spike lanes fires in any given
timestep. The threshold mechanism is given by

ol
s[t] =

1, if
(
(2s < ul[t]

θl ≤ 2s+1) ∧ (0 ≤ s < So − 1)
)
∨

(
(2s < ul[t]

θl ) ∧ (s = So − 1)
)

0, otherwise
(7)

Figure 1 depicts the difference between the conventional LIF model and our proposed one-hot (ω =
1) M-LIF model given So = 4. Instead of having only one output (input) spiking signal, an M-
LIF neuron has multiple (So = 4) binary-weighted output (input) spike lanes. With the one-hot
constraint, only a single spike lane fires at any given timestep. In this example, the membrane
potential can increase by one of So = 4 possible levels in {θl, 2θl, 4θl, 8θl} from one timestep to
the next, as opposed to the single level θl in the conventional LIF model. The output spike lanes
are one-hot, meaning that the output range is also subdivided into So = 4 non-overlapping decision
boundaries using the binary weight of each spiking lane as shown in Equation 8. Therefore, for a
single activation channel case, we have

∑So−1
s=0 2sol

s[t] = ol[t] ∈ {0, 1, 2, 4, . . . , 2So−1}.

ol
0[t] =

1, if 1 < ul[t]
θl ≤ 2

0, otherwise
ol
1[t] =

1, if 2 < ul[t]
θl ≤ 4

0, otherwise

ol
2[t] =

1, if 4 < ul[t]
θl ≤ 8

0, otherwise
ol
3[t] =

1, if 8 < ul[t]
θl

0, otherwise

(8)

Note that by setting Si = So = 1 (i.e., single lane), Equations (6 - 7) simplify to Equations (1 - 2).
Therefore, binary spiking SNNs can be considered as a special case of the proposed M-LIF scheme.

Surrogate Gradient for Back-Propagation Training Given the update to ol[t] in Equation 7,
the surrogate gradient is extended from the LIF case to the proposed one-hot M-LIF neurons. For
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example, Figure 2 illustrates the differences in an updated triangular surrogate gradient for the single
activation channel case when 0 ≤ s < So − 1. Each spike lane is now a window function of ul[t]
as opposed to a step function. As a result, the surrogate gradient becomes the difference of two
triangular sub-gradients, one for each of the rising and falling window edges. An additional example
for the derivative of the sigmoid function is included in the Appendix.

∂ol[t]

∂ul[t]
=

So−1∑
s=0

2s
∂ol

s[t]

∂ul[t]

∂ol
s[t]

∂ul[t]
=


diag

(
γ

2sθl max{0, 1− |u
l[t]

2sθl − 1|}
)
, if s = So − 1

diag
(

1∑
a=0

(−1)a γ
2s+aθl max{0, 1− | ul[t]

2s+aθl − 1|}
)
, if 0 ≤ s < So − 1

Discussion As T → 1 (i.e., unit timestep inference), Equations (6 - 7) can be rewritten as

ul =

Si−1∑
s=0

2sW lol−1
s = W lol−1 (9)

where

ol = 2
clip

(
⌊log2

(
ul

θl

)
⌋, 0, So

)
, and clip(x, v, z) =


−∞, if x ≤ v

z − 1, if x ≥ z

x, otherwise
.

From this, an observable parallel can be drawn between our one-hot M-LIF SNNs with unit timestep
(T = 1) and log quantized-activation ANNs (LQ-ANNs) (Miyashita et al., 2016; Lee et al., 2017).
While one-hot M-LIF-based SNNs are trained in a single phase, LQ-ANN training is performed in
two phases per epoch. First, using the entire training dataset and full precision inference, a percentile
value α of each layer’s input activation distribution is recorded. Second, a straight-through estimator
is typically applied to approximate the gradient with respect to quantized activations. Using b bits
and assuming a ReLU activation function, the neuron output in an LQ-ANN is given by Equation 10.
While both one-hot M-LIF SNNs with unit timestep (T = 1) and LQ-ANNs share commonalities,
they remain slightly distinct. As highlighted by Equations (9 - 10), they namely differ in their choices
of firing threshold and their final output value ranges. They also differ in their training methods and
abilities to extend to sequential processing (i.e., T > 1).

ol = ReLU(W lõl−1), õl−1 =


αl2

clip
(
⌊log2

(
ol−1

αl

)
⌉, 1− 2b, 1

)
, if ol−1 ̸= 0

0, otherwise

(10)

4 ENERGY CONSUMPTION ESTIMATION

We evaluate the inference energy of our approach based on the approach in Chowdhury et al. (2022);
Yao et al. (2023). In conventional SNNs, 32-bit floating-point (FP32) additions replace the FP32
multiply-and-accumulates (MACs) of ANNs except in the first layer which uses direct encoded
inputs. For one-hot M-LIF SNNs (ω = 1), inputs (outputs) are restricted to powers of 2, and
multiplying by a power of 2 corresponds to adjusting the 8-bit integer (INT8) exponent of the FP32
multiplicand (see Appendix). Therefore, scaling the intermediate FP32 membrane potential by 2s

during integration in Equation 6 corresponds to increasing or decreasing its exponent in the INT8
format. According to Horowitz (2014), an INT8 addition consumes 30× less energy than a FP32
addition, hence the overhead of scaling in M-LIF SNNs is negligible and FP32 additions dominate
the energy consumption of one-hot M-LIF SNNs.

It is important to note that due to the one-hot constraint, the overall spiking rate (and consequently,
the number of additions) per layer per timestep in one-hot M-LIF SNNs is not necessarily higher
than that of conventional SNNs, even though one-hot M-LIF SNNs have multiple spiking lanes per
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Table 1: Iso-architecture comparison with SNNs for static image classification on CIFAR and Ima-
geNet. * denotes self-implementation results.

Dataset Architecture Method S T Accuracy (%) δ Comp Energy (µJ)

CIFAR10

ResNet20

ANN* - 1 94.31 1.0 9.97E+02

DIET-SNN (Rathi & Roy, 2023) 1 5 91.78 6.3 1.58E+02
Temporal Pruning (Chowdhury et al., 2022) 1 1 91.10 16.32 6.11E+01

1-hot M-LIF (ours) 3 1 93.19 18.10 5.55E+01

VGG16

ANN* - 1 94.43 1.0 1.56E+03

DIET-SNN (Rathi & Roy, 2023) 1 5 92.70 12.4 1.26E+02
Temporal Pruning (Chowdhury et al., 2022) 1 1 93.05 33.0 4.72E+01

BANN (Datta et al., 2024) 1 1 93.44 25.08 6.22E+01
1-hot M-LIF (ours) 3 1 93.34 29.73 5.24E+01

Transformer-2-512

Spike-Driven Transformer (Yao et al., 2023)* 1 4 95.6 - 4.60E+02
Spike-Driven Transformer (Yao et al., 2023)* 1 2 94.7 - 2.80E+02
Spike-Driven Transformer (Yao et al., 2023)* 1 1 94.5 - 1.92E+02

1-hot M-LIF (ours) 3 4 95.9 - 1.47E+03
1-hot M-LIF (ours) 3 2 95.5 - 4.84E+02
1-hot M-LIF (ours) 3 1 95.4 - 2.59E+02

CIFAR100

ResNet20

ANN* - 1 67.10 1.0 9.97E+02

DIET-SNN (Rathi & Roy, 2023) 1 5 64.07 6.6 1.51E+02
Temporal Pruning (Chowdhury et al., 2022) 1 1 63.30 15.35 6.50E+01

1-hot M-LIF (ours) 3 1 63.80 14.05 7.10E+01

VGG16

ANN* - 1 74.50 1.0 1.56E+03

DIET-SNN (Rathi & Roy, 2023) 1 5 69.97 12.1 1.29E+02
Temporal Pruning (Chowdhury et al., 2022) 1 1 70.15 29.24 5.34E+01

1-hot M-LIF (ours) 3 1 72.59 23.63 6.60E+01

Transformer-2-512

Spike-Driven Transformer (Yao et al., 2023)* 1 4 78.4 - 5.87E+02
Spike-Driven Transformer (Yao et al., 2023)* 1 2 76.6 - 1.90E+02
Spike-Driven Transformer (Yao et al., 2023)* 1 1 75.8 - 2.21E+02

1-hot M-LIF (ours) 3 4 78.9 - 1.68E+03
1-hot M-LIF (ours) 3 2 78.3 - 8.20E+02
1-hot M-LIF (ours) 3 1 78.2 - 4.78E+02

ImageNet

VGG16

ANN* - 1 72.56 1.0 7.12E+04

DIET-SNN (Rathi & Roy, 2023) 1 5 69.00 11.7 6.09E+03
Temporal Pruning (Chowdhury et al., 2022) 1 1 69.00 24.61 2.89E+03

BANN (Datta et al., 2024) 1 1 68.00 20.94 3.40E+03
1-hot M-LIF (ours) 3 1 71.05 20.20 3.37E+03

Transformer-8-512
Spike-Driven Transformer (Yao et al., 2023) 1 1 71.68 - 1.13E+03
Spike-Driven Transformer (Yao et al., 2023) 1 4 74.57 - 4.50E+03

1-hot M-LIF (ours) 3 1 75.33 - 3.64E+03

neuron. This gives one-hot M-LIF SNNs the opportunity to learn more within a single timestep
without increasing the computational complexity and energy compared to conventional SNNs.

It is known that memory access energy can be significantly higher than compute energy (Horowitz,
2014; Han et al., 2015) and the number of memory accesses scales linearly with the number of
timesteps in SNNs (Chowdhury et al., 2022). However, estimating memory energy improvements
would depend on hardware architecture and system configuration. Therefore, as noted in Chowdhury
et al. (2022), we are restricting our attention to the computational energy benefits, δ defined in
Equation 11 (Chowdhury et al., 2022), of one-hot M-LIF SNNs and conventional SNNs over ANNs.
As a result, we consider δ to be an optimistic energy gain estimate when T > 1. Note that when
T = 1, memory requirements are identical for both SNNs and ANNs. When an iso-architecture
ANN does not exist as in the case of spike-driven transformers (Yao et al., 2023) due to unique
mechanisms such as spike-driven attention, we compare directly using the computational energy E.

δ =
EANN

ESNN
=

∑L
l=1 #ANNops,l × 4.6

#SNNops,1 × 4.6 +
∑L

l=2 #SNNops,l × 0.9
(11)

In Equation 11, #ANNops,l is the number of operations per layer in an ANN, #SNNops,l = rl ×
#ANNops,l is the number of operations per layer in an SNN, and rl denotes the spike rate which is
the proportion of non-zero input spikes per layer over all spike lanes and timesteps in layer l. Based
on Horowitz (2014), we set the relative MAC and addition energy to 4.6pJ and 0.9pJ, respectively.
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Table 2: Iso-architecture comparison with LQ-ANNs for static image classification on CIFAR and
ImageNet. * denotes self implementation results.

Dataset Architecture Method S T b Accuracy (%) δ Comp Energy (µJ)

CIFAR10 ResNet20
LQ-ANN* - 1 2 93.03 21.60 4.61E+01

- 1 3 93.59 12.02 8.29E+01

1-hot M-LIF (ours) 2 1 - 92.61 20.78 4.80E+01
3 1 - 93.19 18.10 5.51E+01

CIFAR100 VGG16
LQ-ANN* - 1 2 71.24 25.28 6.17E+01

- 1 3 72.87 15.29 1.02E+02

1-hot M-LIF (ours) 2 1 - 71.32 27.30 4.88E+01
3 1 - 72.59 23.63 5.66E+01

ImageNet VGG16 LQ-ANN* - 1 3 62.97 16.95 4.20E+03
- 1 4 67.85 14.18 5.02E+03

1-hot M-LIF (ours) 3 1 - 71.05 20.20 3.37E+03

5 EXPERIMENTS & RESULTS

We validate our one-hot M-LIF model and compare the performance and inference energy of our
one-hot M-LIF SNNs with existing SNN works on both static and dynamic image classification
tasks. Our proposed neuron model can be integrated into existing SNN training methodologies. We
compare against the hybrid training methods (Chowdhury et al., 2022; Rathi & Roy, 2023) for static
tasks (Section 5.1) and the temporal efficient training method Deng et al. (2022) for dynamic vision
tasks (Section 5.2). We also evaluate the impact of one-hot M-LIF on more complex SNN-based
high performance models such as the spike-driven transformer (Yao et al., 2023). As in prior works,
we employ direct input encoding for static tasks such that the input layer is fed with full-precision
pixels. We also fix all layers to use the same number of (input) output spike lanes, S, as this reduces
the number of hyperparameters. The source code is available at: to be released upon acceptance.

5.1 STATIC IMAGE CLASSIFICATION

5.1.1 IMPLEMENTATION DETAILS

We apply hybrid direct training as described in Rathi & Roy (2023); Chowdhury et al. (2022) to
evaluate the accuracy of our approach on CIFAR10, CIFAR100, and ImageNet using VGG16 and
ResNet20. We train an ANN with batch-norm (Ioffe & Szegedy, 2015) and subsequently fuse the
batch-norm parameters with the weights of the corresponding layer. We then copy the weights of the
pre-trained ANN to an iso-architecture one-hot M-LIF SNN and use the 90-th percentile of the input
activation distribution as each layer’s threshold θl. The SNN is then trained using BPTT but without
temporal pruning. For spike-driven transformer, we evaluate our approach on CIFAR10, CIFAR100,
and ImageNet using Transformer-2-512 and Transformer-8-512 by replacing all LIF neurons with
one-hot M-LIF neurons while using the same training methodology as in Yao et al. (2023). Note that
Transformer-L-D represents a model with L encoder blocks and D channels. These networks are
trained from scratch using BPTT without any pre-trained ANN initialization or batch norm fusion.
Supplemental network architecture details and hyperparameters are discussed in the Appendix.

5.1.2 COMPARISON WITH SNNS

Table 1 compares the accuracy and inference energy of one-hot M-LIF SNNs with iso-architecture
conventional SNNs. While our approach offers comparable or slightly lower energy benefits across
most benchmarks, it consistently matches or exceeds conventional SNNs in accuracy. The one-
hot constraint ensures energy usage comparable to conventional SNNs despite each M-LIF neuron
having multiple spiking lanes, discovering new accuracy-energy tradeoff points. Prior work achieved
69% accuracy with a unit timestep on ImageNet using VGG16, while we reached 71.05% with S =
3 spike lanes. For spike-driven transformers, M-LIF SNNs boost accuracy by up to 3% on ImageNet
compared to LIF counterparts, consuming slightly more energy for a given T but achieving better
tradeoffs. This is the case of (T = 1, S = 3) one-hot M-LIF spike-driven transformer, which
achieves comparable or better accuracy to (T = 4) LIF on CIFAR100 and ImageNet with 4×
less memory access energy (which can dominate overall energy as discussed in Section 4) due to
multi-timestep processing.
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Figure 3: Workflow of multi-level input layer encoding for dynamic vision tasks.

5.1.3 COMPARISON WITH LQ-ANNS

As discussed in Section 3.2, LQ-ANNs and unit timestep (T = 1) M-LIF SNNs remain distinct
while both perform inference using a single timestep. Here, we compare the accuracy and inference
energy of b-bit LQ-ANNs and M-LIF-based SNNs using S spike lanes as shown in Table 2. We ob-
serve that M-LIF SNNs perform on par or better than LQ-ANNs in terms of accuracy and inference
energy. For CIFAR10, we observe similar accuracy and energy benefits to LQ-ANNs. On the other
hand, for CIFAR100, we note that one-hot M-LIF SNNs are up to 54% more energy efficient than
LQ-ANNs with comparable accuracy. Finally, our approach scales much better on a large challeng-
ing dataset such as ImageNet. This gain can be primarily attributed to threshold parameter learning
for SNNs as in Rathi & Roy (2023) and the final output value ranges learned during training.

5.2 DYNAMIC IMAGE CLASSIFICATION

5.2.1 IMPLEMENTATION DETAILS

For the dynamic image classification task where SNN accuracy is generally superior than that of
ANNs, we apply temporal efficient training similar to Deng et al. (2022) using our one-hot M-LIF
neuron. Here, we train from scratch using BPTT without any pre-trained ANN initialization or
batch norm fusion. We perform experiments on DVS-CIFAR10 (Li et al., 2017) (converted from
CIFAR10) which is one of the most challenging mainstream dynamic vision datasets. It has 10k
images with size 128× 128. Following prior works, we reduce the spatial resolution to 48× 48, and
split the dataset into 9k training and 1k test images (Samadzadeh et al., 2023). We also apply data
augmentation techniques such as random horizontal flip and random roll within 5 pixels (Li et al.,
2022). For all experiments, we use the VGGSNN architecture (Deng et al., 2022) using 300 epochs,
the Adam optimizer with learning rate λ = 0.001 and a cosine annealing scheduler with 0 decay.

5.2.2 MULTI-LEVEL INPUT LAYER ENCODING

For DVS-CIFAR10, direct input encoding is not applicable as the dataset consists of events recorded
using a dynamic vision sensor. The adopted methodology described in Samadzadeh et al. (2023) to
prepare the data for SNN training is to split and convert the stream of TE events into TF binary
frames as depicted in Figure 3 (top). In Deng et al. (2022), a VGGSNN is trained with TF = 10
and a top-1 accuracy of 83.17%. However, M-LIF SNNs are not limited to single spike lanes at
the input layer. Therefore, we allow TF ̸= 10 and incorporate an additional data preparation step
to perform multi-level input layer encoding as depicted in Figure 3 (bottom). After obtaining the
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Table 3: Comparison with prior works for dynamic image classification on DVS-CIFAR10. † de-
notes data augmentation. ∗ denotes self-implementation results.

Method Architecture S TF QF Accuracy (%) Comp Energy (µJ)

STBP-tdBN (Zheng et al., 2021) ResNet-19 1 10 - 67.8 -
Streaming Rollout (Kugele et al., 2020) DenseNet 1 10 - 66.8 -

Conv3D (Wu et al., 2021) LIAF-Net 1 10 - 71.70 -
LIAF (Wu et al., 2021) LIAF-Net 1 10 - 70.40 -

Dspike (Li et al., 2021b) ResNet-18 1 10 - 75.4 -
RecDis-SNN (Guo et al., 2022) ResNet-19 1 10 - 72.4 -

Spike-driven Transformer† (Yao et al., 2023) Transformer-2-256 1 16 - 80.0 -
PLIF (Fang et al., 2021) VGGSNN 1 20 - 74.8 -

SEENN-II† (Li et al., 2024) VGGSNN 1 4.5 - 82.6 -
SEENN-I† (Li et al., 2024) VGGSNN 1 2.5 - 77.6 -

TET (Deng et al., 2022) VGGSNN 1 10 - 77.3 -
TET*† (Deng et al., 2022) VGGSNN 1 10 - 83.1 3.8E+02
TET*† (Deng et al., 2022) VGGSNN 1 5 - 78.0 1.9E+02
TET*† (Deng et al., 2022) VGGSNN 1 3 - 74.7 1.2E+02

1-hot M-LIF† (ours) VGGSNN 4 - 10 84.7 3.5E+02
1-hot M-LIF† (ours) VGGSNN 3 - 10 84.3 3.4E+02
1-hot M-LIF† (ours) VGGSNN 4 - 5 83.3 1.8E+02
1-hot M-LIF† (ours) VGGSNN 3 - 5 83.0 1.7E+02
1-hot M-LIF† (ours) VGGSNN 4 - 3 82.5 1.1E+02
1-hot M-LIF† (ours) VGGSNN 3 - 3 79.8 9.0E+01

TF binary frames, we combine every 2Si−1 consecutive frames into a one-hot frame resulting in
QF = TF /2

Si−1 frames of one-hot Si spike lanes. This enables M-LIF SNNs to limit accuracy
degradation after reducing QF below the number of timesteps TF .

5.2.3 COMPARISON WITH SNNS

We compare against existing works on DVS-CIFAR10 in Table 3. The compute energy is calculated
using ESNN =

∑L
l=1 #SNNops,l × 0.9 pJ, where #SNNops,l is defined in Section 4 and 0.9 pJ is the

energy of addition (Horowitz, 2014). We achieve an accuracy of 84.7% using 10 timesteps and 4
spike lanes per neuron. This is also the first SNN work to achieve 82.5% accuracy on DVS-CIFAR10
using 3 timesteps and 4 spike lanes compared to the best prior work (Li et al., 2024) which can only
achieve 82.6% using 4.5 timesteps and 77.6% using 2.5 timesteps. These improvements in accuracy
stem primarily from introducing the S dimension. By reducing QF , not only do we improve the
computational energy by 3.45×, we also reduce memory access energy which scales linearly with
timesteps and can be significantly higher than compute energy (Chowdhury et al., 2022). Table 3
also shows the impact of scaling QF and S on accuracy. By increasing S for a fixed QF , we are
able to recover accuracy degradation unlike prior works which are limited by solely scaling TF . By
increasing S and QF , we can scale the accuracy to even higher than conventional SNNs.

6 CONCLUSION

SNNs hold promise as an energy-efficient alternative to traditional ANNs. However, achieving an
optimal balance in the accuracy-energy tradeoff by adjusting latency remains a significant challenge
for widespread deployment. To that end, we introduce the dimension of spike lanes to conventional
SNNs using a novel M-LIF neuron model without latency and computational complexity overhead.
The proposed model represents the inputs and outputs of hidden layers as a set of one-hot binary-
weighted spike lanes. Using our one-hot M-LIF neuron model, we are able to find new and better
tradeoff points for both static and dynamic vision tasks. In particular, our one-hot M-LIF-based
SNNs achieve a top-1 accuracy of 71.05% on ImageNet using VGG16 and enhance the computa-
tional efficiency by 20×. One-hot M-LIF neurons also improve the accuracy-latency tradeoff for
advanced network architectures such as spike-driven transformers (> 3% higher accuracy with 4×
fewer timesteps on ImageNet). For dynamic vision tasks, such as image classification using dynamic
vision sensor data, our one-hot M-LIF SNNs retain higher accuracy (82.5%) when scaling down to
fewer timesteps (3) on CIFAR10-DVS thus providing better energy efficiency.
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7 REPRODUCIBILITY STATEMENT

The authors make the following efforts for reproducibility: 1) We submit an anonymized reposi-
tory containing code used to run our experiments in the supplementary material, 2) we provide the
detailed settings and hyperparameters in Sections 5 and A.3.
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Figure 4: 32-bit floating-point format and power of two multiplication details where bi is the i-th
bit, sign is the most significant bit, and E is the 8-bit exponent.

A APPENDIX

A.1 SURROGATE GRADIENT

Adapting the derivative of sigmoid function σ′ to one-hot M-LIF is performed in a similar fashion
to the triangular surrogate gradient described in the main text. The surrogate gradient becomes the
difference of σ′ sub-gradients, one for each of the rising and falling window edges of the firing
function.

∂ol[t]

∂ul[t]
=

So−1∑
s=0

2s
∂ol

s[t]

∂ul[t]

xl(s) = σ

(
α(

ul[t]

2sθl
− 1)

)
∂ol

s[t]

∂ul[t]
=


diag

(
α

2sθl (1− x(s))x(s)
)
, if s = So − 1

diag
(

1∑
a=0

(−1)a α
2s+aθl (1− x(s+ a))x(s+ a)

)
, if 0 ≤ s < So − 1

A.2 FP32 POWER OF TWO MULTIPLICATION

As discussed in the main text, both M-LIF SNNs and LIF SNNs perform FP32 additions during in-
tegration to calculate the membrane potential at each timestep. For M-LIF SNNs, FP32 weights are
scaled by a power of 2 prior to integration. As illustrated in Figure 4 which provides details regard-
ing the FP32 number format, power of two multiplication corresponds to adjusting the 8-bit integer
exponent which requires 30× less energy than the FP32 addition (Horowitz, 2014). Hence, the over-
head is negligible and M-LIF SNNs are considered to leverage additions instead of multiplications
like their LIF counterparts.

Our proposed approach is designed to be adaptable to various hardware architectures, including
custom ASICs or FPGAs, where the operation depicted in Figure 4 can indeed be implemented effi-
ciently. It is also worth noting that modern commercial instruction set architectures, such as x86, in-
clude specific support for efficiently scaling floating-point numbers. For example, the x87 floating-
point unit (FPU) provides specialized instructions like fscale (Intel Corporation, 2024) designed
to scale floating-point numbers by powers of two, rather than performing a general floating-point
multiplication. This indeed suggests that the operation described in Figure 4 aligns with existing
commercial hardware capabilities.

A.3 EXPERIMENTAL DETAILS

A.3.1 STATIC IMAGE CLASSIFICATION

Datasets. We employ the CIFAR datasets (Krizhevsky & Hinton, 2009) which consist of 50k train-
ing and 10k test images. CIFAR10 contains 10 classes while CIFAR100 contains 100 classes. Stan-
dard data augmentation techniques are applied to training images such as padding by 4 pixels on
each side, random horizontal flip and 32 × 32 crop by randomly sampling the padded image. Dur-
ing test, the original 32 × 32 images are used. We calculate the channel-wise mean and standard
deviation of training images and use those values to normalize both training and test data. Con-
trary to other works such as Li et al. (2024), we do not apply augmentation techniques on CIFAR
for CNN experiments such as Cutout (DeVries & Taylor, 2017) and AutoAugment (Cubuk et al.,
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TF = 20
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QF = 5 

TF = 10

Baseline: Input Layer 

Spiking Lanes Si = 1

Proposed: Input Layer 

Spiking Lanes Si = 3

Figure 5: Example image in DVS-CIFAR10 using baseline input layer encoding with TF = 10
binary frames and Si = 1 spike lane (left) and the proposed multi-level input layer encoding with
QF = 5 one-hot frames and Si = 3 spike lanes (right).

2019) in order to faithfully compare with results in Chowdhury et al. (2022). We employ the same
augmentation techniques on CIFAR when comparing with results in Yao et al. (2023).

We also employ the ImageNet dataset (Krizhevsky et al., 2012) which contains 1000 classes and
consists of more than 1250k training and 50k test images. We employ the same augmentation
techniques on ImageNet when comparing with results in Yao et al. (2023); Chowdhury et al. (2022).

Network Architectures. The VGG16 and ResNet20 architectures adopted for static image classi-
fication are taken from Chowdhury et al. (2022). Average pooling (2 × 2) is applied for all cases.
The ResNet basic blocks use a 1× 1 stride-2 convolutional layer shortcut path where the number of
input and output channels are different. The architectures of each network are summarized below
where BB denotes a basic block (He et al., 2016), D denotes a dropout layer (probability ANN: 0,
SNN: 0.2), AP2 denotes a (2×2) average pooling layer, (/2) denotes stride-2, oCk denotes a (k×k)
stride-1 convolutional layer with o output filters, oFC denotes a fully-connected layer with o output
filers, and n denotes the number of classes.

VGG16: {64C3, D, 64C3, AP2, 128C3, D, 128C3, AP2, 256C3, D, 256C3, D, 256C3, AP2, 512C3,
D, 512C3, D, 512C3, AP2, 512C3, D, 512C3, D, 512C3, D, 4096FC, 4096FC, nFC}
ResNet20: {64C3, D, 64C3, D, 64C3, AP2, 64BB, 64BB, 128BB (/2), 128BB, 256BB (/2), 256BB,
512BB (/2), 512BB, nFC}
The spike-driven transformer architectures adopted for static image classification are taken from Yao
et al. (2023). Transformer-L-D networks include spiking patch splitting followed by L spike-driven
encoder blocks and a linear classification head. The encoder blocks consist of a spike-driven self
attention layer followed by two multi-layer perceptron layers. D refers to the number of channels in
the input to the encoder blocks.

Training Hyperparameters. To train ANNs, we use a stochastic gradient descent optimizer with
weight decay of 0.0005 and momentum of 0.9. We initialize ANN weights using He initialization
(He et al., 2015). We train the ResNet20 and VGG16 ANNs for CIFAR10 and CIFAR100 during
300 epochs with an initial learning rate of 0.01 that is divided by 10 at epochs 120, 180, and 240.
We train VGG16 ANN for ImageNet during 90 epochs with an initial learning rate of 0.01 that is
divided by 5 at epochs 40, 62, and 81. We also employ batch-norm during ANN training (Ioffe &
Szegedy, 2015). We use a pre-trained ANN to initialize the parameters of a corresponding LQ-ANN
and perform training using an Adam optimizer with a weight decay of 0.0005 for 50 epochs and an
initial learning rate of 0.0001. The learning rate is divided by 5 at epochs 20, 30, and 40.

For iso-architecture M-LIF SNN initialization from a pre-trained ANN, we fuse the batch-norm
parameters with the corresponding layer’s parameters similar to Chowdhury et al. (2022). For static
image classification with VGG16 and ResNet20, we use a triangular surrogate gradient with γ =
0.3 and learn firing thresholds and membrane leakages during training as per Chowdhury et al.
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Table 4: Ablation study varying number of spike lanes with fixed T = 3 timesteps for one-hot
M-LIF VGGSNN on DVS-CIFAR10.

S Accuracy (%)

1 74.7
2 78.6
3 79.8
4 82.5
5 82.5

Table 5: Ablation study varying number of spike lanes with fixed T = 5 timesteps for one-hot
M-LIF VGGSNN on DVS-CIFAR10.

S Accuracy (%)

1 78.0
2 81.5
3 83.0
4 83.3
5 82.9

(2022). The learning rate is shared among weights, firing thresholds, and membrane leakages unless
otherwise noted. Upon initialization, we train M-LIF SNNs using an Adam optimizer with a weight
decay of 0. ResNet20 M-LIF SNNs are trained on CIFAR10 for 150 epochs with an initial learning
rate of 0.0001 that is divided by 5 at epochs 90, 120, and 135. ResNet20 M-LIF SNNs are trained
on CIFAR100 for 600 epochs with a fixed learning rate of 0.01 for firing thresholds and an initial
learning rate of 0.0002 that is divided by 2 at epochs 120, 240, 360, 450, and 540 for the remaining
parameters. VGG16 M-LIF SNNs are trained on CIFAR10 for 200 epochs. During the first 10
epochs, the learning rate is increased linearly from 0.00001 to 0.0001 and subsequently divided by
5 at epochs 62 and 150. VGG16 M-LIF SNNs are trained on CIFAR100 for 200 epochs with a
fixed learning rate of 0.001 for firing thresholds and an initial learning rate of 0.0001 that is divided
by 5 at epochs 62 and 150 for the remaining parameters. VGG16 M-LIF SNNs are also trained
on ImageNet for 50 epochs. During the first 5 epochs, the learning rate is increased linearly from
0.00001 to 0.0001 and subsequently divided by 5 at epochs 30 and 40.

For spike-driven transformers, we adopt the same hyperparameters as LIF spike-driven transformers
in Yao et al. (2023) when training their M-LIF counterparts for all experiments. We use a surrogate
gradient based on the derivative of the sigmoid function with α = 4. In order to make use of the
same hyperparameter configuration, the outputs of M-LIF neurons are scaled to be in the range [0, 1]
but continue to be powers of 2 (i.e., ∈ 1, 1

2 ,
1
4 ,

1
8 , ...). Finally, similar to (Yao et al., 2023), we use

a fixed threshold for all M-LIF neurons in spike-driven transformer experiments instead of learning
the threshold as in our experiments on other architectures.

A.3.2 DYNAMIC IMAGE CLASSIFICATION

Dataset. We employ the DVS-CIFAR10 dataset with standard data augmentation techniques as
described in Section 4.2 of the main paper. Figure 5 illustrates an example training image of a car
in DVS-CIFAR10 using the baseline input layer encoding with TF = 10 binary frames and Si = 1
spike lane (left) and the proposed multi-level input layer encoding with QF = 5 one-hot frames and
Si = 3 spike lanes (right).

Network Architecture. The VGGSNN architecture employed was taken from Deng et al. (2022)
and is described as VGGSNN: {64C3, 128C3 (/2), 256C3, 256C3 (/2), 512C3, 512C3 (/2), 512C3,
512C3 (/2), 10FC}.

Training Hyperparameters. In addition to the training settings mentioned in Section 4.2 of the
main paper, we use γ = 1.0 for all SNN surrogate gradient scaling and fix firing thresholds and
membrane leakages to 1.0 and 0.5, respectively, for all layers as per Deng et al. (2022).
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Comparison of per layer spike rate for VGG16 ImageNet

T=5 (0.25) DIET-SNN (Rathi & Roy, 2023) T=1 (0.12) Temporal Pruning (Chowdhury et al., 2022)
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Figure 6: Comparison of per-layer spike rates for VGG16 on ImageNet.

Table 6: Impact of memory access energy for static image classification using VGG16 on ImageNet.
∗ denotes self-implementation results.

Method S T Accuracy (%) Comp Energy (µJ) Mem Energy (µJ) Total Energy (µJ)

ANN* - - 72.56 7.12E+04 7.81E+05 8.52E+05
DIET-SNN (Rathi & Roy, 2023) 1 5 69.00 6.09E+03 5.88E+04 6.49E+04

Temporal Pruning (Chowdhury et al., 2022) 1 1 69.00 2.89E+03 1.55E+04 1.84E+04
BANN (Datta et al., 2024) 1 1 68.00 3.40E+03 1.71E+04 2.05E+04

1-hot M-LIF (ours) 3 1 71.05 3.37E+03 2.21E+04 2.58E+04

A.4 ABLATION STUDIES

We conducted an ablation study where we varied the number of spike lanes S while keeping the
number of timesteps T fixed at 3 for VGGSNN on DVS-CIFAR10. We provide the results below
in Table 4. Our findings indicate that as the number of spike lanes increases from S = 1 to S = 4,
there is a significant improvement in accuracy, after which performance saturates. Additionally,
when we increase the number of timesteps to T = 5 in Table 5, we see a similar performance
saturation around S = 4 timesteps. We also note that the accuracy improvement due to spike
lanes becomes less pronounced, but the overall accuracy ceiling improves. From these results, we
conclude that both timesteps and spike lanes contribute to better model accuracy with the caveat
that multi-timestep processing introduces significant energy overhead, particularly with respect to
memory access as noted in Section 4.

A.5 MEMORY ACCESS ENERGY IMPACT

Although defining a precise memory architecture requires detailed assumptions regarding weight,
input, and partial output reuse, we have included an analysis based on the memory energy model
provided in Datta et al. (2024, Appendix A.8.2) for convolutional neural networks. This model
allows us to estimate the impact of memory energy by incorporating per-layer spike rates. We
focused on VGG16 trained on ImageNet as prior works (Chowdhury et al., 2022; Rathi & Roy, 2023;
Datta et al., 2024) provide detailed per-layer spike rates, and we used the same 45nm technology
for energy modeling, allowing for consistent energy comparisons. Table 6 illustrates the impact of
memory access energy on the overall energy comparison. One-hot M-LIF SNNs consume 33× lower
energy than ANNs, while maintaining higher accuracy (up to > 3%) than prior unit-timestep SNN
works. We also observe that multi-timestep processing introduces a noticeable energy overhead. In
fact, we achieve higher accuracy compared to Rathi & Roy (2023) while consuming 2.5× less total
energy, the majority of which stems from the memory energy overhead of multi-timestep (T = 5)
processing. Figure 6 provides per layer spike rates for VGG16 ImageNet of the models compared
in Table 6.

18


	Introduction
	Background & Related Works
	Leaky Integrate-and-Fire Model
	ANN-SNN Conversion
	Direct Training
	Quantized-Activation ANNs
	Quantized-Activation SNNs

	Proposed Multi-level LIF-based SNNs: M-LIF SNNs
	Multi-level LIF Model
	One-hot Multi-level LIF Model

	Energy Consumption Estimation
	Experiments & Results
	Static Image Classification
	Implementation Details
	Comparison with SNNs
	Comparison with LQ-ANNs

	Dynamic Image Classification
	Implementation Details
	Multi-level Input Layer Encoding
	Comparison with SNNs


	Conclusion
	Reproducibility Statement
	Appendix
	Surrogate Gradient
	FP32 Power of Two Multiplication
	Experimental Details
	Static Image Classification
	Dynamic Image Classification

	Ablation Studies
	Memory Access Energy Impact


