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ABSTRACT

The rapid advancement in large language models (LLMs) has brought forth a di-
verse range of models with varying capabilities that excel in different tasks and
domains. However, selecting the optimal LLM for user queries often involves a
challenging trade-off between accuracy and cost, a problem exacerbated by the
diverse demands of individual queries. In this work, we present a novel frame-
work that formulates the LLM selection process as a multi-armed bandit prob-
lem, enabling dynamic and intelligent routing of queries to the most appropri-
ate model. Our approach incorporates a preference-conditioned dynamic routing
mechanism, allowing users to specify their preferences at inference time, thereby
offering a customizable balance between performance and cost. Additionally, our
selection policy is designed to generalize to unseen LLMs, ensuring adaptability
to new models as they emerge. Experimental results demonstrate that our method
achieves significant improvements in both accuracy and cost-effectiveness across
various LLM platforms, showcasing the potential of our framework to adaptively
optimize LLM selection in real-world scenarios.

1 INTRODUCTION

By scaling up parameters and pretraining data, large language models (LLMs) have shown remark-
able abilities across a wide range of tasks. However, while larger models tend to be more capable
and versatile, they also come with higher costs — whether in terms of computational resources, API
service fees, or increased response latency. Additionally, the growing number of domain-specific
models often outperform these large models within their specialized areas. As a result, selecting the
most suitable LLM for specific applications has become increasingly challenging for users, espe-
cially when faced with cost constraints.

Existing approaches to address the performance-cost dilemma typically fall into three categories.
Firstly, ensemble methods (Jiang et al., 2023; Wang et al., 2023) combine responses from multiple
LLMs to enhance overall performance. However, these methods require invoking multiple LLMs
for each query, leading to substantially higher costs. Secondly, cascading approaches (Ramı́rez
et al., 2024; Chen et al., 2023; 2020) sequentially invoke LLMs, starting with the least expensive
and progressing to more costly models only if the initial responses are unsatisfactory. Lastly, routing
mechanisms (Ding et al., 2024; Ong et al., 2024; Nguyen et al., 2024) direct user query to the most
appropriate LLM without invoking any of them, offering a more cost-effective solution. In this work,
we focus on the routing approach due to its flexibility and potential for optimizing cost-efficiency.

However, designing an effective routing module for real-world deployment presents several chal-
lenges. First, the routing mechanism must generalize effectively across diverse user queries, ensur-
ing robust performance across various tasks and domains. Second, it should be capable of handling
any set of models, as new LLMs are continually being developed, and users may wish to specify a
particular set based on prior knowledge. Third, the routing mechanism needs to accommodate vary-
ing user preferences, as different users may prioritize cost, performance, or other factors differently
depending on their specific requirements.

To address these challenges, we propose a preference-conditioned dynamic routing mechanism for
LLMs. We frame the LLM routing task as a multi-armed bandit problem, where each user query is
directed to the most suitable LLM based on a routing policy. Our policy leverages multi-objective
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Figure 1: The overall framework of our proposed routing mechanism.

optimization, balancing performance and cost to suit individual preferences, such as budget con-
straints or quality requirements. By identifying the Pareto front of the optimization problem, our
system provides users with an optimal trade-off between competing objectives. During deployment,
users can specify their preferences, allowing the policy to dynamically adjust its routing decisions.

In addition, our routing policy is designed to be action-space aware, allowing it to generalize across
any set of LLMs. This adaptability is crucial as it enables the policy to incorporate new models
as they become available, adjusting its routing decisions without requiring extensive retraining or
manual intervention. To facilitate learning of this action space-aware routing policy, we introduce a
model identity vector representation that captures each model’s capabilities across different tasks and
domains. This identity vector is derived by predicting evaluation scores on a diverse set of prompts.
To efficiently characterize new models, we further propose an efficient quizzing mechanism, which
only requires evaluating on a small subset of selected prompts to generate accurate identity vectors.

Our contributions are summarized as follows: 1) We formulate the routing problem as a multi-
objective optimization task, balancing the trade-off between performance and cost. 2) We propose
a preference-conditioned routing mechanism that captures the Pareto front of the multi-objective
optimization problem and adapts dynamically to user-specific preferences at inference time. 3) We
develop an action-space aware routing policy capable of generalizing to arbitrary set of LLM models.
4) We leverage a wide range of existing evaluation data, including LLM evaluation leaderboards and
pairwise model comparisons, to generalize the routing policy across a broad spectrum of user queries
and LLM routing candidates. 5) We design an efficient quizzing mechanism to obtain model identity
vectors for newly added models by evaluating only a small subset of prompts. 6) We demonstrate
the effectiveness of our routing mechanism through comprehensive evaluation across multiple tasks
and domains, showcasing superior performance.

2 METHOD

2.1 PROBLEM FORMULATION

Given a set of K large language models (LLMs), denoted as {Mk}Kk=1, we aim to develop a rout-
ing policy π : X → {1, . . . ,K} that directs any query x ∈ X to the most appropriate LLM Mk.
The routing decision results in a reward s(x, k), reflecting the generation quality of Mk, while also
incurring a cost ck for invoking the model. We formulate this task as a multi-objective optimiza-
tion problem, where the reward vector is defined as r(x, k) = [s(x, k),−ck]. Our objective is to
maximize the expected reward:

π∗ = argmax
π

Jπ = argmax
π

[
Ex∼p(x),k∼π(x)s(x, k),−Ex∼p(x),k∼π(x)ck

]
. (1)

In the context of multi-objective optimization, where the objectives often conflict with each other,
a single optimal policy that simultaneously maximizes all objectives does not exist. Instead, the
optimal policy varies according to user preferences. For instance, a user with a limited budget might
prioritize lower-cost models, even if this means compromising on generation quality. Conversely, a
user who values high-quality outputs will have to accept higher costs. By introducing a preference
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parameter ω, we define a scalarized reward rω(x, k) = ωT r(x, k). The corresponding optimal
policy πω maximizes this scalarized expected reward Ex∼p(x),k∼πω(x)rω(x, k). The collection of
all such optimal policies is referred to as the Pareto set, with their respective expected rewards Jπω

forming the Pareto front.

2.2 OVERALL FRAMEWORK

Our dynamic routing mechanism consists of two key components: a model quizzing component,
which generates a model identity vector to capture each model’s capabilities across various tasks
and domains, and a preference-conditioned routing policy, which determines model selection prob-
abilities based on user-specified preferences. Figure 1 provides an illustration of the framework. In
the subsequent sections, we expound on the design details of these components.

2.3 MODEL IDENTITY VECTOR

To accurately route queries to the appropriate LLM, we must first assess each LLM’s strengths and
weaknesses. For instance, queries requiring mathematical reasoning should be directed to LLMs
with strong math capabilities, while financial queries should be routed to models fine-tuned for
finance. We propose distilling each model’s capabilities into a dense vector based on its performance
across a diverse set of evaluation prompts.

Given a set of N evaluation prompts, X = {xn}Nn=1, which span various domains and tasks, we
collect the evaluation scores Yk = {ykn}Nn=1 for each LLM Mk. The objective is to learn a model
identity vector, Ik ∈ Rd, that can effectively predict these evaluation scores. We employ a variant
of the Item Response Theory (IRT) model (Hambleton & Swaminathan, 2013) combined with deep
neural networks to perform this prediction. Unlike the traditional IRT model, we do not learn explicit
representations for the prompts themselves; instead, we obtain prompt embeddings, en, using a
pretrained text embedding model. These pretrained embeddings allow the IRT model to generalize
effectively to unseen prompts, which, as we will discuss later, also enhances the generalization
capability of the routing policy. Based on the prompt embedding en and the model identity vector
Ik, a deep neural network f then predicts the evaluation scores as f(en, Ik).

The training process closely follows that of traditional IRT, optimizing the binary cross-entropy loss.
For non-binary evaluation scores, we binarize them by selecting a threshold that ensures the average
performance across instances is comparable. Please refer to Appendix A.1.1 for details. Letting
ȳkn represent the binarized evaluation scores and pkn = sigmoid(f(en, Ik)) represent the predicted
probabilities, the loss function can be written as

Lirt = Ex,k [−ȳkn log pkn − (1− ȳkn) log(1− pkn)] . (2)
In addition to LLM evaluation benchmarks, where each model receives an evaluation score for a
specific prompt, pairwise comparisons, where responses from two models to the same prompt are
compared, are also widely used in the LLM evaluation literature. To increase prompt diversity, we
propose leveraging these pairwise comparisons to aid in learning the model identity vectors. Given
responses from two models, Mk1 and Mk2, and the annotations zn ∈ {0, 1}, indicating the winner
of the comparison, we employ a secondary neural network, g, to predict the winning probabilities
via pn = sigmoid(g(en, Ik1)− g(en, Ik2)). The associated loss function, similarly, follows a binary
cross entropy formulation:

Lpair = Ex,(k1,k2) [−zn log pn − (1− zn) log(1− pn)] . (3)
The above loss function bears similarities to the reward model training loss, though our primary
goal here is to learn the model identity vector rather than to directly optimize rewards. Note that we
use the subscript n to index prompts in both loss functions; however, these two types of evaluations
typically occur on different prompts from separate datasets.

To enhance the generalizability of the model identity vectors to unseen models, we introduce a
prior on the model embeddings Ik using a variational inference formulation, treating the model
identity vectors as latent variables. This approach adds an additional loss term, specifically the
KL-divergence between the model identity vectors and their prior distributions:

LKL = Ek [DKL (q(Ik)∥p(Ik))] . (4)
In practice, both the prior p(Ik) and posterior q(Ik) are modeled as Gaussian, with the mean and
variance of the posterior being learnable parameters. Please see Appendix A.1 for further details.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.4 PREFERENCE CONDITIONED ROUTING POLICY

Recall that given a prompt xn, a set of LLMs {Mk}Kk=1, and a preference vector ω, the oracle routing
policy π∗ would maximize the scalarized reward rω(x, k) = ωT r(xn, k) = ωT [s(xn, k),−ck].
However, the score s(xn, k) is typically not available, as it requires running inference for model
Mk on prompt xn and evaluating the response. A potential alternative is to estimate the scores
without actually performing inference. For instance, we could use f(en, Ik) as an estimate of the
evaluation scores. This approach aligns conceptually with the methods in (Shnitzer et al., 2023; Hari
& Thomson, 2023; Šakota et al., 2024). However, predicted scores can often be inaccurate, as the
prediction model may fail to capture the finer nuances of model performance on specific prompts.
Moreover, relying solely on predicted scores ignores the uncertainty in the prediction model itself.
The discrepancy between estimated and actual utility can result in suboptimal routing decisions.
To mitigate the impact of inaccurate predictions, Shnitzer et al. (2023) introduced a sophisticated
meta-learning approach to reduce bias in the predicted scores.

Instead of relying solely on predicted scores, we advocate for learning a routing policy πθ that
directly operates on the prompts. Unlike direct score prediction, this approach allows the policy to
capture more nuanced information from the prompts and implicitly manage prediction uncertainty.
Additionally, optimizing a policy provides the flexibility to dynamically balance exploration and
exploitation, allowing the system to discover new, potentially better models for specific queries
while continuing to utilize known high-performing models, ultimately improving performance in
situations where uncertainty exists.

The routing policy πθ is formulated as a mapping from a prompt x ∈ X to a categorical distribution
over the set of K LLMs. A key challenge in learning such a routing policy is dealing with diverse
LLM routing candidates. For example, users might specify different sets of models depending
on their application needs, or new models could be added after the routing system is deployed.
Therefore, the policy must accommodate varied action spaces, where both the number of models
and the specific set of available models may change dynamically. To address the varied action
space, we condition the routing policy on the set of model identity vectors {Ik}Kk=1, which represent
the capabilities of each model. Conditioning on the action space allows the policy to be aware of all
available choices, thereby improving routing decisions even in dynamic environments. Furthermore,
we can condition the policy on other available context information, such as the cost ck and the score
prediction p̂k = sigmoid(f(x, Ik)). These context information can assist the policy to make better-
informed routing decisions across different LLM candidates. The policy is defined as

πθ(k
′ | x, {(Ik, ck, p̂k)}Kk=1) ∝ exp

(
ITk′h(x, {(Ik, ck, p̂k)}Kk=1)

)
, (5)

where h(·) is a neural network that is permutation-invariant with respect to the exchangeable set
inputs. The output of h is a vector representation in Rd, and the inner product between the network’s
output and each model’s identity vector determines which model to select according to the policy.

In addition to varied routing candidates, the policy must also incorporate different user preferences.
We extend the policy to be conditioned on the preference vector ω, enabling it to tailor decisions
based on specific user-defined priorities. Conditioning the routing policy on user preference en-
hances the policy’s ability to generalize to different user scenarios and objectives, allowing for a
more personalized and efficient routing mechanism. The routing policy is thus defined as

πθ(k
′ | x, {(Ik, ck, p̂k)}Kk=1,ω) ∝ exp

(
ITk′h(x, {(Ik, ck, p̂k)}Kk=1,ω)

)
. (6)

We optimize the policy following standard multi-objective policy gradient algorithms (Xu et al.,
2020; Shu et al., 2024), where the gradient for updating the parameters θ is given by

∇θ[ω
TJπθ

] = Ex,k′
[
ωTA(x, k′)∇θ log πθ(k

′ | x, {(Ik, ck, p̂k)}Kk=1, w)
]
. (7)

Here, A(x, k′) indicates the advantage function estimated from sampled trajectories. The cor-
responding value function Vπθ

(x, {(Ik, ck, p̂k)}Kk=1) outputs a vector of expected returns under
the current policy πθ. The parameters of the value function are updated by a squared-error loss
∥Vπθ

− Vtarg∥2, where Vtarg is the target value. Note the value function does not depend on
the preference ω, which encourages shared values estimation across different user preferences. The
vectorized value function is inspired by the core principles of multi-objective Q-learning algorithms
(Yang et al., 2019; Basaklar et al., 2022). This value network and policy gradient extension can be
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Algorithm 1 Training Procedure of Preference Conditioned Dynamic Routing
Require: Model identify vectors I , Pretraining steps T1, Training steps T2
Require: Comparison dataset V for pretraining, Evaluation leaderboard D for training
Require: Evaluation score predictor f(x, Ik), Calibration parameters α and β
Require: Routing policy πθ, Preference range [ωmin, ωmax], RL training procedure P
## Pretraining Stage
1: for step in [1, . . . , T1] do
2: sample a batch of pretraining data (x, (k1, k2), (c1, c2)) ∼ V
3: sample a batch of preference ω = [1, ω] and ω ∼ U(ωmin, ωmax) ▷uniform for cost
4: compute score predictions p̂k = sigmoid(f(x, Ik)) ▷auxiliary info to the policy
5: calibrate the score predictions p̄k = sigmoid(αf(x, Ik) + β) ▷only used to predict action
6: normalize scores p̄k = p̄k/max({p̄k}k∈{k1,k2}) and costs c̄k = ck/max({ck}k∈{k1,k2})

7: obtain routing action â = argmaxk∈{k1,k2} ω
T [p̄k,−c̄k] ▷maximize scalarized reward

8: pretrain the policy by optimizing − log π(â | x, {(Ik, c̄k, p̂k)}k∈{k1,k2},ω)
9: end for
## Training Stage

10: Initialize a replay buffer B ▷with on-manifold mixup regularization
11: for step in [1, . . . , T2] do
12: sample a batch of training data (x, {(Mk, ck, sk)}Kk=1) ∼ D ▷K is different across batches
13: sample a batch of preference ω = [1, ω] and ω ∼ U(ωmin, ωmax) ▷uniform for cost
14: normalize scores s̄k = sk/max({sk}Kk=1) and costs c̄k = ck/max({ck}Kk=1)
15: compute score predictions p̂k = sigmoid(f(x, Ik)) ▷auxiliary info to the policy
16: run the current policy a ∼ π(x, {(Ik, c̄k, p̂k)}Kk=1,ω) and obtain reward [s̄a,−c̄a]
17: update replay buffer B← (x, a, {(Mk, c̄k, s̄k)}Kk=1,ω)
18: RL training on data sampled from the replay buffer P(πθ,B) ▷with mixup interpolation
19: end for

seamlessly integrated into most existing policy gradient methods. In our implementation, we adapt
Proximal Policy Optimization (PPO) (Schulman et al., 2017), where the clipped surrogate objec-
tive is used to update policy parameters. Additionally, Generalized Advantage Estimation (GAE)
(Schulman et al., 2015) is employed to compute the advantage function A and target values Vtarg.
For detailed derivations and implementation specifics, please refer to Appendix A.2.

A key advantages of our preference-conditioned action-space-aware routing policy is its scalability.
By utilizing model identity vectors, the policy can seamlessly adapt to diverse routing candidates
and incorporate new models without requiring retraining from scratch. As additional LLMs and
domains are introduced, the policy efficiently assimilates new information, offering flexibility for
future expansion. Additionally, by accounting for user preferences, the policy remains adaptable
to varying application requirements and varying computational budgets. However, these benefits
are not solely attributed to the policy design. In the following sections, we explore the training
methodologies and regularization techniques that ensure the routing policy generalizes effectively
across various scenarios.

2.5 GENERALIZATION OF THE ROUTING POLICY

In this section, we discuss generalizing the routing policy to handle diverse user preferences, varied
routing candidates, and a wide range of prompts, while also addressing the integration of new models
into the routing system. Please refer to Algorithm 1 for pseudo code of the training procedure.

Generalize to Varied Routing Candidates To ensure the routing policy generalizes to arbitrary sets
of LLMs, it is designed to incorporate the action space as an input. To further enhance generalization
across different sets of models, we train the policy on diverse trajectories sampled from varied action
spaces. In practice, we leverage existing evaluation leaderboards, such as HELM (Liang et al., 2022),
where scores are provided for a wide range of models. During training, we randomly select sets of
models with differing cost profiles and apply the current policy to route evaluation prompts to the
most appropriate LLM. The resulting routing trajectories are stored in a replay buffer, which is used
to train the routing policy in an off-policy manner.
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Generalize to Unseen Prompts A major challenge in designing a routing system is ensuring its gen-
eralizability to unseen prompts. While LLM evaluation leaderboards like HELM (Liang et al., 2022)
already include diverse prompts, they still fall short of covering all possible user queries encountered
in practice. To diversify training data, we propose pretraining the routing policy on pairwise com-
parison datasets, such as Nectar (Zhu et al., 2023) and Chatbot Arena (Zheng et al., 2023). These
datasets feature diverse user queries but lack model-specific evaluation scores s(x, k). Instead, these
datasets provide binary winning labels, making them unsuitable for direct policy training. Training
the policy to simply predict the winning models may not align with the optimal routing choices,
especially when considering cost and user preferences. A straightforward approach might rely on
predicted scores p̂k = sigmoid(f(x, Ik)). However, inaccuracies in these predictions can degrade
routing quality. To mitigate this, we propose calibrating the predicted scores using Platt scaling
(Platt et al., 1999). Specifically, given the predicted logits f(x, Ik1) and f(x, Ik2), we fit a logis-
tic regression model to predict the binary winning label z ∈ {0, 1} with the following probability:
p(z = 1) = sigmoid(α(f(x, Ik1) − f(x, Ik2)) + β), where α and β are learnable parameters. The
calibrated scores are then computed as p̄k = sigmoid(αf(x, Ik) + β). The routing action is deter-
mined by â = argmaxk∈{k1,k2} ω

T [p̄k,−ck], and the policy is trained in a supervised manner to
predict these actions. By exposing the policy to diverse prompts during pretraining, we encourage
it to generalize to unseen queries. An alternative to the supervised pretraining is using calibrated
scores within an RL framework, however, preliminary results indicate that RL is more sensitive to
prediction errors, therefore we opt for the simpler supervised pretraining.

In addition to large-scale pretraining, research has shown that certain regularization techniques can
enhance the generalizability of RL policies (Farebrother et al., 2018; Wang et al., 2020). We adapt
the mixup regularization (Zhang, 2017), which has proven effective in RL (Wang et al., 2020), and
tailor it to our routing setting. Specifically, we introduce on-manifold mixup, where prompt embed-
dings are linearly combined with their nearest neighbors from the replay buffer. This neighborhood-
based mixup ensures that the interpolated embeddings remain on the manifold of the prompt space.
For further details, see Appendix A.3.2.

Generalize to Diverse User Preferences To accommodate diverse user preferences, we train the
policy using trajectories sampled with varying preferences. The challenge arises from the diversity
of routing candidates, as different sets of models exhibit different score and cost scales. As a result,
the same preference may lead to different trade-offs across different sets of LLMs. To address this,
we normalize the scores and costs so that the highest score and cost in each LLM set equals 1.0. We
define the preference vector as ω = [1, ω] and sample ω uniformly from the range [0, 2]. In practice,
this simple normalization approach has proven effective. We apply the normalization during both
the supervised pretraining and RL training stages. Please find further details in Appendix A.3.3.

Generalize to New Routing Candidates As LLM development progresses, new models will be
added to the routing system. Although the routing policy can handle unseen models, it is crucial to
generate a model identity vector for any newly added model, M̃ , to capture its unique strengths and
weaknesses. This vector can be derived by evaluating the model on a selected set of prompts and
optimizing the IRT prediction loss(equation 2) along with the KL loss (equation 4). The optimization
process keeps the model’s weights fixed while updating only the identity vector, Ĩ . Given a binarized
set of evaluation scores Ỹ on prompts X̃ , the model identity vector is computed as:

Ĩ = argminI Lirt+LKL = argminI

[
Ex̃ [−ȳ log p− (1− ȳ) log(1− p)] +DKL

(
q(Ĩ)∥p(Ĩ)

)]
,

(8)
where p = sigmoid(f(ẽ, Ĩ)) and ẽ is the prompt embedding for prompts x̃ ∈ X̃ . The main challenge
is selecting the most informative set of prompts, X̃ , to obtain the evaluation scores. Although
evaluating the model on all available prompts would be ideal, it is often prohibitively expensive
due to high inference costs. To reduce the cost, we propose selecting a subset of prompts through
stratified sampling, where the strata are based on the average prediction accuracy of each prompt
across existing models. Given a set of promptsX = {xn}Nn=1 and evaluation scores Yk = {ȳkn}Nn=1
for each available LLM Mk, we define the strata as:

ψn = Ek [−ȳkn log pkn − (1− ȳkn) log(1− pkn)] , (9)

where the expectation is taken over all available LLMsMk. This strata value reflects the difficulty of
each evaluation prompt: if most models struggle with a prompt xn, the corresponding strata ψn will
be high, and if the prompt is easy for most models, the strata value will be lower. Stratified sampling
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based on this difficulty ensures that the selected prompts X̃ provide an effective assessment of the
new model M̃ ’s capabilities. While the above method focuses on selecting prompts from LLM
evaluation benchmarks, it can also be extended to pairwise comparison datasets. Further details can
be found in Appendix A.3.4.

3 RELATED WORKS

LLM Ensemble, Cascade and Routing As the number of LLMs grows, there is increasing interest
in combining them to optimize performance and balance costs. LLM ensemble methods improve
response quality by aggregating outputs from multiple LLMs but incur high computational costs
since they require running inference on multiple models (Jiang et al., 2023; Wang et al., 2023; Lu
et al., 2024). LLM cascading reduces costs by invoking LLMs sequentially, starting with the least
expensive model and progressing to more costly ones until a satisfactory response is obtained (Chen
et al., 2023; Madaan et al., 2023; Ramı́rez et al., 2024). While effective in reducing costs, cascading
still requires multiple inferences, especially for complex queries, and often depends on an additional
model to assess the quality of the responses.

In contrast, LLM routing sends queries directly to the most appropriate model, requiring only a
single inference and thus offering a more cost-efficient solution. Typical routing methods rely on
performance prediction models to guide the selection of the optimal LLM. These methods either
predict downstream evaluation or reward scores for a given query prompt (Shnitzer et al., 2023; Lu
et al., 2023; Hari & Thomson, 2023; Šakota et al., 2024), or estimate win rates between pairs of
models (Ding et al., 2024; Ong et al., 2024). The chosen LLM is then selected based on predicted
performance and any additional constraints, such as cost or latency.

The most relevant work to ours is MetaLLM (Nguyen et al., 2024), which also frames the routing
task as a multi-armed bandit problem. However, MetaLLM optimizes a scalarized reward and oper-
ates on a fixed set of LLMs, limiting the learned policy to specific user preferences and a predefined
set of models. Our approach, by contrast, generalizes to varied user preferences and dynamically
adapts to new LLMs added to the system, ensuring broader applicability and greater flexibility.

Multi-objective Reinforcement Learning Multi-objective RL seeks to optimize multiple, often
conflicting reward signals within a Markov decision process, resulting in a set of Pareto-optimal
policies known as the Pareto set rather than a single optimal policy. Traditional algorithms typi-
cally aim to approximate this Pareto set by searching for a finite number of policies (Van Moffaert
& Nowé, 2014; Parisi et al., 2014; Xu et al., 2020). However, these methods face the curse of di-
mensionality, where the number of policies needed to accurately approximate the Pareto set grows
exponentially with the number of objectives. To address this, recent approaches have proposed us-
ing a single deep neural network conditioned on preferences to represent the entire Pareto set (Yang
et al., 2019; Abels et al., 2019; Basaklar et al., 2022). Another approach involves using hypernet-
works (Chauhan et al., 2023), which map user preferences to the parameters of the policy network
(Shu et al., 2024). Our routing policy aligns with the conditional neural network framework, where
a single model is conditioned on user preferences to adapt to different user requirements. We further
tailor this conditional architecture specifically for routing in LLM systems, allowing for efficient
decision-making across a diverse and expanding set of models.

Generalization in Reinforcement Learning Generalizing RL policies to new tasks, often referred
to as zero-shot RL, is a growing area of research focused on enabling policies to handle unseen tasks
without retraining (Korkmaz, 2024). Approaches typically fall into three categories: The first cat-
egory focuses on maximizing worst-case performance across tasks, often using adversarial training
(Moos et al., 2022; Dong et al., 2023). This approach is commonly used when no data is available
to identify the current task. The second category aims to compute task representations from data,
allowing agents to adapt their policies to the specific task at hand. This approach is commonly em-
ployed in multi-task RL and hidden-parameter MDPs (Konidaris & Doshi-Velez, 2014), where task
representations are inferred from exploration data within the task environment (Touati & Ollivier,
2021; Agarwal et al., 2021; Benjamins et al., 2022; Ingebrand et al., 2024). The third category lever-
ages in-context learning by feeding data from the current task directly into a pretrained transformer
as context (Melo, 2022; Brohan et al., 2022). Although transformers have demonstrated effective-
ness, their high memory consumption, training instability, and data inefficiency present challenges to
their broader application. Our routing policy falls into the second category, where the task represen-
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tation is explicitly provided as a set of LLMs and their associated costs. In a similar vein, Jain et al.
(2020) explore RL generalization to new action spaces using a VAE to learn action representations,
whereas we capture LLM capabilities via identity vectors.

In addition to task generalization, research has also explored generalizing RL policies to new obser-
vation distributions. Techniques include data augmentation (Cobbe et al., 2019; Yarats et al., 2021;
Laskin et al., 2020), specialized architectures (Lee et al., 2019b), regularization methods (Fare-
brother et al., 2018; Wang et al., 2020), invariant representation learning (Tachet et al., 2018; Zhang
et al., 2020; Agarwal et al., 2021), and adversarial observation perturbations (Zhang & Guo, 2021;
Korkmaz, 2022). Our approach explores a simple regularization technique that encourage smooth-
ness across prompt distributions.

4 EXPERIMENTS

In this section, we assess our routing policy on several popular LLM benchmarks, including HELM-
Lite (Liang et al., 2022) HELM-MMLU (Liang et al., 2022), HuggingFace OpenLLM Leaderboard
(Beeching et al., 2023), HuggingFace OpenLLM Leaderboard v2 (Fourrier et al., 2024), and Al-
paceEval 2.0 (Li et al., 2023). We divide the prompts in each leaderboard into training and test
splits. The training split is used to train the routing policy, and the test split is reserved to evaluate
the routing performance. The routing policy is first pretrained on pairwise comparison datasets, in-
cluding Chatbot Arena (Zheng et al., 2023), Nectar (Zhu et al., 2023), and a synthetic dataset from
RouteLLM (Ong et al., 2024). We train the IRT model on the same pairwise datasets and the training
splits of all leaderboards, and we use this IRT model across all evaluations. For cost estimation, we
approximate the model invocation costs based on processing and generating 1M tokens each. We
evaluate our routing policy across various LLM candidates. Please refer to Appendix B for further
details on cost estimation and experimental setup.

Following RouteLLM (Ong et al., 2024), we evaluate our approach in a scenario with two LLM
candidates, GPT-4 and Mixtral-8x7B, and compare it to RouteLLM. It is important to note that while
RouteLLM is specifically trained for this two-model configuration, our routing model is designed to
handle arbitrary sets of LLM candidates. To further test generalization, we evaluate two additional
LLM configurations for each dataset. In these multi-LLM settings, RouteLLM is not applicable, as
it is restricted to two candidates. For RouteLLM, we adjust the routing preference by specifying
different thresholds, whereas our routing models can directly take preferences as inputs. When
evaluating scenarios with only two LLM candidates, we also compare against a random baseline,
where the model is selected randomly, and the preference is adjusted according to the selection
probability. However, in scenarios with more than two LLMs, adjusting the selection probability
becomes non-trivial, so we omit the random baseline in these cases. We also compare against
a baseline that uses the predicted scores p̂k to compute utility (denoted as Predictor). Another
baseline involves training a PPO routing policy using the scalarized reward rω , but this requires
separate policies for each LLM set and preference. Lastly, we introduce an oracle policy that selects
the LLM based on the actual evaluation scores s(x, k).

Results Figure 2 shows the routing performance across 5 LLM evaluation leaderboards and vari-
ous sets of routing candidates.Our Predictor baseline already surpasses RouteLLM, demonstrating
the strength of our proposed evaluation score prediction model. Notably, our routing policy further
exceeds the Predictor baseline in scenarios where the predictor may yield inaccurate score predic-
tions. When comparing our routing model to the PPO baseline, we observe that our model achieves
comparable or better performance at the same cost across all datasets and LLM configurations, even
though PPO is specifically trained for each LLM candidate and preference setting. This highlights
the effectiveness of our preference-conditioned, action-space-aware routing policy in generalizing
to different LLM candidates and accommodating diverse user preferences. However, a noticeable
gap remains between all routing policies and the Oracle policy, indicating that there is still room for
further improvement.

Generalize to New Routing Candidates To simulate the scenario where new models are intro-
duced into the routing system, we select several unseen models from the HuggingFace OpenLLM
v2 benchmark. These models are not used for training either the IRT model or the routing policy.
For detailed evaluation settings, please refer to Appendix B.8. The identity vectors for these mod-
els are obtained by optimize equation 8 over a selected subset of prompts from the OpenLLMv2
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Figure 2: Evaluate the routing performance across 5 datasets and various sets of LLM candidates.
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(a) Cohere (b) Qwen2.5

Figure 3: Evaluate routing performance on two sets of new mod-
els. the identity vectors are obtained using 10, 20 or 50 selected
prompts, respectively.

Figure 4: Ablation studies on
different components of the rout-
ing policy.

benchmark. We explore different evaluation budgets, selecting 10, 20 or 50 prompts to obtain the
evaluation scores for these newly added models, and then optimize equation 8 with these scores.
The Predictor baseline utilizes the learned identity vectors to predict the evaluation scores, while
the PPO baseline trains the routing policy using the same set of selected prompts. For our prefer-
ence conditioned routing policy, we directly plug the identity vectors into the routing policy trained
on OpenLLMv2 (as shown in the last row of Figure 2), without further tuning on these newly added
models. Figure 3 presents the evaluation results. Overall, our routing policy outperforms the Pre-
dictor baseline and performs comparably to the PPO policy, despite the latter being specifically
trained on the new models. Additionally, our approach proves effective even with a limited number
of evaluation scores, enabling efficient onboarding of new routing candidates.

Ablation Studies Our routing policy consists of a supervised pretraining stage followed by a RL
training stage. During training, we incorporate on-manifold mixup regularization to improve gener-
alization to unseen prompts. Additionally, our policy leverages the predicted scores p̂k as contextual
information. In this section, we perform ablation studies to assess the contributions of these compo-
nents. Figure 4 presents the results when each component is removed. The results indicate that the
context information, pretraining stage, and mixup regularization all contribute to learning a more
effective routing policy.

5 CONCLUSION

In this work, we introduce a novel routing policy for selecting among LLMs based on user-specific
preferences. We frame the problem as a multi-objective optimization task, balancing performance
and cost, and proposed a preference-conditioned approach that adapts to individual user preference
at inference time. Our method generalized to new and unseen LLMs by leveraging a shared model
identity space, enabling seamless integration of new models as they emerge. Through comprehen-
sive experiments on popular evaluation benchmarks, we demonstrate the effectiveness of our routing
policy, showing its ability to generalize across a variety of LLMs, prompts and user preferences.

Despite these promising results, there are several areas for future improvement. First, we train
the routing policy in an offline setting, where all evaluation scores are pre-computed on a fixed
set of prompts. A more dynamic, online setting-where the model adapts based on real-time feed-
back—would likely improve the robustness and generaliability of the policy. Second, we treat the
cost of each model as a constant, but in practice, the cost can vary depending on factors such as
input length. Future work could explore adaptive cost modeling that takes into account the specific
input characteristics. Additionally, while our focus has been on pure LLM performance, many mod-
ern LLMs have the ability to invoke external tools or perform online searches, which could provide
richer decision-making capabilities. Incorporating these external functions into the routing policy
would be a valuable extension. Finally, although we normalize the scores and costs to align with
user preferences, more sophisticated methods for calibrating user preferences could be explored.
Setting real-valued preferences may not be intuitive for all users, and designing a more user-friendly
interface for preference input, or automating the calibration process, could improve user experience.

In conclusion, our work demonstrates the potential of adaptive, preference-based LLM routing sys-
tems in maximizing utility across multiple models. With further advancements, these systems can
be made even more robust, efficient, and user-friendly, meeting the evolving demands of LLM usage
in real-world applications.
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A METHOD

A.1 MODEL IDENTITY VECTOR

We learn the model identity vector Ik following a variational variant of the IRT model. Given
evaluation scores Yk = {ykn}Nn=1 for model Mk on a set of prompts X = {xn}Nn=1, we maximize
the following variational lower bound of the log-likelihood:

log p(ykn | xn) = log

∫
p(ykn, Ik | xn)dIk

≥ Eq(Ik) [log p(ykn | xn, Ik)]−DKL(q(Ik)∥p(Ik)).
(A.1)

Here, the model embedding Ik is treated as a latent variable, with the posterior and prior distribu-
tions over Ik denoted by q(Ik) and p(Ik), respectively. In practice, both distributions are modeled
as Gaussians, with the posterior q(Ik) = N (µk,Σk) and the prior p(Ik) = N (0, I). The posterior
mean µk and variance Σk are represented as embedding vectors of dimension d, with the variance
assumed to be diagonal. The predictive distribution p(ykn | xn, Ik) is implemented as a neural
network that concatenates of prompt and model embeddings as input and outputs the score predic-
tion logits. During training, the loss is computed over the entire evaluation benchmarks, involving
multiple prompts and models, i.e., −Ex,k log p(ykn | xn).

A.1.1 TRAINING WITH REAL-VALUED EVALUATION SCORES

Certain evaluation datasets produce real-valued evaluation scores, such as F1 and RougeL. In order
to unify the training procedure, we propose to binarize the real-valued scores. Specifically, given a
set of real-valued scores Y = {yn}Nn=1, where yn ∈ [0, 1], we find an optimal threshold η∗ so that
the average performance across instances are close to the original scores, that is

η∗ = argmin
η

(
1

N

N∑
n=1

I(yn > η)− 1

N

N∑
n=1

yn

)2

, (A.2)

where I(yn > η) is the indicator function, which equals to 1 only when the condition yn > η is true.
Therefore, the binarized evaluation scores are derived as Ȳ = {I(yn > η∗)}Nn=1.

A.2 PREFERENCE CONDITIONED ROUTING POLICY

In the main text, we derived the routing policy as
πθ(k

′ | x, {(Ik, ck, p̂k)}Kk=1,ω) ∝ ITk′h(x, {(Ik, ck, p̂k)}Kk=1,ω),

where h(·) is a neural network that is permutation invariant to the set {(Ik, ck, p̂k)}Kk=1. We achieve
the permutation invariance by using a permutation invariant embeddings of the set, implemented
via the SetTransformer architecture(Lee et al., 2019a). The prompt x is encoded using pretrained
prompt embeddings. The preference vector ω is projected through a linear layer for integration into
the routing policy. The neural network then concatenates the embeddings and passes them through
several linear layers, resulting in a vector representation in Rd. The inner product between h(·) and
each model embedding Ik′ determines which model to select based on the policy. Specifically, the
routing probability for selecting model Mk′ follows the softmax distribution:

πθ(k
′ | x, {(Ik, ck, p̂k)}Kk=1,ω) =

exp
(
ITk′h(x, {(Ik, ck, p̂k)}Kk=1,ω)

)∑K
k′′=1 exp

(
ITk′′h(x, {(Ik, ck, p̂k)}Kk=1,ω)

) . (A.3)

We train the routing policy following the multi-objective PPO algorithm, where the gradient for
updating the policy parameters θ is given by

∇θ[ω
TJπθ

] = Ex,k′
[
ωTA(x, k′)∇θ log πθ(k

′ | x, {(Ik, ck, p̂k)}Kk=1, w)
]
,

where A(x, k′) indicates the advantage function estimated via GAE (Schulman et al., 2015).
The PPO algorithm also requires a value estimation to reduce the gradient variance. Follow-
ing multi-objective RL literature (Xu et al., 2020; Shu et al., 2024), we define a value network
Vπθ

(x, {(Ik, ck, p̂k)}Kk=1) that outputs a vector of expected returns under the current policy πθ. The
value estimation is not conditioned on the preference, therefore, it can be shared across different
user preferences. We train the values network by optimizing a MSE loss ∥Vπθ

−Vtarg∥2, where
Vtarg indicates the target values estimated via GAE.
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A.3 GENERALIZATION OF THE ROUTING POLICY

In this section, we discuss the training procedure of the dynamic routing policy, which is designed
to enhance the generalizability of the policy to various scenarios.

A.3.1 SUPERVISED PRETRAINING

The supervised pretraining stage leverages diverse prompts from pairwise comparison datasets to en-
hance generalization to unseen prompts. Given a pairwise comparison dataset V , where each exam-
ple consists of a prompt xn, a pair of modelsMk1 andMk2, and a winning label zn ∈ {0, 1}, we first
train a logistic regression model to calibrate the predicted evaluation scores, p̂ = sigmoid(f(x, Ik)),
using the winning label zn. Specifically, the logical regression model predicts the wining probability
as p(zn = 1) = sigmoid(α(f(xn, Ik1) − f(xn, Ik2)) + β), where α and β are learnable param-
eters. After training, the calibrated evaluation scores are given by p̄ = sigmoid(αf(x, Ik) + β).
The calibration follows the well-known Platt scaling (Platt et al., 1999) algorithm, which refines the
evaluation scores using human-labeled winning labels to produce more accurate predictions.

With the calibrated evaluation scores p̄ on a prompt x and a user preference vector ω, the routing
action is determined by â = argmaxk∈{k1,k2} ω

T [p̄k,−ck]. We then pretrain the routing policy in
a supervised manner using the following negative log-likelihood loss:

Lpretrain = − log π(â | x, {(Ik, ck, p̂k)}k∈{k1,k2},ω). (A.4)
It is important to note that the policy utilizes the original predicted scores p̂ as input, rather than the
calibrated scores, to maintain consistency with the subsequent RL training stage.

A.3.2 ON-MANIFOLD MIXUP REGULARIZATION

The mixup regularization technique was initially introduced for supervised learning tasks (Zhang,
2017), where new input-output pairs are generated by taking convex combinations of pairs of train-
ing samples. Wang et al. (2020) extended this approach to RL, where observations and their asso-
ciated supervision signals from two transitions are combined convexly. In our case, the observation
corresponds to the prompt embeddings. However, naively combining two prompt embeddings may
produce vectors that lie outside the prompt manifold. To address this, we use the nearest neighbor
from the replay buffer for each prompt x. Given the embedding e for prompt x and the embedding
en for its nearest neighbor, the interpolated prompt embedding is obtained as:

ê = λe+ (1− λ)en, (A.5)
where λ ∼ Beta(ξ, ξ), and ξ is a hyperparameter, set to 0.2 as recommended in the original mixup
paper. To train the routing policy on the interpolated prompt embeddings using PPO, we similarly
interpolate the associated supervision signals:

π̂old = λπold + (1− λ)π(n)
old

Â = λA+ (1− λ)An

V̂targ = λVtarg + (1− λ)V(n)
targ

(A.6)

The interpolated routing action â is chosen as a if λ > 0.5, otherwise an. Similarly, routing-relevant
parameters, including Ik and ω are chosen based on λ as well.

A.3.3 REWARD NORMALIZATION

Our routing policy is designed to generalize across different sets of LLM candidates. However,
the varying score and cost scales across these sets can pose challenges. For instance, routing deci-
sions involving proprietary API models often involve higher costs compared to open-source models,
where the cost is significantly lower. These discrepancies in scale can complicate the training of
the routing policy, as the preference vector must be adjusted to suit each scenario. Moreover, the
same preference vector might favor higher costs for one set of models while preferring lower costs
for another, introducing inconsistency and instability during training. To address this, we propose
normalizing both the scores and costs across all LLM sets. Given a set of LLMs {Mk}Kk=1 with
scores {sk}Kk=1 and costs {ck}Kk=1, we normalize the scores and costs by

s̄k = sk/max({sk}Kk=1), c̄k = ck/max({ck}Kk=1). (A.7)
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This normalization ensures that both scores and costs are scaled such that their maximum value
is 1.0. By standardizing the range of values, the policy can learn a consistent mapping from user
preferences to routing decisions across various LLM sets. This approach prevents the policy from
disproportionately favoring either high-cost or low-cost models based purely on their relative scales,
promoting more balanced decisions that accurately reflect trade-offs between performance and cost.

In theory, the preference vector ω can take any value in the range of [0,∞). However, for simplicity,
we define it as ω = [1, ω], fixing the preference weight for scores at 1 and only varying the weight
for cost. When ω = 0, the model selection prioritizes high scores regardless of cost, while ω = ∞
indicates a preference for the lowest-cost model. In practice, we found that sampling ω from the
range [0, 2] effectively captures the Pareto front.

A.3.4 STRATIFIED SAMPLING

Generalizing the routing policy to a new model M̃ requires to obtain its identity vector Ĩ , which cap-
tures the model’s unique strengths and weaknesses. However, evaluating the model on all available
prompts is often prohibitively expensive, especially when new models are frequently introduced.
In order to reduce the evaluation cost, we propose selecting a subset of informative prompts that
effectively assess the model’s capabilities. Specifically, given a set of prompts X = {xn}Nn=1 and
the binarized evaluation scores Yk = {ȳkn}Nn=1 for each available LLMMk, we assess the difficulty
of each prompt based on the average prediction accuracy across all models Mk, i.e.,

ψn = Ek [−ȳkn log pkn − (1− ȳkn) log(1− pkn)] .
We then apply stratified sampling using the difficulty ψn as the strata. The stratified sampling
ensures the selected prompts covers a range of difficulties, from easy to hard, providing a more
balanced and informative assessment of the model’s strengths and weaknesses. Once the subsets X̃
is selected, the model identity vector is computed as:

Ĩ = argminI Lirt+LKL = argminI

[
Ex̃ [−ȳ log p− (1− ȳ) log(1− p)] +DKL

(
q(Ĩ)∥p(Ĩ)

)]
,

where p = sigmoid(f(ẽ, Ĩ)), and ẽ is the prompt embedding for prompts x̃ ∈ X̃ .

The stratified sampling approach described above can also be extended to sample prompts from
pairwise comparison datasets. Given a pairwise comparison dataset V , where each example consists
of a prompt xn, a pair of modelsMk1 andMk2, and a winning label zn ∈ {0, 1}. We first assess each
model’s capability using Elo score (Elo, 1967). The Elo scores are then used as strata to sample a set
of models as the comparison baselines. For each baseline Mk, we uniformly select a set of prompts
Xk on which to run inference with the new model M̃ and compare its performance to the baseline
Mk. After obtaining the baseline models and pairwise comparison labels, the model identity vector
is computed as:

Ĩ = argminI Lpair + LKL. (A.8)

In our experiments, we opted to sample prompts from existing evaluation benchmarks for simplicity.
We leave the exploration of sampling from pairwise comparison datasets as future work.

B EXPERIMENT

B.1 MODEL COST

In Table B.1, we list the costs for each model. For proprietary APIs, the costs are based on their
official API pricing, while for open-source models, we reference pricing from TogetherAI1. All
costs are normalized by estimating the expense of processing 1 million input tokens and generating
1 million output tokens.

B.2 DATASET STATISTICS

Our framework consists of three training stages: First, we train the IRT model to obtain model
identity vectors I and the evaluation score prediction model f . Second, we perform supervised

1https://www.together.ai/pricing
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Table B.1: The estimated cost of invoking the models for processing 1M input tokens and generating
1M output tokens.

Model Cost ($)

gpt-3.5-turbo-0125 2
gpt-3.5-turbo-0301 3.5
gpt-3.5-turbo-0613 3.5
gpt-3.5-turbo-1106 3
gpt-4-0125-preview 40
gpt-4o-2024-05-13 20

gpt-4o-mini-2024-07-18 0.75
gpt-4 90

gpt-4-1106-preview 40
gpt-4-turbo-2024-04-09 40

gpt-4-turbo 40

claude-3-opus 90
claude-3.5-sonnet 18
claude-3-sonnet 18
claude-3-haiku 1.5

claude-2.1 32
claude-2 32

claude-instant 3.2
claude-1 32

gemini-pro-1.5 14
gemini-flash-1.5 0.375

llama3.1-405b 9
llama3.1-70b 1.584
llama3.1-8b 0.324
llama3-70b 1.584
llama3-8b 0.324

mistral-large 12
mistral-medium 10.8

mistral-small 8
mixtral-8x22b 2.16
mixtral-8x7b 1.08
mixtral-7b 0.36

command-r-plus 18
command-r 2
command 3

command-light 0.9

qwen-1.5-110b 3.24
qwen-1.5-72b 1.62

yi-large 6
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Table B.2: Two types of datasets used in the training process.
Category Dataset # Prompts # Models

Pairwise Model Comparison

berkeley-nest/Nectar2 182954 39
lmsys/lmsys-arena-human-preference-55k3 39716 64

lmsys/chatbot arena conversations4 18320 20
lmsys/mt bench human judgments5 894 6

routellm/gpt4 judge battles6 84864 2

Single Model Evaluation

AlpacaEval 2.07 805 61
HELM-Lite8 13021 61

HELM-MMLU9 14042 45
OpenLLM Leaderboard10 14617 41

OpenLLM Leaderboard v211 21606 39

pretraining of the routing policy on diverse prompts. Third, we train the routing policy using a
reinforcement learning procedure. Below, we summarize the datasets used in each training stage.

The datasets used in this work fall into two categories: First, pairwise comparison datasets, where
annotations indicate which of two models provides a higher-quality response. Second, LLM evalu-
ation datasets, which provide evaluation scores for various models on a set of prompts. Table B.2
summarizes the statistics of these two types of datasets. We apply basic preprocessing, such as
removing multi-turn prompts and excluding ties from pairwise comparisons. For LLM evaluation
benchmarks, we select a subset of popular LLMs. Please see Table B.3 for the full list of LLMs
involved in this work.

The IRT model is trained using the pairwise comparison datasets and the training splits of the eval-
uation datasets. The pretraining stage also uses these pairwise comparison datasets. For the policy
training stage, the routing policy is trained separately on each LLM evaluation dataset. We do not
train the policy across different evaluation benchmarks, as they employ different scoring mecha-
nisms, leading to variations in score scales.

B.3 TRAINING THE IRT MODEL

The IRT model for evaluation outcome prediction consist of four component: the prompt represen-
tation e, the model identity vector I , the evaluation score predictor f(e, I), and the pairwise winner
predictor g(e, I). The prompt representation e is obtained using a pretrained text embedding model,
meaning it contains no learnable parameters. The model identity vector is initialized as random
embeddings for each model listed in Table B.3, with the embedding dimension set to 128. The
two neural networks, f and g, share a common backbone, differing only in their final linear layer.
This shared architecture encourages the model identity vector to capture both types of evaluation
outcomes, enabling more accurate representation of each model’s strengths and weaknesses.

The IRT model is trained using both the pairwise comparison datasets and the training splits of the
evaluation datasets, with a combined loss function, Lirt+Lpair. The model is trained for 10 epochs
with a batch size of 256. We use the Adam optimizer with a learning rate of 0.001. The learning
rate is decayed by 0.95 after each epoch. We did not conduct extensive hyperparameter tuning, and

2https://huggingface.co/datasets/berkeley-nest/Nectar
3https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
4https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
5https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
6https://huggingface.co/datasets/routellm/gpt4_judge_battles
7https://tatsu-lab.github.io/alpaca_eval/
8https://crfm.stanford.edu/helm/lite/latest/
9https://crfm.stanford.edu/helm/mmlu/latest/

10https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_
leaderboard

11https://huggingface.co/spaces/open-llm-leaderboard/open_llm_
leaderboard
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Table B.3: The models used in this work for training and evaluating the routing policy.
ai21 j2-grande ai21 j2-jumbo ai21 jamba-instruct alpaca-7b

alpaca-13b chatglm-6b chatglm2-6b chatglm3-6b
claude-1 claude-2.0 claude-2.1 claude-instant-1

claude-instant-1.2 claude-3-5-sonnet-20240620 claude-3-opus-20240229 claude-3-sonnet-20240229
claude-3-haiku-20240307 cohere command-r cohere command cohere command-r-plus

cohere command-light cohere command-xlarge codellama-7b-instruct codellama-13b-instruct
codellama-34b-instruct codellama-70b-instruct deepseek-llm-67b-chat dolly-v2-12b

dolphin-2.2.1-mistral-7b dialogpt-large falcon-180b-chat falcon-40b-instruct
falcon-7b-instruct fastchat-t5-3b flat-t5-small gemini-1.0-pro

gemini-1.5-pro gemini-1.5-flash gemini-pro-dev-api gemma-2-9b-it
gemma-2-27b-it gemma-2b-it gemma-7b-it recurrentgemma-2b-it

recurrentgemma-9b-it google-text-unicorn google-text-bison gpt2
gpt2-large gpt2-medium gpt2-xl gpt-3.5-turbo-0125

gpt-3.5-turbo-0314 gpt-3.5-turbo-0613 gpt-3.5-turbo-1106 gpt-4-0125-preview
gpt-4 gpt-4-0314 gpt-4-0613 gpt-4-1106-preview

gpt-4-turbo-2024-04-09 gpt-4o-2024-05-13 gpt-4o-mini-2024-07-18 gpt4all-13b-snoozy
guanaco-13b guanaco-33b guanaco-65b guanaco-7b

koala-13b llama-13b llama-65b llama-2-13b-chat
llama-2-70b-chat llama-2-7b-chat llama2-70b-steerlm-chat llama-3-70b-instruct

llama-3-8b-instruct llama-3.1-405b-instruct-turbo llama-3.1-70b-instruct-turbo llama-3.1-8b-instruct-turbo
luminous-base luminous-supreme luminous-extended mamba-gpt-7b-v2
metamath-13b metamath-70b mistral-7b-instruct-v0.1 mistral-7b-instruct-v0.2

mistral-7b-instruct-v0.3 mistral-large mistral-medium mistral-small
mixtral-8x7b-instruct-v0.1 mixtral-8x22b-instruct-v0.1 mpt-30b-chat mpt-7b-chat

nous-hermes-2-mixtral-8x7b-dpo oasst-pythia-12b opt-1.3b opt-2.7b
opt-350m opt-6.7b opt-iml-max-1.3b opt-iml-max-30b

openchat-3.5 openchat-3.5-0106 openhermes-2.5-mistral-7b phi-2
phi-2-dpo phi-2-sft phi-3-medium phi-3-small
phi-3-mini palm-2 pythia-12b pplx-70b-online

pplx-7b-online palmyra-x-v3 palmyra-x-v2 qwen-14b-chat
qwen1.5-0.5b-chat qwen1.5-1.8b-chat qwen1.5-4b-chat qwen1.5-72b-chat
qwen1.5-14b-chat qwen1.5-32b-chat qwen1.5-7b-chat qwen1.5-110b-chat

qwen1.5-moe-a2.7b-chat qwen2-0.5b-instruct qwen2-1.5b-instruct qwen2-7b-instruct
qwen2-72b-instruct rwkv-4-raven-1b5 rwkv-4-raven-3b rwkv-4-raven-7b
rwkv-4-raven-14b solar-10.7b-instruct-v1.0 stablelm-tuned-alpha-7b starling-lm-7b-alpha

stripedhyena-nous-7b text davinci 001 text davinci 002 text davinci 003
tulu-2-dpo-7b tulu-2-dpo-13b tulu-2-dpo-70b ultralm-13b
ultralm-65b vicuna-13b vicuna-33b vicuna-7b
wizardlm-7b wizardlm-13b wizardlm-70b yi-6b-chat
yi-34b-chat yi-large yi1.5-6b-chat yi1.5-9b-chat

yi1.5-34b-chat zephyr-7b-alpha zephyr-7b-beta
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no signs of overfitting were observed during preliminary experiments. Additionally, training beyond
10 epochs did not lead to further improvements in validation performance and downstream routing
performance.

B.4 SUPERVISED PRETRAINING OF THE ROUTING POLICY

The supervised pretraining stage for the routing policy optimizes the following negative log-
likelihood − log π(â | x, {(Ik, c̄k, p̂k)}k∈{k1,k2},ω) using the pairwise comparison dataset V .
Given two models Mk1 and Mk2 compared on the prompt x, we first sample a preference vec-
tor ω = [1, ω], where ω is uniformly sampled from the predefined distribution U(ωmin, ωmax).
The routing decision is then estimated as â = argmaxk∈{k1,k2} ω

T [p̄k,−c̄k], where c̄k repre-
sents the normalized cost c̄k = ck/max(ck1, ck2), and p̄k represent the calibrated evaluation score
p̄k = sigmoid(αf(x, Ik) + β). The evaluation scores are further normalized by dividing by the
maximum calibrated scores, ensuring consistency with the scale used in the RL training stage. Note
that these calibrated and normalized scores are used only for routing action estimation during pre-
training, the policy takes in the original score prediction p̂k = sigmoid(f(x, Ik)) as auxiliary inputs,
since the normalized scores are not available during the test phase.

The pretraining stage runs for 500 steps with a batch size of 1024, using the Adam optimizer with
a learning rate of 0.001. The calibration parameters, α and β, are learned by fitting a logistic
regression model. Again, we did not conduct extensive hyperparameter tuning, further tuning may
improve the performance.

B.5 RL TRAINING OF THE ROUTING POLICY

The RL training stage follows a modified PPO procedure tailored for the multi-objective optimiza-
tion task. Specifically, from the evaluation leaderboard D, we sample K models, {Mk}Kk=1, as
routing candidates. The costs ck of these models are normalized by c̄k = ck/max({ck}Kk=1), and
the their evaluation scores sk are normalized by s̄k = sk/max({sk}Kk=1). The user preference
ω = [1, ω] and ω is sampled from the distribution U(ωmin, ωmax). The training process starts
with generating the trajectories following the current policy a ∼ π(x, {(Ik, c̄k, p̂k)}Kk=1,ω). The
multi-objective reward for action a is represented as a vector [s̄a,−c̄a]. We update the replay buffer
with these sampled trajectories and use samples from the buffer to train the policy. For mixup
regularization, we identify the nearest neighbor for each sampled prompt and perform a weighted
linear combination of the prompt embedding and its neighbors, where the weights are drawn from
Beta(0.2, 0.2). Both the reward and the advantage are linearly combined using the same weights.

At each training step, we sample 256 new prompts, along with their routing candidates and prefer-
ence vectors, to obtain the routing trajectories and update the replay buffer. The training stage runs
for 500 steps with a batch size of 256, using Adam optimizer with learning rate of 0.001.

B.6 EVALUATION SETUP

We evaluate the routing performance on 5 LLM evaluation benchmarks and various sets of routing
candidates. Table B.4 presents the detailed evaluation settings.

B.7 BASELINES

In this section, we describe the implementation details of the baseline methods.

B.7.1 ROUTELLM

RouteLLM (Ong et al., 2024) develops a model that predicts the winning label between a pair of
LLMs and selects the model based on a threshold applied to the predicted probability. To account
for varying user preferences, we evaluate RouteLLM using a range of different thresholds.
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Table B.4: Evaluation settings.
Benchmark Setting Models

AlpacaEval 2.0 GPT4/Mixtral-8x7B gpt4 1106 preview
Mixtral-8x7B-Instruct-v0.1

GPT Family gpt-3.5-turbo-0301
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106
gpt-4-0125-preview
gpt-4o-2024-05-13

gpt4
gpt4 0314
gpt4 0613

gpt4 1106 preview

Claude Family claude
claude-2

claude-2.1
claude-3-5-sonnet-20240620

claude-3-opus-20240229
claude-3-sonnet-20240229

claude-instant-1.2

HELM-MMLU GPT4/Mixtral-8x7B gpt4 1106 preview
mixtral-8x7b-32kseqlen

Mistral Family mistral-7b-instruct-v0.3
mixtral-8x22b

mixtral-8x7b-32kseqlen

GPT Family gpt-3.5-turbo-0613
gpt-4-0613

gpt-4-1106-preview
gpt-4o-2024-05-13

HELM-Lite GPT4/Mixtral-8x7B gpt4 1106 preview
mixtral-8x7b-32kseqlen

Mistral Family mistral-7b-instruct-v0.3
mixtral-8x7b-32kseqlen

mixtral-8x22b

GPT Family gpt-4o-2024-05-13
gpt-4o-mini-2024-07-18

gpt-3.5-turbo-0613
gpt-4-0613

gpt-4-1106-preview

OpenLLM Yi1.5 Family Yi-1.5-34B-Chat
Yi-1.5-6B-Chat
Yi-1.5-9B-Chat

Mistral Family Mistral-7B-Instruct-v0.2
Mixtral-8x22B-Instruct-v0.1
Mixtral-8x7B-Instruct-v0.1

LLaMA3 Family Llama-3-70B-Instruct
Llama-3-8B-Instruct

OpenLLMv2 Yi1.5 Family Yi-1.5-34B-Chat
Yi-1.5-6B-Chat
Yi-1.5-9B-Chat

Qwen2 Family Qwen2-0.5B-Instruct
Qwen2-1.5B-Instruct
Qwen2-72B-Instruct
Qwen2-7B-Instruct

LLaMA3 Family Llama-3-70B-Instruct
Llama-3-8B-Instruct
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table B.5: Evaluation setting fro new routing candidates.
Benchmark Setting Models

OpenLLMv2 Cohere aya-23-35B
aya-23-8B

Qwen2.5 Qwen2.5-0.5B-Instruct
Qwen2.5-1.5B-Instruct
Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

B.7.2 PREDICTOR

The predicted evaluation scores p̂k = sigmoid(f(x, Ik)) can be used directly to compute the scalar-
ized reward for an LLM Mk as rω(x, k) = ωT [p̂k,−ck]. The routing decision is then made by
selecting â = argmaxk rω(x, k).

B.7.3 RANDOM

The random routing policy selects models based on predefined probabilities for each model. Dif-
ferent user preferences are reflected by adjusting these probabilities. However, when there are more
than two LLM candidates, specifying the probabilities becomes non-trivial, so we omit the random
baseline in these scenarios.

B.7.4 ORACLE

The oracle routing policy selects the model based on the actual evaluation scores, making the routing
decision as â = argmaxk rω(x, k) = argmaxk ω

T [s(x, k),−ck], where s(x, k) represents the true
performance score for model Mk on prompt x.

B.7.5 PPO

For each LLM candidate set and each user preference, we train a separate PPO routing policy to
maximize the scalarized reward rω(x, k) = ωT [s(x, k),−ck].

B.8 GENERALIZE TO NEW ROUTING CANDIDATES

To simulate the scenario where new models are introduced into the routing system, we select several
unseen models from the HuggingFace OpenLLM v2 benchmark. These models are not used for
training either the IRT model or the routing policy. Table B.5 shows the detailed evaluation settings.
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