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ABSTRACT

We introduce the Solid Harmonic Wavelet Bispectrum, an operator for 2D images
that computes third-order correlations over angular frequency components of solid
harmonic wavelet responses. By using angular rather than spatial frequencies,
our bispectrum achieves lower dimensionality than traditional 2D scattering-based
bispectra, avoiding comparisons across two spatial dimensions while still preserv-
ing rich frequency information. Extending these bispectra to first- and second-
order scattering coefficients produces low-dimensional multi-scale features that
capture detailed image structure. To illustrate the quality of the representations,
we use k-nearest neighbors, which highlights that our features encode meaning-
ful similarity structure even without a learned parametric classifier. Results on
texture, medical, and galaxy images demonstrate that these features show im-
proved separability and similarity structure compared to existing geometric and
deep learning-based representations.

1 INTRODUCTION

Designing discriminative features that remain robust to geometric variability is essential in super-
vised learning. A common strategy is to exploit symmetries—transformations such as translations
and rotations that preserve labels—by constructing representations that are covariant under these
actions and then pooling to obtain invariants. This principle underlies many methods in harmonic
analysis and group-based learning, and is particularly valuable in domains like computational chem-
istry, astronomy, and medical imaging, where data is costly and interpretability matters.

Convolutional Neural Networks (CNNs) achieve strong performance through end-to-end optimiza-
tion, but they lack built-in geometric priors and typically require large datasets and augmentation.
Geometric deep learning introduces equivariant architectures to encode symmetry, yet these ap-
proaches depend on predefined groups, large parametric models, and heavy training, which can re-
duce transparency and compromise analytical guarantees. By contrast, wavelet scattering networks
(Bruna & Mallat, [2013)) provide invariance by design using cascades of predefined filters, modu-
lus nonlinearities, and averaging. Wavelet Scattering operators have matched deep learning base-
lines with simple classifiers in tasks such as texture discrimination (Sifre & Mallat, [2014)), quantum
molecular regression (Eickenberg et al.,|2017), and object classification (Oyallon et al., 2014). A key
limitation, however, is that the modulus operator discards phase information, restricting scattering
networks to second-order statistics.

We introduce the Solid Harmonic Wavelet Bispectrum (SHWB), an operator that unifies multi-scale
analysis, higher-order statistics, and group invariance. Bispectral analysis preserves phase couplings
lost by power spectra or modulus operators, but prior formulations in the Fourier domain were
not adapted to geometric invariance. Our approach computes third-order correlations over solid
harmonic wavelet responses, capturing nonlinear interactions between rotational components at each
scale. By spanning one angular frequency instead of two spatial frequencies, SHWB yields compact,
frequency-preserving representations that are covariant to roto-translations and can be integrated
to form invariants. Extending bispectral analysis to first- and second-order scattering coefficients
further enriches the representation while keeping dimensionality low.
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A key methodological choice is to evaluate SHWB features in isolation with simple classifiers, fol-
lowing prior work on scattering (Bruna & Mallat, 2013 |Eickenberg et al.,|2017) and linear probes for
representation learning (Alain & Bengio, 2016). This avoids conflating the quality of the representa-
tion with classifier capacity, reduces computational cost, and highlights the intrinsic discriminative
power of the features. Despite this minimalist evaluation, SHWB achieves competitive or superior
performance to deep learning baselines across textures, medical images, and a ~20K-image astro-
physics dataset, where simple models such as k-nearest neighbors already reveal strong similarity
structure in the proposed feature space.

2 RELATED WORK

Wavelet and Scattering Methods. Invariant feature extraction has long been studied in harmonic
analysis. Multiresolution analysis (Mallatl |1989) and steerable wavelets (Freeman & Adelson,|1990;
Simoncelli et al., [1992)) decompose signals into multi-scale orientation-separable filters, providing
translation and rotation invariance. Wavelet scattering networks (Bruna & Mallat, 2013) extend
this with cascades of wavelet transforms, modulus nonlinearities, and spatial averaging, offering
stability to deformations while retaining interpretability. Steerable (Sifre & Mallat, 2013) and solid
harmonic wavelets (Eickenberg et al., [2017) further capture roto-translation invariants, achieving
strong results in texture classification, molecular regression, and related tasks. The main drawback is
that the modulus operator discards phase and restricts scattering to second-order statistics, although
Mallat et al.|(2019) showed how phase correlations can be reintroduced in sparse signals. Our work
extends this line by incorporating bispectral statistics into solid harmonic scattering to preserve
discriminative phase interactions while maintaining invariance.

Geometric Deep Learning. Geometric deep learning develops neural architectures that respect the
symmetries of data by ensuring equivariance to group actions. Group-equivariant CNNs (G-CNNs)
(Cohen & Welling, 2016) and harmonic networks (H-Nets) (Worrall et al., [2017) exemplify this
approach, where feature maps transform predictably under rotations or translations. Invariance is
typically obtained only after additional pooling or integration over the group. Bispectral neural
networks (Sanborn et al.l 2023) move closer to invariance by learning bispectral coefficients that
collapse transformed inputs into identical representations, but this requires large parametric models
and orbit-based supervision. By contrast, our method produces invariants analytically and by con-
struction, without training or group-specific pooling, allowing simple classifiers to operate directly
on the features while retaining interpretability and computational efficiency.

Higher-Order Spectra. Higher-order statistics, such as the bispectrum, capture phase correla-
tions lost by second-order statistics. Higher-order spectral analysis originates from studies of non-
Gaussian signals, with applications in fields such as oceanography, telecommunications, and plasma
physics (Nikias & Raghuveer, [1987). This was extended to multi-scale bispectral analysis over
wavelet transforms (van Milligen et al.l [1995; Jamsek et al.,2007; Jamsek et al.,|2010)), while New-
man et al.| (2021) proposed a normalised “bispectral density” subject to wavelet parametrisation.
However, such approaches remain sensitive to rotation, lacking geometric invariance. On the other
hand, |[Kakaralal (2012)) projected signals onto solid harmonics before computing the Fourier bis-
pectrum. |[Kondor| (2007) projected images onto the unit sphere and decomposed them into solid
harmonics, though at the cost of distortions due to spherical projection and redundant computation.

While prior work has addressed invariance or higher-order statistics separately, few methods unify
both in an interpretable, efficient, and empirically competitive manner. SHWB aims to fill this gap.

3 SoOLID HARMONIC WAVELET BISPECTRUM

3.1 BACKGROUND: SOLID HARMONIC WAVELET TRANSFORM

The Solid Harmonic Wavelet Transform (SHWT) [Eickenberg et al.| (2017) provides multiscale roto-
translation covariant features for 2D and 3D signals. Solid harmonics, solutions of the Laplace
equation in polar or spherical coordinates, form a complete basis on the unit circle or sphere. Local-
ized solid harmonic wavelets are obtained by modulating them with a Gaussian envelope, yielding
band-pass, zero-mean filters.
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In 2D, a wavelet at scale j and angular frequency ¢ is
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normalized to unit energy. Varying j and ¢ produces a filter bank; the case / = 0 reduces to an
isotropic Gaussian low-pass. This aligns with the principles of multiresolution analysis (Mallat,
1989)), enabling the capture of both coarse- and fine-scale structures. A visualization of the resulting
wavelets is included in Appendix[A.2]

For a signal = and location u = (7 cos ¢, 7 sin )T
and frequency / is

, the solid harmonic wavelet transform at scale j

Wiz, j, l)(u) = (xx j.0)(w)- 2)

The Solid Harmonic Wavelet Scattering transform applies a modulus non-linearity to remove phase
and yield roto-translation covariance,

Ulz, j, )(u) = |z 5 ;] (u). 3)
Higher-order features are obtained by cascading this operation, e.g.
Ulz, j1, 01, j2, €] (u) = |U[, j1, €1] * ¥y, .0, | (). “)

Integration over u reduces these covariant responses to invariants spanning scales j, and angular
frequencies /.. However, the modulus discards phase information, which motivates redundant filter-
bank designs and dedicated phase-recovery methods Waldspurger et al.| (2015). In contrast, higher-
order spectra explicitly reintroduce phase relationships by encoding nonlinear interactions between
frequency components. We review these next.

3.2 BACKGROUND: HIGHER-ORDER SPECTRA

Second-order statistics, such as the power spectrum P(f) = |2(f)|?, describe the distribution of
energy across frequencies but discard phase information, limiting their ability to represent structure
in natural signals (Oppenheim & Limy, [1981}; Skarbnik et al., 2010).

Higher-order spectra extend to third- and fourth-order statistics, namely the bispectrum and trispec-
trum. The bispectrum captures quadratic phase coupling among components f1, fo, and f1 + fa:

B(f1, f2) = 2(f1) 2(f2) 2(f1 + f2)- )
If we write the above terms as complex numbers of amplitude ay and phase ¢, we have
afyapyaf 4 p,e (P11 T9=%n+s) Therefore, the bispectrum maintains information about the phase

interactions but its magnitude also reflects underlying power at each frequency. To separate coupling
from power, one defines the bicoherence:
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which is bounded between 0 and 1, with values near 1 indicating strong phase coupling.

3.3 SoLID HARMONIC WAVELET BISPECTRUM

The Solid Harmonic Wavelet Bispectrum (SHWB) extends the scattering framework by capturing
higher-order, phase-preserving interactions between solid harmonic wavelet responses across angu-
lar frequencies. For a signal z, at scale j and angular frequencies ¢, {2, we define the bispectrum in
the Fourier domain as

SHWB[(E,j, €1>£2](f) = W[l‘,],fﬂ(f) : W[:L‘7j7f2](f) : W[(.C,j, 0+ g?](f)v @)

where f indexes spatial frequencies (horizontal and vertical), and W[x, J,¢] is the Fourier transform
of the wavelet response.
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As shown by [Eickenberg et al.| (2017), a rotation R, € SO(2) of angle y applied to a signal z acts
on the solid harmonic wavelet responses by a multiplicative phase factor:
WI[R,x,j, ] = "R, W |z, j, ). (8)
Substituting Equation [§] into [7}, and using the constraint {3 = ¢; + {5, the phase factors cancel,
yielding rotational covariance:
SHWBIR, z, j, 1, ¢2](f) = RySHWBI|z, j, {1, L2](f). 9)

so the bispectrum is rotation-covariant. In contrast to scattering networks with Morlet wavelets,
which achieve invariance by discarding phase via a modulus nonlinearity, SHWB retains complex
phase information while still achieving covariance.

Roto-translation invariance and L, integration. For real valued signals, due to Hermitian sym-
metry integration over spatial frequencies produces a real-valued, roto-translation invariant feature:

SHWB[z, j, (1, (5] = / SHWBz, j, (1, 65](f) df. (10)
f

To enrich the representation and capture different aspects of the spatial-frequency distribution, we
compute these integrals using various L, norms:

1

SHWB[xajWgthap] = (Z (SHWB[IELLEM(Q](JE))Z)) pv (11)
f

Varying p provides estimates of different moments of the bispectral distribution, enhancing sensitiv-
ity to the structure of nonlinear feature interactions.

Bicoherence. Normalizing by the magnitude of each term isolates the strength of phase alignment
independently of signal amplitude:

’SHWB[w,j, 0, 52]’

VIWle g 61D RdE [ (Wl d, (5P [ [Wle,j. 6+ 6)(F)2df
(12)

SHWBiC[l‘, j, fl, 62] =

which takes values in [0, 1] with 1 indicating strong phase coupling between ¢; and ¢5.

3.3.1 COMMENTS ON COMPUTATIONAL EFFICIENCY

A critical observation is that by computing the bispectrum over angular frequencies rather than
Cartesian frequency pairs, SHWB efficiently spans the 2D space of nonlinear interactions with co-
efficients that scale quadraticaly to the number of angular fequencies as opposed to quartic on the
spatial dimensions.

Additionally, to reduce computational cost, we apply the following strategies:

* Precomputation: Wavelet responses Wz, j, ¢] are computed once and cached, reused
across multiple bispectral terms. Mini-batching manages memory for large datasets.

* Symmetry: SHWB is symmetric in ¢; and ¢5, so we compute only {1 < {5.

* Acceleration: Computations are implemented in PyTorch with FFT-based convolutions,
leveraging GPU acceleration and the Kymatio framework |Andreux et al.[(2018)).

3.4 SoLID HARMONIC WAVELET SCATTERING BISPECTRUM

The scattering transform, and solid harmonic wavelet scattering by extension, attempt to obtain high
order information by a cascade of wavelets in a manner similar to Deep Learning. In this section, we
demonstrate that this approach, while proposed as an alternative to higher order spectra, can easily
be combined with higher order spectra to provide rich feature spaces. We do that by demonstrating
that the bispectrum can be used as an alternative non-linearity at the last layer/order of a scattering
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transform, while maintaining a cascade of wavelet convolutions and modulus non-linearities for
intermediate layers.

As in relevant literature (Mallat, 2012} [Eickenberg et al., 2017)), we compute the bispectrum over
first- and second- order scattering coefficients. The zeroth-order bispectral coefficient is computed
as in other scattering transforms using the signal integral, or in practice by calculating L,, to capture
different proxies for the raw moments of the distribution of the data:

SHWSBy [z, p] = ||z|, (13)

For the first and second order coefficients, we introduce the following notation for the linear re-
sponses of the first- and second-order scattering:

Wiz, j1,0)(u) = z * ¥;, o(u) (14)
Wiz, j1, j2, €)(w) = @ % j, o] x 1y, 0(w) 5)
For all /1,05 € L with {1 < {5, and 1 + ¢5 = ¢35 € L, we define the bispectral coefficients:

SHWSB(z. ji, (1, 2] (f) = Wz, ju, 1] (f) - Wz, 1, £)(f) - W, i, 6] (f) (16)
SHWSBI(z, j1, j2, 01, (2] (f) = Wz, j1, jo, 1](f) - Wz, j1, j2, L2)(f) - W, j1, j2, £3)(f), (17)
for fist and second order coefficients. The first order invariant, SHWSB(z, j1, ¢1, {2], and second or-
der invariant, SHWSBI|z, j1, jo, ¢1, {2], are obtained through integration over f in Equations [I6{and
[[7]respectively. Before integration, the coefficients remain complex-valued, encoding relative phase
information across angular frequencies; after integration, Hermitian symmetry ensures that, for real
signals, the resulting invariants are real-valued. The bicoherence (SHWSBic) is again derived by
normalising with the product of the scattering magnitudes:

SHWSB[‘Tajhglng]
Wiz, g1, )|l - W [, v, 6] - [|W i, 1, ]|
SHWSBg[w,jl,jg,ﬂhég}
||W[~Taj1,j2a€1]|| : ||W[$aj1,j2a€2]|| : ”W[xvjlvj%gﬂn

As with SHWB, the SHWSB transform can perform the integration over spatial frequencies for
Equations[I6HT7]by applying L,, pooling on the spatial coordinates of the representations, which we
denote with the parameter p as:

SHWSB(z, j1, {1, £2,p] = [[SHWSBy [z, j1, 1, L2] [ (20)

When L,, pooling is applied, the normalization in Equations andis adjusted by replacing raw
magnitudes with their pooled values, ensuring that SHWSBic remains bounded in [0, 1].

(18)

SHWSBic|[z, j1, (1, (2] =

SHWSBiC[CL’,jl,jQ,ghgﬂ = (19)

First-order bispectral coefficients are equivalent to our definition of SHWB, and so the property in
Equation 9] holds - they are roto-translation covariant by definition, and reduce to invariants through
L, pooling.

P

Second-order scattering coefficients retain the modulus nonlinearity after the first convolution, pre-
serving stability. Although the modulus discards inter-scale phase, we argue that this phase loss
is offset by increased robustness, consistent with scattering theory. Phase interactions within the
same scale are retained through the bispectral term. Under rotation, a signal’s convolution with a
solid harmonic wavelet transforms by a phase factor, as shown in Equation[8] The modulus operator
applied on the right side of Equation [§|removes this factor, leaving:

UlRyz, j, €)(u) = Ry (x % j.0)(u) 21

Since solid harmonics commute with rotation, a second convolution preserves rotation structure.
Therefore, the same property as in Equation [0 establishes that both first- and second-order SHWSB
coefficients are rotation covariant. L,, pooling converts them to invariants.

4 EXPERIMENTS

We benchmark using simple models, parametrising ¢ over a coarse sweep and selecting j relative
to the scale of features relevant to the task. In each experiment, we report the best result for each
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representation, avoiding arbitrary parameter choices that best suit our new operators. The main
strategy of the experiments is to demonstrate the ability of the Solid Harmonic Transforms to identify
novel and interesting image features. General purpose computer vision systems appear to be feasible
but they were beyond the scope of our project. Wavelet-based representations have consistently
achieved comparable results to deep learning (Eickenberg et al.,|2017;Zarka et al.,|2020) with simple
classifiers. More complex architectures, combining scattering with large neural networks (Patro &
Agneeswaran, 2023)), require an exorbitant amount of resources while offering little understanding
of the representation.

4.1 TEXTURE CLASSIFICATION

Textural similarity is primarily attributed to Fourier phase, rather than magnitude, information with
respect to human perception (Dong et al.|[2017), making its preservation crucial in texture analysis.
The KTH-TIPS benchmark (Fritz et al., [2004)) remains a relevant testbed for examining the impact
of higher-order, phase-preserving operators, particularly in domains where structural information
drives variability—interactions encoded by the Solid Harmonic Wavelet Bispectrum. The dataset
consists of 10 classes, each with 81 samples varying in scale, shear, and illumination.

We test our representations over 200 random train-test splits for different training set sizes, as done in
(Sifre & Mallat, 2013). We train linear SVMs on our representations, which hold similar properties
to the PCA classifier used in (Sifre & Mallat, |2013)) over translation invariant (Mallat, [2012)) and
roto-translation invariant scattering (Sifre & Mallat, [2013). Enhanced roto-translation scattering
refers to roto-translation scattering followed by a logarithmic nonlinearity, averaging over scales,
and scale augmentations. Therefore, the most direct comparisons are between translation scattering,
roto-translation scattering, and our proposed operators.

Table 1: Accuracy and standard deviation over 200 random training subsets with varying sizes of
training set on KTH-TIPS

Features 5 samples 20 samples 40 samples

Translation scattering  69.1 £3.5 948+ 13 98.0+0.8
Roto-trans scattering ~ 69.5+3.6 949+14 983109

SHWS 869+08 96103 985+04
SHWB 87717 948+£05 969=£0.3
SHWBic 872+13 965+£06 993£03
SHWSB 88.6+25 951+£03 974+£03
SHWSBic 85109 97.0+£0.7 98.6+£02

Enhanced roto-trans 8434+3.1 983409 994 +04

SHWBic and SHWSBic outperform previous isolated scattering representations across all training
sizes, demonstrating the added expressivity of bispectral representations in capturing higher-order
nonlinearities. The improvement is most pronounced for the smallest training set (n = 5), where
SHWSB achieves 88.6% accuracy—an increase of almost 20 points compared to translation scat-
tering. In this low-data regime, the bispectrum outperforms corresponding bicoherences, albeit with
larger uncertainty (e.g., 2.5 for SHWSB), suggesting that the additional information on total en-
ergy in frequency couplings introduces meaningful variability for classification.

As training sizes increase, this relationship shifts: bicoherence-based representations (SHWBic and
SHWSBic) improve considerably, with 20-sample and 40-sample results reaching 96.5% and 99.3%
accuracy, respectively, highlighting that patterns in the strength of phase coupling become more
informative than raw energy. These results underscore the crucial role of phase-preserving, higher-
order interactions for tasks driven by structural variability.

Solid Harmonic Wavelets consistently outperform Morlet scattering, emphasizing their capacity to
encode textural information. While enhanced roto-translation scattering reaches high accuracy in
larger training sets, SHWSBic achieves comparable performance with more certainty in intermediate
sizes, demonstrating the robustness of our operators across data regimes. Overall, these experiments
highlight how the combination of bispectral interactions and roto-translation invariance produces
rich, discriminative features that reduce uncertainty relative to earlier scattering-based approaches.
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4.2 MEDICAL IMAGING

Deep learning in medical imaging is often limited by the availability of large-scale datasets (Zhou
et al.| 2021). Symmetry-aware wavelet operators mathematically impose key structural invariances,
simplifying the variability within the representation and yielding meaningful features without large-
scale optimisation. We evaluate this on MedMNIST (Yang et al., 2021} 2023)), focusing on 28 x28
images for fair comparison with existing deep learning baselines. MedMNIST presents distinct
challenges: BreastMNIST requires detection of subtle shape irregularities, RetinaMNIST demands
small vascular anomaly identification, and DermaMNIST relies on complex textural patterns—all
benefiting from rotation-invariant analysis.

BreastMINIST (780 samples) is a binary classification task distinguishing benign from malignant
tumors, which are discriminable based on symmetry and shape (Wei et al., 2020)).

RetinaMNIST (1,600 samples) is an ordinal regression task grading diabetic retinopathy severity
from 1-5, based on subtle vascular features (Porwal et al., 2020).

DermaMNIST (10,015 samples) is a seven-class classification task of pigmented skin lesions dis-
tinguished by asymmetry, border regularity, and color distribution.

For BreastMNIST, we use larger scales (J € [3, 4]) to capture global symmetries. For RetinaMNIST
and DermaMNIST, we focus on J = 2 for localized feature capture. Linear classifiers with Lo
regularization and singular value decomposition are used to isolate feature effectiveness.

Table 2: Accuracy over MedMNIST benchmark datasets. We performed an initial hyperparameter
sweep of H-Net for each task over ring discretizations, number of filters, and angular frequencies.
Other baselines are from|Yang et al.| (2021} [2023).

Model BreastMNIST RetinaMINIST DermaMNIST
ResNet-18 (Yang et al., 2021} 2023) 86.3% 52.5% 73.5%
ResNet-50 (Yang et al.,|[2021}2023) 81.2% 52.8% 73.5%
auto-sklearn (Yang et al.||[2021}2023) 80.3% 51.5% 71.9%
AutoKeras (Yang et al.,[2021;]2023) 83.1% 50.3% 74.9%
Google AutoML (Yang et al.| 2021} 2023) 86.1% 53.1% 76.8%
H-Net (Worrall et al., 2017) 84.4% 48.7% 72.4%
SHWS 84.6% 53.5% 72.1%
SHWB 78.2% 52.8% 69.7%
SHWBic 82.7% 54.5% 71.7%
SHWSB 85.9% 54.3% 71.0%
SHWSBic 86.5% 51.0% 72.2%

In data-scarce tasks (BreastMNIST, RetinaMNIST), our approaches surpass most baselines. SHWS-
Bic achieves 86.5% accuracy on BreastMNIST, outperforming both ResNet-18 (86.3%), and H-Nets
(84.4%). Our methods are particularly effective for medical images, which often contain Gaussian
noise (to which the bispectrum is inherently insensitive), variable orientations (addressed by our
roto-translation invariance), and multiscale features (captured by our wavelet decomposition). With
larger datasets (DermaMNIST), our fixed-filter approaches remain competitive. Linear separability
is evident: for instance, a Gaussian SVM on SHWSBic achieves 75.9% on DermaMNIST, outper-
forming all but one baseline.

SHWSBic outperforms the SHWBic on BreastMNIST, suggesting that a more sophisticated set of
features is required to capture the variability of malignant tumors. Interference across scales is par-
ticularly important for that dataset. However, in RetinaMNIST key indicators are blurry blob-like
structures with localised shape, making cross-scale interactions less discriminative. In this case, the
scattering hierarchy in SHWSBic introduces features to minimal effect and SHWBic achieves the
highest accuracy. Overall, these experiments highlight the advantage of built-in geometric invari-
ances for data-efficient architectures.
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4.3 ASTROPHYSICS

We study the application of SHWSBic in astrophysics. Galaxy mergers show complex features that
have historically been challenging to identify using simple statistical measures (Pawlik et al.,|2016;
Conselice, [1997). Galaxy mergers exhibit complex, extended morphological structures that evolve
over time and vary with mass ratio — precisely the type of multiscale geometric information our
methods intend to capture.

We use a sample of galaxy mergers with mass ratios 1 > —2 within 2.5 Gyrs of a merger for a
redshift up to 0.1 (following methodology of |Avirett-Mackenzie et al.| (2024))) derived from Illus-
trisTNG (Nelson et al.| 2019). Data are extracted to match high spatial resolution from e.g. Hubble
Space Telescope and do not have observational noise added. We downsample the initial dataset into
two separate datasets for the regression of both time since last merger (n=18,791) and log merger
mass ratio (n=16,870). Log merger mass ratio has mean —1.10 and standard deviation 0.54, while
time since last merger has mean 1.93 Gyr and standard deviation 1.06 Gyr. Images are cropped to
32x the half stellar mass radius (as calculated from|Nelson et al.| (2019)) and resized to a resolution
of 128 x 128. We optimise subject to mean-absolute-error (MAE). Experiments use j = 4 to capture
larger, broader symmetries such as tidal tails.

Table 3: Results of merger feature regression on 128 x 128 resolution samples.

Model Log 1 At (Gyr)
MAE RMSE MAE RMSE
Random predictor 0.6479 0.7932 1.2306  1.5065
Oriented scattering + linear  0.4119  0.4953  0.8025  0.9604
SHWS + linear 0.3876  0.4701 0.7781 0.9360
SHWS + KNN 0.3539  0.4699 0.7264 0.9370
SHWSBic + KNN 0.3322 0.4498 0.6633 0.9139
CNN 0.3564 0.4586 0.7206  0.9406
H-Net 0.3581 0.4543 0.7345 0.9015

Table [3] shows that models trained on our operators effectively regress merger features. Best per-
forming models achieve MAE of two-thirds the standard deviation for each target. We compare our
approaches to a baseline random predictor, where predictions are sampled from the target range -
demonstrating an almost 50% reduction in error rates. We observe an improvement using SHWS
over oriented Morlet wavelets when input to linear models. We find significant improvements
by training non-parametric models on our coefficients (KNN regressors with inverse L distance
weighting). This suggests that accurate prediction of merger features requires capturing not just
global symmetries but also complex relationships between features at varying scales—precisely
what SHWSBic encodes. The non-parametric approach enables the model to learn additional non-
linearities from our coefficients without imposing restrictive functional forms. Figure [T]shows true-
predicted plots.

Time since last merger hexbin: True vs Predicted Log merger mass ratio hexbin: True vs Predicted

~=- Identity line 7 18 -=- Identity line

Predicted

| | ! L ! !
L Y
g ¥ 8 & & u

05 10 15 20 25 30 35 -175 150 -1.25 -1.00 -0.75 -0.50 —0.25
True

(a) Time since last merger (b) Log merger mass ratio

Figure 1: True-predicted hexbin plots using K-Nearest-Neighbours regressor with SHWSBic input.
Hexbins with more than 5 samples are shown to highlight underlying trends and remove outliers.
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While previous studies have focused on binary merger classification (Avirett-Mackenzie et al.||2024;
Walmsley et al., 2024} de Graaff et al., [2025), our approach pioneers regression on continuous
merger features from morphological data. This is particularly valuable in astrophysics, where quan-
tifying merger parameters typically requires extensive spectroscopic follow-up or access to simula-
tion data. The strong relationship between true and predicted values (Figure[T) demonstrates that our
wavelet-based approach effectively captures the complex structural signatures of merger dynamics,
suggesting applications to large-scale observational surveys.

—— SHWSBIc (ours)
\ = H-Net
1.2 s+ CNN

10! 102 103 104
Training size (log scale)

Figure 2: Comparison of Mean Absolute Error for log mass ratio regression with increasing training
set sizes (log scale). SHWSBic features are used with a KNN regressor.

Figure [2] demonstrates the scaling of the predictive precision with respect to dataset size. All al-
gorithms approach a similar MAE with increasing data points. The interesting observation is on
the low data regime, where our method substantially outperforms Deep Learning and Geometric
Deep Learning baselines. The low-data regime is interesting due to the rarity of galaxy mergers
in both simulations and even more in real observational data. Additionally, Figure 2] supports the
case that the SHWSBic space is a natural space for comparisons of galaxies. Hybrid approaches
combining wavelet features with trainable layers could further improve performance (Zarka et al.,
2020; |Oyallon et al., 2014); however, naively minimizing errors could obscure the contribution of
the representation relative to the supervised learning algorithm.

5 CONCLUSION

We introduce new operators that generate roto-translation invariant features for supervised learning
over image-based tasks. The Solid Harmonic Wavelet Bispectrum (SHWB) captures multi-scale
interactions between feature types, while preserving phase information. Building on this, the Solid
Harmonic Wavelet Scattering Bispectrum (SHWSB) combines properties of both scattering net-
works and the solid harmonic wavelet bispectrum, enabling the encoding of higher-order nonlinear-
ities while retaining critical phase information.

Experiments with simple linear models demonstrate that these representations are increasingly dis-
criminative and perform competitively with deep learning in limited-data settings. For textures,
SHWB and SHWSB capture structural variability and higher-order interactions, outperforming stan-
dard scattering representations. In medical imaging, our operators effectively linearize decision
boundaries and achieve state-of-the-art or competitive accuracy on small datasets. In astrophysics,
SHWSBic successfully predicts merger features, particularly in low-data regimes, highlighting the
natural expressivity of phase-preserving, multi-scale operators.

A limitation of our study is the lack of evaluation on large-scale datasets such as ImageNet. While
such benchmarks are standard for deep learning, they may not accurately reflect the advantages of
our operators. Hybrid approaches combining wavelet features with trainable layers (Oyallon et al.,
2014; |Patro & Agneeswaran, [2023)) could further enhance performance, but their inclusion would
obscure the contribution of the operator itself and add significant computational overhead.

Overall, our work highlights the crucial role of phase-preserving, higher-order interactions in ex-
tracting discriminative features. The proposed operators provide interpretable, mathematically
grounded, and data-efficient representations well-suited for tasks where symmetry and multi-scale
structure are central.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 DATASETS

We plot visualisations of MedMNIST samples in figure 3] In each task, relevant occur at varying
scales. For example, BreastMNIST relies on broader symmetries such as regularity of the tumour.

(a) BreastMNIST (b) RetinaMNIST (c) DermaMNIST

Figure 3: MedMNIST dataset samples

In figure [ we present a selection of random samples from our galaxy dataset. Evidently, there is
no observational noise. Similarly, one can observe the presence of merger features; for example, the
top-left sample depicts tidal tails.

Figure 4: Galaxy merger samples.

Finally, samples from KTH-TIPS (figure [3) are comparatively simpler. Classes are distinct, and
discrimination is subject to solely textural patterns at varying scales.

Figure 5: Samples from KTH-TIPS. Each row is a different class.
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A.2 OPERATORS

Figure [6a] shows solid harmonic wavelets over varying scales (horizontally) and angular frequen-
cies (vertically). Figure [6b|shows the components that build up solid harmonic wavelets from Eq.

: . 1 —r? /202 : :
The Gaussian window, —\/We plotted on the top left is used to localise the wavelet
support, while the radial component, r* top right, removes a singularity at 0. Finally, the complex
frequency components, ‘¢ with real and imaginary plotted at bottom left and right respectively,
span the angular coordinate of the wavelet.

1 2,
Vo(r, ) = ——=5ze 27" (22)
(27o?)
(a) Real parts of solid harmonic filter bank. J in- (b) Decomposition of wavelet. Top left to bottom
creases left-to-right. L increases top-to-bottom. right: Gaussian window, radial, real and imagi-

nary angular components.
Figure 6: Solid harmonic wavelets in 2D
Figure [7] compares wavelet responses for both Morlet (Andreux et all, 2018) and Solid Harmonic

filters. While Morlet wavelets effectively extract prominent features, such as edges, solid harmonic
wavelets excel in encoding textural information — in addition to edges.

Original Morlet Solid Harmonic

Figure 7: Wavelet transform responses using Morlet and Solid Harmonic wavelets

We plot how extracted features from the solid harmonic wavelet transform vary with solid harmonic
wavelet parametrisation in figure [§] By increasing ¢, the features extracted by the solid harmonic
wavelet transform transition from edges to texture, such that using dilated wavelets one could en-
code both textures and edges across scales. Thus, solid harmonic wavelet responses more effectively
decouple these feature types. One can reason that since increasing the angular frequency produces
more sinusoidal oscillations, solid harmonic wavelet transforms with increasing ¢ can capture finer-
scale variations in texture as a result of increased sensitivity to directional variations in the input
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signal. Simultaneously, increasing the scale j captures coarser, higher-level features. To this extent,
by building a filter bank of dilated solid harmonic wavelets one can produce a complete represen-
tation which encompasses edges and textures of varying granularity. Contrasting to Morlet wavelet
transforms in figure [7} we demonstrate that solid harmonic wavelet transforms capture an increas-
ingly diverse collection of feature representations.

Figure 8: Effect of ¢ and j parameters on features produced by solid harmonic wavelet transform.
Left-to-right: ¢ increases from 0 (Gaussian) to 10 in steps of 2. Top-to-bottom: j increases.

In figure[9|we plot the magnitude for L; pooling of SHWBIc coefficients. One can observe similarity
between samples belonging to the same class (babies).
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Class 1

Class 1

Class 2 Class 3

Bicoherence Bicoherence

10
L

Figure 9: Plots for SHWBIc L; pooling magnitude for different ImageNet classes. Note intra-class
similarity.

A.3 BISPECTRUM COVARIANCE
To establish the covariance of the solid harmonic wavelet bispectrum (SHWB) under rotations in

Eq. 23] we begin by considering the rotational behavior of the solid harmonic wavelet transform.
For a planar rotation 12, the wavelet coefficients transform as shown in Eq. @

W;o(R,x) = TR W, (),

where I, denotes the spatial rotation operator acting on the coordinates, and the phase term et
arises from the equivariance of solid harmonics under rotation of the input signal.

We substitute Equation [§]into the definition of the SHWB:

SHWB[(E,j, 617£2] = Wja‘gl (x) ’ lez (LL') ’ Wj’51+52 ({,13),

Applying a rotation I2, to the input = and using Equation ??, we have:

SHWB(R,z, j, {1, l2) = Wj o, (Ryx) - Wy o, (Ryx) - Wi, 40, (Ryx)
= TR Wip, (x) - €T R W g, () - e H YR W g, o, ()
= ittt R (W, (2) - Wi, (2) - Wity 10, (7))
= R, SHWBz, j, {1, (5], (23)

Thus, the SHWB is covariant to rotations. Crucially, this covariance hinges on the angular momen-
tum conservation condition 3 = ¢ + {5, which ensures that the global phase factor eillitta—Ls)y
cancels. This cancellation is what distinguishes the SHWB from classical wavelet scattering: the
phase information is preserved without requiring a modulus to enforce rotational invariance.

Since the underlying wavelet convolutions are also covariant to translations [Mallat (2012), the
SHWRB inherits translation covariance. Full rofo-translation invariance is then achieved by applying
a suitable reduction operator, such as spatial averaging over the domain.

This formalism justifies the invariance properties of SHWB and illustrates how higher-order interac-
tions can retain geometric structure without sacrificing phase information, offering a more expressive
alternative to classical scattering transforms.

Finally, we note that the solid harmonic wavelets v ;, producing the responses W ¢(x), are or-
thogonal across different scales j and angular frequencies ¢. As a result, the SHWB generates a set
of largely independent invariants. This orthogonality ensures that while irrelevant variations (e.g.,
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due to transformations) are removed, the essential discriminative information in the signal is largely
preserved. Consequently, the SHWB forms a rich invariant representation that captures higher-order
geometric structure without discarding informative phase content.

17



	Introduction
	Related Work
	Solid Harmonic Wavelet Bispectrum
	Background: Solid Harmonic Wavelet Transform
	Background: Higher-Order Spectra
	Solid Harmonic Wavelet Bispectrum
	Comments on Computational Efficiency 

	Solid Harmonic Wavelet Scattering Bispectrum

	Experiments
	Texture Classification
	Medical Imaging
	Astrophysics

	Conclusion
	Technical Appendices and Supplementary Material
	Datasets
	Operators
	Bispectrum Covariance


