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Abstract

Recent advances in reinforcement learning have
predominantly leveraged neural network-based
policies for decision-making, yet these models
often lack interpretability, posing challenges to
stakeholder comprehension and trust. Concept
bottleneck models offer an interpretable alterna-
tive by integrating human-understandable con-
cepts into neural networks. However, a significant
limitation in prior work is the assumption that
human annotations for these concepts are readily
available during training, necessitating continu-
ous real-time input from human annotators. To
overcome this limitation, we introduce a novel
training scheme that enables RL algorithms to
efficiently learn a concept-based policy by only
querying humans to label a small set of data, or
in the extreme case, without any human labels.
Our algorithm, LICORICE, involves three main
contributions: interleaving concept learning and
RL training, using a concept ensemble to actively
select informative data points for labeling, and
decorrelating the concept data with a simple strat-
egy. We show how LICORICE reduces manual
labeling efforts to 500 or fewer concept labels in
three environments. Finally, we present an ini-
tial study to explore how we can use powerful
vision-language models to infer concepts from
raw visual inputs without explicit labels at mini-
mal performance cost.

*Equal contribution †This work was done when Ye was a visit-
ing intern at CMU. 1Institute for Interdisciplinary Information Sci-
ences, Tsinghua University, Beijing, China 2Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA. Correspondence to: Stephanie Milani
<smilani@cs.cmu.edu>, Zhuorui Ye <cuizhuyefei@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. International Con-
ference on Machine Learning (ICML) 2024 Workshop on Models
of Human Feedback for AI Alignment. Copyright 2024 by the
author(s).

1. Introduction
In reinforcement learning (RL), agents are tasked with learn-
ing a policy, a rule that makes sequential, reactive decisions
in complex environments. In recent RL work, agents typ-
ically represent the policy as a neural network, as such
representations tend to lead to high performance (Mirho-
seini et al., 2021). However, this choice can come at a cost:
such policies are challenging for stakeholders to interpret
— particularly when the inputs to the network are also com-
plex, such as high-dimensional sensor data. This opacity
can become a significant hurdle, especially in applications
where understanding the rationale behind decisions is criti-
cal, such as healthcare (Yu et al., 2021) or finance (Liu et al.,
2022). In such applications, decisions can have significant
consequences, so it is essential for stakeholders to grasp the
reasoning behind actions to confidently adopt or collaborate
on a policy.

To address interpretability concerns in the supervised
learning setting, recent works have integrated human-
understandable concepts into the decision-making process
through concept bottleneck models (Koh et al., 2020; Es-
pinosa Zarlenga et al., 2022). These models incorporate
a bottleneck layer whose units correspond to interpretable
concepts, ensuring that the final decisions depend on these
concepts instead of just on opaque raw inputs. By training
the model both to have high accuracy on the target task and
to accurately match experts’ concept labels, these models
learn a high-level concept-based representation that is si-
multaneously meaningful to humans and useful for machine
learning tasks. As an example, a concept-based explana-
tion for a bird classification task might include a unit that
encodes the bird’s wing color.

More recently, these techniques have been applied to RL
by incorporating a concept bottleneck in the policy (Gru-
pen et al., 2022; Zabounidis et al., 2023), such that the
actions taken by the agent are a function of the human-
understandable concepts. However, past work assumes that
human-provided concept annotations are accessible in the
training loop of RL, which presents a significant challenge.
In novel domains, we may only have access to data that
is not in an interpretable representation, such as RGB or
multispectral satellite imagery, while the RL agent needs
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to know the concepts present in every state and action it
encounters during training — even though RL training sets
can often be measured in millions or billions of state-action
pairs. As a result, the human labelers would need to be
actively involved in the RL training process, providing con-
cept labels for unreasonable numbers of observations. This
level of involvement is not only detrimental to the human
labeler but also risks introducing potential biases and errors
in the model training process due to fatigue (Marshall &
Shipman, 2013).

In this work, we aim to address this challenge of requiring
frequent human interventions during the training of inter-
pretable policies using RL. We propose LICORICE (Label-
efficient Interpretable COncept-based ReInforCEment
learning), a novel training paradigm comprising three main
contributions. First, LICORICE interleaves concept learn-
ing and RL training: it alternately freezes the network lay-
ers corresponding to either the concept learning part or the
decision-making part. We believe this scheme improves
our ability to learn from limited labeled data by reducing
interference between the learning tasks. Additionally, with
this training scheme, concept learning uses data that is more
on-policy, which means it is more relevant and useful for
learning accurate concepts that directly impact the decision-
making process. Second, LICORICE utilizes concept en-
sembles to actively select the most informative data points
for labeling. By focusing on samples that are predicted to
provide the most valuable information for model improve-
ment, this technique substantially reduces the number of
labels needed to achieve both high performance and high
concept accuracy. Third, LICORICE includes a strategy
to decorrelate the concept data collected under the current
policy. By generating a diverse set of training data, this ap-
proach ensures the data remains unbiased and representative
of various scenarios. We demonstrate how these changes
yield both higher concept accuracy and higher reward while
requiring fewer queries on three environments with image
input, including an image input version of CartPole and two
Minigrid environments.

Given these results, we ask whether we can further reduce
the reliance on manual concept labeling by leveraging the
potential of vision-language models (VLMs). This capabil-
ity is important in scenarios where manual concept anno-
tation is impractical. We present an initial exploration of
whether VLMs can further reduce the concept annotation
burden. We find that VLMs can indeed serve as concept
annotators for some but not all of the above environments.
In these cases, the resulting policies can achieve 80% to
95% of the optimal performance.

2. Preliminaries
Reinforcement Learning In RL, an agent learns to make
decisions by interacting with an environment (Sutton &
Barto, 2018). The environment is commonly modeled as a
Markov decision process (Puterman, 2014), consisting of
the following components: a set of states S , a set of actions
A, a state transition function T : S × A× S → [0, 1] that
indicates the probability of transitioning from one state to
another given an action, a reward function R : S × A ×
S → R that assigns a reward for each state-action-state
transition, and a discount factor γ ∈ [0, 1] that determines
the present value of future rewards. The agent learns a
policy π : S×A → [0, 1], which maps states to actions with
the aim of maximizing the expected cumulative discounted
reward. We evaluate a policy via its value function, which is
defined as V π(s) = Eπ[

∑∞
k=0 γ

krt+k+1 | s0 = s],∀s ∈ S .
The ultimate aim in RL is to determine the optimal policy,
π∗. To do so, the agent iteratively refines its policy based
on feedback from the environment.

Concept Bottleneck Models Concept-based explanations
have emerged as a common paradigm in explainable AI (Po-
eta et al., 2023). They explain a model’s decision-making
process through human-interpretable attributes and abstrac-
tions. Concept bottleneck models (Koh et al., 2020) are an
example of concept-based explanations: they learn a map-
ping from samples x ∈ X to labels y ∈ Y through two func-
tions, g and f . The concept encoder function g : X → C
maps samples from the input space to an intermediate space
of human-interpretable concepts. The label predictor func-
tion f : C → Y maps samples from the concept space
to a downstream task space, such as labels for supervised
classification. As a result, the prediction ŷ = f(g(x)) relies
on the input x entirely through the bottleneck ĉ = g(x).

Training Concept-Based Models Training requires a
dataset of X ×C × Y , where each sample consists of input
features x, a ground truth concept vector c ∈ {0, 1}k, and
a task label y. The functions f and g are parameterized by
neural networks. These models are trained independently,
jointly, or sequentially. Independent training of f̂ and ĝ
requires that f̂ is trained using the true c, but at test time it
takes ĝ(x) as input. If directly applied to RL, this approach
would require continuous access to ground-truth concepts
for training f̂ , which we want to avoid. In joint training, the
model minimizes the weighted sum of the concept losses
with the task performance loss. This paradigm can be prob-
lematic: the two losses may interfere with each other and
may require careful tuning to find the right balance. In se-
quential training, the model first learns ĝ. It then uses the
concept predictions ĝ(x) to learn f̂(ĝ(x)). As we will later
show, this setup is problematic for RL, as concepts may only
emerge after the policy is sufficiently performant.
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3. LICORICE
We now describe LICORICE, our algorithm for interactively
querying for concept labels under a limited concept label
budget during RL training. In Section 3.1, we describe the
architecture of the concept bottleneck policy. We then detail
our iterative training process (Section 3.2) and explain our
active learning approach for choosing informative training
points (Section 3.3). Finally, in Section 3.4, we detail how
we use VLMs as a substitute for human concept labeling.

3.1. Concept Bottleneck Policies

We insert a concept bottleneck layer into the policy network,
such that π maps from states S to concepts C to actions
A, π = f(g(s)). These concepts serve as intermediaries in
the policy network, which subsequently maps the concept
vector to a distribution over possible actions. This setup
allows the policy to base its decisions on understandable
and meaningful features. We describe additional modifi-
cations necessary to accommodate the concept bottleneck
in Appendix A.2. As a result, we can use any RL algorithm
as long as we accommodate an additional loss function for
concept prediction.

Loss Function We now describe how we use the two loss
functions for training in our iterative training scheme, de-
scribed in more detail in Section 3.2. Because we employ
an iterative training scheme, we disentangle the two loss
functions to prevent interference between them. In this way,
the concept prediction loss LC only affects g, the part of
the model responsible for predicting concepts, and the stan-
dard RL loss LRL only affects f . For training g, we employ
two types of loss functions depending on the nature of the
concepts (MSE for continuous concepts; cross-entropy loss
for categorical concepts). If the problem requires mixed-
type concepts, we could discretize the continuous attributes,
converting them into categorical forms suitable for classifica-
tion. This approach ensures that our method accommodates
a diverse range of concept types.

3.2. Training Process

We now present LICORICE, our novel algorithm for opti-
mizing concept-based models for RL within a fixed concept
query budget. Previous sequential bottleneck approaches
collect concept labels off-policy or with an initial random
policy, resulting in a dataset that may not be useful for more
performant policies learned later in training. To address
this limitation, our iterative training approach incorporates
multiple phases, which can be advantageous for obtaining
accurate on-policy concept estimates. To collect candidate
training data for g, we employ our current policy for rollouts.
To minimize data point correlation and collect a diverse
range of data, we use a decorrelation strategy. To select

more informative points to query for concept labels, we use
a concept ensemble to calculate disagreement.

More specifically, LICORICE (Algorithm 1) proceeds in
three main stages during each iteration m ∈ M : data col-
lection, concept ensemble training for data selection, and
concept bottleneck policy training. First, in the data collec-
tion stage (lines 4 to 8), we collect a dataset of unlabeled
concept data Um by rolling out our current policy πm. Cru-
cially, during this step, we decorrelate the data to ensure
the data points are diverse (line 6). Specifically, we set an
acceptance probability p for adding the data point to the
dataset, as they are generated by the temporally-correlated
RL policy. This prepares a diverse dataset for the next stage,
with the aim of promoting more accurate and generalizable
concept ensemble and concept model training.

The second stage is concept ensemble training for data se-
lection (lines 9 to 16). In this stage, we train the concept
ensemble — consisting of N independent concept models
— from scratch on the dataset of training points Dtrain that
has been aggregated over all iterations (line 10). We use
this ensemble to calculate the disagreement-based acquisi-
tion function, which evaluates whether each candidate in
our unlabeled dataset Um ought to receive a ground-truth
concept label (line 11). This function targets samples where
prediction disagreement is highest, detailed in Section 3.3.
We then query for Bm ground-truth concept labels (line 13)
to prepare us for the next stage.

We are now prepared for the third stage: concept bottleneck
policy training (lines 17 to 19). We aggregate the concept
datasets from the second stage with data from previous
iterations, and continue training the concept network g on
Dtrain (line 18). After early stopping dictates that we stop g
training, we freeze g and train f using standard RL training
method — for example, PPO — to obtain the policy for
collecting data in the next iteration (line 19). With that, we
are prepared to start the process again from the first stage.

3.3. Active Concept Learning

We propose to leverage an ensemble of concept models
to calculate the disagreement-based acquisition function
for actively querying for concept labels. To quantify the
concept disagreement of a state U(s), we use two different
formulations, depending on the concept learning task.

Classification For concept classification, we use a query-by-
committee (Seung et al., 1992) approach. When the models
produce diverse predictions, it indicates that the state is
difficult and more concept information would be particularly
valuable. Conversely, if all models agree, the state is likely
already well understood, and additional labels would be less
beneficial. More specifically, we prioritize states with a high
proportion of predicted class labels that are not the modal
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Algorithm 1 LICORICE

1: Input: Total budget B, number of iterations M , sample acceptance threshold p, ratio τ for active learning, batch size
for querying b, number of concept models N to ensemble

2: Initialize: training set Dtrain ← ∅, and validation set Dval ← ∅
3: for m = 1 to M do
4: Allocate budget for iteration m: Bm ← B

M
5: while |Um| < τ ·Bm do
6: Execute policy πm to collect unlabeled data Um using acceptance rate p
7: end while
8: Initialize iteration-specific datasets for collecting labeled data: D′

train ← ∅, D′
val ← ∅

9: while Bm > 0 do
10: Train N concept models {g̃i}Ni=1 on Dtrain ∪ D′

train, using Dval ∪ D′
val for early stopping

11: Calculate acquisition function value α(s) for all s ∈ Um \ (D′
train ∪ D′

val)
12: Choose bm = min(b, Bm) unlabeled points from Um according to argmaxs α(s)
13: Query for concept labels to obtain new dataset Dm ← {(s, c)}bm
14: Split Dm into train and validation splits and add to D′

train,D′
val

15: Decrement budget: Bm ← Bm − bm
16: end while
17: Aggregate datasets: Dtrain ← Dtrain ∪ D′

train, Dval ← Dval ∪ D′
validation

18: Continue training the concept network g on Dtrain, using Dval for early stopping
19: Freeze g and train f using standard RL training to obtain πm+1

20: end for

class prediction (also called the variation ratio (Beluch et al.,
2018)): U(s) = 1 − maxc∈C

1
N

∑N
i=1[g̃i(s) = c], where

g̃i(s) is the concept prediction of the i-th model on state s.

Regression For concept regression, we observe that we
can instead directly use variance as a measure of dis-
agreement. Specifically, the concept disagreement of a
state is quantified by the unbiased estimation of variance
U(s) = σ2(s) of the predictions across the concept models,
due to Bessel’s correction, defined as: U(s) = σ2(s) =

1
N−1

∑N
i=1(g̃i(s) − µ(s))2, where µ(s) = 1

N

∑N
i=1 g̃i(s)

is the mean prediction of the N concept models.

3.4. Vision-Language Models as Concept Labelers

Equipped with our overall algorithm, we now seek to fur-
ther reduce human annotation burden. To do so, we turn
to VLMs due to their remarkable performance in under-
standing and generating human-like descriptions of visual
content (Radford et al., 2021). Within the pipeline of
LICORICE, we keep all aspects of our algorithm the same
but use the VLM as the concept annotator in the training
loop. By doing so, we effectively decrease the human anno-
tation effort to zero, albeit with some labeling inaccuracy.

In our experiments, we use GPT-4o (OpenAI, 2024), a
closed-source model that is possibly the most capable vision-
language model in the world at the time of writing the paper.
During the training loop of LICORICE, we query GPT-4o
each time the algorithm requires a concept label (line 1
in Algorithm 1). As we are using a pre-specified concept

set, we design prompts with detailed general descriptions of
the scene layout and definitions of all concepts, in a similar
fashion to giving labeling instructions to real humans. We
then prompt the GPT-4o to obtain the generated labels. In
environments where continuous concept values are required,
we ask GPT-4o to give as accurate estimates as possible; in
environments with concepts that are discrete and more intu-
itive to label, we provide clear instructions of how to read
the concept numbers according to the input image. More
details about our prompts can be found in Appendix A.3.

4. Experiments
In our experiments, we investigate the following questions:

RQ 1 Does LICORICE enable both high concept accu-
racy and high environment reward?

RQ 2 How effectively does LICORICE allocate the con-
cept labeling budget?

RQ 3 Can LICORICE be used alongside powerful
vision-language models to further alleviate the la-
beling burden?

4.1. Environments

We evaluate our approach on three environments. For each
environment, we define an interpretable concept set.

PixelCartPole In PixelCartPole-v1 (Yang et al., 2021), the
states are the past four images, and the concepts are the
original continuous features in the standard CartPole envi-
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PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5

c Labels Algorithm R ↑ c MSE ↓ R ↑ c Error ↓ R ↑ c Error ↓
B Sequential-Q 0.24 0.10 0.51 0.47 0.64 0.01

Disagreement-Q 0.32 0.10 0.82 0.37 1.00 0.00
Random-Q 0.31 0.08 0.89 0.26 0.95 0.03
LICORICE 0.99 0.03 0.99 0.05 0.98 0.00

∞ CPM 0.98 0.01 1.00 0.00 0.99 0.00

Table 1: Evaluation of the reward R and concept error achieved by all methods. Methods in the top section are given a
budget of B = [500, 300, 300], respectively; CPM is given an unlimited budget (in practice, it uses 4M, 4M, 1M concept
labels respectively). For each row, the top-performing method with a limited budget is in bold. Full results with standard
deviation are in Table 6, Appendix B.

ronment: the cart position, the cart velocity, the pole angle,
and the pole angular velocity. To obtain the mapping from
images to concepts, we use a fixed window of 4 most recent
images for the temporal concepts, such as the cart velocity,
and we also incorporate the last action to ensure the input in-
formation is sufficient to infer concept values. This domain
is deceptively difficult due to the temporal concepts.

DoorKey In DoorKey-7x7 (Chevalier-Boisvert et al., 2023),
the agent operates in a 5x5 grid1 to pick up an item to
unlock the door, then reach the green goal square. The
states are fully observable images. We define 6 groups of
concepts with 12 concept variables in total: 1) the position
of the agent, 2) the direction that the agent is facing, 3) the
position of the key, or a fixed position (0, 0) outside the grid
if the key has been picked up, 4) the position of the door, 5)
if the door is open or closed, and 6) if the agent can move
along each direction, i.e., the corresponding cell is empty.

DynamicObstacles In DynamicObstacles-5x5 (Chevalier-
Boisvert et al., 2023), the agent operates in a 3x3 grid to
avoid two moving obstacles while navigating to the goal.
Colliding with the dynamic obstacles yields a large penalty,
so the agent must correctly learn concepts to safely reach
the goal. The states are fully observable images. We define
5 groups of concepts with 11 concept variables in total: 1)
the position of the agent, 2) the direction of the agent, 3) the
position of the first obstacle, 4) the position of the second
obstacle, and 5) if the agent can move along each direction,
i.e., the corresponding cell is empty.

4.2. Experiment Details

In each experiment, we run each algorithm three times with
random seeds. More implementation details and hyperpa-
rameters are in Appendix A.2.

Architecture For the backbone model and algorithm, we use

1In both Minigrid environments, the actual usable area is
smaller than listed in the name, as the outer layer is a boundary.

PPO (implementation provided by Stable Baselines 3 (Raf-
fin et al., 2021)). We preserve most of the network archi-
tecture, but we add a concept layer in the policy network.
Specifically, after passing the image through the feature
extractor, which consists of 3 CNN layers, we introduce a
linear layer to map to the concept layer and obtain predicted
concept values. Each predicted concept is represented as a
real value for the regression case, and one categorical value
derived from a classification head for the classification case.
This portion of the network corresponds to g. For f , we
utilize an MLP extractor with 2 fully connected layers, each
with 64 neurons and a Tanh activation function. We share
the default CNN feature extractor between policy and value
functions.

Concept Representation We model concept learning for
PixelCartPole-v1 as a regression problem (minimizing mean
squared error) as the concepts are real-valued, and con-
cept learning for DoorKey-7x7 and DynamicObstacles-5x5
as classification problems as the concepts are categorical.
The observation images have resolutions of (240, 160) for
PixelCartPole-v1, and (160, 160) for DoorKey-7x7 and
DynamicObstacles-5x5. These dimensions maintain a short
side of 160 pixels while preserving the aspect ratio of the
original rendered images.

Performance Metrics To get an upper bound on the reward
for each environment, we directly use ground-truth concept
labels to learn a policy, leading to a reward of 500, 0.97,
and 0.91 for the three environments respectively. In the
following sections, we report the reward as a ratio of this
upper bound. Percentages (or ratios) make sense here since
the minimum reasonable reward is 0 in all environments:
in PixelCartPole-v1 and DoorKey-7x7, all rewards are non-
negative; in DynamicObstacles-5x5, a random policy would
have negative reward due to collisions, but the agent can
ensure nonnegative reward by simply staying in place. We
additionally report the concept error (MSE for regression; 1
- accuracy for classification).
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PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5

B 300 400 500 100 200 300 100 200 300

R 0.29 0.69 0.99 0.72 0.92 0.99 0.96 0.97 1.00
c Error 0.11 0.06 0.03 0.29 0.10 0.05 0.05 0.01 0.00

Table 2: Performance of LICORICE for varying budgets. Full results with standard deviation are in Table 7, Appendix B.

4.3. RQ 1: Balancing Concept Performance and
Environment Reward

We first validate that LICORICE can achieve high reward
in all test environments while accurately identifying con-
cepts. We first compare against baselines with a fixed bud-
get of B = [500, 300, 300] queries for PixelCartPole-v1,
DoorKey-7x7, and DynamicObstacles-5x5, respectively, as
depicted in the first section of Table 1. We choose these
budgets by starting from 500 then decreasing by units of
100 until we find that LICORICE can no longer achieve
99% of the reward upper bound if further decreasing.

Comparison with Budget-Constrained Baselines To our
knowledge, no previous algorithms exist that seek to mini-
mize the number of train-time labels for concept-based RL
training, so we implement our own baselines. In Sequential-
Q, the agent spends all of B queries on the first B states it
sees under the initial policy rollout (this method essentially
follows the standard sequential training paradigm in super-
vised learning). In Disagreement-Q, the agent similarly
spends its budget at the beginning of its learning process;
however, it uses active learning with the same acquisition
function as LICORICE to strategically choose the training
data. In Random-Q, the agent receives B concept labels at
random points in the training process using a probability
to decide whether it asks a concept query for each state.
We show the results in the first section of Table 1. In two
out of the three environments, LICORICE outperforms all
baselines in terms of both reward and concept error. We find
that Random-Q, Disagreement-Q, and LICORICE perform
similarly on DynamicObstacles-5x5, indicating that this en-
vironment is relatively simple and may not benefit from a
more advanced strategy. Its simplicity may be due to the
lack of concept distribution shift that is present in the other
two environments. For example, in PixelCartPole-v1, the
policy must be further refined to improve its estimate of the
more on-policy concepts. In the initial training stages, when
the policy is more random, the agent needs to estimate a
wide range of possible values for the pole angle, as the pole
starts upright and frequently falls. As the agent’s policy im-
proves, it requires more precise estimates of the pole angle
primarily around the vertical position.

Comparison with Budget-Unconstrained Baseline We
implement Concept Policy Model (CPM) from previous
work in multi-agent RL (Zabounidis et al., 2023) but for

the single-agent setting. This approach jointly trains the
concept bottleneck and the policy, assuming unlimited ac-
cess to concept labels. It represents an upper bound on
concept accuracy, as the agent receives continuous concept
feedback throughout learning. Surprisingly, LICORICE
outperforms CPM in PixelCartPole-v1and has similar per-
formance to CPM in the other two environments in this
unfair comparison. We emphasize that CPM is given an
unlimited budget, and in fact, it uses over 1M concept la-
bels for each environment, whereas LICORICE uses 500 or
fewer. We therefore answer RQ 1 affirmatively: compared
to baselines, LICORICE demonstrates both high concept ac-
curacy (low concept error) and high reward on our three test
environments, all while using substantially fewer concept
labels than existing algorithms.

4.4. RQ 2: Budget Allocation Effectiveness

We now seek to answer how effective LICORICE is under
different concept labeling budgets. This experiment helps to
identify whether the human efforts can be further decreased
without substantially harming the performance. We choose
the 3 budgets for each environment by starting with the B
from the previous experiments, then decreasing by steps of
100. The only component of our algorithm that we vary
is the number of iterations M . To report a single value in
the table, we arbitrarily choose the number of iterations to
maximize the sum of the relative reward and inverse concept
error, as they are in the same magnitude of [0, 1]. The results
of this experiment are shown in Table 2.

As expected, we see an increase in concept error and a
decrease in reward for all environments as the budget de-
creases. However, the magnitude of the difference in the
reward depends on the environment. DynamicObstacles-5x5
shows resilience to budget reductions, while PixelCartPole-
v1 exhibits higher sensitivity. Specifically, we find that
even with B = 100 for DynamicObstacles-5x5, LICORICE
can still achieve 96% of the optimal reward. In con-
trast, we see large jumps in reward for the varying bud-
gets for PixelCartPole-v1. Overall, the results suggest that
while decreasing the human labeling effort does lead to
a decrease in performance, the extent of this impact is
environment-dependent. We therefore answer RQ 2 af-
firmatively: LICORICE can effectively allocate the concept
labeling budget in our test environments.
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PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5

B 300 400 500 100 200 300 100 200 300

R (GPT-4o) 0.06 0.06 0.06 0.69 0.72 0.84 0.23 0.95 0.87
c Error (GPT-4o) 0.18 0.24 0.17 0.44 0.35 0.31 0.18 0.12 0.12

R (PPO w/o labels) 0.35 1.00 1.00

Table 3: Performance of LICORICE with GPT-4o integrated into the loop for all environments across different budgets. We
also compare against PPO without concept labels to inspect the reward performance difference. Full results with standard
deviation are in Table 8, Appendix B.

Figure 1: Training curves of reward and concept error for
PixelCartPole-v1. Shaded values are the 95% CI, calculated
using 1000 bootstrap samples. All curves in Figure 5.

4.5. RQ 3: Integration with Vision-Language Models

We now seek to answer the question of whether VLMs
can successfully provide concept labels in lieu of a human
annotator within our LICORICE framework. Since using
VLMs as annotators effectively reduces the number of hu-
man labels to zero, we compare our approach with directly
training a policy with PPO without using any concept la-
bels. For consistency, we use the same hyperparameters
for LICORICE as in Section 4.4. Because using VLMs
incurs costs and users requiring interpretable policies for
their environments may still face budget constraints, we
operate within the same budget-constrained setting as de-
scribed in Section 4.4. Here, the reduction in the number of
“human” labels required translates to cost savings. We show
the results in Table 3.

We find that GPT-4o can indeed serve as an annotator
for some but not all environments. In DoorKey-7x7 and
DynamicObstacles-5x5, LICORICE with GPT-4o labels
can achieve 84% and 87% of optimal reward, whereas
LICORICE with ground-truth (human) labels can achieve

99% and 100% of the optimal reward, respectively (Table 2).
The concept label error was also relatively low, suggesting
that GPT-4o could provide reasonably accurate labels with
minimal budget. In PixelCartPole-v1, increasing the budget
led to a slight improvement in reward, peaking at approx-
imately 6% of the optimal reward with a budget of 400.
However, the concept label error was relatively high across
all budgets, indicating challenges for GPT-4o in providing
accurate labels in this environment.

This suggests that while the VLM can handle labeling tasks
to some extent, its performance in PixelCartPole-v1 is lim-
ited by the complexity of accurately identifying concepts.
In two of the three environments, PPO training without con-
cept labels can lead to better reward performance, but it
has the downside that it does not learn concepts. An in-
triguing future comparison would be to train PPO using our
architecture without the use of concept labels to allow us
to investigate both the reward and concept accuracy in a
label-free setting. We therefore answer RQ 3 with cautious
optimism: there are cases in which LICORICE could be
used alongside VLMs. However, there are careful consider-
ations to be made, including the precise concept definitions.

4.6. Ablation Study

Given the previous results, we now conduct ablations to con-
firm the effectiveness of our three main contributions: itera-
tive training, decorrelation, and active learning. LICORICE-
IT corresponds to LICORICE with only one iteration,
LICORICE-DE corresponds to LICORICE without decor-
relation, and LICORICE-AC corresponds to LICORICE
without active learning (instead, it uses the entire unlabeled
dataset for querying). We show the learning curves for
PixelCartPole-v1 in Figure 1; the full set is in Appendix B.

Table 4 depicts the results of our ablation study on all envi-
ronments. The bottom row corresponds to the upper bound
on performance by LICORICE, with all components in-
cluded. We find that all of our contributions are critical to
the final performance in terms of both reward and concept
performance. Interestingly, we find that the component that
contributes the most to reward or concept performance is
different depending on the environment. For example, com-
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PixelCartPole-v1 DoorKey-7x7 DynamicObstacles-5x5

Algorithm R ↑ c MSE ↓ R ↑ c Error ↓ R ↑ c Error ↓
LICORICE-IT 0.46 0.08 0.98 0.09 1.00 0.00
LICORICE-DE 0.90 0.03 0.82 0.20 0.98 0.00
LICORICE-AC 0.79 0.03 0.89 0.13 0.94 0.02

LICORICE 0.99 0.03 0.99 0.05 0.98 0.00

Table 4: Ablation study for LICORICE. All components generally contribute to higher reward and lower concept loss.

pared with LICORICE, LICORICE-IT exhibits the largest
reward gap for PixelCartPole-v1; however, LICORICE-AC
yields the largest reward gap for DynamicObstacles-5x5,
and LICORICE-DE yields the largest gap for DoorKey-
7x7. We suspect that this is because the concepts in
DynamicObstacles-5x5 are simple enough such that one
iteration is sufficient for learning, so the largest gains can
be made with active learning. In contrast, PixelCartPole-v1
requires further refinement of the policy to better estimate
on-distribution concept values, so the largest gains can be
made with multiple iterations.

5. Related Work
Interpretable Reinforcement Learning Interpretable RL
has gained significant attention in recent years (Glanois
et al., 2024). One prominent approach uses rule-based meth-
ods — such as decision trees (Silva et al., 2020; Topin et al.,
2021), logic (Delfosse et al., 2024), and programs (Verma
et al., 2018; Penkov & Ramamoorthy, 2019) — to represent
policies. These works either assume that the state is already
interpretable or that the policy is pre-specified. Unlike prior
work, our method involves learning the interpretable repre-
sentation (through concept training) for policy learning.

Concept Learning for Reinforcement Learning Inspired
by successes in the supervised setting (Collins et al., 2023;
Sheth & Ebrahimi Kahou, 2023; Zarlenga et al., 2023),
concept-based explanations have recently been incorporated
into RL. One approach (Das et al., 2023) learns a joint
embedding model between state-action pairs and concept-
based explanations to expedite learning via reward shaping.
Unlike our work, their policy is not a strict function of the
concepts, allowing our techniques to be combined to pro-
vide both concept-based explanations and a concept-based
interpretable policy. Another example, CPM (Zabounidis
et al., 2023), is a multi-agent RL concept architecture that
focuses on trade-offs between interpretability and accuracy.
They assume that concept labels are available continuously
during training. As we have shown, this approach uses over
1M concept labels in our test environments, whereas our
approach reduces the need for continuous human interven-
tion, requiring only 500 or fewer concept labels to achieve
similar or better performance in single-agent environments.

Learning Concepts with Human Feedback Another line
of work explores how to best leverage human concept labels
but not in the RL setting, and does not focus on reduc-
ing the labeling burden. In contrast, our approach aims to
reduce the concept labeling burden during training. One
work (Lage & Doshi-Velez, 2020) instead has users label
additional information about the relevance of certain feature
dimensions to the concept label. Another work (Chauhan
et al., 2023) develops an intervention policy at prediction
time to choose which concepts to request a label for with the
goal of improving the final prediction. Future work could
explore using these techniques alongside our method.

6. Discussion and Conclusion
In this work, we proposed LICORICE, a novel algorithm
that addresses the critical issue of model interpretability in
RL while minimizing the reliance on continuous human
annotation. We introduced a training scheme for RL algo-
rithms to learn concepts more efficiently from little concept
data. Our approach interleaves concept learning and RL
training, uses an ensemble-based active learning technique
to select informative data points for labeling, and uses a
simple sampling strategy to better decorrelate the concept
data. We demonstrated how this approach reduces manual
labeling effort. Finally, we conducted initial experiments
to show how we can leverage powerful VLMs to infer con-
cepts from raw visual inputs without explicit labels in some
environments. There are broader societal impacts of our
work that must be considered, including the impacts of us-
ing VLMs in real-world applications and considerations
around interpretability more generally. For a more detailed
discussion, please refer to Appendix C.

Limitations and Future Work Although VLMs can be suc-
cessfully used to automatically label some concepts, there
are still hallucination issues (Achiam et al., 2023) and other
failure cases, like giving inaccurate counts. Future work
that seeks to improve general VLM capabilities and mitigate
hallucinations would help overcome this limitation. Another
exciting direction is the work in human-AI complementarity
and learning-to-defer algorithms (Mozannar et al., 2023) to
train an additional classifier for deferring concept labeling
to a person when the chance of making an error is high.
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Environment Concept Name Type Value Ranges GPT-4o Error

PixelCartPole-v1

Cart Position Continuous (−2.4, 2.4) 0.04
Cart Velocity Continuous R 0.50
Pole Angle Continuous (−.2095, .2095) 0.04

Pole Angular Velocity Continuous R 0.86

DoorKey-7x7

Agent Position x Discrete 5 0.23
Agent Position y Discrete 5 0.43
Agent Direction Discrete 4 0.30
Key Position x Discrete 6 0.14
Key Position y Discrete 6 0.34
Door Position x Discrete 5 0.35
Door Position y Discrete 5 0.24

Door Open Discrete 2 0.41
Direction Movable Right Discrete 2 0.40
Direction Movable Down Discrete 2 0.26
Direction Movable Left Discrete 2 0.31
Direction Movable Up Discrete 2 0.45

DynamicObstacles-5x5

Agent Position x Discrete 3 0.07
Agent Position y Discrete 3 0.11
Agent Direction Discrete 4 0.34

Obstacle 1 Position x Discrete 3 0.08
Obstacle 1 Position y Discrete 3 0.26
Obstacle 2 Position x Discrete 3 0.19
Obstacle 2 Position y Discrete 3 0.21

Direction Movable Right Discrete 2 0.19
Direction Movable Down Discrete 2 0.17
Direction Movable Left Discrete 2 0.13
Direction Movable Up Discrete 2 0.15

Table 5: Concepts and their possible values for all environments. For discrete concepts, we report the number of categories.
We also provide the mean GPT-4o labeling error (MSELoss for continuous values and 1 - accuracy for discrete ones) for
each concept over observations with a budget of 300 and 1 iteration, averaged across 3 runs. The mean concept errors over
concepts are 0.64, 0.32, and 0.17 respectively for the three environments.

A. Experimental Result Reproducibility
In this section, we provided detailed descriptions to achieve reproducibility.

A.1. Concepts Definitions

Table 5 provides more details on the concepts used in each environment, categorizing them by their names, types, and value
ranges. For the PixelCartPole-v1 environment, all concepts such as Cart Position, Cart Velocity, Pole Angle, and Pole
Angular Velocity are continuous. In contrast, the DoorKey-7x7 environment features discrete concepts like Agent Position (x
and y), Key Position (x and y), and Door Open status, each with specific value ranges. Similarly, the DynamicObstacles-5x5
environment lists discrete concepts, including Agent and Obstacle positions, with corresponding value ranges

We also visualize the start configurations for DoorKey-7x7 in Figure 2 to illustrate the importance of concept definitions. As
shown, the concepts must be defined in such a way to allow the agent to generalize to all possible environment configurations.

A.2. LICORICE Details

In this section, we provide additional implementation details for LICORICE. The model architecture has been mostly
described in the main text and we state all additional details here. The number of neurons in the concept layer is exactly the
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Figure 2: Example start configurations of the DoorKey-7x7 environment. This shows that concepts must general enough to
apply to many different configurations. As a result, the agent cannot memorize the exact position of the door and key.

Figure 3: Architecture of our concept-bottleneck actor-critic method.

number of concepts. For continuous concept values, we directly use a linear layer to map from features to concept values.
For discrete concept values, since different concepts have different numbers of categories, we create one linear classification
head for each single concept, and to predict the final action, we calculate the class with the largest predicted probability for
each concept.

Value-Based Methods If we were to use a value-based method as the RL backbone, we would need to make the following
changes. First, we would need to modify V (s, a) or Q(s, a) to include a concept bottleneck, such that Q(s, a) = f(g(s)).
Then, we can conduct interleaved training in a similar way to LICORICE.

Feature Extractor If we use the actor-critic paradigm, we propose to share a feature extractor between the policy and value
networks, shown in Figure 3. Intuitively, this choice can offer several advantages compared with using image or predicted
concepts as input for both networks. Sharing a feature extractor enables both networks to benefit from a common, rich
representation of the input data, reducing the number of parameters to be trained. More importantly, it balances the updates
of the policy and value networks. In experiments, we observed that directly using the raw image as input for both networks
complicated policy learning. Conversely, relying solely on predicted concepts for the value network may limit its accuracy
in value estimation, particularly if the concepts do not capture all the nuances relevant to the value predictions.
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A.3. VLM Details

We detail our prompts for each environment here. PixelCartPole-v1

Prompt: Here are the past 4 rendered frames from the CartPole environment. Please use these images to estimate the
following values in the latest frame (the last one):

• Cart Position, within the range (-2.4, 2.4)
• Cart Velocity
• Pole Angle, within the range (-0.2095, 0.2095)
• Pole Angular Velocity

Additionally, please note that the last action taken was [last action].

Please carefully determine the following values and give concise answers one by one. Make sure to return an estimated
value for each parameter, even if the task may look challenging.

Follow the reporting format:
Cart Position: estimated_value
Cart Velocity: estimated_value
Pole Angle: estimated_value
Pole Angular Velocity: estimated_value
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DoorKey-7x7

Prompt: Here is an image of a 4x4 grid composed of black cells, with each cell either empty or containing an object.
Each cell is defined by an integer-valued coordinate system starting at (1, 1) for the top-left cell. The coordinates
increase rightward along the x-axis and downward along the y-axis. Within this grid, there is a red isosceles triangle
representing the agent, a yellow cell representing the door (which may visually disappear if the door is open), a yellow
key icon representing the key (which may disappear), and one green square representing the goal. Carefully analyze
the grid and report on the following attributes, focusing only on the black cells as the gray cells are excluded from the
active black area.

Detailed Instructions:

1. Agent Position: Identify and report the coordinates (x, y) of the red triangle (agent). Ensure the accuracy by
double-checking the agent’s exact location within the grid.

2. Agent Direction: Specify the direction the red triangle is facing, which is the orientation of the vertex (pointy
corner) of the isosceles triangle. Choose from ’right’, ’down’, ’left’, or ’up’. Clarify that this direction is
independent of movement options.

3. Key Position: Provide the coordinates (x, y) where the key is located. If the key is absent, report as (0, 0). Verify
visually that the key is present or not before reporting.

4. Door Position:
• Position: Determine and report the coordinates (x, y) of the door.
• Status: Assess whether the door is open or closed (closed means the door is visible as a whole yellow cell,

while open means the door disappears visually). Report as ’true’ for open and ’false’ for closed. Double-check
the door’s appearance to confirm if it is open or closed.

5. Direction Movable: Evaluate and report whether the agent can move one cell in each specified direction, namely,
the neighboring cell in that direction is active and empty (not key, closed door, or grey inactive cell):

• Right (x + 1): Check the cell to the right.
• Down (y + 1): Check the cell below.
• Left (x - 1): Check the cell to the left.
• Up (y - 1): Check the cell above.

Each direction’s feasibility should be reported as ’true’ if clear and within the grid, and ’false’ otherwise.
Reporting Format: Carefully report each piece of information sequentially, following the format ’name: answer’.
Ensure each response is precise and reflects careful verification of the grid details as viewed.
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DynamicObstacles-5x5

Prompt: Here is an image of a 3x3 grid composed of black cells, with each cell either empty or containing an object.
Each cell is defined by an integer-valued coordinate system starting at (1, 1) for the top-left cell. The coordinates
increase rightward along the x-axis and downward along the y-axis. Within this grid, there is a red isosceles triangle
representing the agent, two blue balls representing obstacles, and one green square representing the goal. Please
carefully determine the following values and give concise answers one by one:

1. Agent Position: Identify and report the coordinates (x, y) of the red triangle (agent). Ensure the accuracy by
double-checking the agent’s exact location within the grid.

2. Agent Direction: Specify the direction the red triangle is facing, which is the orientation of the vertex (pointy
corner) of the isosceles triangle. Choose from ’right’, ’down’, ’left’, or ’up’. Clarify that this direction is
independent of movement options.

3. Obstacle Position: Identify and report the coordinates of the two obstacles in ascending order. Compare the
coordinates by their x-values first. If the x-values are equal, compare by their y-values.
(a) First Obstacle: Provide the coordinates (x, y) of the first blue ball.
(b) Second Obstacle: Provide the coordinates (x, y) of the second blue ball.

4. Direction Movable: Evaluate and report whether the agent can move one cell in each specified direction, namely,
the neighboring cell in that direction is active and empty (not obstacle or out of bounds):

• Right (x + 1): Check the cell to the right.
• Down (y + 1): Check the cell below.
• Left (x - 1): Check the cell to the left.
• Up (y - 1): Check the cell above.

Each direction’s feasibility should be reported as ’true’ if clear and within the grid, and ’false’ otherwise.

Reporting Format: Carefully report each piece of information sequentially, following the format ’name: answer’.
Ensure each response is precise and reflects careful verification of the grid details as viewed.

A.4. Experimental Details

For the PPO hyperparameters, we set 4 · 106 total timesteps for PixelCartPole-v1and DoorKey-7x7, and 106 for
DynamicObstacles-5x5. Besides that, for all environments, we use 8 vectorized environments, horizon T = 4096,
10 epochs for training, batch size of 512, learning rate 3 · 10−4, entropy coefficient 0.01, and value function coefficient 1.
All other hyperparameters are using the default choices.

For the concept training, we set 100 epochs with Adam optimizer with the learning rate linearly decaying from 3 · 10−4 to 0
for each iteration in PixelCartPole-v1. In DoorKey-7x7 and DynamicObstacles-5x5, we use the same optimizer and initial
learning rate, yet set 50 epochs instead and set early stopping with threshold linearly increasing from 10 to 20, to incentivize
the concept network not to overfit in earlier iterations. The batch size is 32.

For GPU, we use NVIDIA A6000 and NVIDIA RTX 6000 Ada Generation. Each of our programs uses less than 2GB GPU
memory. For PixelCartPole-v1 and DoorKey-7x7, each run takes less than 9 hours to finish. For DynamicObstacles-5x5,
each run takes less than 2 hours to finish.
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Algorithm R ↑ c Error ↓

PixelCartPole-v1

Sequential-Q 0.24± 0.08 0.10± 0.04
Disagreement-Q 0.32± 0.10 0.10± 0.04

Random-Q 0.31± 0.07 0.08± 0.07
LICORICE 0.99± 0.00 0.03± 0.00

CPM 0.98± 0.01 0.01± 0.00

DoorKey-7x7

Sequential-Q 0.51± 0.00 0.47± 0.04
Disagreement-Q 0.82± 0.05 0.37± 0.09

Random-Q 0.89± 0.05 0.26± 0.11
LICORICE 0.99± 0.01 0.05± 0.01

CPM 1.00± 0.00 0.00± 0.00

DynamicObstacles-5x5

Sequential-Q 0.64± 0.56 0.01± 0.01
Disagreement-Q 1.00± 0.00 0.00± 0.00

Random-Q 0.95± 0.02 0.03± 0.02
LICORICE 0.98± 0.01 0.00± 0.00

CPM 0.99± 0.01 0.00± 0.00

Table 6: Evaluation of the reward R and concept error achieved by all methods in all environments. This is a extended
table from Table 1. The reward is reported as the fraction of the reward upper bound. For PixelCartPole-v1, the c error
is the MSE. For the other two environments, the c error is 1 - accuracy. The first four algorithms are given a budget of
B = [500, 300, 300] for each environment, from top to bottom; CPM is given an unlimited budget (in practice, it uses 4M,
4M, 1M concept labels respectively). The ± [value] part shows the standard deviation. This shows a more complete version
of the results in Table 1.

B. Additional Results
B.1. Balancing Concept Performance and Environment Reward

In Table 6, we present an extension of the results in Table 1, including standard deviation. Our method enjoys low variance
across all environments in terms of both concept error and reward.

B.2. Budget Allocation Effectiveness

In Table 7, we present an extension of the results in Table 2, including the standard deviation. As expected, as the budget
increases, the standard deviation for both the reward and concept error tends to decrease. The one exception is the reward
for PixelCartPole-v1. Interestingly, the standard deviation is highest for B = 400. We suspect this is because the concept
errors may be more critical here, leading to higher variance in the reward performance.

B.3. Integration with Vision-Language Models

In Table 8, we present an extension of the results in Table 3 in the main paper, including the standard deviation. Interestingly,
the standard deviation for the reward obtained by using LICORICE with GPT-4o as the annotator does not always follow
the same trend as shown in Table 7 (when we assume access to a more accurate human annotator). Instead, the standard
deviation is relatively consistent for PixelCartPole-v1, regardless of the budget. It steadily decreases for DoorKey-7x7, as
expected. However, in DynamicObstacles-5x5, we see an increase when B = 300. We are not sure of the cause of this.
Perhaps at this point the algorithm begins overfitting to the errors in the labels from GPT-4o (the concept error rate is the
same for 200 and 300 labels). Further investigation is required to understand the underlying factors contributing to this
anomaly.

GPT-4o Concept Labeling Errors Table 5 list detailed concept errors for concepts in all environments. In PixelCartPole-v1,
cart position and pole angle have smaller errors, while velocities require understanding multiple frames and thus are harder
to predict accurately. For DoorKey-7x7 and DynamicObstacles-5x5, different concepts have slightly varying concept errors,
indicating visual tasks have different difficulties for GPT-4o. Agent direction has as high as around 0.3 prediction error for
both DoorKey-7x7 and DynamicObstacles-5x5. Direction movable is also hard for DoorKey-7x7, with a high concept error
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B R ↑ c Error ↓

PixelCartPole-v1
300 0.29± 0.01 0.11± 0.04
400 0.69± 0.16 0.06± 0.01
500 0.99± 0.00 0.03± 0.00

DoorKey-7x7
100 0.72± 0.04 0.29± 0.06
200 0.92± 0.03 0.10± 0.02
300 0.99± 0.01 0.05± 0.01

DynamicObstacles-5x5
100 0.96± 0.02 0.05± 0.01
200 0.97± 0.03 0.01± 0.00
300 1.00± 0.01 0.00± 0.00

Table 7: Performance of LICORICE on all environments for varying budgets. The reward is reported as the fraction of the
reward upper bound. For PixelCartPole-v1, c error is MSE; for the other environments, c error is 1 - accuracy. The ± [value]
part shows the standard deviation. This shows a more complete version of the results in Table 2.

Environment Algorithm B R ↑ c Error ↓

PixelCartPole-v1

300 0.06± 0.01 0.18± 0.11
LICORICE+ GPT-4o 400 0.06± 0.02 0.24± 0.10

500 0.06± 0.01 0.17± 0.05
PPO w/o labels – 0.35± 0.53 –

DoorKey-7x7

100 0.69± 0.08 0.44± 0.04
LICORICE+ GPT-4o 200 0.72± 0.06 0.35± 0.02

300 0.84± 0.02 0.31± 0.02
PPO w/o labels – 1.00± 0.00 –

DynamicObstacles-5x5

100 0.23± 0.39 0.18± 0.01
LICORICE+ GPT-4o 200 0.95± 0.01 0.12± 0.01

300 0.87± 0.10 0.12± 0.01
PPO w/o labels – 1.00± 0.00 –

Table 8: Performance of LICORICE with GPT-4o integrated into the loop for all environments across different budgets, along
with PPO without labels. We compare against PPO without concept labels to inspect the reward performance difference.
This shows a more complete version of the results in Table 3.

even if it is a binary concept. We posit it requires the correct understanding of more than one particular object to ensure
correctness. The concept accuracies in DoorKey-7x7 are generally higher than DynamicObstacles-5x5, suggesting GPT-4o
more struggles with a larger grid.

Example Behavior of Agent with GPT-4o-labeled concepts In Figure 4, we show an example of a GPT-4o-trained RL
agent on DynamicObstacles-5x5, in which the agent appears to wait until it is safe to move towards the goal: the green
square. The image sequence shows the agent (red triangle) starting from its initial position and moving to the right. It then is
cornered by an obstacle (blue circle), then both obstacles. In the bottom left corner frame, it appears to make a mistake
by turning to the right, meaning it missed a window to escape. Finally, it moves to the goal when the path is clear in the
second-to-last and last frames (bottom right). This behavior highlights that the agent may still learn reasonable behavior
even if the concept labels may be incorrect (causing it to make a mistake, as in the bottom left frame).

B.4. Ablation

As mentioned in Section 4, we provide more detailed ablation study results in this section.

Figure 5 shows all learning curves for ablations in all environments. In PixelCartPole-v1, we clearly see the benefit of
iterative strategies on reward: LICORICE, LICORICE-DE and LICORICE-AC consistently increase in reward and converge
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Figure 4: Concept policy model trained with concept labels provided by GPT-4o waits until the coast is clear to move to the
goal. It appears to make a small mistake in the bottom left, requiring it to wait slightly longer than necessary to navigate to
the goal.

at high levels, but LICORICE-IT converges at less than 50% of the optimal reward. We also see that LICORICE-IT
also achieves higher concept error, indicating that it struggles to learn the larger distribution of concepts induced by a
non-optimal policy. In DoorKey-7x7, all algorithms steadily increase in reward. However, we can see a dip at around 106

environment steps where we begin the second iteration for LICORICE, LICORICE-AC, and LICORICE-DE. Although
LICORICE-IT achieves similar reward to LICORICE, LICORICE achieves lower concept error, which is beneficial for the
goal of interpretability. Finally, in DynamicObstacles-5x5, LICORICE-AC lags behind the most in terms of both reward and
concept error. This result indicates that the active learning component is most important for this environment.

We now inspect the performance at the last training iteration in Figure 6. Overall, we find that LICORICE performs better
than or equal to the ablations on all environments. It enjoys the best reward performance on PixelCartPole-v1, while
performing similarly to LICORICE-IT on DoorKey-7x7and to LICORICE-IT and LICORICE-DE on DynamicObstacles-
5x5. It exhibits the lowest concept error on PixelCartPole-v1 and DoorKey-7x7, and achieves similarly low error to
LICORICE-DE and LICORICE-IT on DynamicObstacles-5x5.

In PixelCartPole-v1, LICORICE achieves the highest reward, indicating the benefits of multiple iterations, active learning,
and decorrelation, which are absent in LICORICE-IT, LICORICE-AC, and LICORICE-DE, respectively. LICORICE
also enjoys the lowest concept error, showcasing its ability to learn and apply concepts accurately. LICORICE-AC and
LICORICE-DE perform well in minimizing concept error, while LICORICE-IT shows a relatively higher error rate,
underscoring the importance of multiple iterations in some environments.
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Figure 5: Learning curves for all ablations. Shaded region shows 95% CI, calculated using 1000 bootstrap samples.

C. Additional Discussion
C.1. Limitations and Future Work

While our approach has demonstrated promising results, there are several limitations to be addressed in future work. One
significant challenge is the difficulty VLMs face with certain types of concepts, especially continuous variables. This
limitation can impact the overall performance of concept-based models, especially in domains where continuous data is
prevalent. Addressing this issue could involve developing specialized techniques or using existing tools and libraries to
better complement VLM capabilities.

Another area for future improvement is the refinement of our active learning and sampling schemes. Our current method
employs an disagreement-based acquisition function to select the most informative data points for labeling. While this
approach is effective, there is potential for exploring more sophisticated active learning strategies, such as incorporating
advanced exploration-exploitation trade-offs or leveraging recent advancements in active learning algorithms (Tharwat &
Schenck, 2023).

Finally, designing a concept-based representation for RL remains an open challenge. Our work provides a few illustrative
examples, but the exact design of these representations can significantly impact performance, often for reasons that are not
entirely clear — especially when using VLMs as annotators. Prior work (Das et al., 2023) proposed some desiderata for
concepts in RL, but future work could refine these principles, especially in the face of VLM annotators. Future work could
also include systematically investigating the factors that influence the effectiveness of different concept-based representations
in RL. This could involve extensive empirical studies, theoretical analyses, and the development of new design principles
that guide the creation of effective concept representations. Understanding these factors better will help in creating more
reliable and interpretable RL models, ultimately advancing the field and broadening the applicability of concept-based
approaches in various RL tasks.

C.2. Broader Impacts

Interpretability in RL Incorporating concept learning with RL presents both positive and negative societal impacts. On
the positive side, promoting interpretability and transparency in decision-making fosters trust and accountability. However,
in cases where it yields incorrect results, stakeholders might be misled into trusting flawed decisions due to the perceived
transparency of the model (Kaur et al., 2020). Unintended misuse could also occur if stakeholders lack the technical
expertise to accurately interpret the models, leading to erroneous conclusions and potentially harmful outcomes. To mitigate
these risks, an avenue for future work is developing clear guidelines for interpreting these models and tools to scaffold
non-experts’ understanding of the model outputs.
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Figure 6: Performance of all ablations at the final training iteration, with black bars representing the 95% confidence interval,
calculated using 1000 bootstrap samples.

Using VLMs for Concept Labeling On one hand, VLMs have the potential to significantly improve the efficiency and
scalability of labeling processes, which can accelerate advancements in various fields. By automating the labeling of large
datasets, VLMs can help reduce the time and cost associated with manual labeling. However, there are important ethical and
social considerations to address. One major concern is the potential for bias in the concept labels generated by VLMs. If
these models are trained on biased or unrepresentative data, they may perpetuate or even amplify existing biases, leading
to unfair or discriminatory outcomes. This is particularly problematic in sensitive applications like hiring, lending, or law
enforcement, where biased decisions can have significant negative impacts on individuals and communities. Furthermore,
there are privacy concerns related to the data used to train VLMs. Large-scale data collection often involves personal
information, and improper handling of this data can lead to privacy violations. To mitigate these risks, future work could
include developing robust data governance frameworks to protect individuals’ privacy and comply with relevant regulations.
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