
Optimal Control of Partially Observable Markov Decision Processes with Finite
Linear Temporal Logic Constraints

Krishna C. Kalagarla1 Dhruva Kartik1 Dongming Shen1 Rahul Jain1 Ashutosh Nayyar1 Pierluigi Nuzzo1

1Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA

Abstract

Autonomous agents often operate in environments
where the state is partially observed. In addition to
maximizing their cumulative reward, agents must
execute complex tasks with rich temporal and logi-
cal structures. These tasks can be expressed using
temporal logic languages like finite linear temporal
logic (LTLf). This paper, for the first time, pro-
vides a structured framework for designing agent
policies that maximize the reward while ensuring
that the probability of satisfying the temporal logic
specification is sufficiently high. We reformulate
the problem as a constrained partially observable
Markov decision process (POMDP) and provide
a novel approach that can leverage off-the-shelf
unconstrained POMDP solvers for solving it. Our
approach guarantees approximate optimality and
constraint satisfaction with high probability. We
demonstrate its effectiveness by implementing it
on several models of interest.

1 INTRODUCTION

Markov Decision Processes (MDPs) [Puterman, 1994]
can model a wide range of scenarios involving sequen-
tial decision-making in dynamically evolving environments.
They are often used in settings like robotics, cyber-physical
systems, and safety-critical autonomous systems. Tradi-
tional planning in MDPs involves a reward structure over
the state-action space whose cumulative sum over the time-
horizon is maximized to achieve a desired objective. This
approach has been successful for tasks like reachability and
obstacle avoidance. However, designing an appropriate re-
ward function can at times be tricky, and an incorrect reward
formulation can easily lead to unsafe and undesired behav-
iors. This is primarily due to the fact that instantaneous
rewards in MDPs depend only on the current system state

and the agent’s current action. When the agent’s task is char-
acterized by complex temporal objectives, the agent needs
to track the status of the task it is performing in addition to
the system state. One might be able to incorporate some of
the simpler task specifications by appropriately modifying
the MDP model (e.g., by adding an absorbing state that de-
notes obstacle collision). However, manually constructing
an MDP reward function that captures substantially compli-
cated specifications is not always possible.

To overcome this issue, increasing attention has been di-
rected over the past decade towards leveraging temporal
logic specifications [Baier and Katoen, 2008] and formal
methods to formulate and solve control and planning prob-
lems in the presence of uncertainty. Several temporal logics
exist that are capable of capturing a wide range of task
specifications, including surveillance, reachability, safety,
and sequentiality. The synthesis of MDP policies which
maximize the probability of satisfaction of temporal logic
specifications has also been extensively studied [Ding et al.,
2011, Lahijanian et al., 2011, Aksaray et al., 2016]. How-
ever, while certain objectives are well expressed by temporal
logic constraints, others are better framed as a “soft” reward
maximization task. Therefore, several recent efforts [Kala-
garla et al., 2021b,a, Guo and Zavlanos, 2018] have focused
on reward maximization objectives for MDPs together with
temporal logic constraints.

MDPs model environments where the states are fully ob-
servable and do not account for many real-life scenarios
with partial state observability. These scenarios can instead
be captured by Partially Observable Markov Decision Pro-
cesses (POMDPs). Unfortunately, however, the aforemen-
tioned methods for synthesizing policies that satisfy tempo-
ral logic specifications in MDPs cannot be directly applied
to the setting of POMDPs. In theory, any POMDP can be
translated into an equivalent MDP whose state is the agent’s
posterior belief on the system state [Bertsekas, 1995]. How-
ever, the reachable belief space grows exponentially with the
time horizon. Due to this extremely large belief space, the
synthesis methods developed for MDPs become intractable

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<jj@example.edu>?Subject=Your UAI 2022 paper

in the context of POMDPs.

Recently, a few approaches have been proposed to address
the complexity issues that arise in POMDP planning for tem-
poral logic specifications. The focus of these approaches is
to maximize the satisfaction of temporal logic specifications.
They include simulations over the belief space [Haesaert
et al., 2018], discretization of the belief space [Norman
et al., 2015], and restricting the space of policies to finite
state controllers [Ahmadi et al., 2020, Sharan and Burdick,
2014, Chatterjee et al., 2015]. However, none of the above
approaches addresses temporal logic and reward maximiza-
tion objectives simultaneously. Lately, deep recurrent neural
network based approaches [Carr et al., 2020, 2019] have
also been proposed to handle POMDPs with temporal logic
specifications.

In this paper, we address this problem by expanding the tra-
ditional POMDP framework to incorporate temporal logic
specifications. Specifically, we aim to design policies for the
agent such that the agent’s reward is maximized while en-
suring that the temporal logic specification is satisfied with
high probability. Our focus is on processes which eventually
stop, but we allow for the stopping time of the process to
be random. The rewards are accumulated and the temporal
logic specification must be satisfied over the duration of the
process.

We focus on finite linear temporal logic (LTLf) [De Gia-
como and Vardi, 2013], a temporal extension of proposi-
tional logic, to express complex task specifications. LTLf

is a variant of linear temporal logic (LTL) [Baier and Ka-
toen, 2008], interpreted over finite traces. In LTLf , one can
start with simple atomic predicates and compose them using
operators such as conjunction, negation, “until,” “always,”
if-then, “next” (immediately), to obtain richer specifications.
For example, starting with the atomic predicates “injured
individual found,” “seek help,” and “hit obstacle,” we can
construct the specification “Always do not (hit obstacle) and,
if (injured individual found), then immediately (seek help).”
Given an LTLf specification, a deterministic finite automa-
ton (DFA) can be constructed such that the agent’s trajectory
satisfies the specification if and only if it is accepted by the
DFA [Zhu et al., 2017]. The internal state of this DFA es-
sentially tracks the status of the task associated with the
LTLf formula. The key idea underlying our approach is
that augmenting the system state with the DFA’s internal
state enables us to track both the system as well as the status
of our task. We can then simultaneously reason about the
POMDP rewards and the temporal logic specification by
formulating the planning problem as a constrained POMDP
problem.

We provide a scheme which can use any off-the-shelf un-
constrained POMDP solver [Kurniawati et al., 2008, So-
mani et al., 2013, Silver and Veness, 2010] to solve the
constrained POMDP problem, thus leveraging existing re-

sults from unconstrained POMDP planning. This idea of
leveraging well-studied unconstrained POMDP planners
was also used to find policies maximizing temporal logic
satisfaction in POMDPs [Liu et al., 2021, Bouton et al.,
2020].

There are a few other approaches for solving constrained
POMDPs. One such approach is to iteratively construct
linear programs Poupart et al. [2015] which results in an
approximate solution for the constrained POMDP problem.
However, this method has been shown to suffer from scala-
bility issues Lee et al. [2018]. A primal-dual approach based
on Monte Carlo Tree Search (MCTS) Lee et al. [2018]
has been used to address these scalability issues. We solve
the constrained POMDP problem using a similar primal-
dual method. A key difference is that, instead of using an
MCTS approach, we use an approximate unconstrained
POMDP solver, SARSOP Kurniawati et al. [2008]. This
solver returns policies for unconstrained POMDPs along
with bounds on their optimality gaps. This enables us to
establish a concrete relationship between the number of
iterations required and the approximation error using princi-
ples from no-regret learning. Column generation algorithms
Walraven and Spaan [2018] also use a similar primal-dual
approach, but with a different dual parameter update pro-
cedure. In these algorithms, convergence to optimality is
shown, but the number of iterations required to get an ap-
proximate solution is not known. Our method, on the other
hand, gives a precise relationship between the approxima-
tion error and the number of iterations.

To the best of our knowledge, this is the first paper on the
synthesis of reward optimal POMDP policies with temporal
logic constraints. Our contributions can be summarized as
follows:

1. We formulate a novel problem of reward maximization
in POMDPs under LTLf constraints. This formulation
can incorporate several non-trivial specifications such
as ordering, reactivity, etc., which cannot be well ex-
pressed by classical POMDP reward-like constraints.

2. For POMDPs that stop in finite time almost surely,
we provide a structured methodology for synthesiz-
ing approximately optimal policies which maximize a
cumulative reward under the constraint that the proba-
bility of satisfying a temporal logic specification stated
as an LTLf formula is beyond a desired threshold.

3. We construct a constrained product POMDP express-
ing both the reward maximization and temporal logic
objectives. We show that solving this constrained
POMDP is equivalent to solving the original POMDP
problem with the LTLf constraint.

4. For a large class of stopping times, we provide a plan-
ning scheme to solve the constrained POMDP. This
scheme can leverage any off-the-shelf approximate
solver that can solve unconstrained POMDPs with

stopping times. Different from current works on con-
strained POMDPs, we provide theoretical guarantees
on the near-optimality of the returned policy by using
a no-regret online learning approach.

5. Unconstrained POMDP solvers in a general stopping
time setting are uncommon. We describe two specific
models of stopping times for which existing POMDP
solvers can be used: (i) fixed-horizon stopping and (ii)
geometric stopping. Our algorithm employs a finite-
horizon POMDP solver under case (i) and a discounted
infinite-horizon POMDP solver under case (ii).

6. We apply our approach to numerically solve several
models and discuss its effectiveness.

2 PRELIMINARIES

We denote the sets of real and natural numbers by R and N,
respectively. R≥0 is the set of non-negative reals. For a given
finite set S, S∗ denotes the set of all finite sequences taken
from S. The indicator function 1S(s) evaluates to 1 when
s ∈ S and 0 otherwise. For a singleton set {s0}, we will
denote 1{s0}(s) with 1s0(s) for simplicity. The probability
simplex over the set S is denoted by ∆S. For a string s, |s|
denotes the length of the string.

2.1 LABELED POMDPS

Model. A Labeled Partially Observable Markov Deci-
sion Process (POMDP) is defined as a tuple M =
(S,A, P,ϖ,O,Z,AP,L, r, T), where S is a finite state
space, A is a finite action space, Pt : S × A → ∆S is the
transition probability function at time t, such that Pt(s, a; s

′)
is the probability of transitioning from state s to state s′ on
taking action a, ϖ ∈ ∆S is the initial state distribution, O is
a finite observation space, Zt : S → ∆O is the observation
probability function, such that Zt(s; o) is the probability of
seeing observation o in state s at time t, AP is a set of atomic
propositions, e.g., indicating the truth value of the presence
of an obstacle, goal, etc., L : S → 2AP is a labeling func-
tion which indicates the set of atomic propositions which
are true in each state, e.g., L(s) = (a) indicates that only
the atomic proposition a is true in state s, rt : S×A→ R is
a reward function, such that rt(s, a) is the reward obtained
on taking action a ∈ A in state s ∈ S. St, At, Ot denote the
state, action, and observation at time t, respectively. We say
that the system is time-invariant when the reward function
rt and the transition and observation probability functions
Pt and Zt do not depend on time t. The POMDP runs for
a random time horizon T . This random time may be de-
termined exogenously (independently) of the POMDP or
it may be a stopping time with respect to the information
process {It : t ≥ 0}.

Pure and Mixed Policies. At any given time t, the in-
formation available to the agent is the collection of all the
observations O0:t and all the past actions A0:t−1. We de-
note this information with It = {O0:t, A0:t−1}. A control
law πt maps the information It to an action in the action
space A, i.e., At = πt(It). The collection of control laws
π := (π0, π1, . . .) over the entire horizon is referred to as
a policy. We refer to such deterministic policies as pure
policies and denote the set of all pure policies with P .

A mixed policy µ is a distribution on a finite collection of
pure policies. Under a mixed policy µ, the agent randomly
selects a pure policy π ∈ P with probability µ(π) before
the POMDP begins. The agent uses this randomly selected
policy to select its actions during the course of the process.
More formally, µ : P → [0, 1] is a mapping. The support of
the mixture µ is defined as

supp(µ) := {µ : µ(π) ̸= 0, π ∈ P}. (1)

The setMp of all mixed mappings is given by

Mp :=

µ : |supp(µ)| <∞,
∑

π∈supp(µ)

µ(π) = 1

 .

(2)

Clearly, the setMp of mixed strategies is convex.

Assumption 1. The POMDP M is such that for every pure
policy π, the expected value of the stopping time T is finite,
i.e.,

EM
π [T] < TM

MAX <∞, ∀π. (3)

Assumption 1 ensures that the stopping time T is finite
almost surely, i.e., PM

µ [T <∞] = 1 and the total expected
rewardRM (µ) <∞ for every policy µ.

A run ξ of the POMDP is the sequence of states and actions
(s0, a0)(s1, a1) . . . (sT , aT). We consider both T finite as
well as T =∞. The total expected reward associated with
a policy µ is given by

RM (µ) = EM
µ

[
T∑

t=0

rt(St, At)

]
(4)

=
∑

π∈supp(µ)

[
µ(π)EM

π

[
T∑

t=0

rt(St, At)

]]
. (5)

Note theRM (µ) is a linear function in µ.

2.2 FINITE LINEAR TEMPORAL LOGIC
SPECIFICATION

We use LTLf [De Giacomo and Vardi, 2013], a tempo-
ral extension of propositional logic, to express complex

task specifications. This is a variant of linear temporal logic
(LTL) [Baier and Katoen, 2008] interpreted over finite traces.
Given a set AP of atomic propositions, i.e., Boolean vari-
ables that have a unique truth value (true or false) for a given
system state, LTLf formulae are constructed inductively as
follows:

φ := true | a | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2,

where a ∈ AP , φ, φ1, and φ2 are LTL formulae, ∧ and
¬ are the logic conjunction and negation, and U and X are
the until and next temporal operators. Additional temporal
operators such as eventually (F) and always (G) are de-
rived as Fφ := trueUφ and Gφ := ¬F¬φ. For example,
φ = Fa ∧ (G¬b) expresses the specification that a state
where atomic proposition a holds true has to be eventually
reached by the end of the trajectory and states where atomic
proposition b hold true have to be always avoided.

LTLf formulae are interpreted over finite-length words w =

w0w1 . . . wlast ∈ (2AP)
∗, where each letter wi is a set of

atomic propositions and last = |w| − 1 is the index of the
last letter of the word w. Given a finite word w and LTLf

formula φ, we inductively define when φ is true for w at
step i, (0 ≤ i < |w|), written w, i |= φ, as follows:

w, i |= true,

w, i |= a iff a ∈ wi,

w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2,

w, i |= ¬φ iff w, i ̸|= φ,

w, i |= Xφ iff i+ 1 < |w| and w, i+ 1 |= φ,

w, i |= φ1Uφ2 iff ∃ k s.t. i ≤ k < |w| and w, k |= φ2

and ∀j, i ≤ j < k, w, j |= φ1,

w, i |= Gφ iff ∀j, i ≤ j < |w|, w, j |= φ,

w, i |= Fφ iff ∃ j, i ≤ j < |w| s.t. w, j |= φ,

where iff is shorthand for ‘if and only if.’ A formula φ is
true in w, denoted by w |= φ iff w, 0 |= φ.

Given a POMDP M and an LTLf formula φ, a run
ξ = s0, a0, s1, a1 . . . sT , aT of the POMDP under policy
µ is said to satisfy φ if the word w = L(s0)L(s1) . . . ∈
(2AP)

T+1 generated by the run satisfies φ. The probability
that a run of M satisfies φ under policy µ is denoted by
PM
µ (φ).

We refer the reader to the experimental Section 5 for various
examples of LTLf specifications, especially ones express-
ing sequentiality, which cannot be expressed by standard
reward functions.

2.3 DETERMINISTIC FINITE AUTOMATON (DFA)

The language defined by an LTLf formula, i.e., the set of
words satisfying the formula, can be captured by a Deter-
ministic Finite Automaton (DFA) [Zhu et al., 2017].

We denote a DFA by a tuple A = (Q,Σ, q0, δ, F), where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is
an initial state, δ : Q× Σ→ Q is a transition function, and
F ⊆ Q is the set of accepting states.

A run ξA of A over a finite word w = w0 . . . wn, (with
wi ∈ Σ) is accepting if and only if there exists a se-
quence of states, q0q1 . . . qn+1 ∈ Qn+1 such that qi+1 =
δ(qi, wi), i = 0, . . . , n and qn+1 ∈ F . A word w ∈ Σ∗ is
accepted by A if and only if there exists an accepting run
ξA of A on w.

Finally, we say that an LTLf formula is equivalent to a
DFA A if and only if the language defined by the formula
is the language accepted by A . For any LTLf formula φ
over AP , we can construct an equivalent DFA with input
alphabet 2AP [Zhu et al., 2017].

3 PROBLEM FORMULATION AND
SOLUTION STRATEGY

Given a labeled POMDP M and an LTLf specification
φ, our objective is to design a policy µ that maximizes
the total expected reward RM (µ) while ensuring that the
probability PM

µ (φ) of satisfying the specification φ is at
least 1 − δ. More formally, we would like to solve the
following constrained optimization problem

LTLf -POMDP: max
µ

RM (µ)

s.t. PM
µ (φ) ≥ 1− δ.

(P1)

If (P1) is feasible, then we denote its optimal value withR∗.
If (P1) is infeasible, thenR∗ = −∞.

3.1 CONSTRAINED PRODUCT POMDP

Given the labeled POMDP M and a DFA A capturing the
LTLf formula φ, we follow the construction by [Ding et al.,
2013] for MDPs to construct a constrained product POMDP
M× = (S×, A×, P×, s×0 , r

×, rf , ϖ,O,Z×) which incor-
porates the transitions of M and A , the observations and
the reward function of M , and the acceptance set of A .

In the constrained product POMDP M×, S× = (S ×Q) is
the set of states, A× = A is the action set, and s×0 = (s0, q0)
is the initial state, where s0 is drawn from the distribution
ϖ and q0 is the initial state of the DFA. For each s, s′ ∈
S, q, q′ ∈ Q, and a ∈ A, we define the transition function
P×
t ((s, q), a; (s′, q′)) at time t as{

Pt(s, a; s
′), if q′ = δ(q, L(s)),

0, otherwise.
(6)

The reward functions are defined as

r×t ((s, q), a) = rt(s, a), ∀s, q, a, (7)

rf ((s, q)) =

{
1, if q ∈ F

0, otherwise.
(8)

The observation space O is the same as in the origi-
nal POMDP M . The observation probability function
Z×((s, q); o) is defined as Z(s; o) for every s ∈ S, q ∈
Q, o ∈ O. We denote the state of the product POMDP M×

at time t with Xt = (St, Qt) in order to avoid confusion
with the state St of the original POMDP M .

At any given time t, the information available to the agent
is It = {O0:t, A0:t−1}. Control laws and policies in the
product POMDP are the same as in the original POMDP
M . We define two reward functions in the product POMDP:
(i) a rewardRM×

(µ) associated with the original POMDP
M , and (ii) a reward Rf (µ) associated with reaching an
accepting state in the DFA A . The reward RM×

(µ) is
defined as

RM×
(µ) = Eµ

[
T∑

t=0

r×t (Xt, At)

]
. (9)

The rewardRf (µ) is defined as

Rf (µ) = Eµ

[
rf (XT+1)

]
. (10)

Due to Assumption 1, the stopping time T is finite almost
surely, and therefore, the rewardRf (µ) is well-defined.

In the constrained product POMDP, we are interested in
solving the following constrained optimization problem

C-POMDP: max
µ

RM×
(µ)

s.t. Rf (µ) ≥ 1− δ.
(P2)

Theorem 1 (Equivalence of Problems (P1) and (P2)). For
any policy µ, we have

RM×
(µ) = RM (µ) (11)

Rf (µ) = PM
µ (φ). (12)

Therefore, a policy µ∗ is an optimal solution in Problem
(P1) if and only if it is an optimal solution to Problem (P2).

Proof. See Appendix A.

4 A NO-REGRET LEARNING APPROACH
FOR SOLVING THE CONSTRAINED
POMDP

Problem (P2) is a POMDP policy optimization problem with
constraints. Solving unconstrained optimization problems is
generally easier than solving constrained optimization prob-
lems. In this section, we describe a general methodology
that reduces the constrained POMDP optimization problem

(P2) to a series of unconstrained POMDP problems. These
unconstrained solvers can be solved using any off-the-shelf
solver. The main idea is to first transform Problem (P2) into
a max-min problem using the Lagrangian function. This
max-min problem can then be solved approximately using a
no-regret algorithm such as the exponentiated gradient (EG)
algorithm.

The Lagrangian function associated with Problem (P2) is

L(µ, λ) = RM×
(µ) + λ(Rf (µ)− 1 + δ). (13)

Let

l∗ := sup
µ

inf
λ≥0

L(µ, λ). (P3)

The constrained optimization problem in (P2) is equivalent
to the sup-inf optimization problem above [Boyd and Van-
denberghe, 2004]. That is, if an optimal solution µ∗ exists
in problem (P2), then µ∗ is a maximizer in (P3), and if (P2)
is infeasible, then l∗ = −∞. Further, the optimal value of
Problem (P2) is equal to l∗. Consider the following variant
of (P3) wherein the Lagrange multiplier λ is bounded:

l∗B := sup
µ

inf
0≤λ≤B

L(µ, λ). (P4)

Lemma 1. Let µ̄ be an ϵ-optimal strategy in sup-inf problem
(P4), i.e.,

l∗B ≤ inf
0≤λ≤B

L(µ̄, λ) + ϵ, (14)

for some ϵ > 0. Then, we have

RM×
(µ̄) ≥ R∗ − ϵ, and (15)

Rf (µ̄) ≥ 1− δ − ϵf , (16)

where ϵf = Rm−R∗+ϵ
B and Rm := supµRM×

(µ) is the
maximum achievable reward.

Proof. See Appendix B.

Lemma 1 suggests that if we can find an ϵ-optimal mixed
policy µ̄ of the sup-inf problem (P3), then the policy µ̄ is
approximately optimal and satisfies the constraint approx-
imately with respect to (P2), and therefore, Problem (P1)
due to Theorem 1.

We use the exponentiated gradient (EG) algorithm to find
an ϵ-approximate policy µ̄ for Problem (P4). Let f(λ) =
supµ L(λ, µ). A sub-gradient of the function f(·) at λ is
given by (Rf (µλ)− 1 + δ), where

µλ = arg sup
µ

L(µ, λ). (17)

Remark 1. For solving an unconstrained POMDP, it is
sufficient to consider pure strategies, and therefore, most
solvers optimize only over the space of pure strategies. Thus,
the support of µλ is 1 for every λ.

Algorithm 1 Exponentiated Gradient Algorithm

Input: Constrained product POMDP M×

Initialize λ1 = B/2
for k = 1, . . . ,K do
µk ← OPT(M×, λk) = arg supµ L(µ, λk)

p̂k ← EVAL(µk) = Rf (µk)

λk+1 = B λke
−η(p̂k−1+δ)

B+λk(e
−η(p̂k−1+δ)−1)

end for
Output: µ̄ =

∑K
k=1 µk

K , λ̄ =
∑K

k=1 λk

K

The EG algorithm uses this sub-gradient to iteratively up-
date λ. The value of λ at the k-th iteration is denoted by
λk and the corresponding maximizing policy µλk

is simply
denoted by µk. The EG algorithm is described in detail in
Algorithm 1. Computing the sub-gradient involves two key
steps: solving the unconstrained POMDP in (17) and evalu-
ating the constraintRf (µ). The algorithm does not depend
on which methods are used for solving the unconstrained
POMDP and evaluating the constraint.

The following theorem states that the average policy µ̄ ob-
tained from Algorithm 1 is an ϵ-optimal policy for Problem
(P5).

Theorem 2. Under Assumption 1 and if η =
√

log 2
2KB2 , the

strategy µ̄ returned by Algorithm 1 satisfies

l∗B ≤ inf
0≤λ≤B

L(µ̄, λ) + 2B
√

2 log 2/K. (18)

Therefore,

RM (µ̄) ≥ R∗ − 2B
√

2 log 2/K (19)

PM
µ̄ (φ) ≥ 1− δ +

R∗ −Rm − 2B
√
2 log 2/K

B
. (20)

Proof. The proof of this theorem is a variation of the proof
of the Von Neumann theorem in Section 8.3 of [Hazan et al.,
2016]. See Appendix C for details.

In Theorem 2, we implicitly assume that Algorithm 1 has ac-
cess to an exact unconstrained POMDP solver and a method
for evaluatingRf (µ) exactly. In practice, however, methods
for solving POMDPs and evaluating policies are approx-
imate. A similar result as in Theorem 2 can be obtained
even with approximate solvers by using the arguments in
Appendix D of [Kalagarla et al., 2021a].

4.1 FIXED STOPPING TIME

Consider the case when the horizon T is a constant. With
a slight abuse of notation, we denote this constant with T .
In this case, Assumption 1 is trivially true, and therefore,

Theorem 2 holds. The Lagrangian function in this case is
given by

L(µ, λ) (21)

= Eµ

[(
T∑

t=0

r×t (Xt, At)

)
+ λ(rf (XT+1)− 1 + δ)

]
.

Clearly, for a given λ, we can maximize L(µ, λ) over µ
using a finite-horizon POMDP solver [Walraven and Spaan,
2019]. The resulting policy µλ is a pure policy (poten-
tially time-varying) and selects actions based on the product
POMDP’s posterior belief where, for an instance, x ∈ S×,
the posterior belief bt ∈ ∆S× at time t, is defined as
bt(x) = P[X×

t = x | It]. The constraint Rf (µ) for any
policy µ can be evaluated by Monte-Carlo simulation. There-
fore, with the help of a finite-horizon POMDP solver and
the Monte-Carlo method for constraint evaluation, we can
employ Algorithm 1 to approximately solve Problem (P1).

4.2 GEOMETRICALLY-DISTRIBUTED TIME
HORIZON

Let {Et : t = 0, 1, 2, ...} be a sequence of i.i.d. Bernoulli
random variables with P[E0 = 1] = 1− γ (γ < 1). Let the
time-horizon T be defined as

T = min{t : Et = 1, t = 0, 1, · · · }. (22)

This stopping time T has a geometric distribution with prob-
ability mass function (1− γ)γt. The mean of this stopping
time is γ/(1− γ) for every policy, and therefore, it satisfies
Assumption (1). This type of stopping time is useful in sit-
uations where the process stops when an exogenous event
occurs (Et = 1). The occurrence time of such exogenous
events is typically modeled as a geometric (memoryless)
distribution. We observe that, under this stopping model,
it is possible that the process stops in just a few steps (or
even one step). However, when γ is close to 1, the probabil-
ity that the process stops quickly is very small. Because of
this property, this geometric stopping time can also be used
to approximately model bounded horizon problems with a
sufficiently large γ.

We now show that solving the unconstrained POMDP in
(17) reduces to solving an equivalent discounted-reward
POMDP. Discounted-reward POMDP solvers have been
extensively studied and several implementations of them
are readily available [Kurniawati et al., 2008, Somani et al.,
2013]. Therefore, we can use any off-the-shelf discounted
POMDP solver for this stopping model.

Let M be any time-variant POMDP and let A be a DFA
capturing the LTLf formula φ.

Lemma 2. For a given λ, maximizing L(µ, λ) over µ under
the geometric stopping criterion is equivalent to maximizing

the following discounted reward

Eµ

[∞∑
t=0

γt

(
r×t (Xt, At) +

λ(1− γ)

γ
γtrf (Xt)

)]
. (23)

Proof. See Appendix D.

For a given λ, we can therefore maximize L(µ, λ) over µ
using an infinite-horizon discounted-reward POMDP solver
[Kurniawati et al., 2008]. The resulting policy µλ is a pure
stationary policy and selects actions based on the product
POMDP’s posterior belief. The discounted-solver and a
Monte-Carlo estimator can be used in Algorithm 1 to solve
Problem (P1) when the stopping time is geometrically dis-
tributed.

5 EXPERIMENTS

We consider a collection of gridworld problems in which
an agent needs to maximize its reward while satisfying an
LTLf specification. In all our experiments, we use the ge-
ometric stopping (discounted) setting described in Section
4.2. Our primary reason for focusing on geometric stop-
ping is the availability of a wide range of infinite-horizon
discounted-reward solvers. The focus of our experiments is
to demonstrate how our approach of constructing the prod-
uct POMDP and using Algorithm 1 results in behaviors that
maximize the reward and satisfy the LTLf specification.
We would like to emphasize that our approach can be ex-
tended to any other stopping time model as long as it has
an associated unconstrained solver and a reward estimator.
The computational complexity of our approach is about K
(number of iterations in Algorithm 1) times the complexity
of solving the unconstrained POMDP and evaluating the
constraint. Therefore, the scalability of our algorithm largely
depends on the scalability of the methods for solving and
evaluating unconstrained POMDPs.

In all of our experiments, we use the SARSOP solver
for finding an approximately optimal policy µk at itera-
tion k of Algorithn 1, and Monte-Carlo simulations to es-
timate the constraint function. Additional details on the
hyper-parameters and runtime used in our experiments can
be found in Appendix E. We further use the online tool
LTLf2DFA [Fuggitti, 2019] based on MONA [Klarlund and
Møller, 2001] to generate an equivalent DFA for an LTLf

formula.

5.1 LOCATION UNCERTAINTY

In all the experiments in this subsection, the agent’s tran-
sitions in the gridworld are stochastic. That is, if the agent
decides to move in a certain direction, it moves in that di-
rection with probability 0.95 and, with probability 0.05, it

Table 1: Reward and constraint performance of the policy µ̄
under various models and specifications.

Model Spec RM (µ̄) Rf (µ̄) 1− δ B

M1 φ1 1.72 0.75 0.75 5
M2 φ1 0.95 0.70 0.70 8
M3 φ2 0.83 0.76 0.75 5
M4 φ3 0.80 0.71 0.70 6
M5 φ4 0.83 0.71 0.70 6
M6 φ5 1.01 0.79 0.80 10
M7 φ6 4.28 0.82 0.80 25
M8 φ1 2.73 0.81 0.85 20
M9 φ4 1.68 0.81 0.75 10

moves one step with uniform probability in any direction
that is not opposite to its intended direction. The agent also
receives a noisy observation on where it is currently located.
The observation is uniformly distributed among the loca-
tions neighboring the agent’s current location. The default
grid size is 4× 4 and the discount factor is 0.99. The details
on the reward structures can be found in Appendix E.

Reach-Avoid Tasks. In this problem, we are interested in
reaching a goal state a and always avoiding dangerous states
b. This can be specified using LTLf as φ1 = Fa ∧ (G¬b).
In this case, we consider a 4 × 4 grid (model M1 with a
single obstacle b) and an 8 × 8 grid (model M2 with two
obstacles b).

Ordered Tasks. In this problem, we are interested in
reaching states a, b, and c in a certain order. If we are inter-
ested in reaching b after a, the corresponding specification is
φ2 = F(a ∧ Fb). Similarly, if we want to visit a, b, and c in
that order, the specification is φ3 = F(a∧F(b∧Fc)). Under
the specification F(a∧Fb), it is possible that the agent visits
b, then a, and then b. To ensure that a strict order is main-
tained, we can have the specification φ4 = ¬bU(a ∧ Fb).
These tasks were performed on models M3,M4, and M5

(see Appendix E).

Reactive Tasks. In this problem, we consider a more com-
plicated specification. There are four states of interest: a, b, c,
and d. The agent must eventually reach a or b. However, if it
reaches b, then it must visit c without visiting d. This can be
expressed as φ5 = F(a ∨ b) ∧ G(b → (¬dUc)). This task
was performed on model M6 (see Appendix E).

Another task specification is the following: eventually reach
a; if you visit b immediately after reaching a, then eventually
visit c; otherwise, visit d. This can be expressed as φ6 =
Fa ∧ G((aXb → Fc) ∧ (aX¬b → Fd)). This task was
performed on model M7 (see Appendix E).

(a) Top-right obstacle (b) Bottom-left obstacle

Figure 1: Trajectories in model M8 and specification φ1

5.2 PREDICATE UNCERTAINTY

In all the experiments in this subsection, the agent’s transi-
tions in the gridworld are deterministic. That is, if the agent
decides to move in a certain direction, it moves in that direc-
tion with probability 1. The uncertainty is in the location of
objects that the agent may have to reach or avoid. The agent
receives observations that may convey some information
about an object’s locations. A detailed description of the
observation model is provided in Appendix E. The grid size
in these models is 4× 4 and the discount factor is 0.99.

Reach-Avoid Tasks. The reach avoid specification (φ1)
is the same as earlier. However, the agent does not know
which location to avoid. The agent must therefore gather
enough information to assess where the undesirable state is
and act accordingly. This task was performed on model M8

(see Appendix E).

Ordered Tasks. The agent needs to visit state a and b
strictly in that order. Therefore, the specification is φ4. How-
ever, the agent does not know where b is located. Once again,
it must gather enough information and then traverse the grid
accordingly. This task was performed on model M9 (see
Appendix E).

For each model discussed above, we use Algorithm 1 to gen-
erate a mixed policy µ̄. The corresponding rewardRM (µ̄)
and the constraintRf (µ̄) (which is the same as the satisfac-
tion probability PM

µ̄ (φ)) are shown in Table 1. The reward
and the constrained have been estimated by running 200
Monte-Carlo simulations. We observe that the probability
of satisfying the constraint generally exceeds the required
threshold. Occasionally, the constraint is violated, albeit
only by a small margin. This is consistent with our result in
Theorem 2. Since we cannot exactly compute the optimal
feasible reward R∗, it is difficult to assess how close our
policy is to optimality. Nonetheless, we observe that the
agent behaves in a manner that achieves high reward in all
of these models. A more detailed discussion on this can be
found in Appendix E.

5.3 DISCUSSION

In this section, we discuss the interplay between reward
maximization, constraint satisfaction, and partial observabil-
ity for executing the reach-avoid task in model M8. The
state in this model comprises of two parts: (i) the agent’s
location and (ii) the object b’s location. The object can only
be in the bottom-left corner or the top-right corner (see
Figure 1). The agent receives high reward when it remains
in the top-right corner, moderate reward in the bottom-left
corner, and no reward everywhere else. Further, the agent
does not know the obstacle’s location a priori. If the agent
gets close to the obstacle, it can detect the obstacle with
some probability. The agent’s detection capability is better
when it is in the bottom-left region than when it is in the
top-right region (see Appendix E).

In order to balance the reward, constraint satisfaction and
information acquisition, our agent acts as follows. It first
heads towards the location a (since it has to eventually
visit it) via the bottom-left region without hitting the corner.
Since the agent’s detection capability is higher in the bottom-
left region, it acquires information on where the object is
located. After reaching a, it goes to the top-right corner if the
object is not located there and bottom-left corner otherwise.
Some typical trajectories of the agent are shown in Figure 1.

Plot 2 depicts the performance of various policies µk gen-
erated while executing Algorithm 1. We can observe that,
in the vast majority of iterations, the constraint is being
satisfied. The Lagrange multiplier λk decreases as long as
the constraint is being satisfied. The Lagrange multiplier
eventually becomes too small and the constraint is violated.
This is when we observe a spike in the reward (see Figure 2).
These spikes add to the average reward. Since the constraint
violation is substantial, the Lagrange multiplier increases.
We note that this iterative process ensures that constraint
violation occurs rarely. Since we randomly pick a policy
with uniform distribution, the average error probability is
still close to the threshold (see Table 1).

6 CONCLUSIONS

In this paper, we provided a methodology for designing
policies that maximize the total expected reward while en-
suring that the probability of satisfying a linear temporal
logic (LTLf) specification is sufficiently high. By augment-
ing the system state with the state of the DFA associated
with the LTLf specification, we constructed a constrained
product POMDP. Solving this constrained product POMDP
is equivalent to solving the original problem. We provided
an alternative constrained POMDP solver based on the ex-
ponentiated gradient (EG) algorithm and derived approxi-
mation bounds for it. We identified two types of stopping
time (fixed and geometric) for which we have readily avail-
able unconstrained POMDP solvers which can be used by

Figure 2: This plot depicts how the Lagrange multiplier
λk, the rewardRM (µk) and the probability of satisfaction
Rf (µk) evolve with k in Algorithm 1 under model M8 with
the reach-avoid specification φ1.

our constrained POMDP solver. For geometric stopping
time models, we computed near optimal policies that satisfy
the LTLf specification with sufficiently high probability.
We observed in our experiments that our approach results
in policies that effectively balance information acquisition
(exploration), reward maximization (exploitation), and satis-
faction of the specification, which is very difficult to achieve
using classical POMDPs.

Acknowledgements

This research was supported in part by the National Science
Foundation under Awards 1839842, 1846524, and 2139982,
the Office of Naval Research under Award N00014-20-1-
2258, and the Defense Advanced Research Projects Agency
under Award HR00112010003.

References

Mohamadreza Ahmadi, Rangoli Sharan, and Joel W Bur-
dick. Stochastic finite state control of POMDPs with LTL
specifications. arXiv preprint arXiv:2001.07679, 2020.

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwa-
ger, and Calin Belta. Q-learning for robust satisfaction
of signal temporal logic specifications. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages
6565–6570. IEEE, 2016.

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. MIT press, 2008.

Dimitri P Bertsekas. Dynamic programming and optimal
control, volume 1. Athena scientific Belmont, MA, 1995.

Maxime Bouton, Jana Tumova, and Mykel J Kochenderfer.
Point-based methods for model checking in partially ob-
servable Markov decision processes. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.

Stephen P Boyd and Lieven Vandenberghe. Convex opti-
mization. Cambridge university press, 2004.

Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru C Ser-
ban, Bernd Becker, and Ufuk Topcu. Counterexample-
guided strategy improvement for POMDPs using recur-
rent neural networks. arXiv preprint arXiv:1903.08428,
2019.

Steven Carr, Nils Jansen, and Ufuk Topcu. Verifiable RNN-
based policies for POMDPs under temporal logic con-
straints. arXiv preprint arXiv:2002.05615, 2020.

Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and
Ayush Kanodia. Qualitative analysis of POMDPs with
temporal logic specifications for robotics applications. In
2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 325–330. IEEE, 2015.

Giuseppe De Giacomo and Moshe Y Vardi. Linear tem-
poral logic and linear dynamic logic on finite traces. In
Twenty-Third International Joint Conference on Artificial
Intelligence, 2013.

Xu Chu Ding, Alessandro Pinto, and Amit Surana. Strategic
planning under uncertainties via constrained Markov De-
cision Processes. In 2013 IEEE International Conference
on Robotics and Automation, pages 4568–4575. IEEE,
2013.

Xu Chu Dennis Ding, Stephen L Smith, Calin Belta, and
Daniela Rus. LTL control in uncertain environments with
probabilistic satisfaction guarantees. IFAC Proceedings
Volumes, 44(1):3515–3520, 2011.

Francesco Fuggitti. LTLf2DFA, March 2019. URL https:
//doi.org/10.5281/zenodo.3888410.

M. Guo and M. M. Zavlanos. Probabilistic Motion Plan-
ning Under Temporal Tasks and Soft Constraints. IEEE
Transactions on Automatic Control, 63(12):4051–4066,
Dec 2018. ISSN 2334-3303.

Sofie Haesaert, Petter Nilsson, Cristian Ioan Vasile, Ro-
han Thakker, Ali-akbar Agha-mohammadi, Aaron D
Ames, and Richard M Murray. Temporal logic control of
POMDPs via label-based stochastic simulation relations.
IFAC-PapersOnLine, 51(16):271–276, 2018.

Elad Hazan et al. Introduction to online convex optimization.
Foundations and Trends® in Optimization, 2(3-4):157–
325, 2016.

https://doi.org/10.5281/zenodo.3888410
https://doi.org/10.5281/zenodo.3888410

Krishna C Kalagarla, Rahul Jain, and Pierluigi Nuzzo.
Model-Free Reinforcement Learning for Optimal Control
of Markov Decision Processes Under Signal Temporal
Logic Specifications. arXiv preprint arXiv:2109.13377,
2021a.

Krishna C Kalagarla, Rahul Jain, and Pierluigi Nuzzo. Opti-
mal Control of Discounted-Reward Markov Decision Pro-
cesses Under Linear Temporal Logic Specifications. In
2021 American Control Conference (ACC), pages 1268–
1274. IEEE, 2021b.

Nils Klarlund and Anders Møller. MONA Version 1.4 User
Manual. BRICS, Department of Computer Science, Uni-
versity of Aarhus, January 2001. Notes Series NS-01-1.
Available from http://www.brics.dk/mona/.

Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP:
Efficient point-based POMDP planning by approximating
optimally reachable belief spaces. In Robotics: Science
and systems, volume 2008. Citeseer, 2008.

M Lahijanian, SB Andersson, and C Belta. Control of
Markov decision processes from PCTL specifications. In
Proceedings of the 2011 American Control Conference,
pages 311–316. IEEE, 2011.

Jongmin Lee, Geon-Hyeong Kim, Pascal Poupart, and Kee-
Eung Kim. Monte-Carlo tree search for constrained
POMDPs. Advances in Neural Information Processing
Systems, 31, 2018.

Jason Liu, Eric Rosen, Suchen Zheng, Stefanie Tellex, and
George Konidaris. Leveraging Temporal Structure in
Safety-Critical Task Specifications for POMDP Planning.
2021.

Gethin Norman, David Parker, and Xueyi Zou. Verification
and control of partially observable probabilistic real-time
systems. In International Conference on Formal Mod-
eling and Analysis of Timed Systems, pages 240–255.
Springer, 2015.

Pascal Poupart, Aarti Malhotra, Pei Pei, Kee-Eung Kim,
Bongseok Goh, and Michael Bowling. Approximate
linear programming for constrained partially observable
Markov decision processes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29, 2015.

Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1994. ISBN
0471619779.

Rangoli Sharan and Joel Burdick. Finite state control of
POMDPs with LTL specifications. In 2014 American
Control Conference, pages 501–508. IEEE, 2014.

David Silver and Joel Veness. Monte-Carlo planning in large
POMDPs. Advances in neural information processing
systems, 23, 2010.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee.
DESPOT: Online POMDP planning with regularization.
Advances in neural information processing systems, 26,
2013.

Erwin Walraven and Matthijs TJ Spaan. Column generation
algorithms for constrained POMDPs. Journal of artificial
intelligence research, 62:489–533, 2018.

Erwin Walraven and Matthijs TJ Spaan. Point-based value
iteration for finite-horizon POMDPs. Journal of Artificial
Intelligence Research, 65:307–341, 2019.

Shufang Zhu, Lucas M Tabajara, Jianwen Li, Geguang Pu,
and Moshe Y Vardi. Symbolic LTLf synthesis. arXiv
preprint arXiv:1705.08426, 2017.

	Introduction
	Preliminaries
	Labeled POMDPs
	Finite Linear Temporal Logic Specification
	Deterministic Finite Automaton (DFA)

	Problem Formulation and Solution Strategy
	Constrained Product POMDP

	A No-regret Learning Approach for Solving the Constrained POMDP
	Fixed Stopping Time
	Geometrically-distributed Time Horizon

	Experiments
	Location Uncertainty
	Predicate Uncertainty
	Discussion

	Conclusions

