
Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

DEEP SEQUENCED LINEAR DYNAMICAL SYSTEMS FOR
MANIPULATION POLICY LEARNING

Mohammad Nomaan Qureshi
IIIT Hyderabad
mohammad.nomaan@research.iiit.ac.in

Ben Eisner & David Held
Carnegie Mellon University
{baeisner,dheld}@andrew.cmu.edu

ABSTRACT

In policy learning for robotic manipulation tasks, action parameterization can
have a major impact on the final performance and sample efficiency of a pol-
icy. Unlike highly-dynamic continuous-control tasks, many manipulation tasks
can be efficiently performed by a sequence of simple, smooth end-effector mo-
tions. Building on this intuition, we present a new class of policies built on top
of differentiable Linear Dynamical System (dLDS) units, our differentiable for-
mulation of the classical LDS. Constructing policies using dLDS units yields
several advantageous properties, including trajectory coherence across timesteps,
stability, and invariance under translation and scaling. Inspired by the sequenced
LDS approach proposed by Dixon & Khosla (2004), we propose a deep neural-
network policy parameterization based on sequenced dLDS units, and we inte-
grate this policy class into standard on-policy reinforcement learning settings.
We conduct extensive experiments on Metaworld environments and show a no-
table improvement in performance and sample efficiency compared to other
state-of-the-art algorithms. Additional visualizations and code can be found at
https://sites.google.com/view/deep-sequenced-lds.

1 INTRODUCTION

Imagine a robot trying to pour water into a glass from a bottle. First, it has to reach the bottle’s
cap, open the cap, move the bottle towards the glass, and then pour the water into the glass. The
complex trajectory that the robot follows to accomplish this task can be decomposed into a sequence
of simpler trajectories. Even when we change the positions of glass and bottle, the underlying simpler
trajectories follow approximately the same shape, but are transformed accordingly. In this paper,
we explore whether we can parameterize a learned policy that is biased towards producing smooth
trajectories with a similar decomposable, transformable structure.

In order to achieve smooth, coherent trajectories when the underlying action space does not implicitly
provide them, a policy must jointly reason about an agent’s actions across time steps. One popular
approach to achieve this is to predict sequences of actions together at a lower frequency than the
actions are executed - for instance, by directly repeating a single action (“frame skip” Braylan
et al. (2015)), or jointly predicting low-level actions for the next k timesteps Bahl et al. (2020).
However, repeating the same action for k steps achieves smoothness without local expressiveness;
and jointly predicting k low-level actions achieves local expressiveness but produces actions that are
not necessarily coherent or smooth.

Recently, Bahl et al. (2020) proposed a policy representation (NDP) that is guaranteed to produce
smooth, coherent trajectories by reparametrizing the action space with parameters of a non-linear
dynamical system based on Dynamic Motion Primitives (DMPs), which consist of a set of forcing
function weights and a goal state Ijspeert et al. (2013). They then use a standard trajectory-following
controller to follow the trajectory for a fixed number of time steps before re-evaluating the policy.
While the underlying Dynamic Motion Primitives used in NDPs can express very complex trajectories,
their performance is sensitive to the choice of basis function and number of basis functions, and they
aren’t inherently invariant to translation or rotation of the state space Saveriano et al. (2021). With
these limitations in mind, outputting DMP parameters to provide a wide variety of trajectories for
different environmental variations – particularly in goal-conditioned manipulation tasks – presents a
challenging optimization problem.

1

https://sites.google.com/view/deep-sequenced-lds

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

To address these limitations, we propose a different action parameterization based on a Linear Dy-
namical System (LDS). This choice of dynamical system achieves guaranteed scale and translational
invariance (proof in Appendix B), structurally improving the generalization of goal-conditioned
policies. Based on the intuition that many manipulation tasks may be accomplished by a sequence of
simple skills, we decompose an episode into a sequence of LDS units, in which we learn a neural-
network based policy to predict the goal for each unit. This action space parameterization is heavily
inspired by the classical sequential LDS formulation proposed by Dixon & Khosla (2004), who
observed that a complex trajectory can be decomposed into a sequence of simpler linear dynamical
systems. However, their policy formulation is not differentiable, making it non-trivial to adapt to a
deep reinforcement learning setting. Therefore, we replace the LDS unit with a differentiable version
(dLDS), and we propose a corresponding sequenced dLDS policy learning algorithm that can be
trained using any policy-gradient algorithm. We conduct thorough experiments on Metaworld Yu
et al. (2019) environments and show a notable improvement in sample efficiency in comparison to
other state-of-the-art algorithms. To summarize our contributions:

• We introduce a differentiable formulation of training Linear Dynamical Systems which can
be integrated into any gradient-based learning algorithm.

• We propose a novel RL policy composed from a sequence of dLDS units.
• We conduct thorough experiments in numerous Metaworld environments and show a notable

improvement in sample efficiency compared to baseline policy-learning algorithms.

2 RELATED WORK

Dynamical systems for manipulation Dynamic motion primitives have been classically used for
solving complex manipulation tasks Ijspeert et al. (2013); Tamosiunaite et al. (2011); Ijspeert et al.
(2013); Thota et al. (2016). More recently, methods have employed DMPs with Neural Networks in
order to learn policies that could output the parameters of the underlying dynamical system (DMP),
which is then use to sample trajectories Bahl et al. (2020); Pahič et al. (2018; 2020); Bahl et al. (2021).
Hierarchial NDPs Bahl et al. (2021) builds upon NDPs with a hierarchial framework which can work
on unseen task configurations.

Reinforcement learning for manipulation tasks Along with recent progress in deep reinforcement
learning, there has been increased interest in applying reinforcement learning to manipulation tasks.
Several popular benchmark tasks widely used in RL literature feature challenging goal-conditioned
manipulation tasks such as Fetch and MetaWorld, Andrychowicz et al. (2017); Yu et al. (2019).
Several methods have leveraged fully on-robot training to accomplish generalized manipulation tasks
using robot arms equipped with parallel-jaw grippers Gu et al. (2017); Kalashnikov et al. (2018).
RL has also been used for dynamic manipulation tasks Zeng et al. (2020) and manipulation tasks
involving high-dimensional control OpenAI et al. (2018; 2019). Several methods have also sought to
encode explicit inductive biases for manipulation tasks directly into the policy structure, including
graph neural networks Li et al. (2020), motion planners Yamada et al. (2020), and through the use of
action primitives Dalal et al. (2021) .

Residual Reinforcement Learning: Recent papers Johannink et al. (2018); Silver et al. (2018)
proposed combining a hand-engineered control policy with a reinforcement learning policy. This
combination can solve tricky tasks that can be solved approximately by a hand-engineered policy but
can only be solved completely using the help of a residual RL policy applied on top. However, coming
up with such an underlying hand-engineered policy for each task is complex and labor-intensive.
Our sequenced linear dynamical system policy can also be viewed as coming up with a trainable
hard-coded structure accompanied by a residual reinforcement learning policy. Residual RL has
been explored for manipulation tasks Johannink et al. (2018); Silver et al. (2018); Zeng et al. (2020);
Garcia-Hernando et al. (2020); Ranjbar et al. (2021); Schoettler et al. (2019) and in a Learning from
Demonstration setting Alakuijala et al. (2021); Schoettler et al. (2019).

3 PRELIMINARIES

Reinforcement Learning: The aim of applying reinforcement learning (RL) is to learn to generate
actions that maximize the cumulative reward on a given task. More specifically, RL aims to find

2

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

optimal parameters θ for the policy πθ which can maximise the average discounted return J :

Jπ = Eat∼πθ(st)
,s0∼p0

[
∑t=T

t=1 γtr(st, at)] (1)

where st represents current state, at represents action sample from policy πθ, r(st, at) represents the
reward function and T is the maximum episode length. Policy Gradient algorithms approximate the
gradient of J with respect to policy parameters θ as

(2)∇θJ = Eat∼πθ(st)
[(Gt − V (st+1))∇ log πθ(at|st)]

where V (s) represents value function and Gt = rt+1 + γV (st+1). Most modern algorithms
parametrize the policy πθ as a neural network, and hence θ represents the network parameters Schul-
man et al. (2017); Mnih et al. (2016).

Linear Dynamical Systems: Dixon & Khosla (2004) present a way to represent trajectories using
Linear Dynamical Systems. Consider a trajectory Y = [y1, y2, . . . , yT] where each state yt is an
m-dimensional vector and T ≥ m. Dixon & Khosla (2004) provide a least squares solution for
extracting these LDS representations from a given demonstration. An LDS can be represented using
the difference equation:

yt+1 = R · (yt − yT) + yt (3)

where R is a matrix that parameterizes the LDS. For a complete trajectory Y, We can rewrite Eq. 3 in
a stacked matrix equation as:

(4)[y2, ...,yT] = R · ([y1, ...,yT−1]− [yT, ...,yT]) + [y1, ...,yT−1]

or equivalently as

Y[2 : T] = R · (Y[1 : T− 1]− ΓT) +Y[1 : T − 1] (5)

where ΓT = [yT , ..., yT]. The least-squares solution for is:

R̂ = (Y[2 : T]−Y[1 : T − 1]) · (Y[1 : T − 1]− ΓT)
P (6)

where, for any matrix M , MP = MT ·(M ·MT)−1 . Here yT represents the goal state or “attractor” of
the trajectory. The estimated LDS matrix R̂ captures important properties of the provided trajectory Y.
A simple trajectory can be represented using a single LDS. A complex trajectory can be represented
using a sequence of LDS’s.

The LDS induces a control law which maps the current state to the desired state of the robot. Consider
a robot with end-effector position yt and end effector velocity ẏt. An LDS matrix R induces a control
field which maps each current end-effector position yt to a desired velocity ẏt. Given a goal state g∗,
an LDS matrix R can be used to predict ẏt.

yt+1 = R · (yt − g∗) + yt (7)
ẏt = yt+1 − yt (8)

4 METHOD

4.1 DIFFERENTIABLE LDS

For the LDS system in equations 7 and 8 to converge towards state g∗, the eigenvalues of R have to
lie in the range (−1, 0). We utilize this property to reparametrize the R matrix. Consider Q, an n-
dimensional full rank matrix, and Λ, an n-dimensional diagonal matrix. We can use the eigen-structure
to construct the LDS matrix R from its eigenvalues (Λ) and eigenvectors (Q) as :

Λs := −sigmoid(Λ) (9)

R := Q · Λs ·Q−1 (10)

Here Λ and Q are the learnable parameters used to construct an LDS matrix R. Defined in this
way, the eigenvalues of R, given by Λs, are guaranteed to be in the range (−1, 0) as required. This
re-parametrization of the LDS matrix in terms of its eigenvalues and eigenvectors can help us integrate
it into any end-to-end gradient-based method.

3

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

st

Neural Network
Goal

Residual Euler Integration to
Generate Trajectory

dLDS Selection Construct dLDS

dLDS 1 dLDS 2 dLDS n

........

dLDSes Environment

Figure 1: An overview of an RL policy based on differentiable Linear Dynamic System (dLDS) units.
Every k timesteps, the neural network ϕθ estimates a goal gt and a residual δt, which are used to
parameterize one of the n dLDS units. This dLDS unit is then integrated for k steps using Euler
integration to generate a sequence of k actions, which are applied in sequence to the environment.

4.2 DLDS EXTRACTION FROM A REFERENCE TRAJECTORY

In this subsection, we demonstrate how we can extract dLDS representations in a learning from
demonstration (LfD) setting using a batched gradient descent algorithm. Given a reference trajectory
Y = [y1, y2, ... yT], we randomly initialize the dLDS parameters Q,Λ. Given the current position yt,
we can get the next state estimate ŷt as

ĝ∗ = yT (11)
ŷt+1 = R · (yt − g∗) + yt (12)

Here, the goal g∗ is the same as yT , the trajectory’s final position. We can compute the loss as the
mean squared error between predicted next state ŷt+1 and the actual next state yt+1.

loss = 1
(T−1) ∗

∑t=T−1
t=1 ||(R · (yt − g∗) + yt − yt+1)|| (13)

We can calculate the gradients for parameters Q,Λ according to the above-defined loss function.
Algorithm 1 in the Appendix summarizes our dLDS learning formulation when a reference trajectory
is available.

4.3 DEEP SEQUENCED LDS POLICIES

In this section we explain how dLDS can be integrated with a standard on-policy reinforcement
learning algorithm like PPO Schulman et al. (2017). We decompose an episode with length T , into a
sequence of n dLDS units which can be represented by R1,R2, ...,Rn. dLDS parameters (Λi, Qi)
can be used to construct Ri using Equations 9 and 10. Our policy also contains a goal estimator ϕθ,
which takes state st as input and predicts the goal g∗t and residual δt. In this work, we select a deep
neural network as the model class for ϕθ, although any estimator suitable for policy gradient methods
is compatible with our method.

g∗t , δt = ϕ(st) (14)

Once we get the goal g∗t , we need an dLDS matrix Rj to generate a trajectory from the current end
effector position yt to gt. We use the current time-step within the episode to choose a dLDS from n

4

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

dLDS’s; specifically, at time-step t, dLDS index j is calculated as

j = ⌊t/T · n⌋ (15)
Λs = −sigmoid(Λj) (16)

Rj = Qj · Λs ·Q−1
j (17)

where T is maximum episode length.

Now using goal g∗t , end effector position yt, and LDS matrix Rj , we can perform Euler Integration
to estimate the next state:

ẏt = Rj · (yt − g∗t) + δt (18)
yt+1 = yt + ẏt ∗∆t (19)

ÿt = ẏt − ẏt−1 (20)

We perform this integration for k discrete time steps and use the trajectory obtained to calculate
the actions from our policy. We assume that our action can be represented as a target velocity ẏ or
position ẏ∆t.

A key difference between dLDS policies and NDPs Bahl et al. (2020) is that in NDPs, a neural
network predicts ϕndp(st) outputs the parameters wt of an underlying dynamical system (DMP) at
each inference step:

gndpt , wt = ϕndp(st) (21)

In contrast, our estimation module ϕlds(st) only outputs some of the LDS parameters, namely the
goal and residual (Eq 14). The LDS matrices (Λ1..n and Q1..n) of our sequenced dLDS system (Eqs
15, 16, 17) are higher-level parameters that are a function of the “segment” that the trajectory is in;
they do not need to be predicted at each timestep. These parameters are still updated during training
using gradient descent:

Λ1..n = Λ1..n + α · ∇J(Λ1..n) (22)
Q1..n = Q1..n + α · ∇J(Q1..n) (23)

This presents our policy with a simpler optimization problem of only learning the mapping at each
timestep from state to goals and residuals rather than outputting the entire non-linear dynamical
system at each inference-step. To further verify this design choice, we compare our method against a
policy that outputs the LDS parameters at each timestep from the deep network, rather than learning
them at training time and then keeping them fixed per task.

4.4 GOAL GENERATION FOR DLDS

As described in Equation 14, our learned policy generates the goals for the dLDS at each timestep.
Rather than outputting just a single goal, we found it more effective to have the network output n
goals at each timestep (g1, g2, ..., gn), where n is the number of dLDS’s. We then select the goal gj
according to the index of the current LDS (Equation 15). We found out that this works much better
than outputting just a single goal at each timestep. This is expected since when the network predicts a
single goal, it has to figure out which dLDS it is predicting the goal for. However, when we predict n
goals, the policy has to solve a more straightforward problem of predicting goal states for each dLDS
(without needing to reason about exactly which dlDS the robot is in at the moment).

4.5 RESIDUAL PREDICTION

Apart from predicting goal states for each LDS, we also predict a residual δt for each step in the
policy rollout. We take inspiration from Johannink et al. (2018), where the idea is to combine a
hand-engineered control structure with a residual RL policy. Similarly, we treat our underlying
dLDS structure as the basis on top of which a residual can be learned. However, parameters of our
underlying dLDS structure are learnable, unlike that of Johannink et al. (2018) where one has to
come up with a hand-engineered policy for each task involved. We empirically verify that combining
the action output ẏt of dLDS with a residual δt gives a decent boost in its performance.

5

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

4.6 TRAINING DETAILS

To train our dLDS policy, we generate k actions to apply to the environment for each of the next k
timesteps. We use PPO Schulman et al. (2017) to optimise the policy parameters (neural network
parameters and dLDS parameters). However, any other policy gradient algorithm could be used.
Algorithm 2 in the Appendix summarises our approach. Hyperparameters and other details can be
found in the appendix.

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

faucet-open-v2

0 50000 100000 150000
Episodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

at
e

soccer-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

reach-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

assembly-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

push-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

box-close-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

bin-picking-v2

Figure 2: Sample Efficiency: Our algorithm is significantly more sample-efficient than baselines on
several environments, and performs at least as well as the baselines on every task. Here, the y-axis is
the success rate, while the x-axis represents the number of environment episodes. We compare our
algorithm against PPO Schulman et al. (2017), Multi-action PPO, NDP Bahl et al. (2020), and NDP
with residual. We use 3 dLDS’s for our dLDS policy in each of these tasks.

5 RESULTS

The motivation behind our work is to reparameterize a reinforcement learning policy with a decom-
posable, transformable structure so as to simplify the underlying policy learning problem. We conduct
an extensive experimental evaluation of our method on seven Metaworld-v2 Yu et al. (2019) environ-
ments, namely ‘faucet-open-v2’, ‘reach-v2’, ‘soccer-v2‘, ‘assembly-v2’, ‘push-v2’, ‘box-close-v2’
and ‘bin-picking-v2’. Our policy’s action space is the same as that of Metaworld-v2 environments,
which consists of end-effector position change and “grab-effort” which is the normalized torque the
fingers should apply.

6

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

We compare the performance of our dLDS Policy with other State of the art on-policy algorithms:

• PPO (raw): Vanilla Proximal Policy Optimisation Schulman et al. (2017) without any
modifications.

• PPO-Multi: A multi-action version of PPO, which outputs actions for the next ‘k’ timesteps.
• NDP: Neural Dynamic Policy Bahl et al. (2020) which builds on Dynamic Motion Primitives.
• NDP-Residual: A modified version of NDP with a learned residual.

5.1 POLICY LEARNING RESULTS

Figure 2 shows the comparison of our dLDS Policy with the various other baselines. We obtained
a significant improvement in sample efficiency compared to the other baseline algorithms. For
the tasks ‘faucet-open-v2’ and ‘reach-v2’, both NDP and dLDS Policy have similar performance,
while for other tasks, dLDS policy outperforms other algorithms. dLDS Policy outperforms the
other baselines consistently across all tasks. PPO is competitive for task ‘push-v2’ and ‘soccer-v2’.
However, its performance does not scale to other tasks. Multi-PPO is comparatively better than PPO
but fails to learn the tasks ‘faucet-open-v2’ and ‘assembly-v2’. NDP is competitive in ‘reach-v2’
and ‘faucet-open-v2’. However, its performance in harder tasks (‘assembly-v2’, ‘box-close-v2’ and
‘bin-picking-v2’) is significantly lower than that of the dLDS Policy. The Residual version of NDP
(NDP-Residual) shows comparative performance to NDP and dLDS in tasks ‘faucet-open-v2’ and
‘reach-v2’. NDP-Residual) outperforms the vanilla-NDP algorithm in other tasks except ‘assembly-
v2’, where both the algorithms fail to learn anything meaningful. We provide our algorithm with a
decomposable, transformable structure which results in an easy optmisation problem.

5.2 ABLATIONS

We now study the effect of various design choices on the performance our policy.

5.2.1 DIFFERENTIABLE LDS VS. DYNAMICALLY PREDICTED LDS

Similar to NDP, we train a version of our policy in which the deep part of policy outputs the parameters
of the underlying dynamical system (in our case, parameters Q and Λ) at each inference-step instead
of learning them globally for each task. We call this ablation “O-LDS policy.” This is an inherently
harder optimization problem since the network has to determine the goal and shape the trajectory
concurrently. We can verify our intuition from Figure 3 that learning the dLDS parameters (Q, Λ)
globally for each task instead of outputting them at each timestep from a deep network simplifies the
learning problem.

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

reach-v2

dLDS Policy
O-LDS Policy

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

assembly-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

faucet-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

bin-v2

Figure 3: What happens when we output the LDS parameters every timestep using a deep network
(O-LDS policy), instead of making them global parameters that are learned per task (dLDS Policy)?
The above figure compares the performance of the two versions. We can see that dLDS policy is
easily able to outperform the O-LDS policy

5.2.2 NUMBER OF DLDS

The number of dLDS’s n is a key hyperparameter of dLDS policies. Figure 4 compares the per-
formance of dLDS Policy as we vary the number of dLDS’s. The number of LDS’s controls the
expressiveness of the policy. For example, when n = 1, the policy is constrained to express very

7

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(a) faucet-open-v2

num_lds = 1
num_lds = 3
num_lds = 5
num_lds = 10
num_lds = 20

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

(b) assembly-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(c) reach-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

(d) push-v2

Figure 4: We compare the effect of varying the number n of dLDS’s available to the policy on
policy performance. We find that across our evaluation tasks, n = 3 consistently achieves the
highest performance. This provides evidence that chaining together a small number of simple motion
primitives is an effective way to complete this class of manipulation tasks. For simpler tasks like
‘faucet-open-v2’ and ‘reach’ even a single dLDS based policy was simple enough to achieve high
performance!

simple trajectories. This dLDS (n=1) policy might be sufficient for a simpler task like ‘reach-v2’ and
‘faucet-open-v2’ but cannot learn to perform a complex task like ‘bin-picking-v2’ or ‘assembly-v2’,
where policy needs to figure out a sequence of meaningful skills to accomplish the task. Simi-
larly, having a very high number of dLDS’s (e.g., 20) makes the policy too complex, and hence its
performance is affected (Figure 4(b)). We find out that n=3 is sufficient for most metaworld tasks.

5.2.3 RESIDUAL VS. NO RESIDUAL

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

dLDSP: Residual Effect

dLDSP-Residual
dLDSP-No-Residual

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

dLDSP: Residual Effect

dLDSP-Residual
dLDSP-No-Residual

Figure 5: Effect of Predicting a Residual Term:
Left is ‘box-close-v2’. right: ‘bin-picking-v2’.
We can see that including a residual term signifi-
cantly improves the sample efficiency and perfor-
mance of the dLDS policy.

How does adding a residual term affect the per-
formance of a dynamical-system-based policy?
We find that adding a residual term to the output
of a dynamical system-based policy – for both
dLDS and or NDP – can improve performance
substantially on a range of tasks. Figure 5 com-
pares the effect of residual on the performance
of our dLDS Policy. We observe that incorporat-
ing a residual improves sample-efficiency and
performance on several environments, and on
others is as least as good as the dLDS policy
without a residual. This result also holds when
we train a residual version of NDPs, showing
similar improvements over NDP on the ‘box-
close-v2’. and ‘bin-picking-v2‘ tasks.

6 CONCLUSION

Our paper introduces a novel reinforcement learning policy with a decomposible and transformable
structure, which can generate smooth robot trajectories. At the heart of our approach lies the novel
differentiable LDS (dLDS) formulation. We re-parametrize the LDS in terms of eigen-properties,
which helps us to learn the LDS parameters directly in an end-to-end fashion. We then propose a
novel dLDS based reinforcement learning policy, which integrates these dLDS’s with a standard
on-policy algorithm (PPO). We perform extensive experiments and show a notable improvement in
sample efficiency of our algorithm compared to other policy parameterizations. Last, we perform
various ablations to verify several design choices of our algorithm.

Choosing simpler models (i.e. LDS units) for parts of tasks where complexity is lower is a first
step towards encoding meaningful inductive biases into manipulation policies in reinforcement
learning settings. We hope that our use of dynamical systems for policy representation inspires
further investigation into this promising direction. Specifically, we hope to investigate a more flexible
tradeoff between learning a fixed skill bank of dynamical policies and predicting a new dynamical
system at each time-step. Additionally, we hope to explore how explicitly sequencing dynamical
systems may improve policy transfer, generalization, and learning from demonstrations.

8

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

REFERENCES

Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, and Cordelia Schmid. Residual
reinforcement learning from demonstrations, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Openai Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan, and R Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic policies for
end-to-end sensorimotor learning. In NeurIPS, 2020.

Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Hierarchical neural dynamic policies, 2021.

Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a powerful
parameter for learning to play atari. In Workshops at the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Adv. Neural Inf. Process. Syst., 34, December 2021.

K.R. Dixon and P.K. Khosla. Trajectory representation using sequenced linear dynamical systems. In
IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004,
volume 4, pp. 3925–3930 Vol.4, 2004. doi: 10.1109/ROBOT.2004.1308881.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research. https:
//github.com/rlworkgroup/garage, 2019.

Guillermo Garcia-Hernando, Edward Johns, and Tae-Kyun Kim. Physics-based dexterous manipula-
tions with estimated hand poses and residual reinforcement learning, 2020.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3389–3396, May 2017.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2):
328–373, 2013. doi: 10.1162/NECO a 00393.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. CoRR, abs/1812.03201, 2018. URL http://arxiv.org/abs/1812.03201.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-Opt:
Scalable deep reinforcement learning for Vision-Based robotic manipulation. June 2018.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical Multi-Object manipu-
lation using relational reinforcement learning. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4051–4058, May 2020.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning, 2016.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning
dexterous In-Hand manipulation. August 2018.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. October 2019.

9

https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage
http://arxiv.org/abs/1812.03201

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Rok Pahič, Andrej Gams, Aleš Ude, and Jun Morimoto. Deep encoder-decoder networks for mapping
raw images to dynamic movement primitives. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5863–5868, 2018. doi: 10.1109/ICRA.2018.8460954.

Rok Pahič, Barry Ridge, Andrej Gams, Jun Morimoto, and Aleš Ude. Training of deep neural
networks for the generation of dynamic movement primitives. Neural Networks, 127:121–131,
2020. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.04.010. URL https://www.
sciencedirect.com/science/article/pii/S0893608020301301.

Alireza Ranjbar, Ngo Anh Vien, Hanna Ziesche, Joschka Boedecker, and Gerhard Neumann. Residual
feedback learning for contact-rich manipulation tasks with uncertainty, 2021.

Matteo Saveriano, Fares J Abu-Dakka, Aljaz Kramberger, and Luka Peternel. Dynamic movement
primitives in robotics: A tutorial survey. February 2021.

Gerrit Schoettler, Ashvin Nair, Jianlan Luo, Shikhar Bahl, Juan Aparicio Ojea, Eugen Solowjow, and
Sergey Levine. Deep reinforcement learning for industrial insertion tasks with visual inputs and
natural rewards, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Tom Silver, Kelsey R. Allen, Josh Tenenbaum, and Leslie Pack Kaelbling. Residual policy learning.
CoRR, abs/1812.06298, 2018. URL http://arxiv.org/abs/1812.06298.

Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin Wörgötter. Learning to pour with a
robot arm combining goal and shape learning for dynamic movement primitives. Robotics and
Autonomous Systems, 59(11):910–922, 2011. ISSN 0921-8890. doi: https://doi.org/10.1016/
j.robot.2011.07.004. URL https://www.sciencedirect.com/science/article/
pii/S0921889011001254.

Pavan Kumar Thota, Harish chaandar Ravichandar, and Ashwin P. Dani. Learning and synchronization
of movement primitives for bimanual manipulation tasks. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 945–950, 2016. doi: 10.1109/CDC.2016.7798389.

Jun Yamada, Youngwoon Lee, Gautam Salhotra, Karl Pertsch, Max Pflueger, Gaurav S Sukhatme,
Joseph J Lim, and Peter Englert. Motion planner augmented reinforcement learning for robot
manipulation in obstructed environments. October 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics, 2020.

10

https://www.sciencedirect.com/science/article/pii/S0893608020301301
https://www.sciencedirect.com/science/article/pii/S0893608020301301
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1812.06298
https://www.sciencedirect.com/science/article/pii/S0921889011001254
https://www.sciencedirect.com/science/article/pii/S0921889011001254
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

A ALGORITHMS

Algorithm 1 Differentiable Linear Dynamical System
Require: Reference Trajectory Y = [y1, y2, ..., yT], learning rate α

1: Initialise Λ, Q ▷ Initialise LDS Matrix parameters.
2: while ∥yt − g∗∥ ≥ ϵ do ▷ Convergence criterion
3: yt := get-current-obs() ▷ Obtain the current State information
4: Λs = −sigmoid(Λ) ▷ Normalize Eigen values to be negative and less than 1
5: R := Q · Λs ·Q−1 ▷ Construct R using its Eigen vecturs and Eigen values
6: Ŷ := R · (g∗ − Y [: −1]) + Y [: −1] ▷ Predict yt+1 from yt
7: loss = MSE(Ŷ , Y [1 :]) ▷ Compute loss wrt reference trajectory.
8: loss.backward() ▷ Compute Gradients
9: Q = Q− αdloss

dQ ▷ Update parameters
10: Λ = Λ− αdloss

dΛ

Algorithm 2 Differentiable LDS for Policy learning
Require: Policy π, number of lds n, max episode len T
Require: rollout length k, discount factor γ

1: for 1, 2 ... episodes do
2: for t = 0, k, ..., T do
3: Get goal g∗t , δt using Eq. 14
4: Select dLDS j using Eq. 15
5: Create dLDS Rj from Λj , Qj (Eq. 16 and 17)
6: for i = 0, 1, ..., k do
7: ẏt+i = Rj · (yt+i − g∗t) + δi
8: yt+i+1 = ẏt+idt+ yt+i

9: Set Action at,...,t+k = ẏt,...,t+k

10: Apply at,..,t+k on Environment
11: Get st+1,..,t+k+1, rt,..,t+k

12: Rt = rt + γ1rt+1 + ...+ γkrt+k

13: Store Transition (st, at,..,t+k, st+k+1, Rt)
14: end for
15: Compute Policy Gradients ∇θJ
16: Update Network and dLDS parameters
17: end for

B TRANSLATIONAL INVARIANCE PROOF

We present a proof to prove translational variance in dLDS’s. Let’s assume our LDS matrix is
represented by Rj . At any discrete time-step t, the position is yt and goal position is g. The position
at time t+ 1 is given by equation

yt+1 = Rj · (yt − g) + yt (24)

Now assuming we shift the origin of our coordinate frame by ∇o. The right hand side of Eq. 24
becomes

Rj · ((yt −∇o− (g −∇o)) + (yt −∇o) (25)
Rj · (yt − g) + yt −∇o (26)

yt+1 −∇o (27)

Hence translational invariance is proved. A proof of scale invariance follows in the same way.

11

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

C IMPLEMENTATION DETAILS

We modified the RL Garage repository from garage contributors (2019)
(https://github.com/rlworkgroup/garage) to support multi-action policies. dLDS’s paramters
learn at a higher learning rate than the neural network paramters of the policy. We do not change
rest of the parameters given in garage’s examples. We use Metaworld environments to test the
performance of our algorithms. We use ‘faucet-open-v2’, ‘reach-v2’, ‘soccer-v2‘, ‘assembly-v2’,
‘push-v2’, ‘box-close-v2’ and ‘bin-picking-v2’ from the larger suite of environments available in
Metaworld. These environments were chosen randomly. We use a maximum episode length of 100
for each of these environments.

Hyper-parameters Details
Hypyerparameter Value
Learning Rate 3 x 10−4

Discount Factor 0.99
Use GAE True
Entropy Coefficient 0
Normalized Observa-
tion

True

Maximum Gradient
Norm

0.5

PPO Mini-Batches 32
PPO Epochs 10
Clip Parameters 0.1
Optimizer Adam
Batch Size 5000
Max Episode Length 100
Learning Rate for
LDS parameters

1x10−3

D ADDITIONAL ABALATIONS

In this section we present several additional ablations we performed to analyze the impact of various
design decision on our policy formulation. Descriptions can be found in the captions of Figures 6, 7,
8, and 9.

12

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

faucet-open-v2

rollout = 2
rollout = 4
rollout = 5
rollout = 10
rollout = 20

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

faucet-open-v2

Figure 6: Rollout Length Comparison: Here we compare the effect of rollout length – the number
of actions our LDS policy outputs at a time – on the performance of our policy. Similar to NDP, we
find that a rollout length of 5 performs best across tasks.
.

0 50000 100000 150000
Episodes

200

300

400

500

600

Di
sc

ou
nt

ed
 R

et
ur

ns

faucet-v2

0 50000 100000 150000
Episodes

0
50

100
150
200
250
300
350
400

Di
sc

ou
nt

ed
 R

et
ur

ns

soccer-v2

0 50000 100000 150000
Episodes

100

200

300

400

500

600

700

Di
sc

ou
nt

ed
 R

et
ur

ns

reach-v2

0 50000 100000 150000
Episodes

100

200

300

400

Di
sc

ou
nt

ed
 R

et
ur

ns

assembly-v2

0 50000 100000 150000
Episodes

0

100

200

300

400

500

Di
sc

ou
nt

ed
 R

et
ur

ns

push-v2

0 50000 100000 150000
Episodes

100

200

300

400

Di
sc

ou
nt

ed
 R

et
ur

ns

box-close-v2

0 50000 100000 150000
Episodes

0

50

100

150

200

250

300

350

Di
sc

ou
nt

ed
 R

et
ur

ns

bin-picking-v2

Figure 7: Comparison of average discounted returns: We compare average discounted return that
different algorithms are able to achieve. These values are thresholded to compute the binary success
values presented in the Figure 2. We can see that our novel dLDS policy is able to consistently
outperforms baseline algorithms. Here the number of dLDS units n = 3 for each task.

13

Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e
(a) faucet-open-v2

num_lds = 1
num_lds = 3
num_lds = 5
num_lds = 10
num_lds = 20

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

(b) push-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

(c) bin-picking-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(d) reach-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s r
at

e
(e) soccer-v2

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

(f) assembly-v2

Figure 8: Number of LDS’s : How does the performance vary with the number of dLDS’s? This
figure extends the results presented in Figure 4. For the task ‘faucet-open-v2’ and ‘reach-v2’ all
the version of our policy (num˙lds=1, 3, 5, 10, 20) are competitive. This is expected, since the
manipulation trajectory required to solve these tasks is very simple, and any number of primitives
will solve this task quickly. However for complex tasks like ‘assembly-v2’ and ‘bin-picking-v2’,
where the policy has to figure out a sequence of meaningful skills, access to a modest bank of dLDS’s
improves performance.

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

dLDSP: Residual Effect

dLDSP-Residual
dLDSP-No-Residual

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

NDP vs NDP-Residual
NDP
NDP-Residual

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

dLDSP: Residual Effect

dLDSP-Residual
dLDSP-No-Residual

0 50000 100000 150000
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

NDP vs NDP-Residual
NDP
NDP-Residual

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

dLDSP: Residual Effect

dLDSP-Residual
dLDSP-No-Residual

0 50000 100000 150000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

NDP vs NDP-Residual
NDP
NDP-Residual

0 50000 100000 150000
Episodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

at
e

dLDSP: Residual Effect

dLDSP-Residual
dLDSP-No-Residual

0 50000 100000 150000
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

NDP vs NDP-Residual
NDP
NDP-Residual

Figure 9: Effect of Predicting a Residual Term: Here we compare the effect of predicting a residual
term on performance of dLDS Policy and NDPs. We observe that the residual term either improves
the performance of dLDS and NDP policies or performs comparably.

14

	Introduction
	Related Work
	Preliminaries
	Method
	Differentiable LDS
	dLDS Extraction from a Reference Trajectory
	Deep Sequenced LDS Policies
	Goal Generation for dLDS
	Residual Prediction
	Training details

	Results
	Policy Learning Results
	Ablations
	Differentiable LDS vs. Dynamically predicted LDS
	Number of dLDS
	Residual vs. No Residual

	Conclusion
	Algorithms
	Translational Invariance Proof
	Implementation Details
	Additional Abalations

