Under review as a conference paper at ICLR 2025

PLAYBOOK: SCALABLE DISCRETE SKILL DISCOVERY
FROM UNSTRUCTURED DATASETS FOR LONG-
HORIZON DECISION-MAKING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Skill discovery methods equip an agent with diverse skills necessary for solving
challenging tasks through an unsupervised learning manner. However, making
the pre-learned skills expandable for new tasks remains a challenge in existing
research. To handle this limitation, we propose a scalable skill discovery algo-
rithm, a playbook, which can accommodate unseen tasks by training new skills
while maintaining previously learned ones. The playbook, characterized by dis-
crete skills and an extendable structure, enables the extension of the skill set to
cover new datasets. Since we design the playbook to have a finite number of
skills, we can interpret a decision-making problem as a sequential skill classifica-
tion problem, so we aim to learn additional skills of the playbook by applying the
techniques of class-incremental learning. In addition, we also introduce skill plan-
ning schemes that can leverage both previously and newly learned skills to solve
challenging tasks compounded by multiple sub-tasks. The proposed method is
evaluated in the complex robotic manipulation benchmarks, and the results show
that the playbook outperforms existing state-of-the-art methods that learn contin-
uous skills.

1 INTRODUCTION

Recent studies on skill discovery have successfully addressed challenging decision-making tasks
such as maze navigation (Pertsch et al.| [2020; Shi et al.| 2022} Kim et al.,2023]), locomotion (Sharma
et al., [2020; |[Kim et al.,|2021), and robotic manipulation (Ajay et al., 2021; Hong et al.,[2024])). Skill
discovery, a hierarchical policy learning method, equips an agent with the skills necessary to solve
complex tasks by identifying and acquiring useful and diverse skills through an unsupervised learn-
ing manner. These methods learn the skill space or skill set by embedding sampled trajectories from
task-agnostic datasets, which are collected by actively exploring the environment (Jiang et al., 2022
Mazzaglia et al.| [2023)) or pre-collected using a behavior policy (Gupta et al., 2019; |[Lynch et al.,
2019; Rosete-Beas et al., [2022). The discovered skills can be leveraged for solving downstream
tasks, e.g., reaching goals or maximizing rewards designed for a specific task.

In order to apply skill discovery methods to more general and everyday tasks, the learned skill space
or skill set must be scalable. For example, a cooking robot in a kitchen should be able to learn
additional recipes using new cooking tools or ingredients. However, there is a lack of research
on learning new skills and expanding an available skill set for unseen tasks. Existing studies such
as [Eysenbach et al.| (2019)); [Lee et al.| (2020); [Peng et al.| (2019); |[Laskin et al.| (2022); |Park et al.
(2022; 2023) also solve downstream tasks using pre-acquired skills, while they often struggle to
solve entirely unseen tasks because their learned skill space cannot be expanded. To address this
issue, we propose a playbook, a novel algorithm with a scalable structure that allows us to add skills
for new tasks while maintaining previously learned skills.

If the skills are discrete, we can interpret a goal-conditioned decision-making problem as a sequential
skill classification problem. Also, adding skills implies increasing the number of classes the agent
can select. From this perspective, the main idea of the playbook is to extend the finite skill set
by applying the techniques of class-incremental learning for image classification. To do this, we
design the playbook to select a skill based on current and goal states. As a result, the playbook

Under review as a conference paper at ICLR 2025

can be extended to accommodate new tasks by learning additional skills through class-incremental
learning. To mitigate the problem of losing previous skills when learning new skills, which is called
catastrophic forgetting, we utilize the gradient boosting method of [Wang et al.| (2022), which fixes
previous skills while training new skills. By using the extended playbook, we can solve compounded
problems, which are a mixture of old and new tasks. For instance, if we have a pre-trained playbook
that can open a drawer and extend it for the new task of picking up a block, an extended playbook
can pick up the block in the closed drawer.

The playbook focuses on training a set of discrete skills. However, it is challenging to express multi-
modal behavior distributions with only a finite number of skills. To solve this issue, the playbook
utilizes the MCP (Peng et al.,|2019) structure. MCP has several behavior primitives, each of which
represents an independent action probability distribution. MCP generates a wide range of behaviors
by combining primitives with a weight vector. We let the playbook learn finite skills, which are used
as weight vectors of MCP and primitives. Then, we can extend the playbook by adding new skills
and primitives to increase its expressive power over the raw action space for solving unseen tasks.

Our primary contribution is to propose a scalable skill discovery method that can accommodate new
tasks by expanding the discrete skill set. The playbook has the following strengths: 1) The playbook
covers multi-modal behavior distributions with a small number of skills. We have experimentally
verified that the playbook with a finite number of skills shows better performance than existing
baselines that train the continuous skill space. Specifically, on the CALVIN benchmark (Mees et al.}
2022)), the playbook achieves a success rate of 21.4% for challenging robotic problems that require
an agent to decide and perform several hidden tasks. The existing state-of-the-art methods hardly
solve these problems (success rate of 1.3% or less). 2) The playbook can be extended to adopt
new skills. We also have experimentally verified that when new datasets are provided on CALVIN,
the playbook successfully addresses new tasks included in datasets through structural extension.
3) The extended playbook can solve compounded problems by mixing skills learned from different
datasets. We have verified that the extended playbook records a success rate of 24.4% for challenging
compounded problems on CALVIN. The source code is provided in the supplementary material.

2 RELATED WORK

2.1 HIERARCHICAL POLICY LEARNING USING AN OFFLINE TASK-AGNOSTIC DATASET

Recent research on skill discovery has successfully solved long-horizon tasks by acquiring skills
from an offline task-agnostic dataset (Lynch et al., 2019; [Singh et al., 2021} Hakhamaneshi et al.,
2022). These studies generally aim to solve intricate tasks by deploying skills and address down-
stream tasks by reusing or fine-tuning previously learned skills. Existing methods learn the skill
space by encoding actions (Pertsch et al.| |2020), states (Gupta et al.l [2019), and state-action pairs
(Ajay et al.l 2021} [Shi et al., 2022)) of the dataset and generate raw actions using a skill-conditioned
policy. On the other hand, the playbook trains a set of skills by embedding a state and an action
sequence and uses the skill as a weight vector of the MCP structure rather than a direct input of the
policy. Skill discovery studies such as Mazzaglia et al.|(2023); Ju et al.| (2024)) train discrete skills
to represent multi-modal behaviors of offline datasets, but they do not expand the skill set for new
tasks. In contrast, the playbook extends their skills and structure to cover completely new tasks.

2.2 CLASS-INCREMENTAL LEARNING FOR IMAGE CLASSIFICATION

Traditional supervised image classification methods (Szegedy et al.,[2015; |Simonyan & Zisserman,
20155 He et al.,[2016) excel in static settings but face challenges in class-incremental learning due to
the catastrophic forgetting problem. There exist techniques to address this issue, such as the dynamic
architecture method (Rusu et al.l 2016} [Kirkpatrick et al., 2017, which utilizes a flexible neural
network structure to accommodate new classes, and the knowledge distillation method (Hinton et al.}
2015 |Li & Hoiem, [2016), which transfers knowledge from a larger or pre-trained model to a smaller
or evolving one. Meanwhile, FOSTER (Wang et al.,[2022) applies the gradient boosting method for
mitigating catastrophic forgetting of image classification. The gradient boosting method (Ke et al.,
2017; |Dorogush et al.| 2018)) minimizes an empirical error for a new dataset by iteratively adding
weak functions to the existing one. FOSTER defines additional parameterized models to cover a
new dataset while fixing the existing models and minimizes an image classification loss. We employ

Under review as a conference paper at ICLR 2025

/[Playbook
Action NPIayi B
| Encoder ™ D ireplace
Geetn Projfection_—_y —— —0—
ode |
State We Wld(Wt)
|:| —— - O ‘ sample
Encoder
_—
S | ® —

|:"1 - {ﬂt+ar0t+a} |]‘ Atya
St+a D M {Ht+arf7t+a}

H: window size (0<a <H)

Figure 1: Overview of the structure of the playbook. The state-action embedding model embeds a
state and an action sequence from an offline dataset to select one play vector among the play set.
Each primitives outputs an action distribution by using a state as an input. The playbook uses the
selected play vector as weights to form a single action distribution with primitives.

the gradient boosting method of FOSTER to extend the playbook to accommodate a new dataset
while mitigating the catastrophic forgetting issue for a skill set.

3 LEARNING PLAYBOOK FROM UNSTRUCTURED DATASETS

In this section, we propose a novel scalable skill discovery method, a playbook, which aims to
learn a finite number of skills capable of representing multi-modal behavior distributions included
in unstructured datasets consisting only of states and actions without any task description. In this
paper, we refer to a skill of the playbook as a play. As show in Figure[I] the playbook utilizes a
state-action embedding model to select a play from the set of N plays according to a given state
and an action sequence. The selected play becomes the weights of M primitives to let the weighted
combination of primitives represent the given raw action sequence. We design the playbook as a
structure of individual and independent components (i.e., multiple plays and primitives) to facilitate
structural extension. Consequently, the playbook can improve the expressive power by increasing
the number of plays and primitives it owns. Section [3|introduces the playbook structure and explains
how the playbook is trained. Section 4] presents the process of extending a playbook through class-
incremental learning. Finally, Section [5|describes the play plan method for reaching the given goal
state using a trained playbook.

3.1 PLAY SELECTION THROUGH EMBEDDING MODEL

The state-action embedding model parameterized by 6 maps a state and an action sequence to a play
belonging to a set of NV play vectors. First, a state and an action sequence are encoded separately
and then projected into a raw vector w € R™, where M is the number of primitives. Next, using
the vector quantization technique (Van Den Oord et al.,|2017), w is replaced by the closest play w

in the play set B = {wy,--- ,wn} C RE as follows:
quantization(w) = w; J = argmin ||w — w;l|z, 1€{1,2,--- ,N}. (1)

Since we select a play in the play set, we can consider the play as a discrete variable. In other words,
each play is expressed as an integer, which indicates the index within the play set. Note that the play
is not used as a direct input to a skill-conditioned policy like previous studies. Instead, it serves as a
weight vector to combine primitives described in the next section.

3.2 PLAYBOOK LEARNING WITH PRIMITIVES

The playbook utilizes an MCP structure (Peng et al.l 2019) to present diverse and useful action
distributions. MCP has multiple primitives, and each primitive is an independent probability distri-
bution over the action space. In MCP, primitives are integrated with a weight vector into one action
distribution, called a composite policy. There are two reasons for utilizing MCP in the playbook.
First, MCP provides a more flexible range of behaviors by combining multiple primitives rather than

Under review as a conference paper at ICLR 2025

choosing one primitive. It is advantageous in expressing multi-modal behaviors with a finite num-
ber of plays. Second, MCP using multiple primitives is suitable for the playbook extension. Since
primitives of MCP are independent, they can be added without affecting each other to improve its
expressive capacity over the action space.

The playbook has M parameterized primitives {7y, , - ,7y,, }, and each primitive presents an
independent probability distribution over the raw action space, 7(.)(als), taking the state s as an
input. Then, the playbook combines M primitives into one action distribution, a composite policy
7, using a selected play. The composite policy is defined as follows:

M
lals.) = 5o [mon(ale)™™, wfm] =0,)
’ m=1

where Z (s,) is a partition function for the normalization of the composite policy, and w[m] is the
m-th element of weight vector w € B. MCP derives the composite policy as a Gaussian distribution
by modeling each primitive as Gaussian. More details for the MCP formula for the playbook are
presented in Appendix [A] Then, we train the playbook using the following loss:

£{9,3,¢1,”' bm} = Dt wEN (w]) |:7 log(fr(adstawid(wt)))
T ;L W~ Pe T (3)

+ c1[sglws] — Biaguy) I3 + c2llw: — sg[u?mw,,)]llg],

where D is the given dataset, sg is the stop-gradient operator, id(w) indicates the index of the play
closest to the raw vector w, and ¢; and ¢y are constants. The first term maximizes the likelihood of
the composite policy, while the other terms encourage raw vectors and plays to get close.

3.3 INFORMATION BOTTLENECK OBJECTIVE FOR ACTION ENCODER
Since the playbook uses a finite number of plays,

the embedding model of the playbook can be con- N
sidered to classify an action sequence into one play D gy D
Z St+H

St+H

in a given state. To effectively train the embed- St+H r

ding model, the action encoder has to find out the maximize the IB objective
intentions contained in the multi-modal actions of St between Z° and z*
datasets. If different action sequences have similar E] - °
intentions to perform, i.e., the states to be reached % i >0 — ED 03

are similar, they should be mapped into the same v acum prEH S

. . . . Qg.
play. To this end, we aim to extract intentions from ““*

raw actions through the action encoder using the in-

formation bottleneck (IB)-based objective. Figure 2: Additional models for extracting in-

formation from actions using the IB objective.
We propose the IB objective, which is estimated us-

ing an action encoder, a latent mapping model and a state encoder-decoder pair, as depicted in Figure
E} First, a state and an action sequence are embedded into state latent z°*+# and action latent z¢:++#
through different encoders, respectively. In particular, action latent implies an intention of an ac-
tion sequence of fixed length. Next, we define the latent mapping model parameterized by & as
pe (2°+7 | sy, z%++1), which predicts the distribution of the future state latent as Gaussian using the
current state and action latent as an input. The action encoder parameterized by 1) and the latent
mapping model parameterized by & have the following IB objective between state and action latents:

maximize B, [Z(Z%t+H; Z%t+H|S,) — BT(Z* 1 Apyym)], “4)
where S;, At.trm, Z°t, and Z%++H are random variables corresponding to s¢, @1y, z°*, and
z%:++H respectively, and [is a constant. The above IB objective is interpreted as follows. The first
term, Z(Z5+H; Z*++7|S,), means that given the state s;, an action latent z**+# is informative
about a state latent z°*+#. Next, the second term, Z(Z%*+#; A, i), means that an action latent
z®++H is penalized for preserving information about an action sequence a;.; . That is, although
z%:t+H ig extracted from raw actions, since z®#*+# only has the minimum information to infer
z’++H the meaning of each action is lost, and the intention of the action sequence remains. We
derive the following lower bound of (@), which is used as the additional loss term for the playbook:

Lo == B [logpe(s" s,z

Ttz t+H St+H

S 5)
—logE.a [pg (2°tHH |5, za)] — BDkr (p¢(Zat:t+H lat:t+m) || q(Za““'H))] .

4

Under review as a conference paper at ICLR 2025

The derivation of the lower bound (5) can be found in Appendix [Bl On the other hand, we train
the state encoder and decoder independently using the 5-VAE (Higgins et al.,2017) loss, Ly oz, to
prevent the state encoder from falling into trivial solutions such as converging state latents to the zero
vector. As a result, we train the playbook by minimizing the integrated loss £ = L9 5.4,6p} T+
c3Lyy ey + calyv ap, where c3 and ¢4 are constants.

4 PLAYBOOK EXTENSION BY CLASS-INCREMENTAL LEARNING

When a new dataset is given, we can accommodate it efficiently by reusing existing skills while
training new skills. For example, reusing the skill that reaches a specific position or object can be
helpful because it is frequently performed for various manipulation tasks. Therefore, we aim to
extend the playbook by adding new skills while reusing previously learned ones.

We assume that new datasets for the playbook extension are sequentially given. Due to memory
limitations, we cannot store all previous data, so the dataset used for training is left with only a
small amount. Then, we extend the playbook by adding new plays and primitives to accommodate
both the remaining dataset and the given new dataset. As a result, the extended playbook owns
diverse plays learned from different datasets. Finally, we focus on solving compounded problems,
which are a mixture of old and new tasks, using an extended playbook.

4.1 CONTINUAL PLAY LEARNING FOR NEW DATASET

Since the play is a discrete variable, we can interpret a goal-conditioned RL problem using a play-
book as a sequential play classification problem that selects play indices. Therefore, extending
a playbook can be considered as a case of class-incremental learning problem. However, when
performing class-incremental learning, we can face the problem of losing previously learned knowl-
edge, which is called catastrophic forgetting. To extend the playbook while mitigating catastrophic
forgetting, we apply the gradient boosting technique for a class-incremental learning method in-
spired by FOSTER (Wang et al., 2022). When the new dataset is given, FOSTER fixes previously
trained models and adds new parameterized models to cover the new dataset. FOSTER aims to train
additional models for the new dataset while maintaining the output of the original model for the
remaining dataset. After training additional models, FOSTER compresses the entire model grown
to the original model size through knowledge distillation. Since the state-action embedding model
of the playbook selects plays, we perform class-incremental learning for the embedding model.

We extend the playbook in the following order. First, we freeze a pre-trained playbook consisting of
a state-action embedding model and multiple plays and primitives. Next, we add a new parameter-
ized embedding model and the fixed number of plays and primitives. Then, we define an extended
embedding model that adds the output of the new and existing embedding models. Finally, the ex-
tended embedding model and the added plays and primitives are trained to minimize loss (3) for
the new dataset. By training newly added plays and primitives, the expressive power of the play-
book over the raw action space can be improved. Since we have the fixed original playbook, the
extended embedding model can choose previously learned plays or train new plays when learning
new tasks. After training the extended model, the embedding model is reduced to its original net-
work size through knowledge distillation of FOSTER. In summary, when the playbook extension is
completed, the size of the embedding model is maintained, and the number of plays and primitives
increases. We refer to the above process of extending a playbook as a continual play learning.

5 SEQUENTIAL PLAY PLAN USING A PLAYBOOK

In this section, we explain the process of the play plan inference to reach a given goal state using
a trained playbook. In general, all planning methods applicable in the discrete action space can
be utilized for the playbook. In this paper, we propose two sampling-based methods, beam search
and Monte Carlo tree search (MCTS) planners. The beam search planner is suitable for a playbook
trained with a single dataset, and the MCTS planner addresses an extended playbook. These two
planners have a rollout step and a selection step, as shown in Figure[3] First, in the rollout step, we
imagine several future state-play sequences using the trajectory generation model A. Next, in the

Under review as a conference paper at ICLR 2025

selection step, we select the best sequence that has reached the closest to the given goal state among
the imagined sequences using the distance metric ¥. We denote a planning set by {A, ¥'}.

Before training a planning set, we transform
the original dataset consisting of state-action se- Lusing
quences into state-play sequences using a trained D [I:' |:| 0
playbook. With this dataset transformation, we B suu St+kH Wi E

gain two advantages. First, unlike raw actions, = pm=memeemee- Goal state

play is a disc'rete Yariqble, so the complexity of {D |:| |:| I:' I:' } PRLLEIN |:|
SG

Init state : i-th imagined trajectory | (trained)

state-play trajectories is reduced. Second, since
action sequences are compressed into plays, the
length of the state-play sequence is reduced. ‘ N - : i TR
Therefore, as the number of inference steps re- ~ $*stte @: play H:window size |:| —
J
t+kH

StekH SerkH StekH SErkH StekH
: set of imagined last states

quired in the rollout step decreases, the compu- e fength of each rajectory
tation cost and prediction error decrease. A more
detailed explanation of the dataset transforma-
tion is presented in Appendix [C] Figure 3: Play plan using planning sets.

i perform

.|

P: the number of trajectories Wy the first play

5.1 PLAY PLAN GENERATION THROUGH BEAM SEARCH

We describe the beam search planner for inferring play sequences to reach a given goal state using
a playbook, which is trained with a single dataset. In the rollout step of beam search, we use TT
(Janner et al.| 2021) as a trajectory generation model A. The original TT learns the conditional
probability distribution of state-action-reward sequences from the offline dataset. However, we only
model state-play sequences because the task-agnostic dataset we use has no rewards. By utilizing
TT, we obtain diverse and reasonable future state-play sequences conditioned on the given state.

In the selection step of beam search, we choose the best play sequence among the generated se-
quences. To this end, the playbook measures the dynamical distance in the state space between the
last state of each plan and a given goal state. In goal-conditioned RL, the agent estimates Q-value,
Q(s, 84, a), which indicates the discounted sum of rewards that can be obtained in the future if ac-
tion a is performed in the current state s given the goal state s4. If we use a sparse reward function
for achieving goals, we can consider that a state with a higher Q-value reaches the goal in fewer time
steps. Therefore, we use the Q-value estimated by the goal-conditioned offline RL algorithm with
sparse rewards as a distance metric to measure the distance between two states.

We use IQL (Kostrikov et al.,[2022), an offline RL algorithm, for a distance metric ¥ by modifying
IQL to fit the goal-conditioned RL setting, i.e., all states are concatenated with the goal state as the
input for all parameterized models. To train goal-conditioned IQL, we need not only current states,
plays, and the next states that can be sampled from the dataset but also goal states and rewards that
are not given. Then, we sample goal states by setting the time step of the goal state as t¢ =t +nH,
which presents a time step after 7 plays are performed. H is a fixed window size, and n € Nis a
random variable sampled along the geometric distribution. We use sparse rewards, which become 1
if the goal state is reached within one play from the current state (i.e., 7 = 1) and 0 if not.

Finally, through beam search with a planning set, the playbook can infer the play plan to reach
a given goal state. The playbook converts the first play of the best plan into raw actions using
primitives and performs the raw actions. Until the playbook achieves the goal state, the play plan
process is repeated.

5.2 MONTE CARLO TREE SEARCH FOR MIXED-PLAY PLAN

We aim to find the mixed play plan to solve the compounded problems using an extended playbook.
To this end, we propose an MCTS-based play planner that allows us to mix plays learned from
different datasets freely. For performing MCTS, we train and retain the same planning sets as beam
search, {{AY, Wi} ... {AFP WP} for each of P datasets. Note that the extended playbook must
maintain all planning sets for each dataset, which is a limitation of the playbook extension.

We conduct a fixed number of tree searches, and each tree search generates one play plan. The
process of tree search is as follows. First, MCTS repeats selecting one planning set {A*, W'}, which
is trained from the dataset D* among the owned sets until it reaches a leaf node or the maximum tree

Under review as a conference paper at ICLR 2025

depth. For all selections, MCTS infers a play and next state using A, i.e., it is a rollout step. Next,
when each tree search is completed, the value of the generated play plan is determined by measuring
the distance between the last state and a given goal using ¥, i.e., it is a selection step. By iteratively
performing the above tree search, we can effectively generate mixed play plans. Finally, we choose
the trajectory with the highest value among the inferred mixed plans. A more detailed explanation
of the MCTS planner is presented in Appendix [E]

6 EXPERIMENT

We conduct experiments to evaluate the playbook in complex and challenging environments. We
focus on answering the following questions through experiments: 1) Can a finite number of plays
cover a dataset consisting of task-agnostic demonstrations? In other words, can the playbook achieve
better performance than existing methods? 2) Can the playbook extension successfully solve new
tasks? 3) Can the extended playbook reuse previously learned plays when it solves new tasks? 4)
How much do the IB objective and MCP structure affect the performance of the playbook?

6.1 EXPERIMENT SETUP
6.1.1 BENCHMARK

We evaluate the playbook in simulated environments,
which are selected based on the following character-
istics: (1) the capability to perform diverse tasks se-
quentially within a single workspace, (2) the avail-
ability of a publicly accessible offline dataset, and (3)
the possibility of obtaining a goal observation. Con-
sequently, we utilize the following two environments
in the experiments, as shown in Figure 4]

Franka Kitchen (Gupta et all [2019) provides a (a) Franka Kitchen (b) CALVIN
kitchen workspace for manipulating various objects
with a Franka robot, aiming to complete four prede-
termined sub-tasks consecutively. An observation is a 30-dimensional state representation, and an
action is a 9-dimensional joint velocity vector for a robot arm.

CALVIN is a benchmark for robotic manipulation tasks with a Franka robot on a
desk. In this paper, we evaluate eight tasks related to a drawer, a slider, an LED, and a light bulb. We
utilize an offline dataset in environment D of CALVIN and do not use task labels. An observation is
a3 x 64 x 64-dimensional RGB image, and an action is a 7-dimensional robot action.

= :
r

Figure 4: Benchmarks used in experiments.

6.1.2 BASELINES

Offline RL algorithms. We utilize CQL (Kumar et al, [2020), IQL (Kostrikov et al., 2022), and
TT (Janner et al, 2021) with IQL as offline RL baselines for Franka Kitchen and CALVIN environ-

ments. We implement CQL and IQL and report their measured performance. On the other hand, we
use the officially published code for TT. Particularly, TT+IQL is a method used for the play plan,
allowing us to verify the performance difference between using raw actions and plays.

Hierarchical policy learning methods. We utilize Play-LMP (Lynch et all, 2019), RIL (Gupta
2019), and TACO-RL (Rosete-Beas et al.l [2022) as hierarchical policy learning baselines for
the CALVIN environment. We select the above methods, which have the officially published code
and allow goal-conditioned skill planning.

6.2 PERFORMANCE COMPARISON EXPERIMENT
6.2.1 FRANKA KITCHEN RESULT

The playbook utilizes 32 plays and 16 primitives to cover the offline dataset of Franka Kitchen. Table
[T summarizes the performance results in Franka Kitchen. Since the Franka Kitchen benchmark
provides sparse rewards, the cumulative reward signifies the number of completed sub-tasks. Note

Under review as a conference paper at ICLR 2025

Dataset \ CQL IQL TT+IQL | Playbook

Kitchen-Partial 1.81 £ 0.18 (1.99) 1.90 £ 0.27 (1.85) 1.84 £0.37 | 2.32+0.42
Kitchen-Mixed 1.64 £ 0.26 (2.04) 1.82 +£0.28 (2.04) 1.92+0.16 | 2.50 +£ 0.20

Table 1: Performance results in Franka Kitchen. Each mean and standard deviation of the cumulative
reward are calculated over 50 scenarios with three random seeds. Numbers in parentheses are the
results reported in the cited papers.

Number of Tasks | CQL IQL TT+IQL | Play-LMP RIL TACO-RL | Playbook
1 0.143 £ 0.035 0.198 £ 0.041 0.402 £ 0.119 0.427 0.678 0.414 0.866 + 0.021
2 0.000 = 0.000 0.000 = 0.000 0.042 £+ 0.015 0.039 0.221 0.165 0.508 £ 0.037
Average Length ‘ 0.143 0.198 0.444 ‘ 0.466 0.899 0.579 ‘ 1.374

(a) Success rates for two sub-tasks chain problems
Number of Tasks ‘ CQL 1QL TT+IQL ‘ Play-LMP RIL TACO-RL ‘ Playbook

1 0.108 +0.021 0.135£0.023 0.372 &+ 0.057 0.400 0.701 0.213 0.901 £ 0.011

2 0.000 4 0.000 0.000 £ 0.000 0.082 + 0.019 0.029 0.254 0.028 0.563 + 0.027

3 0.000 £ 0.000 0.000 £ 0.000 0.000 % 0.000 0.000 0.013 0.000 0.214 £ 0.021
Average Length | 0.108 0.135 0.454 | 0429 0.968 0.241 | 1.678

(b) Success rates for three sub-tasks chain problems

Table 2: Performance results for sub-task chains in CALVIN. Each mean and standard deviation
of success rates are calculated over 1,000 scenarios with three random seeds. The average length
indicates the average number of completed sub-tasks.

that the goal of Franka Kitchen is to perform four predetermined sub-tasks. On average, all offline
RL algorithms only succeed in less than two sub-tasks, but the playbook completes more than two
sub-tasks. In summary, the playbook outperforms offline RL baselines for all dataset types.

6.2.2 CALVIN RESULT

We conduct experiments in CALVIN requiring
two or three sub-tasks to be performed sequen-
tially to reach a given goal state, as depicted in
Figure 5] It is challenging because we provide
the agent with only one goal image, and the goal
can only be achieved when all sub-tasks are com-
pleted. Therefore, the agent should consider both

Hidden Tasks: {close_drawer, turn_on_led, turn_on_lightbulb}

. Acti to b
which tasks to perform and the order of tasks. Initial State Goal State performed

For instance, if the agent is tasked with closing
a drawer and placing a block inside it, the agent
should position the block in the drawer before
closing it.

Figure 5: Example of three sub-task chain prob-
lem in CALVIN.

The playbook utilizes 64 plays and 32 primitives for the CALVIN benchmark. Table [2] shows the
performance results in CALVIN, and we use the same trained model for each algorithm in both
problems. First, offline RL methods show low performance, which means that using raw actions
is disadvantageous for addressing long-horizon problems. On the other hand, hierarchical policy-
based methods perform better, but on average, even one sub-task cannot be completed. In contrast,
the playbook performs the best and succeeds in more than half of all sub-tasks, representing that
using plays effectively solves long-horizon problems.

6.3 PLAYBOOK EXTENSION

In this experiment, we extend the trained playbook and evaluate it using complex image scenarios in
the CALVIN benchmark. To accomplish this, we extract demonstrations of four predetermined sub-
tasks (close drawer, move slider left, turn on LED, and turn on lightbulb) from the offline dataset
of environment D of CALVIN. Consequently, we have five independent datasets: four task datasets,

Under review as a conference paper at ICLR 2025

Model Open Move Slider Turn off Turn off Close Move Slider Turn on Turn on Average
Drawer Right LED Lightbulb Drawer Left LED Lightbulb
Init 1.00 £ 0.00 0.96 £ 0.04 0.79 £ 0.02 0.95 £ 0.02 0.00 £ 0.00 0.05 4 0.02 0.03 £ 0.05 0.04 £ 0.07 0.48
Step 1 0.97 4 0.02 0.96 £ 0.04 0.83 4 0.06 0.89 £ 0.02 0.87 4 0.02 0.05 4= 0.02 0.12 £ 0.11 0.05 4 0.02 0.59

Step 2 0.97 £ 0.05 0.96 £ 0.04 0.77 4 0.02 0.92 £ 0.04 0.88 £ 0.04 0.76 & 0.04 0.08 £ 0.00 0.07 £ 0.02 0.68
Step 3 0.99 4 0.02 0.96 £ 0.04 0.61 4 0.02 0.91 £ 0.02 0.87 £ 0.02 0.76 & 0.07 0.63 £ 0.12 0.04 £ 0.04 0.72
Final 0.99 4 0.02 0.93 £ 0.06 0.60 £ 0.16 0.93 & 0.06 0.77 £ 0.02 0.73 4 0.06 0.56 £ 0.18 0.64 4 0.28 0.77

Table 3: The success rate of the extended playbook for eight sub-tasks in CALVIN. We highlight
the cell if the corresponding task dataset is not used for learning of each model. Each mean and
standard deviation of success rate are averaged over 25 scenarios with three random seeds.

Algorithm Success Rate for Sequential Tasks Average
1 2 Length

(Extended) Playbook | 0.659 £0.058 0.244 +0.025 | 0.903

Table 4: Performance results for sub-task chains of eight tasks in CALVIN using an extended play-
book. Each mean and standard deviation of success rates are calculated over 100 scenarios with
three random seeds. The average length indicates the average number of completed sub-tasks.

each involving the trajectories of a single task, and one base dataset containing data from other tasks.
First, we train the initial playbook using the base dataset. And then, we progressively extend the
playbook using four task datasets sequentially. We remove the previously used data for the playbook
training, retaining only a ratio of 1%. The initial playbook has 64 plays and 32 primitives, and we
add four plays and two primitives to enrich the expressive capability of the playbook when extending
the playbook.

We incrementally extend a playbook by incorporating tasks in the order of close drawer, move slider
left, turn on LED, and turn on lightbulb. Therefore, four continual play learning steps are required
in total, so we obtain five trained models, including the initial playbook. For those five models, the
success rates for eight sub-tasks are shown in Table [3] We find the best play plan via MCTS, as
explained in Section[5.2] The results show that the extended playbook maintains the success rates of
previously learned tasks and solves new tasks successfully through repeated continual play learning.
Finally, the final model of the playbook successfully performs all eight sub-tasks.

Furthermore, we evaluate the extended playbook for compounded tasks, which are a mixture of old
and new sub-tasks in CALVIN. Also, we use the MCTS planner to find the proper mixed play plan.
We experiment with the final model, which has completed all continual play learning steps. Table]
shows the performance results over 100 scenarios. The playbook achieves a success rate of 24.4%
for two sub-task chain problems, which indicates that the extended playbook can generate proper
mixed play plans for compounded tasks.

6.4 ANALYSIS OF PLAY REUSE RATIO

To robustly and efficiently solve new tasks, it is important not only to learn new skills but also to
reuse existing skills. Therefore, we analyze the selection rates of old and new plays when performing
newly learned tasks using the extended playbook. We use the final model that has completed all
continual learning steps in Section [6.3]and experiment in 25 episodes per task. The results of reuse
ratios are shown in Figure[6] On average, when solving newly learned tasks, the agent chooses old
plays at a rate of 28.8%, which means that old plays are useful in solving new tasks. Note that in the
case of furn on LED, since turn off LED and turn on LED are performed by similar action sequences
due to the desk structure of CALVIN, it is reasonable to use old plays more than new ones.

6.5 ABLATION STUDY

We conduct an ablation study for the playbook on CALVIN. Under the same experiment setting as
three sub-task chains in Section we identify the effect of the IB objective and MCP structure
on the playbook performance. The first baseline algorithm, playbook-c, maximizes only the first
term of @) In other words, the objective becomes the mutual information, excluding the informa-
tion penalty term for action sequences. Next, the second algorithm, playbook-3, does not use the

Under review as a conference paper at ICLR 2025

1.0 10
Gir 0.831 old plays new plays
°* 0.667 0.712
0.6 1 0.581
0.419
4 0333 0.288
0.2 1 0.169
0.068
0 . ; . :
Close Move Turn on Turn oN e
prawe’ gyider Left LED _‘\ghtb““’ Averad

Figure 6: The play selection ratio for four newly learned tasks in CALVIN. Blue and red bars
represent the selection ratio of old and new plays, respectively, when solving each task.

Number of Tasks ‘ playbook ‘ playbook-o playbook-3 ‘ playbook-~y playbook-4 ‘ playbook+BC
1 0.901 4+ 0.011 | 0.874 +0.012 0.882 +£0.013 | 0.745+0.174 0.878 £ 0.018 | 0.726 4+ 0.018
2 0.563 £ 0.027 | 0.434 +£0.006 0.477 £0.013 | 0.079 £0.013 0.533 £0.033 | 0.319 £+ 0.026
3 0.214 £ 0.021 | 0.105+0.008 0.154 £0.019 | 0.001 +0.001 0.152 £0.012 | 0.070 £ 0.050

Average Length | 1.678 | 1.413 1.513 | 0.825 1.563 | 1.116

Table 5: Performance results of the ablation study for three sub-tasks chain problems. Each mean
and standard deviation of success rates are calculated over 1,000 scenarios with three random seed
The average length indicates the average number of completed sub-tasks.

IB objective, and action sequences are simply encoded through the action encoder. The third algo-
rithm, playbook--y, uses non-learnable one-hot vectors as plays to find out the effectiveness of MCP.
In other words, the composite policy of the playbook-y becomes one primitive, not a combination
of primitives. The fourth algorithm, playbook-6, forms the composite policy through a normalized
linear combination of primitives rather than an exponential combination, i.e., it becomes a Gaussian
mixture model. The last algorithm, playbook+BC, selects plays using a goal-conditioned behav-
ioral cloning model instead of the planning set. As a result, the original playbook shows the best
performance of 1.678, as shown in Table E}

7 LIMITATIONS

Remaining all planning sets for mixed play plan. As mentioned in Section[5.2] we must preserve
planning sets for all datasets in order to generate mixed play plans using an extended playbook.
Since planning sets are composed of offline RL algorithms, this limitation can be solved through
continual RL for planning sets, but it is still a challenging problem. This limitation can be addressed
in the future work for the playbook.

Trade-off between the number of plays and planning efficiency. The playbook has a trade-off be-
tween the number of plays and the efficiency of the play plan. As the number of plays increases, the
ability of the playbook to cover multi-modal actions improves, but as the complexity of the play plan
increases, the required computational cost increases and the efficiency decreases. Conversely, as the
number of plays decreases, the play plan becomes simple, but the expressive power of the playbook
decreases. Therefore, the playbook must explore the appropriate number of plays experimentally.

8 CONCLUSION

In this paper, we propose a novel scalable offline discrete skill discovery algorithm, a playbook, for
long-horizon decision-making problems. The playbook provides a straightforward way to expanding
the skill set by utilizing discrete skills and the extensible structure. Furthermore, the playbook
effectively expresses multi-modal behavior distributions included in the dataset with only a finite
number of skills. Experimentally, we confirm that the playbook with a discrete skill set performs
better than existing baselines, which utilize the continuous skill space. In addition, we verify that
the extended playbook not only successfully solves tasks included in new datasets but also carries
out compounded tasks, which are a mixture of old and new tasks.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We reported hyperparameter settings for the playbook training and inference in Appendix [F2
and[H.2] We also described the experiment settings in detail in the main paper and Appendix [F}
|Gl and[H] The source code for reproducing our reported results can be found in the supplementary
material.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
primitive discovery for accelerating offline reinforcement learning. In Proc. of the International
Conference on Learning Representations (ICLR), May. 2021.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, Oct. 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In Proc. of the International Conference on Learning
Representations (ICLR), May. 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning, 2020.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Proc. of the
Conference on Robot Learning (CoRL), Dec. 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proc. of the Interna-
tional Conference on Machine Learning (ICML), Jul. 2018.

Kourosh Hakhamaneshi, Ruihan Zhao, Albert Zhan, Pieter Abbeel, and Michael Laskin. Hierarchi-
cal few-shot imitation with skill transition models. In Proc. of the International Conference on
Learning Representations (ICLR), May. 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In Proc. of the International Conference on Learning Repre-
sentations (ICLR), Apr. 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, Mar. 2015.

Mineui Hong, Minjae Kang, and Songhwai Oh. Diffused task-agnostic milestone planner. In Proc.
of the Neural Information Processing Systems (NeurIPS), Dec. 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Proc. of the Neural Information Processing Systems (NeurIPS), Dec. 2021.

Zheyuan Jiang, Jingyue Gao, and Jianyu Chen. Unsupervised skill discovery via recurrent skill
training. In Proc. of the Neural Information Processing Systems (NeurlPS), Dec. 2022.

Zhaoxun Ju, Chao Yang, Fuchun Sun, Hongbo Wang, and Yu Qiao. Rethinking mutual informa-
tion for language conditioned skill discovery on imitation learning. In Proc. of the International
Conference on Automated Planning and Scheduling (ICAPS), Jun. 2024.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Proc. of the Neural
Information Processing Systems (NeulPS), Dec. 2017.

11

Under review as a conference paper at ICLR 2025

Hyunseung Kim, Byung Kun Lee, Hojoon Lee, Dongyoon Hwang, Sejik Park, Kyushik Min, and
Jaegul Choo. Learning to discover skills through guidance. In Proc. of the Neural Information
Processing Systems (NeurIPS), Dec. 2023.

Jaekyeom Kim, Seohong Park, and Gunhee Kim. Unsupervised skill discovery with bottleneck
option learning. In Proc. of the International Conference on Machine Learning (ICML), Nov.
2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, Mar. 2017.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-
learning. In Proc. of the International Conference on Learning Representations (ICLR), Apr.
2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Proc. of the Neural Information Processing Systems (NeurIPS), Dec.
2020.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
Unsupervised reinforcement learning with contrastive intrinsic control. In Proc. of the Neural
Information Processing Systems (NeurIPS), Dec. 2022.

Youngwoon Lee, Jingyun Yang, and Joseph J Lim. Learning to coordinate manipulation skills via
skill behavior diversification. In Proc. of the International Conference on Learning Representa-
tions (ICLR), May. 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935-2947, Jun. 2016.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Proc. of the Conference on Robot Learning
(CoRL), Dec. 2019.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreographer:
Learning and adapting skills in imagination. In Proc. of the International Conference on Learning
Representations (ICLR), May. 2023.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. CALVIN: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters (RA-L), 7(3):7327-7334, Jun. 2022.

Seohong Park, Jongwook Choi, Jackyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. In Proc. of the International Conference on Learning
Representations (ICLR), May. 2022.

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
skill discovery. In Proc. of the International Conference on Machine Learning (ICML), Nov.
2023.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. MCP: Learning
composable hierarchical control with multiplicative compositional policies. In Proc. of the Neural
Information Processing Systems (NeurIPS), Dec. 2019.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Proc. in the Conference on Robot Learning (CoRL), Dec. 2020.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. La-
tent plans for task-agnostic offline reinforcement learning. In Proc. of the Conference on Robot
Learning (CoRL), Dec. 2022.

12

Under review as a conference paper at ICLR 2025

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, Jun. 2016.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In Proc. of the International Conference on Learning Represen-
tations (ICLR), Apr. 2020.

Lucy Xiaoyang Shi, Joseph Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. In Proc. in the Conference on Robot Learning (CoRL), Dec. 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proc. of the International Conference on Learning Representations (ICLR), May.
2015.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. In Proc. of the International Conference
on Learning Representations (ICLR), May. 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. ManiSkill3: GPU parallelized robotics simulation
and rendering for generalizable embodied Al. arXiv preprint arXiv:2410.00425, Oct. 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Proc. of the
Neural Information Processing Systems (NeurIPS), Dec. 2017.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. FOSTER: Feature boosting and
compression for class-incremental learning. In Proc. of the European Conference on Computer
Vision (ECCV), Oct. 2022.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. SAPIEN: A simulated part-based interactive environment. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.

13

Under review as a conference paper at ICLR 2025

A MULTIPLICATIVE COMPOSITIONAL POLICY IN A PLAYBOOK

A playbook has M parameterized primitives {mg,,--- ,7,, }, and each primitive presents an inde-
pendent probability distribution over a raw action space, pr, (a]s), taking a state s as an input. We
model each primitive as a Gaussian distribution with mean p,,(s) and diagonal covariance matrix
¥ (8). According to the formula of the composite policy in [Peng et al.[(2019), the output of the
composite policy 7 is derived as a Gaussian distribution with the following mean and covariance:

Am

. 1 M , ‘ Mmoo 1
o) = gt >0 i) os) = (3) ©

m=1 0-7.” (S)

= (s

where 1™ is the m-th element of the weight vector w0, 17 (s, 1) and o7 (s, 1) are the j-th element
of mean and variance of the composite distribution 7(-|s,), and p?, (s) and o7, (s) are the j-th
element of mean and variance of primitive 7, (-|s). Using the above distribution, we can calculate
the probability 7 (a|s, @) of an action a to be chosen for a given state-play pair (s,).

B LOWER BOUND FOR THE INFORMATION BOTTLENECK OBJECTIVE

In Section[3.3] we propose the following IB objective (@) for training the action encoder parameter-
ized by v and the latent mapping model parameterized by &:

maximize E, [Z(Z°tHH; ZHH |Sy) — BT(Z4HH: Apyym)],

where S;, Aerm, Z°, and Z%+H are random variables corresponding to s¢, @1y, z°*, and
z%:++H respectively, and S is a constant. Also, z° and z® are a state latent and an action latent that
encode a state and an action sequence, respectively. First, we use the action encoder i to embed
an action sequence into an action latent z*#*+#_ Next, we define the latent mapping model ¢ as
pe(2°+H7 | sy, 2%+ H), which predicts the distribution of the future state latent as Gaussian using the
current state and action latent as an input. In this section, we derive its lower bound @) to maximize
the above objective.

The first term, Z(Z%t+# ; Z%:++H|S,) means that given the current state s;, an action latent zt:t+H
is informative about a state latent z**+# . We derive the following approximated lower bound of the
mutual information using a variational approximation of pe (z°*+# |s;, z%++7).

St+H at:t+H
E, [I(ZStJrH s ZbHH |St)] = [Pw(z S|St7 z)]
TaD b2t H oy, (1), 20 H oy (- 7) P (2%t |s¢)
> By oveon e | 108 De(a" 30,200) ~ logpu (27| 2

RE,; oetm ovirn [logpg (2% 8¢,z 1) — log E.a [pe (2™ sy, Za)”~

Next, minimizing the second term, Z(Z%+#; A;.,. i), means that the action latent z%*+# is pe-
nalized for preserving information about the action sequence a;.;+ . This term has the following
upper bound:

at:t+H .
E¢[Z(Z°H 7 Apyrnr)] = . EH [IOg Pw(; (Zat.Jf;.t;H)]
T~D,t, 2%t ~py (-|7) b : (8)

B,y ovin | Dicn (pu(Z5 avaen) | a(Z5+))]

where ¢(2%) is a normal distribution, N'(0, I) used as a variational approximation of the prior dis-
tribution p,;,(z®). Finally, we obtain the following loss for the action encoder and latent mapping
model, i.e., 1 and &:

Liypey=— E [logpg(zst+H |y, ztt+H)

Tt StHH Otit+H

—logE.a [pe (2™ |s1,2")| — BDkL (py(Z° |arrm) || q(Za"”‘JfH))].

14

Under review as a conference paper at ICLR 2025

Sequence Processing

St Qt:t+H St+H St! Qt'it"+H (F'=t+kH)
l::> T {D,%, |:|, ,D,%} : kH-steps
J—] |—
unstructured | Pre-Trained Playbook |
dataset T T T T T
a {D ., D, ,D [} : k-steps I::> train planning models
state-play secﬂuence. St Wy St+nm St Wy {A, LIJ}

S: state a: action W: play H: window size

Figure 7: A playbook converts original demonstrations into state-play sequences using a pre-trained
playbook for training play planning sets.

State-Play Sequence Generation & Selection

Current State: S¢ Rollout Step: Selection Step: Goal State: S
, trajectory generation model A state distance metric ¥
1
o R Tl ==s 2
—_ p O[] O [€= —

E wi Sten Wiin St+kH A
1
| . .2 . Mmeasure
E' (- I:‘ [I:‘ $T° ¥ gistance

- . .
i w? Sten Whin Strkn «
1
- .3
b O[] O] :<
: w} St Wiy Stekn

generate feasible state-play sequences (k-step prediction)

i. ~i i ~i N select T' as the best trajectory
T {St, Wi, Star Weany *** Stakn} for the goal S¢

Next State: S¢ y

Perform the first play th o
L4

- — 9 Repeat

Figure 8: Overview of a play plan through beam search. The playbook generates various state-play
sequences from the current state through repeated rollout steps and selects the best sequence closest
to a given goal state through a selection step.

C OFFLINE TRAJECTORY PROCESSING USING A PRE-TRAINED PLAYBOOK

Before training the planning sets, we convert pre-collected demonstrations into state-play trajectories
using a pre-trained playbook, as depicted in Figure [f] The playbook selects a play w; € B by
utilizing the current state s, and window size actions a4+ as an input. Therefore, original state-
action sequences of the unstructured dataset are converted into state-play sequences. The converted
sequence has fewer steps than the original one, but the play maintains information about the original
action sequence, making it easier to predict distant future states than a one-step dynamics model. In
other words, the playbook can reduce accumulated prediction errors caused by repeated predictions
for state transitions.

D PLAY SELECTION PROCESS THROUGH BEAM SEARCH

This section deals with the state-play sequence inference process using trained planning sets. The
planning process follows beam search proposed by Janner et al.| (2021). Figure|[8|shows the process
of selecting the best play index using a pre-trained playbook to reach a goal state. First, the playbook
uses the trajectory generation model A to generate diverse and reasonable state-play sequences from
the current state. Next, the playbook uses the state distance metric ¥ to select the closest trajectory
to a given goal state. The first play of the selected sequence is converted into raw actions using a
low-level policy and is performed in the current state. This process is repeated until the goal state is
reached.

15

Under review as a conference paper at ICLR 2025

Monte Carlo Tree Search Optimal
for Mixed Play Plan Play Selection
[TTTTT] : extended play set O : ¢, initial state optimal Play Path
O : old play S¢ O : 8. goal state Se
O : new play H? H? -
@) S
play selection Al " /'&, A? 1 tree search Seen

depth
state prediction

children of S, O St+H O O -

71 : 2

v
measure
S 2
R@ G O Y% state-value

| S |

St+2H

old dat@ = #'= (ALY} ., dat@ = H?= (02,92}

Figure 9: Overview of MCTS for generating a mixed play plan. (Left) The playbook performs a
tree search by sequentially selecting a planning set { A%, U?}. In each step in the tree search, we
reach the next node by inferring a play and next state using the selected A’. If we reach a leaf node,
the value of the node is measured using U?. (Right) After the tree search is finished, the playbook
sequentially selects the play index with the highest node value to infer the optimal play plan.

D.1 HYPERPARAMETER SETTING FOR A PLAY PLAN

In experiments [6.2.1] [6.2.2] [6.4] and[6.5] we perform beam search for a play plan to infer the optimal
play sequence with the same hyperparameter setting. First, we generated 64 independent state-play
trajectories and performed eight rollout steps with a window size of 10, i.e., the future state after 80
time steps is predicted in each sequence.

E MIXED-PLAY PLAN THROUGH MONTE CARLO TREE SEARCH

E.1 TREE SEARCH PHASE

We generates play sequences with an extended playbook by mixing plays learned from multiple
datasets using the MCTS planner, as shown in Figure 0] MCTS is performed through iterative
tree search processes. In each tree search process, the planner sequentially chooses a planning set
{A*, ¥} among all planning sets at the current node. Next, the planner determines the next node
by deciding a play index to be performed and predicting the next state using A’. Then, the depth
of the tree search increases by one. If the planner reaches a leaf node, the value of the leaf node is
measured by U’ using a given goal state. Each tree search process is performed until a leaf node is
reached or the maximum depth of the tree is achieved.

E.2 OPTIMAL PLAY PLAN GENERATION PHASE

After MCTS is finished, the planner finds the best play sequence within the searched tree based on
the stored node values. By starting from the root node, the planner selects the play index with the
highest node value among all plays owned by the current node. Until a leaf node is reached, the
planner generates the best play sequence by sequentially selecting the play indices. In practice, we
execute only the first play in the inferred play plan. Then, we obtain the next state by executing raw
actions in the environment and perform MCTS again until the goal state is achieved.

F FRANKA KITCHEN EXPERIMENT

F.1 ENVIRONMENT SETTING

In the Franka Kitchen environment (Fu et al.,[2020), a Franka arm robot achieves a given goal state
by manipulating various objects in a virtual kitchen. The kitchen has available objects such as a

16

Under review as a conference paper at ICLR 2025

kettle, a light switch, a microwave, an opening cabinet, and a sliding cabinet. Experiments are
conducted in two environments: kitchen-partial-v0 and kitchen-mixed-v('| In both environments,
the goal state is fixed with the following four target sub-tasks completed: open the micro wave, move
the kettle, flip the light switch, and slide open the cabinet door.

In experiments, we use partial and mixed offline datasets, which are challenging datasets of Franka
Kitchen. In both datasets, all offline trajectories include demonstrations that carry out sub-tasks that
are not part of the target sub-tasks. There are trajectories that perform all target sub-tasks in the
partial-type dataset but not in the mixed-type dataset.

F.2 IMPLEMENTATION DETAILS FOR BASELINES

We use CQL (Kumar et al.| [2020), IQL (Kostrikov et al., [2022), and TT+IQL (Janner et al., 2021)
as baselines in Franka Kitchen. First, we implemented CQL and IQL algorithms. For CQL and
IQL, since the performance results for Franka Kitchen are reported in each reference paper, we list
both the performance we measured and the performance reported by the authors in Table|l} On the
other hand, we modified the official code of T to fit our experimental setting. Since TT has no
reported performance for Franka Kitchen, we only list the performance we measured. In particular,
TT+IQL is an important baseline, which is a method used in plan plan for the playbook, allowing us
to confirm the performance difference between using raw actions and plays.

F.3 HYPERPARAMETER SETTING FOR A PLAYBOOK

In Franka Kitchen, a playbook is trained with the following hyperparameter settings. First, the
hyperparameter setting used for training the playbook is shown in Table[6]

Hyperparameter | Value | Hyperparameter | Value
window size (H) 10 learning rate 3e-4
batch size 128 training steps 3e5
dimension of z‘_l 32 the number of plays (V) 32
dimension of z* 16 the number of primitives (M) 16

Table 6: Hyperparameter setting for training the playbook.

Next, the hyperparameter setting for training a trajectory generation model is shown in Table
Other hyperparameters are set to the default value of the official code of TT.

Hyperparameter | Value | Hyperparameter | Value
the number of quantizations | 100 | the number of attention layers 4
training steps 5e5 the number of attetion heads 4

Table 7: Hyperparameter setting for training a trajectory generation model.

Lastly, the hyperparameter setting used for training a state distance metric is shown in Table [3| We
used an IQL code we implemented.

Hyperparameter | Value | Hyperparameter | Value

window size (H) 10 learning rate 3e-4
batch size 128 training steps 2e5
temperature 0.7 tau le-3
expectile 0.5 discount factor 0.99
alpha 2.0

Table 8: Hyperparameter setting for training a state distance metric of high-level models.

"https://github.com/Farama-Foundation/D4RL
*https://github.com/jannerm/trajectory-transformer

17

Under review as a conference paper at ICLR 2025

G CALVIN EXPERIMENT

G.1 ENVIRONMENT SETTING

In the CALVIN environment (Mees et al., 2022), the robot agent achieves a given goal state by
manipulating various objects on a multifunctional desk. There is a drawer, a slider, an LED, a
lightbulb, and three blocks on the desk. CALVIN provides offline demonstrations that were collected
by humans who controlled a robot arm via teleoperationﬂ Each demonstration is a long trajectory in
which diverse sub-tasks are sequentially performed in random order. Note that the dataset provides
task labels, but we do not use them for playbook learning.

G.2 IMPLEMENTATION DETAILS FOR BASELINES

We use offline RL algorithms (CQL (Kumar et al., 2020), IQL (Kostrikov et al., [2022)), and TT+IQL
(Janner et al., |2021))) and hierarchical policy learning algorithms (Play-LMP (Lynch et al.| [2019),
RIL (Gupta et al, [2019), and TACO-RL (Rosete-Beas et al., 2022))) as baselines CALVIN. For
CQL, IQL, and TT+IQL, we measured the performance using the code we implemented. On the
other hand, for Play-LMP, RIL, and TACO-RL, we utilized saved checkpoint modelﬂ For fair
comparison with a playbook, we used the same model for sub-task chain problems for all baselines.

G.3 HYPERPARAMETER SETTING FOR A PLAYBOOK

In CALVIN, a playbook is trained with the following hyperparameter settings. First, the hyperpa-
rameter setting used for training the playbook is shown in Table[9]

Hyperparameter | Value | Hyperparameter | Value
window size (H) 10 learning rate 3e-4
batch size 128 training steps 3e5
dimension of z‘? 64 the number of plays (V) 64
dimension of 2* 32 the number of primitives (M) 32

Table 9: Hyperparameter setting for training the playbook.

Next, the hyperparameter setting for training a trajectory generation model is shown in Table [0}
We used the official code of TT for the trajectory generation model, and other hyperparameters are
set to the default value of the code.

Hyperparameter | Value | Hyperparameter | Value
the number of quantizations | 100 | the number of attention layers 4
training steps le6 the number of attetion heads 4

Table 10: Hyperparameter setting for training a trajectory generation model.

Lastly, the hyperparameter setting used for training a state distance metric is shown in Table[TT] We
used an IQL code we implemented.

Hyperparameter | Value | Hyperparameter | Value
window size (H) 10 learning rate 3e-4
batch size 128 training steps le6
temperature 10.0 tau le-3
expectile 0.9 discount factor 0.99
alpha 2.0 geometric probability (pg) | 0.10

Table 11: Hyperparameter setting for training a state distance metric.

3https://github.com/mees/calvin
*https://github.com/ErickRosete/tacorl

18

Under review as a conference paper at ICLR 2025

G.4 EXECUTION RESULTS USING PLAYBOOK

To help understand experiments in the CALVIN environment, we visualize successful examples of
execution results using a playbook in two and three sub-task chain problems in Figure[I0}

H PLAYBOOK EXTENSION EXPERIMENT IN CALVIN

H.1 SizE OF BASE AND TASK DATASETS

Table [[2] shows the size of the base dataset and task datasets used in Section[6.3] The base dataset
is the largest because it contains demonstrations for all sub-tasks except for four predetermined
sub-tasks: close drawer, move slider left, turn on LED, and turn on lightbulb. We performed
continual play learning using close drawer, move slider left, turn on LED, and turn on lightbulb
datasets in order for the playbook extension. After each continual play learning is finished, we leave
only 1% of data for each dataset we used for the subsequent continual play learning.

Dataset Num. of Time Steps
Base Dataset 400,633
Close-Drawer Dataset 56,088
Move-Slider-Left Dataset 66,719
Turn-on-LED Dataset 36,890
Turn-on-Lightbulb Dataset 36,660

Table 12: The size of the base dataset and task datasets used for continual play learning.

H.2 HYPERPARAMETER SETTING FOR PLAYBOOK EXTENSION

A playbook is expanded via a total of four continual play learning steps in Section The
hyperparameter setting for training the playbook of each continual play learning step is the same,
which is shown in Table[I3] Other hyperparameter settings for training planning sets are the same

as Appendix

Hyperparameter | Value | Hyperparameter | Value
window size (H) 10 learning rate 3e-4
batch size 128 the number of plays (V) 64
dimension of z¢ 64 the number of primitives (M) 32
dimension of z* 32 the number of additional plays 4
training steps: initial phase 3e5 | the number of additional primitives 2
training steps: extension phase 2e5 remaining ratio for old data 0.01
training steps: distillation phase | 1e5

Table 13: Hyperparameter setting for training the playbook for a playbook extension.

I PLAYBOOK WITH GOAL-CONDITIONED BEHAVIORAL CLONING

This section details the playbook-BC algorithm used in the ablation study in Section For the
CALVIN benchmark, because the goal-conditioned behavioral cloning (GCBC) model trained on the
low-level action space shows low performance, we train the GCBC model on the high-level action
space, i.e., play set, to measure its performance. Like the training of the planning set in Section
[l the GCBC model is trained using a converted dataset with a pre-trained playbook. GCBC infers
plays to be performed with the current and goal states as inputs. For training GCBC, the current
states and plays are sampled directly from the converted dataset, and the goal states are sampled
among future states through the same process in Section

19

Under review as a conference paper at ICLR 2025

Example 1: hidden tasks { move slider left, turn off LED }

initial
time step

Example 2: hidden tasks { close drawer, turn off lightbulb }

|n|t|a|
time step

Example 3: hidden tasks { move slider right, open drawer }

L

time step:

initial

Sataalaleste b

Example 4: hidden tasks {turn on LED, turn off lightbulb }

SLETECECRER A IR

(a) Examples of playbook execution results for two sub-task chain problems.

Example 1: hidden tasks { open drawer, turn off LED, turn off lightbulb }

initial

ST

Example 2: hidden tasks { move slider left, open drawer, turn off LED }
initial

&ﬂﬂﬂ!@@ﬂ@&&

time step: 0

time step:

Example 3: hidden tasks { close drawer, move slider right, turn on LED }
initial

uaaa@aaaauuﬂ

time step: 0

Example 4: hidden tasks { move slider left, turn off LED, turn off lightbulb }

LD SRS

time step: 0

Example 5: hidden tasks { move slider right, open drawer, turn on LED }
initial

P e N 1 2 0 3 Y e

time step: 0

(b) Examples of playbook execution results for three sub-task chain problems.

Figure 10: Execution results in the CALVIN environment.

20

Under review as a conference paper at ICLR 2025

The Number Success Rate for Sequential Tasks Average
of Plays 1 2 3 Length
32 0.855+0.035 0.482+0.025 0.163 £ 0.030 1.500
64 0.901 £0.011 0.563 £0.027 0.214 £ 0.021 1.678
128 0.867 £0.029 0.567 £0.026 0.213 + 0.039 1.647

Table 14: Performance results for three sub-task chains in CALVIN using playbooks with differ-
ent number of plays. Each mean and standard deviation of success rates are calculated over 1000
scenarios with three random seeds. The average length indicates the average number of completed
sub-tasks.

The Number Success Rate for Sequential Tasks Average

of Primitives 1 2 3 Length
16 0.864 +0.051 0.514 £0.022 0.181 £+ 0.027 1.559
32 0.901 £ 0.011 0.563 £0.027 0.214 + 0.021 1.678
64 0.876 +0.028 0.569 £ 0.010 0.220 £ 0.020 1.665

Table 15: Performance results for three sub-task chains in CALVIN using playbooks with different
number of primitives. Each mean and standard deviation of success rates are calculated over 1000
scenarios with three random seeds. The average length indicates the average number of completed
sub-tasks.

Window Success Rate for Sequential Tasks Average
Size 1 2 3 Length
5 0.830 +0.033 0.467 £0.043 0.180 £ 0.015 1.477
10 0.901 +£0.011 0.563 £0.027 0.214 +0.021 1.678
20 0.870 £ 0.025 0.468 £0.051 0.125 4+ 0.031 1.463

Table 16: Performance results for three sub-task chains in CALVIN using playbooks with different
window sizes. Each mean and standard deviation of success rates are calculated over 1000 scenarios
with three random seeds. The average length indicates the average number of completed sub-tasks.

Horizon Success Rate for Sequential Tasks Average
1 2 3 Length

1 0.826 £ 0.015 0.369 +0.025 0.094 £ 0.042 1.289

3 0.897 £0.031 0.555+0.033 0.168 £ 0.035 1.620

5 0.891 £0.011 0.575+0.033 0.192 £+ 0.009 1.658

8 0.901 £0.011 0.563 +£0.027 0.213 £ 0.039 1.678

Table 17: Performance results for three sub-task chains in CALVIN using playbooks with beam
search horizons. Each mean and standard deviation of success rates are calculated over 1000 sce-
narios with three random seeds. The average length indicates the average number of completed
sub-tasks.

J ADDITIONAL ABLATION STUDIES

In this section, we conduct additional ablation studies to confirm the performance change caused by
the adjustment of hyperparameters of the playbook. These experiments address three sub-task chain
problems under the same experimental setting as Section[6.2.2] The original playbook uses 64 plays
and 32 primitives and has a window size of 10 when training. Also, when performing beam search,
an agent infers the state after eight plays have been performed. Therefore, we check the effect of
the number of plays, the number of primitives, the window size, and the inference horizon of beam
search on the performance of the playbook.

Tables [T4] and [T3] present the performance results according to the number of plays and primitives.
As a result, the playbook shows the best performance when using 64 plays or 32 primitives. The

21

Under review as a conference paper at ICLR 2025

(a) PushCube-v1 (b) PullCube-v1 (c) PokeCube-v1 (d) LiftPegUpright-v1

Figure 11: ManiSkill3 tasks used in experiments.

Task | BC CQL IQL | Playbook+BC

PushCube-v1 0.67 £0.06 0.57+0.13 0.67+0.04 | 0.76 = 0.04
PullCube-v1 045+0.11 036+0.11 043 £0.15 0.58 £ 0.04
PokeCube-v1 056 +£0.13 041+0.09 058+£0.09 | 0.66=+0.10
LiftPegUpright-vl | 0.30+0.12 0.16 £0.03 0.194+0.04 | 0.46 £ 0.08

Average | 050£0.16 038+0.17 047+021 | 0.62+0.13

Table 18: Performance results in the ManiSkill3 benchmark. Each mean and standard deviation of
the success rate are calculated over 100 episodes with three random seeds.

playbook with 32 plays or 16 primitives records low performance, indicating that the number of
components is insufficient to express multi-modal behaviors. On the other hand, the playbook with
128 plays or 64 primitives shows slightly lower results than the highest performance. This means that
if the number of plays and primitives is larger than necessary, the complexity of planning increases,
and then performance results can deteriorate.

Table [T6] presents the performance results of the playbook with different window sizes. Depending
on the window size, the playbook has the following trade-off. If the window size is small, raw
action inference for each play becomes accurate, but more rollout steps are required when play
planning. On the other hand, when the window size is large, the accuracy of raw action inference
for each play decreases, but only a small number of rollout steps can predict a distant future state.
We experimentally confirm that the window size of 10 shows the best performance.

Finally, Table[I7] presents the performance results of the playbook with different planning horizons.
The results show that the performance of the playbook improves as the planning horizon increases,
which implies that an agent can successfully predict future states through beam search.

K ADDITIONAL BENCHMARK FOR PLAYBOOK EVALUATION

In this section, we experiment with playbook learning using an offline dataset consisting of several
single-task demonstrations. To this end, we utilize the ManiSkill3 benchmark, a
SAPIEN (Xiang et al., 2020)-based simulated environment and solve the following robot manipu-
lation tasks: PushCube-vl, PullCube-vi, PokeCube-vi, and LiftPegUpright-vl, as shown in Figure

The differences between the experiments in ManiSkill3 and CALVIN are as follows. First,
in ManiSkill3, rather than sequentially performing multiple tasks in a single workspace, only one
task is performed in one workspace. Thus, the agent can perform proper tasks without goal states.
Second, since there is no public dataset for the above tasks, we collect the offline dataset for training.

Offline data collection. The ManiSkill3 benchmark provides a motion planning-based framework
for collecting task demonstrations, but these collected trajectories make it challenging to train the
agent robustly due to a lack of diversity. Thus, for diverse data collection, we train a reinforcement
learning agent for each task and then obtain successful demonstrations from various checkpoints.
We use SAC [Haarnoja et al.| (2018) as a reinforcement learning algorithm and train the agent using
the dense reward function provided by ManiSkill3. An observation is a state representation that
includes the position of the end effector, objects, and goal region, and an action represents the pose
of the end effector of the robot. Finally, we collected 10,000 demonstrations for each task. Since

22

Under review as a conference paper at ICLR 2025

each task has a different dimension of the observation, we apply zero padding to each state so that
all states have the same dimensions.

Analyzing the experiment results. Since we solve tasks without goals, we evaluate the playbook
by training the BC model for the play set without utilizing a planning set. The experimental results
of ManiSkill3 can be found in Table We measure the average success rate for 100 episodes with
three random seeds for each task. First, BC, CQL, and IQL methods show success rates of 0.50,
0.38, and 0.47 on average for all tasks, respectively. Meanwhile, the playbook+BC records the best
success rate of 0.62. Compared to CALVIN and Franka Kitchen benchmarks, there are fewer differ-
ences in the performance of the playbook and baselines because there are fewer actions required to
complete each single task. In conclusion, we confirm that the playbook can be successfully trained
using an offline dataset consisting of demonstrations of single tasks.

23

	Introduction
	Related Work
	Hierarchical Policy Learning Using an Offline Task-Agnostic Dataset
	Class-Incremental Learning for Image Classification

	Learning Playbook from Unstructured Datasets
	Play Selection through Embedding Model
	Playbook Learning with Primitives
	Information Bottleneck Objective for Action Encoder

	Playbook Extension by Class-Incremental Learning
	Continual Play Learning for New Dataset

	Sequential Play Plan Using a Playbook
	Play Plan Generation through Beam Search
	Monte Carlo Tree Search for Mixed-Play Plan

	Experiment
	Experiment Setup
	Benchmark
	Baselines

	Performance Comparison Experiment
	Franka Kitchen Result
	CALVIN Result

	Playbook Extension
	Analysis of Play Reuse Ratio
	Ablation Study

	Limitations
	Conclusion
	Multiplicative Compositional Policy in a Playbook
	Lower Bound for the Information Bottleneck Objective
	Offline Trajectory Processing Using a Pre-Trained Playbook
	Play Selection Process through Beam Search
	Hyperparameter Setting for a Play Plan

	Mixed-Play Plan through Monte Carlo Tree Search
	Tree Search Phase
	Optimal Play Plan Generation Phase

	Franka Kitchen Experiment
	Environment Setting
	Implementation Details for Baselines
	Hyperparameter Setting for a Playbook

	CALVIN Experiment
	Environment Setting
	Implementation Details for Baselines
	Hyperparameter Setting for a Playbook
	Execution Results Using Playbook

	Playbook Extension Experiment in CALVIN
	Size of Base and Task Datasets
	Hyperparameter Setting for Playbook Extension

	Playbook with Goal-Conditioned Behavioral Cloning
	Additional Ablation Studies
	Additional Benchmark for Playbook Evaluation

