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ABSTRACT

Memory is crucial for enabling agents to tackle complex tasks with temporal and
spatial dependencies. While many reinforcement learning (RL) algorithms incor-
porate memory, the field lacks a universal benchmark to assess an agent’s memory
capabilities across diverse scenarios. This gap is particularly evident in tabletop
robotic manipulation, where memory is essential for solving tasks with partial
observability and ensuring robust performance, yet no standardized benchmarks
exist. In this work, we address these challenges through three key contributions:
(1) we propose a comprehensive classification framework for memory-intensive
RL tasks, (2) we collect MIKASA – a unified benchmark that enables systematic
evaluation of memory-enhanced agents across diverse scenarios, and (3) we de-
velop ManiSkill-Memory – a novel benchmark of 32 carefully designed memory-
intensive tasks that assess memory capabilities in tabletop robotic manipulation.
Our contributions establish a unified framework for advancing memory RL research,
driving the development of more reliable systems for real-world applications.

1 INTRODUCTION
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Figure 1: Systematic classification of problems
with memory in RL reveals distinct memory uti-
lization patterns and enables objective evaluation
of memory mechanisms across different agents.

Many real-world problems involve partial ob-
servability (Kaelbling et al., 1998), where an
agent lacks full access to the environment’s
state. These tasks often include sequential
decision-making (Chen et al., 2021), delayed
or sparse rewards, and long-term information
retention (Parisotto et al., 2020; Lampinen et al.,
2021). One approach to tackling these chal-
lenges is to equip the agent with memory, al-
lowing it to utilize historical information (Meng
et al., 2021; Ni et al., 2021).

While there are well-established benchmarks in
Natural Language Processing (Bai et al., 2023;
An et al., 2023), the evaluation of memory in re-
inforcement learning (RL) remains fragmented.
Existing benchmarks, such as POPGym (Morad
et al., 2023), DMLab-30 (Hung et al., 2018) and
MemoryGym (Pleines et al., 2023), focus on
specific aspects of memory utilization, as they are designed around particular problem domains.

In contrast to classical RL, where benchmarks like Atari (Bellemare et al., 2013) and Mu-
JoCo (Todorov et al., 2012) serve as universal standards, memory-enhanced agents are typically
evaluated on custom environments developed alongside their proposals Table 2. This fragmented
evaluation landscape obscures important performance variations across different memory tasks. For
instance, an agent might excel at maintaining object attributes over extended periods while struggling
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Table 1: ManiSkill-Memory: a benchmark of 32 memory-intensive tasks for robotic manipulation,
organized into 12 categories with varying difficulty levels. See Appendix E for details.

Memory Task Mode Brief description of the task T Oracle Info Prompt Memory
Task Type

ShellGame[Mode]-v0 Touch
Push
Pick

Memorize the position of the ball after some time being covered by the cups and then interact with the cup
the ball is under. 90 cup with ball number — Object

Intercept[Mode]-v0 Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through those positions, and then aim the ball
at the target. 90 initial velocity — Spatial

InterceptGrab[Mode]-v0 Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through those positions, and then catch the
ball with the gripper and lift it up. 90 initial velocity — Spatial

RotateLenient[Mode]-v0 Pos
PosNeg

Memorize the initial position of the peg and rotate it by a given angle. 90 y angle diff target angle Spatial

RotateStrict[Mode]-v0 Pos
PosNeg

Memorize the initial position of the peg and rotate it to a given angle without shifting its center. 90 y angle diff target angle Object

TakeItBack-v0 — Memorize the initial position of the cube, move it to the target region, and then return it to its initial position. 180 xyz initial — Spatial
RememberColor[Mode]-v0 3 \ 5 \ 9 Memorize the color of the cube and choose among other colors. 60 true color indices — Object
RememberShape[Mode]-v0 3 \ 5 \ 9 Memorize the shape of the cube and choose among other shapes. 60 true shape indices — Object
RememberShapeAndColor
[Mode]-v0

3×2\3×3
5×3

Memorize the shape and color of the cube and choose among other shapes and colors. 60 true shapes info
true colors info

— Object

BunchOfColors[Mode]-v0 3 \ 5 \ 7 Remember the colors of the set of cubes shown simultaneously in the bunch and touch them in any order. 120 true color indices — Capacity
SeqOfColors[Mode]-v0 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then select them in any order. 120 true color indices — Capacity
ChainOfColors[Mode]-v0 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then select them in the same order. 120 true color indices — Sequential

Total: 32 tabletop robotic manipulation memory-intensive tasks in 12 groups

with sequential recall challenges. Such task-specific strengths and limitations often remain hidden
due to narrow evaluation scopes, underscoring the need for a comprehensive benchmark that spans
diverse memory-intensive scenarios.

The challenge of memory evaluation becomes particularly evident in robotics. While some robotic
tasks naturally involve partial observability, e.g. navigation tasks (Ai et al., 2022; Yadav et al.,
2023), many studies artificially create partially observable scenarios from Markov Decision Processes
(MDPs) (Åström, 1965) by introducing observation noise or masking parts of the state space (Spaan,
2012; Meng et al., 2021; Kurniawati, 2022; Lauri et al., 2023). However, these approaches do not fully
capture the complexity of real-world robotic challenges (Lauri et al., 2023), where tasks may require
the agent to recall past object configurations, manipulate occluded objects, or perform multi-step
procedures that depend heavily on memory.

In this paper, we aim to address these challenges with the following three contributions:

1. Memory Tasks Classification: We develop a comprehensive yet practically simple clas-
sification of memory-intensive tasks. Our classification framework distills the complex
landscape of memory challenges into four essential categories, enabling systematic evalu-
ation while avoiding unnecessary complexity (Figure 1). This approach provides a clear,
actionable framework for categorizing and selecting environments that capture fundamental
memory challenges in RL and robotics (section 4).

2. Unified Benchmark: We introduce MIKASA (Memory-Intensive Skills Assessment Suite
for Agents), a framework designed to evaluate memory capabilities of RL agents. Built upon
the Gymnasium (Towers et al., 2024) interface, MIKASA provides a common platform for
comparing and evaluating memory-enhanced RL agents (section 5).

3. Robotic Manipulation Tasks: We develop ManiSkill-Memory, a suite of 32 carefully
designed robotic manipulation tasks that isolate and evaluate specific memory-dependent
skills in realistic scenarios (section 6).

2 RELATED WORKS

Multiple RL benchmarks are designed to assess agents’ memory capabilities. DMLab-30 (Hung et al.,
2018) provides 3D navigation and puzzle tasks, focusing on long-horizon exploration and spatial
recall. PsychLab (Leibo et al., 2018) extends DMLab by incorporating tasks that probe cognitive
processes, including working memory. MiniGrid and MiniWorld (Chevalier-Boisvert et al., 2023)
emphasize partial observability in lightweight 2D and 3D environments, while MiniHack (Samvelyan
et al., 2021) builds on NetHack (Küttler et al., 2020), offering small roguelike scenarios that require
both short- and long-term memory. BabyAI (Chevalier-Boisvert et al., 2019) combines natural
language instructions with grid-based tasks, requiring memory for multi-step command execution.
POPGym (Morad et al., 2023) standardizes memory evaluation with tasks ranging from pattern-
matching puzzles to complex sequential decision-making. BSuite (Osband et al., 2020) offers a suite
of carefully designed experiments that test core RL capabilities, including memory, through controlled
tasks on exploration, credit assignment, and scalability. Memory Gym (Pleines et al., 2023) offers a
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RememberColor9-v0

RotateLenientPos-v0ShellGameTouch-v0

Figure 2: Illustration of demonstrative memory-intensive tasks execution from the proposed ManiSkill-
Memory benchmark. The ShellGameTouch-v0 task requires the agent to memorize the ball’s
location under mugs and touch the correct one. In RememberColor9-v0, the agent must memorize
a cube’s color and later select the matching one. In RotateLenientPos-v0, the agent must
rotate a peg while keeping track of its previous rotations.

suite of 2D grid environments with partial observability, designed to benchmark memory capabilities
in decision-making agents, including endless versions of tasks for evaluating memory over extremely
long time intervals. Memory Maze (Pasukonis et al., 2022) presents 3D maze navigation tasks that
require memory to solve efficiently.

While these benchmarks offer valuable insights into memory mechanisms, they generally focus
on abstract puzzles or navigation tasks. However, none of them fully encompass the broad range
of memory utilization scenarios an agent may encounter, and the tasks themselves often differ
fundamentally across benchmarks, making direct comparison of memory-enhanced agents difficult.

In the robotics domain, memory requirements become particularly challenging due to the physical
nature of manipulation tasks. Unlike abstract environments, robotic manipulation involves complex
physical interactions and multi-step procedures that demand both spatial and temporal memory.
Existing memory-intensive benchmarks, while useful for diagnostic purposes, struggle to capture
these domain-specific challenges. The physical control and object interaction inherent in manipulation
tasks introduce additional complexities that are not addressed by traditional memory evaluation
frameworks.

Additionally, efforts have been made to classify memory-intensive environments based on specific
attributes. For instance, Ni et al. (2023) categorizes these environments into memory/credit assign-
ment, distinguishing them by temporal horizons. Yue et al. (2024) introduces memory dependency
pairs, which capture the influence of past events on current decisions, enabling agents to leverage
historical context for improved imitation learning in partially observable tasks. Cherepanov et al.
(2024a) provides a formal division of agent memory into long-term and short-term depending on the
agents’ context length, as well as into declarative and procedural memory depending on the number of
environments and episodes, and formalizes the notion of memory-intensive environments. Leibo et al.
(2018) takes a different approach by directly adapting established tasks from cognitive psychology
and visual psychophysics, providing a standardized way to evaluate agents on well-studied human
cognitive benchmarks.

While these classification approaches offer insights into aspects of memory, they overlook physical
dimensions in robotics. The interplay between physical interaction and memory remains unexplored,
motivating the need for a framework that addresses spatio-temporal aspects in real-world tasks.

3 BACKGROUND

3.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

Partially Observable Markov Decision Process (POMDP) (Åström, 1965) extend MDP to ac-
count for partial observability, where an agent observes only noisy or incomplete information
about the true environments state. POMDP defined by a tuple (S,A, T,R,Ω, O, γ), where: S
is the set of states representing the complete environment configuration; A is the action space;
T (s′|s, a) : S × A × S → [0, 1] is the transition function defining the probability of reaching
state s′ from state s after taking action a; R(s, a) : S × A → R is the reward function specify-
ing the immediate reward for taking action a in state s; Ω is the observation space containing
all possible observations; O(o|s, a) : S × A × Ω → [0, 1] is the observation function defin-
ing the probability of observing o after taking action a and reaching state s; γ ∈ [0, 1) is the

3
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Table 2: Key memory-intensive environments
from the reviewed studies for evaluating
agent memory. The Atari (Bellemare et al.,
2013) environment with frame stacking is
included to illustrate that many memory-
enhanced agents are tested solely in MDP.
Benchmark first introduced in the same work .

Benchmark is open-sourced.
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Atari w/o FrameStack ✓ ✓ ✓
Atari with FrameStack ✓ ✓ ✓ ✓ ✓ ✓ ✓

gym-gridverse ✓
car flag ✓
memory card ✓
Hallway ✓
HeavenHell ✓
Ballet ✓
Object Permanence ✓
DMLab-30 ✓ ✓ ✓
POPGym ✓ ✓ ✓ ✓
Passive T-Maze ✓ ✓
ViZDoom-Two-Colors ✓
Numpad ✓
Memory Maze ✓ ✓
Memory Maze (apples) ✓
Minigrid-Memory ✓
BSuite ✓ ✓
Goal-Search ✓
Doom Maze ✓
PsychLab ✓
Spot the Difference ✓
Goal Navigation ✓
Transitive Inference ✓
I-Maze ✓
Pattern Matching ✓
Random Maze ✓
Unity Fast-Mapping Task ✓
Action Associative Retrieval ✓
BabyAI ✓

discount factor determining the importance of
future rewards.

The objective is to find a policy π that maxi-
mizes the expected discounted cumulative re-
ward: Eπ [

∑∞
t=0 γ

tR(st, at)], where at ∼
π(·|o1:t) depends on the history of observations
rather than the true state. Relying on partial ob-
servations makes POMDPs harder to solve than
MDPs.

3.2 MEMORY-INTENSIVE ENVIRONMENTS

Memory-intensive environment is an environ-
ment where agents must leverage past expe-
riences to make decisions, often in problems
with long-term dependencies or delayed re-
wards. More formally, following Cherepanov
et al. (2024a), a memory-intensive task is a
POMDP where there exists a correlation hori-
zon ξ > 1, representing the minimum number of
timesteps between an event critical for decision-
making and when that information must be re-
called. Popular memory-intensive environments
in RL are listed in Table 2. One way to solving
memory-intensive environments is to augment agents with memory mechanisms (see Appendix C).

3.3 ROBOTIC TABLETOP MANIPULATION

Robotic tabletop manipulation (Shridhar et al., 2022) involves robots manipulating objects on flat
surfaces through actions like grasping, pushing, and picking. While crucial for real-world appli-
cations (Levine et al., 2018), most existing simulators treat these tasks as MDPs without memory
requirements, failing to capture the spatio-temporal dependencies present in real scenarios. This
limitation hinders the development of memory-enhanced agents for practical applications.

4 CLASSIFICATION OF MEMORY-INTENSIVE TASKS

The evaluation of memory capabilities in RL faces two major challenges. First, as shown in Table 2,
research studies use different sets of environments with minimal overlap, making it difficult to
compare memory-enhanced agents across studies. Second, even within individual studies, benchmarks
may focus on testing similar memory aspects (e.g., remembering object locations) while neglecting
others (e.g., reconstructing sequential events), leading to incomplete evaluation of agents’ memory.

Different architectures may exhibit varying performance across memory tasks. For instance, an
architecture optimized for long-term object property recall might struggle with sequential memory
tasks, yet these limitations often remain undetected due to the narrow focus of existing evaluation
approaches.

To address these challenges, we propose a systematic approach to memory evaluation in RL. Given
the impracticality of testing agents on every possible memory-intensive environment, we aim to
identify a minimal diagnostic set that comprehensively covers different memory requirements.
Drawing from established research in developmental psychology and cognitive science, where similar
memory challenges have been extensively studied in humans, we develop a categorization framework
consisting of four distinct memory task classes, detailed in subsection 4.2.

4.1 MEMORY: FROM COGNITIVE SCIENCE TO RL

In developmental psychology and cognitive science, memory is classified into categories based on
cognitive processes. Key concepts include object permanence (Piaget, 1952), which involves remem-
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Human MemoryAgent Memory
Too simple to capture the full range of

real world problems in robotics
Too sophisticated for real world

problems in robotics

MIKASA

Concise but succinct

Figure 3: MIKASA bridges the gap between human-like memory complexity and robotic task
requirements. While robotic tasks don’t require the full spectrum of human memory capabilities, they
can’t be reduced to simple spatio-temporal dependencies. MIKASA provides a balanced framework
that captures essential memory aspects for robotic tasks while maintaining practical simplicity.

bering the existence of objects out of sight, and categorical perception (Liberman et al., 1957), where
objects are grouped based on attributes like color or shape. Working memory (Baddeley, 1992) and
memory span (Daneman & Carpenter, 1980) refer to the ability to hold and manipulate information
over time, while causal reasoning (Kuhn, 2012) and transitive inference (Heckers et al., 2004) involve
understanding cause-and-effect relationships and deducing hidden relationships, respectively.

The RL field has attempted to utilize these concepts in the design of specific memory-intensive
environments Fortunato et al. (2020); Lampinen et al. (2021), but these have been limited at the
task design level. Of particular interest, however, is how existing memory-intensive tasks can be
categorized using these concepts to develop a benchmark on which to test the greatest number of
memory capabilities of memory-enhanced agents, and it is this problem that we address in this
paper. Thus, we aim to provide a balanced framework that covers important aspects of memory for
real-world applications while maintaining practical simplicity (see Figure 3).

4.2 TAXONOMY OF MEMORY TASKS

We introduce a comprehensive task classification framework for evaluating memory mechanisms in
RL. Our framework categorizes memory-intensive tasks into four fundamental types, each targeting
distinct aspects of memory capabilities:

1. Object Memory. Tasks that evaluate an agent’s ability to maintain object-related information
over time, particularly when objects become temporarily unobservable. These tasks align
with the cognitive concept of object permanence, requiring agents to track object properties
when occluded, maintain object state representations, and recognize encountered objects.

2. Spatial Memory. Tasks focused on environmental awareness and navigation, where agents
must remember object locations, maintain mental maps of environment layouts, and navigate
based on previously observed spatial information.

3. Sequential Memory. Tasks that test an agent’s ability to process and utilize temporally
ordered information, similar to human serial recall and working memory. These tasks require
remembering action sequences, maintaining order-dependent information, and using past
decisions to inform future actions.

4. Memory Capacity. Tasks that challenge an agent’s ability to manage multiple pieces
of information simultaneously, analogous to human memory span. These tasks evaluate
information retention limits and multi-task information processing.

This classification framework enables systematic evaluation of memory-enhanced RL agents across
diverse scenarios. By providing a structured approach to memory task categorization, we establish a
foundation for comprehensive benchmarking that spans the wide spectrum of memory requirements.
In the following section, we present a carefully curated set of tasks based on this classification,
forming the basis of our proposed MIKASA benchmark.

5 MIKASA: MEMORY-INTENSIVE SKILLS ASSESSMENT SUITE FOR AGENTS

Motivation and Overview. The RL domain currently lacks standardized benchmarks for eval-
uating agents’ memory capabilities. While numerous memory-intensive environments exist, their
dispersion across different research projects makes systematic comparison challenging. Moreover,
existing frameworks often focus on narrow aspects of memory, failing to capture the diverse memory
requirements found in real-world applications. To address these limitations, we introduce MIKASA

5
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Table 4: Recommended memory-intensive environments for comprehensive agent evaluation.
Memory Type Diagnostic Tasks Complex Tasks

Object Memory Passive T-Maze (Ni et al., 2023) ViZDoom-Two-Colors (Sorokin et al., 2022)
Spatial Memory POPGym Labyrinth (Morad et al., 2023) Memory Maze (Pasukonis et al., 2022)
Sequential Memory POPGym Autoencode (Morad et al., 2023) Ballet (Lampinen et al., 2021)
Memory Capacity Memory Cards (Esslinger et al., 2022) –

Table 3: Analysis of established robotics frame-
works with manipulation tasks, comparing their
support for memory-intensive tasks. † – excluding
Franka Kitchen.

Robotics Framework
with Manipulation Tasks

Memory Tasks

Manipulation Atomic Low-level
actions

ManiSkill-Memory (Ours) ✓ ✓ ✓

ManiSkill3 (Tao et al., 2024) ✗ ✗ ✗
ManiSkill-HAB (Shukla et al., 2024) ✗ ✗ ✗
RoboCasa (Nasiriany et al., 2024) ✗ ✗ ✗

Gymnasium-Robotics† (de Lazcano et al., 2024) ✗ ✗ ✗
BEHAVIOR-1K (Li et al., 2024) ✓ ✗ ✗
ARNOLD (Gong et al., 2023) ✗ ✗ ✗
iGibson 2.0 (Li et al., 2022) ✓ ✗ ✗
VIMA (Jiang et al., 2022) ✓ ✓ ✗
Isaac Sim (Makoviychuk et al., 2021) ✗ ✗ ✗
panda-gym (Gallouédec et al., 2021) ✗ ✗ ✗
Habitat 2.0 (Szot et al., 2021) ✗ ✗ ✗
Meta-World (Yu et al., 2020) ✗ ✗ ✗
CausalWorld (Ahmed et al., 2020) ✗ ✗ ✗
RLBench (James et al., 2020) ✗ ✗ ✗
robosuite (Zhu et al., 2020b) ✗ ✗ ✗
dm control (Tunyasuvunakool et al., 2020) ✗ ✗ ✗
Franka Kitchen (Gupta et al., 2019) ✗ ✗ ✗
SURREAL (Fan et al., 2018) ✗ ✗ ✗
AI2-THOR (Kolve et al., 2017) ✗ ✗ ✗

(Memory-Intensive Skills Assessment Suite for
Agents), a unified benchmark that systematically
evaluates memory capabilities across diverse
tasks while maintaining practical simplicity.

Benchmark Design Principles. Our bench-
mark follows key design principles that ensure
comprehensive evaluation of memory capabili-
ties. To isolate memory mechanisms from other
learning challenges, MIKASA implements a
two-tiered task structure. The first tier con-
sists of diagnostic vector-based environments,
enabling direct validation of specific memory
mechanisms in atomic tasks. The second tier
comprises complex image-based environments
that introduce additional challenges through 2D
observation processing, more closely approxi-
mating real-world scenarios. This hierarchical approach allows researchers to first validate fundamen-
tal memory capabilities before progressing to more sophisticated tasks.

Task Classification and Selection. Building upon our taxonomy presented in subsection 4.2, we
conducted a systematic analysis of existing open-source memory-intensive environments from Table 2.
Our analysis, detailed in Appendix, Table 5, revealed four distinct classes of memory tasks. This
classification enabled us to identify a minimal yet representative set of environments that spans the
large spectrum of memory utilization patterns, from object permanence to sequential decision-making,
while maintaining practical simplicity. Comprehensive descriptions of all considered environments
are provided in Appendix G.

We have unified these environments under the Gymnasium API (Towers et al., 2024), ensuring
seamless integration with existing RL tools and workflows (see Table 4). This standardization
simplifies access to scattered environments and facilitates direct architectural comparisons. For
detailed implementation guidelines and example usage of our MIKASA framework, we refer readers
to Appendix B.

To evaluate agents in realistic memory-intensive scenarios, we introduce our ManiSkill-Memory
benchmark (section 6). This benchmark provides a suite of robotic manipulation tasks that systemati-
cally assess all four memory types in practical, real-world-inspired contexts.

MIKASA represents a significant advancement in standardizing memory evaluation for RL. Through
its carefully curated environment selection and hierarchical structure, MIKASA enables systematic
evaluation of memory-enhanced architectures, facilitates direct comparison between different memory
mechanisms, and provides a clear progression path from fundamental to complex memory tasks. This
structured approach allows precise identification of memory-related limitations in RL agents while
maintaining practical utility.

6 MANISKILL-MEMORY

The landscape of robotic manipulation frameworks reveals significant limitations in addressing
memory-intensive tasks. First, while partial observability is extensively studied in navigation tasks,
manipulation scenarios are predominantly evaluated under full observability, with memory require-
ments receiving limited attention (see Table 3). Second, among the few frameworks that incorporate
memory-intensive manipulation tasks, significant limitations exist. BEHAVIOR-1k (Li et al., 2024)
and iGibson 2.0 (Li et al., 2022) employ highly complex, non-atomic tasks that obscure the evaluation
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Figure 5: Performance of PPO-MLP trained in
state mode, i.e., in MDP mode without the
need for memory. These results suggest that the
proposed tasks are inherently solvable with a
success rate of 100%.

Figure 6: PPO with MLP and LSTM back-
bones trained in RGB+joints mode on the
RememberColor-v0 environment with dense
rewards. Both architectures fail to solve medium
and high complexity tasks.

of specific memory mechanisms. Similarly, VIMA (Jiang et al., 2022) relies on high-level actions
that inadequately capture memory performance over extended time horizons. To the best of our
knowledge, there are no benchmarks specifically designed to evaluate memory in RL in the robotic
manipulation domain. To fill this gap, we introduce the ManiSkill-Memory framework for the RL.

6.1 MANISKILL-MEMORY BENCHMARK

Figure 4: PPO with MLP and LSTM back-
bones trained in RGB+joints mode on the
RememberColor-v0 environment with sparse
rewards. Both LSTM and MLP cannot solve this
task, which emphasizes their limitations in such
scenarios and the need to develop new memory-
enhanced agents.

ManiSkill-Memory is a benchmark designed
for memory-intensive robotic tabletop manipu-
lation tasks, simulating real-world challenges
commonly encountered by robots. These tasks
include locating occluded objects, recalling pre-
vious configurations, and executing complex se-
quences of actions over extended time horizons.
By incorporating meaningful partial observabil-
ity, this framework offers a systematic approach
to test an agent’s memory mechanisms.

Building upon the robust foundation of ManiSkillv3 framework (Tao et al., 2024), our benchmark
leverages its efficient parallel GPU-based training capabilities to create and evaluate these tasks.

6.2 MANISKILL-MEMORY MANIFESTATION

In designing the tasks, we drew inspiration from the four memory types identified in our classifica-
tion framework (subsection 4.2). We developed 32 tasks across 12 categories of robotic tabletop
manipulation, each targeting specific aspects of object memory, spatial memory, sequential memory,
and memory capacity. These tasks feature varying levels of complexity, allowing for systematic
evaluation of different memory mechanisms. For instance, some tasks test object permanence by
requiring the agent to track occluded objects, while others challenge sequential memory by requiring
the reproduction of a strict order of actions. A summary of these tasks and their corresponding
memory types is provided in Table 1, with detailed descriptions in Appendix E.

To illustrate the concept of our memory-intensive framework, we present ShellGameTouch-v0,
RememberColor-v0, and RotateLenientPos-v0 tasks in Figure 2. In the
ShellGameTouch-v0 task, the agent observes a red ball placed in one of three positions over the
first 5 steps (t ∈ [0, 4]). At t = 5, the ball and the three positions are covered by mugs. The agent
must then determine the location of the ball by interacting with the correct mug. In the simplest mode
(Touch), the agent only needs to touch the correct mug, whereas in other modes, it must either push
or lift the mug. In the RememberColor-v0 task, the agent observes a cube of a specific color for
5 steps (t ∈ [0, 4]). After the cube disappears for 5 steps, 3, 5, or 9 (depending on task mode) cubes
of different colors appear at t = 10. The agent’s task is to identify and select the same cube it initially
saw. In the RotateLenientPos-v0 task, the agent must rotate a randomly oriented peg by a
specified clockwise angle.

The ManiSkill-Memory benchmark supports several training modes: statemode: the agent receives
all necessary information in vector form, including oracle data and the Tool Center Point (TCP) pose.
This mode treats the task as a pure MDP; RGB mode: the agent receives two images (a top view of
the table and a view from the camera on the gripper) with TCP position information; joints mode:
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the agent gets joint positions, velocities, and TCP pose, but no environmental data; oracle mode:
provides task-specific environment information, such as target cap number or ball velocity, useful
for memory mechanisms debugging; prompttt mode: supplies static information to the agent at
each step, such as prompted rotation angles in RotateLenient-v0 and RotateStrict-v0.
Any combination of these modes is allowed, though RGB + joints is the standard for testing
memory. State mode is used for MDP-based tasks.

The ManiSkill-Memory benchmark implements two types of reward functions: dense and sparse.
The dense reward provides continuous feedback based on the agent’s progress towards the goal, while
the sparse reward only signals task completion. While dense rewards facilitate faster learning in our
experiments, sparse rewards better reflect real-world scenarios where intermediate feedback is often
unavailable, making them crucial for evaluating practical applicability of memory-enhanced agents.

6.3 PERFORMANCE OF CLASSIC BASELINES ON MANISKILL-MEMORY BENCHMARK

For our experimental evaluation, we selected PPO (Schulman et al., 2017) with two backbone
architectures: Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997). The MLP variant serves as a memory-less baseline, while LSTM represents
a widely-adopted memory mechanism in RL, known for its effectiveness in solving POMDPs (Ni
et al., 2021). This choice of architectures enables direct comparison between memory-less and
memory-enhanced agents while validating our benchmark’s ability to assess memory. We focus
specifically on these fundamental architectures as they align with our primary goal of benchmark
validation rather than comprehensive algorithm comparison.

To demonstrate that all proposed environments are solvable with 100% success rate (SR), we trained a
PPO-MLP agent using the state mode, where it had full access to the system information. Results
for the demo environments are presented in Figure 5, with additional results for all tasks available in
Appendix D.

Training under the RGB+joints mode with dense rewards reveals the memory-intensive nature of
our tasks. Using the RememberColor-v0 task as an example, PPO-LSTM demonstrates superior
performance compared to PPO-MLP when distinguishing between three colors (see Figure 6).
However, both agents’ success rates drop dramatically to near-zero as the task complexity increases
to five or nine colors. Moreover, under sparse reward conditions, both architectures fail to solve
even the three-color variant (see Figure 4). These results validate our benchmark’s effectiveness in
evaluating agents’ memory capabilities, showing clear performance degradation as memory demands
increase.

Our baseline experiments reveal several key insights: (1) the proposed tasks are inherently solvable,
as demonstrated by the perfect performance in state mode; (2) the tasks effectively challenge
memory capabilities, evidenced by the performance gap between memory-less (MLP) and memory-
enhanced (LSTM) architectures; and (3) primitive memory mechanisms show clear limitations as task
complexity increases, particularly under sparse rewards. These findings validate ManiSkill-Memory
as an effective benchmark for evaluating and developing memory-enhanced RL agents in robotic
manipulation tasks.

7 CONCLUSION

In this work, we addressed the critical gap in memory-intensive RL research through three key
contributions. First, we developed a comprehensive classification framework that categorizes memory
tasks into four distinct classes: object memory, spatial memory, sequential memory, and memory
capacity. This taxonomy provides a structured approach to understanding and evaluating different
aspects of memory in RL agents. Second, we introduced a unified benchmark that consolidates
diverse memory-intensive environments into a single, standardized framework. By carefully selecting
representative tasks from each memory category, our benchmark enables systematic comparison and
evaluation of memory-enhanced RL agents across a broad spectrum of memory challenges. Third,
we presented ManiSkill-Memory, a novel benchmark comprising 23 carefully designed memory-
intensive tasks for robotic manipulation, which bridges the gap between abstract memory challenges
and practical robotics applications.
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A MANISKILL-MEMORY IMPLEMENTATION DETAILS

An example of running the environment from the ManiSkill-Memory benchmark is shown
in Code 1. For ease of debugging, we also added various wrappers (found in
ManiSkillMemory/utils/wrappers/) that display useful information about the episode
on the video. Thus, RenderStepInfoWrapper() displays the current step in the environment;
DebugRewardWrapper() displays information about the full reward at the current step in the
environment; DebugRewardWrapper() displays information about each component that gen-
erates the reward function at the current step. In addition, we also added task-specific wrappers
for each environment. For example, RememberColorInfoWrapper() displays the target color
of the cube in the RememberColor-v0 task, and ShellGameRenderCupInfoWrapper()
displays which mug the ball is actually under in the ShellGame-v0 task.

Code 1: Example code for running RememberColor9-v0 environment from ManiSkill-Memory.

1 # Import ManiSkill-Memory tasks
2 import ManiSkillMemory
3 # Import ManiSkill-Memory wrappers
4 from ManiSkillMemory.utils.wrappers import *
5 # Import RecordEpisode from the original ManiSkill3
6 from mani_skill.utils.wrappers import RecordEpisode
7

8 num_envs, seed = 512, 123
9

10 # Create the environment via gym.make()
11 # obs_mode="rgb" for modes "RGB", "RGB+joint", "RGB+oracle" etc.
12 # obs_mode="state" for mode "state"
13 env = gym.make("RememberColor9-v0", num_envs=num_envs,
14 obs_mode="rgb", render_mode="all")
15

16 # [use always] to generate required observation keys
17 env = StateOnlyTensorToDictWrapper(env)
18 # [use for debug] to show specific env info on video
19 env = RememberColorInfoWrapper(env)
20 # [use for debug] to show env step on video
21 env = RenderStepInfoWrapper(env)
22 # [use for debug] to show agent total reward on video
23 env = RenderRewardInfoWrapper(env)
24 # [use for debug] show each component of the reward function on

video
25 env = DebugRewardWrapper(env)
26 # [use to record video]
27 env = RecordEpisode(env, "./videos/demo_remember-color-9")
28

29 obs, _ = env.reset(seed)
30 for i in tqdm(range(89)):
31 action = env.action_space.sample()
32 obs, reward, terminated, truncated, info = env.step(torch.

from_numpy(action))
33 env.close()
34

35 Video("./videos/demo_remember-color-9/0.mp4", embed=True, width
=1240)
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B MIKASA IMPLEMENTATION DETAILS

An example of running an environment from the MIKASA benchmark is shown in Code 2. MIKASA
supports the standard Gymnasium API and is fully compatible with all its wrappers. This allows users
to leverage various functionalities, including parallelization using SyncVectorEnv to improve
training efficiency. MIKASA provides a predefined set of environments with different levels of
difficulty. However, users can customize the environment parameters by passing specific arguments
(see Code 2).

Code 2: Example code for running MemoryLength-v0 environment.

1 # Import necessary libraries
2 import membench
3 import gymnasium as gym
4

5 def make_env(env_id, idx, capture_video, run_name, env_kwargs):
6 def thunk():
7 if capture_video and idx == 0:
8 env = gym.make(env_id, render_mode="rgb_array", **

env_kwargs)
9 env = gym.wrappers.RecordVideo(env, f"videos/{run_name

}")
10 else:
11 env = gym.make(env_id, **env_kwargs)
12 env = gym.wrappers.RecordEpisodeStatistics(env)
13 return env
14 return thunk
15

16 # Setup environment with custom parameters
17 num_envs = 8
18 env_id = ’MemoryLength-v0’
19 env_kwargs = {’memory_length’: 10, ’num_bits’: 1}
20

21 # Setup environment from our task set
22 # env_id = ’MemoryLengthEasy-v0’
23 # env_kwargs = None
24

25 envs = gym.vector.SyncVectorEnv(
26 [make_env(env_id, i, False, ’test’, env_kwargs) for i in range

(num_envs)]
27 )
28

29 obs, _ = envs.reset(seed=1)
30

31 for i in range(11):
32 action = envs.action_space.sample()
33 next_obs, reward, terminations, truncations, infos = envs.step

(action)

C MEMORY MECHANISMS IN RL

In RL, memory mechanisms are techniques or models used to enable agents to retain and recall
information from past interactions with the environment.

There are several approaches to incorporating memory into RL, including recurrent neural networks
(RNNs) (Rumelhart et al., 1986; Hochreiter & Schmidhuber, 1997; Chung et al., 2014) which uses
hidden states to store information from previous steps (Wierstra et al., 2010; Hausknecht & Stone,
2015), state-space models (SSMs) (Gu et al., 2021; Smith et al., 2023; Gu & Dao, 2023) which uses

17
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system state to store historical information (Hafner et al., 2019; Samsami et al., 2024), transform-
ers (Vaswani et al., 2017) which uses attention mechanism to capture sequential dependencies inside
the context window (Parisotto et al., 2020; Lampinen et al., 2021; Ni et al., 2023), graph neural
networks (GNNs) (Zhou et al., 2020) which uses graphs to store information Zhu et al. (2023); Kang
et al. (2024) etc. Popular agents with memory mechanisms are summarized in Table 2.

D CLASSIC BASELINES PERFORMANCE ON THE MANISKILL-MEMORY
BENCHMARK

In this section, we present a comprehensive evaluation of PPO-MLP and PPO-LSTM baselines on
our ManiSkill-Memory benchmark. Our experiments with PPO-MLP in state mode using dense
rewards demonstrate perfect performance across all tasks, consistently achieving 100% success rate,
as shown in Figure 7 and Figure 8. This remarkable performance serves as a crucial validation
of our benchmark design: when an agent has access to complete state information and receives
dense rewards, it can master these tasks completely. Therefore, any performance degradation in
RGB+joints mode observed with other algorithms or training configurations must stem from
the algorithmic limitations or learning challenges rather than any inherent flaws in the task design.
This empirical evidence confirms that our environments are well-calibrated and properly designed,
establishing a solid foundation for evaluating memory-enhanced algorithms. All results are presented
as mean ± standard error of the mean (SEM), where the mean is computed across three independent
training runs, and each trained agent is evaluated on 16 different random seeds to ensure robust
performance assessment.

The performance evaluation of PPO-MLP and PPO-LSTM with dense rewards in the RGB+joints
mode is presented in Figure 9. This mode specifically tests the agents’ memory capabilities, as it
requires remembering and utilizing historical information to solve the tasks. Our results demonstrate
a clear distinction between memory-less and memory-enhanced architectures, while also revealing
the limitations of conventional memory mechanisms.

Consider the RememberColor-v0 environment as an illustrative example. In its simplest config-
uration with three cubes, the memory-less PPO-MLP achieves only 25% success rate. In contrast,
PPO-LSTM, leveraging its memory mechanism, achieves perfect performance with 100% success rate.
However, as task complexity increases to five or nine cubes, even the LSTM’s memory capabilities
prove insufficient, with performance degrading significantly.

These results validate two key aspects of our benchmark: first, its effectiveness in distinguishing
between memory-less and memory-enhanced architectures, and second, its ability to challenge even
sophisticated memory mechanisms as task complexity increases. This demonstrates that ManiSkill-
Memory provides a competitive yet meaningful evaluation framework for developing and testing
advanced memory-enhanced agents.

Our evaluation of PPO-MLP and PPO-LSTM baselines under sparse reward conditions in
RGB+joints mode reveals the true challenge of our benchmark tasks. As shown in Figure 10,
both architectures – even the memory-enhanced LSTM – consistently fail to achieve any meaningful
success rate across nearly all considered environments. This striking result underscores the extreme
difficulty of memory-intensive manipulation tasks when only terminal rewards are available, high-
lighting the substantial gap between current algorithms and the level of memory capabilities required
for real-world robotic applications.
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Figure 7: Demonstration of PPO-MLP performance on ManiSkill-Memory benchmark when trained
with oracle-level state information. In this learning mode, MDP problem formulation is considered,
i.e. memory is not required for successful problem solving. At the same time, the obtained results
show that it is possible to solve these problems and obtain 100% Success Rate.
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Figure 8: Demonstration of PPO-MLP performance on ManiSkill-Memory benchmark when
trained with oracle-level state information. Results are shown for memory capac-
ity (SeqOfColors[3,5,7]-v0, BunchOfColors[3,5,7]-v0) and sequential memory
(ChainOfColors[3,5,7]-v0).
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Figure 9: Performance evaluation of PPO-MLP and PPO-LSTM on the ManiSkill-Memory bench-
mark using the “RGB+joints” training mode with dense reward function, where the agent only
receives images from the camera (from above and from the gripper) and information about the state
of the joints (position and velocity). The results demonstrate that numerous tasks pose significant
challenges even for PPO-LSTM agents with memory, establishing these environments as effective
benchmarks for evaluating advanced memory-enhanced architectures.
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Figure 10: Performance evaluation of PPO-MLP and PPO-LSTM on the ManiSkill-Memory bench-
mark using the “RGB+joints” with sparse reward function training mode, where the agent only
receives images from the camera (from above and from the gripper) and information about the state
of the joints (position and velocity). This training mode with sparse reward function causes even
more difficulty for the agent to learn, making this mode even more challenging for memory-enhanced
agents.

E MANISKILL-MEMORY DETAILED TASKS DESCRIPTION

In this section, we provide comprehensive descriptions of the 32 memory-intensive tasks that comprise
the ManiSkill-Memory benchmark. Each task is designed to evaluate specific aspects of memory
capabilities in robotic manipulation, ranging from object tracking and spatial memory to sequential
decision-making. For each task, we detail its objective, memory requirements, observation space,
reward structure, and success criteria. Additionally, we explain how task complexity increases across
different variants and discuss the specific memory challenges they present. The following subsections
describe each task category and its variants in detail.

Each of the proposed environment supports multiple observation modes:

• State: Full state information including ball position
• RGB+joints: Two camera views (top-down and gripper) plus robot joint states
• RGB: Only visual information from two cameras

In the case of RotateLenient-v0 and RotateStrict-v0, the prompt information available
at each step is additionally added to each observation.
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Figure 11: ShellGameTouch-v0: The robot observes a ball in front of it. next, this ball is covered
by a mug and then the robot has to touch the mug with the ball underneath.

E.1 SHELLGAME-V0

The ShellGame-v0 task (Figure 11) is inspired by a simplified version of the classic shell game,
which tests a person’s ability to remember object locations when they become occluded. This task
evaluates an agent’s capacity for object permanence and spatial memory, crucial skills for real-world
robotic manipulation where objects frequently become temporarily hidden from view.

Environment Description The environment consists of three identical mugs placed on a table and
a red ball. The task proceeds in three phases:

1. Observation Phase (steps 0-4): The ball is placed at one of three positions, and the agent
can observe its location.

2. Occlusion Phase (step 5): The ball and positions are covered by three identical mugs.
3. Action Phase (steps 6+): The agent must interact with the mug covering the ball’s location.

The type of target interaction depends on the selected mode: Touch, Push and Pick.

Task Modes The task includes three variants of increasing difficulty:

• Touch: The agent only needs to touch the correct mug
• Push: The agent must push the correct mug to a designated area
• Pick: The agent must pick and lift the correct mug above a specified height

Success Criteria Success is determined by:

• Touch: Contact between the gripper and the correct mug
• Push: Moving forward the correct mug to the target zone
• Pick: Elevating the correct mug above 0.1m

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Distance between gripper and target mug (reaching reward with tanh scaling)
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when correct mug is reached)
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Figure 12: RememberColor9-v0: The robot observes a colored cube in front of it, then this cube
disappears and an empty table is shown. Then 9 cubes appear on the table, and the agent must touch
a cube of the same color as the one it observed at the beginning of the episode.

E.2 REMEMBERCOLOR-V0

The RememberColor-v0 task (Figure 12) tests an agent’s ability to remember and identify objects
based on their visual properties. This capability is essential for real-world robotics applications where
agents must recall and match object characteristics across time intervals.

Environment Description The environment presents a sequence of colored cubes on a table. The
task proceeds in three phases:

1. Observation Phase (steps 0-4): A cube of a specific color is displayed, and the agent must
memorize its color.

2. Delay Phase (steps 5-9): The cube disappears, leaving an empty table.
3. Selection Phase (steps 10+): Multiple cubes of different colors appear (3, 5, or 9 depending

on difficulty), and the agent must identify and interact with the cube matching the original
color.

Task Modes The task includes three complexity levels:

• 3 (easy): Choose from 3 different colors (red, lime, blue)
• 5 (Medium): Choose from 5 different colors (red, lime, blue, yellow, magenta)
• 9 (Hard): Choose from 9 different colors (red, lime, blue, yellow, magenta, cyan, maroon,

olive, teal)

Success Criteria Success is determined by:

• Correctly identifying and touching the cube that matches the color shown in the observation
phase

• Maintaining contact with the correct cube for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Reaching reward
– Static reward
– Additional reward for robot being static while touching the correct cube
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Figure 13: RememberShape9-v0: The robot observes an object with specific shape in front of it,
then the object disappears and an empty table appears. Then 9 objects of different shapes appear on
the table, and the agent must touch an object of the same shape as the one it observed at the beginning
of the episode.

E.3 REMEMBERSHAPE-V0

The RememberShape-v0 task (Figure 13) evaluates an agent’s ability to remember and identify
objects based on their geometric properties. This capability is crucial for robotic applications where
shape recognition and recall are essential for successful manipulation.

Environment Description The environment presents a sequence of geometric shapes on a table.
The task proceeds in three phases:

1. Observation Phase (steps 0-4): A shape (cube, sphere, cylinder, etc.) is displayed, and the
agent must memorize its geometry.

2. Delay Phase (steps 5-9): The shape disappears, leaving an empty table.
3. Selection Phase (steps 10+): Multiple shapes appear (3, 5, or 9 depending on difficulty),

and the agent must identify and interact with the shape matching the original geometry.

Task Modes The task includes three complexity levels:

• 3 (Easy): Choose from 3 different shapes (cube, sphere, cylinder)
• 5 (Medium): Choose from 5 different shapes (cube, sphere, cylinder cross, torus)
• 9 (Hard): Choose from 9 different shapes (cube, sphere, cylinder cross, torus, star, pyramid,

t-shape, crescent)

Success Criteria Success is determined by:

• Correctly identifying and touching the object with the same shape shown in the observation
phase

• Maintaining contact with the correct shape for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Reaching reward
– Static reward
– Additional reward for maintaining static position when touching correct object
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Figure 14: RememberShapeAndColor5x3-v0: An object of a certain shape and color appears
in front of the agent. Then the object disappears and the agent sees an empty table. Then objects of 5
different shapes and 3 different colors appear on the table and the agent has to touch what it observed
at the beginning of the episode.

E.4 REMEMBERSHAPEANDCOLOR-V0

The RememberShapeAndColor-v0 task (Figure 14) evaluates an agent’s ability to remember
and identify objects based on multiple visual properties simultaneously. This task combines shape
and color recognition, testing the agent’s capacity to maintain and match multiple object features
across time intervals.

Environment Description The environment presents a sequence of colored geometric shapes on a
table. The task proceeds in three phases:

1. Observation Phase (steps 0-4): An object with specific shape and color is displayed, and
the agent must memorize both properties.

2. Delay Phase (steps 5-9): The object disappears, leaving an empty table.
3. Selection Phase (steps 10+): Multiple objects with different combinations of shapes and

colors appear, and the agent must identify and interact with the object matching both the
original shape and color.

Task Modes The task includes three complexity levels based on the number of shape-color combi-
nations:

• 3x2 (Easy): Choose from 6 objects (3 shapes × 2 colors); shapes: cube, sphere, t-shape;
colors: red, green

• 3x3 (Medium): Choose from 9 objects (3 shapes × 3 colors); shapes: cube, sphere, t-shape;
colors: red, green, blue

• 5x3 (Hard): Choose from 15 objects (5 shapes × 3 colors); shapes: cube, sphere, t-shape,
cross, torus; colors: red, green, blue

Success Criteria Success is determined by:

• Correctly identifying and touching the object that matches both the shape and color shown
in the observation phase

• Maintaining contact with the correct object for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Reaching reward
– Static reward
– Additional reward for maintaining static position while touching correct object
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Figure 15: InterceptMedium-v0: A ball rolls on the table in front of the agent with a random
initial velocity, and the agent’s task is to intercept this ball and direct it at the target zone.

E.5 INTERCEPT-V0

The Intercept-v0 task (Figure 16) evaluates an agent’s ability to predict and intercept a moving
object based on its initial trajectory. This task tests the agent’s capacity for motion prediction and
spatial-temporal reasoning, which are essential skills for dynamic manipulation tasks in robotics.

Environment Description The environment consists of a red ball moving across a table and a
target zone. The task requires the agent to:

1. Observe the ball’s initial position and velocity
2. Predict the ball’s trajectory
3. Guide the ball to reach a designated target zone

Task Modes The task includes three variants with increasing ball velocities:

• Slow: Ball velocity range of 0.25-0.5 m/s
• Medium: Ball velocity range of 0.5-0.75 m/s
• Fast: Ball velocity range of 0.75-1.0 m/s

Success Criteria Success is determined by:

• Guiding the ball to enter the target zone
• The ball must come to rest within the target area (radius 0.1m)

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Distance between ball and target zone
– Static reward based on robot joint velocities
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Figure 16: InterceptGrabMedium-v0: A ball rolls on the table in front of the agent with a
random initial velocity, and the agent’s task is to intercept this ball with a gripper and lift it up.

E.6 INTERCEPTGRAB-V0

The InterceptGrab-v0 task (Figure 16) extends the Intercept-v0 task by requiring the
agent to not only predict the trajectory of a moving object but also grasp it while in motion. This
task evaluates the agent’s ability to combine motion prediction with precise manipulation timing,
simulating real-world scenarios where robots must catch or intercept moving objects.

Environment Description The environment consists of a red ball moving across a table. The task
requires the agent to:

1. Observe the ball’s initial position and velocity
2. Predict the ball’s trajectory
3. Position the gripper to intercept the ball’s path
4. Time the grasping action correctly to catch the ball
5. Maintain a stable grasp while bringing the ball to rest

Task Modes The task includes three variants with increasing ball velocities:

• Slow: Ball velocity range of 0.25-0.5 m/s
• Medium: Ball velocity range of 0.5-0.75 m/s
• Fast: Ball velocity range of 0.75-1.0 m/s

Success Criteria Success is determined by:

• Successfully grasping the moving ball
• Maintaining a stable grasp until the ball comes to rest
• The robot must be static with the ball firmly grasped

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Reaching reward
– Grasping reward
– Static reward
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Figure 17: RotateLenientPos-v0: A randomly oriented peg is placed in front of the agent.
The agent’s task is to rotate this peg by a certain angle (the center of the peg can be shifted).

E.7 ROTATELENIENT-V0

The RotateLenient-v0 task (Figure 17) evaluates an agent’s ability to remember and execute
specific rotational movements. This task tests the agent’s capacity to maintain and reproduce angular
information, which is crucial for manipulation tasks requiring precise orientation control. This task
tests the agent’s ability to hold information in memory about how far peg has already rotated at the
current step relative to its initial position.

Environment Description The environment consists of a blue-colored peg on a table that must be
rotated by a specified angle. The task proceeds in one phase, but the static prompt information about
the target angle is available to the agent at each timestep:

1. Action Phase: The agent must rotate the peg to match the target angle

Task Modes The task includes two variants with different rotation requirements:

• Pos: Rotate by a positive angle between 0 and π/2

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/4

Success Criteria Success is determined by:

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle
• Maintaining the final orientation in a stable position
• The robot must be static with the peg at the correct orientation

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Angular distance to target rotation
– Stability of the peg’s orientation
– Robot’s motion smoothness
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Figure 18: RotateStrictPos-v0: A randomly oriented peg is placed in front of the agent. The
agent’s task is to rotate this peg by a certain angle (it is not allowed to move the center of the peg)

E.8 ROTATESTRICT-V0

The RotateStrict-v0 task (Figure 18) extends the RotateLenient-v0 task with more
stringent requirements for precise rotational control.

Environment Description The environment consists of a blue-colored peg on a table that must be
rotated by a specified angle while maintaining its position. The task proceeds in one phase, but the
static prompt information about the target angle is available to the agent at each timestep:

1. Action Phase: The agent must rotate the peg to match the target angle while keeping it
centered

Task Modes The task includes two variants with different rotation requirements:

• Pos: Rotate by a positive angle between 0 and π/2

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/4

Success Criteria Success is determined by:

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle
• Maintaining the peg’s position within 5cm of its initial XY coordinates
• The robot must be static with the peg at the correct orientation
• No significant deviation in other rotation axes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Angular distance to target rotation
– Position deviation from initial location
– Stability of the peg’s orientation
– Robot’s motion smoothness
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Figure 19: TakeItBack-v0: The agent observes a green cube in front of him. The agent’s task
is to move the green cube to the red target, and as soon as it lights up violet, return the cube to its
original position (the agent does not observes the original position of the cube).

E.9 TAKEITBACK-V0

The TakeItBack-v0 task (Figure 19) assesses the agent’s ability to perform sequential tasks and
memorize the starting position. This task tests the agent’s capacity for sequential memory and spatial
reasoning, requiring it to maintain information about past locations and achievements while executing
a multi-step plan.

Environment Description The environment consists of a green cube and two target regions (initial
and goal) on a table. The task proceeds in two phases:

1. First Phase: The agent must move the cube from its initial position to a goal region
2. Second Phase: After reaching the goal, goal region change it’s color from red to magenta,

and the agent must return the cube to its original position (marked by the initial region and
invisible for the agent)

Success Criteria Success is determined by:

• First reaching the goal region with the cube
• Then returning the cube to the initial region
• Both goals must be achieved in sequence

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Distance to current target region
– Progress through the task sequence
– Stability of cube manipulation
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Figure 20: SeqOfColors7-v0: In front of the agent, 7 cubes of different colors appear sequentially.
After the last cube is shown, the agent observes an empty table. Then 9 cubes of different colors
appear on the table and the agent has to touch the cubes that were shown at the beginning of the
episode in any order.

E.10 SEQOFCOLORS-V0

The SeqOfColors-v0 task (Figure 20) evaluates an agent’s ability to remember and reproduce an
unordered sequence of colors. This task tests memory capacity capabilities essential for robotic tasks
that require following specific patterns or sequences.

Environment Description The environment presents a sequence of colored cubes that must be
reproduced in any order. The task proceeds in two phases:

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a
time, with each cube visible for 5 steps.

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear
3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must

identify and touch all previously shown cubes in any order

Task Modes The task includes three complexity levels:

• 3 (Easy): Remember 3 colors demonstrated sequentially
• 5 (Medium): Remember 5 colors demonstrated sequentially
• 7 (Hard): Remember 7 colors demonstrated sequentially

Success Criteria Success is determined by:

• Correctly identifying and touching all cubes from the observation phase
• Order of selection doesn’t matter
• Each cube must be touched for at least 0.1 seconds
• The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Number of correctly identified cubes
– Reaching reward for current interaction
– Static reward for stable touches
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Figure 21: BunchOfColors7-v0: 7 cubes of different colors appear simultaneously in front of
the agent. After the agent observes an empty table. Then, 9 cubes of different colors appear on the
table and the agent has to touch the cubes that were shown at the beginning of the episode in any
order.

E.11 BUNCHOFCOLORS-V0

The BunchOfColors-v0 task (Figure 21) tests an agent’s memory capacity by requiring it to
remember multiple objects simultaneously. This capability is crucial for tasks requiring parallel
processing of multiple items.

Environment Description The environment presents multiple colored cubes simultaneously. The
task proceeds in three phases:

1. Observation Phase (steps 0-4): Multiple colored cubes are displayed simultaneously
2. Delay Phase (steps 5-9): All cubes disappear
3. Selection Phase (steps 10+): A larger set of cubes appears, and the agent must identify and

touch all previously shown cubes in any order

Task Modes The task includes three complexity levels:

• 3 (Easy): Remember 3 colors demonstrated simultaneously
• 5 (Medium): Remember 5 colors demonstrated simultaneously
• 7 (Hard): Remember 7 colors demonstrated simultaneously

Success Criteria Success is determined by:

• Correctly identifying and touching all cubes from the observation phase
• Order of selection doesn’t matter
• Each cube must be touched for at least 0.1 seconds
• The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Number of correctly identified cubes
– Reaching reward for current interaction
– Static reward for stable touches
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Figure 22: ChainOfColors7-v0: In front of the agent, 7 cubes of different colors appear
sequentially. After the last cube is shown, the agent sees an empty table. Then 9 cubes of different
colors appear on the table and the agent must unmistakably touch the cubes that were shown at the
beginning of the episode, in the same strict order.

E.12 CHAINOFCOLORS-V0

The ChainOfColors-v0 task (Figure 22) evaluates the agent’s ability to store and retrieve ordered
information. This task simulates scenarios where the agent must track changing relationships between
objects over time.

Environment Description The environment presents am ordered sequence (chain) of colored cubes
that must be followed. The task proceeds in multiple phases:

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a
time, with each cube visible for 5 steps.

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear
3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must

identify and touch all previously shown cubes in the exact order as demonstrated

Task Modes The task includes three complexity levels:

• 3 (Easy): Remember 3 colors demonstrated sequentially
• 5 (Medium): Remember 5 colors demonstrated sequentially
• 7 (Hard): Remember 7 colors demonstrated sequentially

Success Criteria Success is determined by:

• Correctly identifying and touching all cubes from the observation phase in the exact order
• Each cube must be touched for at least 0.1 seconds
• The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)
• Dense: Continuous reward based on:

– Reaching reward for current interaction
– Static reward for stable contact
– Additional reward for selecting correct final cube
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F CLASSIC BASELINES PERFORMANCE ON THE MIKASA BENCHMARK

In this section, we evaluate the performance of standard reinforcement learning baselines on the
proposed benchmark. We utilize PPO-MLP and PPO-LSTM. PPO-MLP serves as a baseline model
without memory, while PPO-LSTM incorporates recurrent layers, allowing it to retain past information
and effectively handle memory intensive environments.

Figure 23 presents the results of the test of these baselines in selected benchmark environments.
The performance gap between PPO-MLP and PPO-LSTM is evident, with the latter consistently
achieving higher score in memory-dependent tasks. This discrepancy confirms that the benchmark
effectively evaluates memory capabilities, as environments requiring information retention challenge
models without memory mechanisms.
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Figure 23: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA benchmark
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Table 5: Comparison of various memory-intensive tasks across different environments.

Environment Memory Task Brief description of the task Observation Space Action Space

Memory Cards Capacity Memorize the positions of revealed cards and correctly match pairs while minimizing
incorrect guesses.

state discrete

ViZDoom-two-colors Object Memorize the color of the briefly appearing pillar (green or red) and collect items of
the same color to survive in the acid-filled room.

img discrete

BSuite Memory Length Object Memorize the initial context signal and recall it after a given number of steps to take
the correct action.

state discrete

Gym Gridverse Memory Spatial,
Sequential,
Object

Memorize the object in the starting room and use this information to select the
correct path at the junction.

img discrete

Memory Maze Spatial Memorize the locations of objects and the maze structure using visual clues, then
navigate efficiently to find objects of a specific color and score points.

img discrete

Ballet Sequential,
Object

Memorize the sequence of movements performed by each uniquely colored and
shaped dancer, then identify and approach the dancer who executed the given pattern.

img discrete

Numpad Sequential Memorize the sequence of movements and navigate the rolling ball on a 3×3 grid by
following the correct order while avoiding mistakes.

img, state discrete, continuous

MinigridMemory Object Memorize the object in the starting room and use this information to select the
correct path at the junction.

img discrete

Passive-T-Maze Object Memorize the goal’s location upon initial observation, navigate through the maze
with limited sensory input, and select the correct path at the junction.

state discrete

POPGym Repeat First Object Memorize the initial value presented at the first step and recall it correctly after
receiving a sequence of random values.

state discrete

POPGym Repeat Previous Sequential,
Object

Memorize the value observed at each step and recall the value from k steps earlier
when required.

state discrete

POPGym Autoencode Sequential Memorize the sequence of cards presented at the beginning and reproduce them in
the same order when required.

state discrete

POPGym Count Recall Object,
Capacity

Memorize unique values encountered and count how many times a specific value
has appeared.

state discrete

POPGym Stateless Cartpole Sequential Memorize velocity data over time and integrate it to infer the position of the pole for
balance control.

state continuous

POPGym Stateless Pendulum Sequential Memorize angular velocity over time and integrate it to infer the pendulum’s position
for successful swing-up control.

state continuous

POPGym Multiarmed Bandit Object, Capacity Memorize the reward probabilities of different slot machines by exploring them and
identify the one with the highest expected reward.

state discrete

POPGym Concentration Capacity Memorize the positions of revealed cards and match them with previously seen cards
to find all matching pairs.

state discrete

POPGym Battleship Spatial Memorize the coordinates of previous shots and their HIT or MISS feedback to build
an internal representation of the board, avoid repeat shots, and strategically target
ships for maximum rewards.

state discrete

POPGym Mine Sweeper Spatial Memorize revealed grid information and use numerical clues to infer safe tiles while
avoiding mines.

state discrete

POPGym Labyrinth Explore Spatial Memorize previously visited cells and navigate the maze efficiently to discover new,
unexplored areas and maximize rewards.

state discrete

POPGym Labyrinth Escape Spatial Memorize the maze layout while exploring and navigate efficiently to find the exit
and receive a reward.

state discrete

POPGym Higher Lower Object,
Sequential

Memorize previously revealed card ranks and predict whether the next card will
be higher or lower, updating the reference card after each prediction to maximize
rewards.

state discrete

G MIKASA BENCHMARK TASKS DESCRIPTION

This section provides a detailed description of all environments included in the MIKASA bench-
mark section 5. Understanding the characteristics and challenges of these environments is crucial for
evaluating RL algorithms. Each environment presents unique tasks, offering diverse scenarios to test
the memory abilities of RL agents.

G.1 MEMORY CARDS

The Memory Cards environment (Esslinger et al., 2022) is a memory game environment with 5
randomly shuffled pairs of hidden cards. At each step, the agent sees one revealed card and must
find its matching pair. A correct guess removes both cards; otherwise, the card is hidden again, and
a new one is revealed. The game continues until all pairs are removed. The observation space is a
10-element vector indicating card states (hidden, revealed, removed). The action space consists of
selecting an index corresponding to the current revealed card. Rewards: 0 for correct guesses, -1 for
mistakes. Policies that effectively remember past observations perform best.

G.2 NUMPAD

The Numpad environment (Humplik et al., 2019) consists of an N × N grid of tiles. The agent
controls a ball that rolls between tiles. At the beginning of an episode, a random sequence of n
neighboring tiles (excluding diagonals) is selected, and the agent must follow this sequence in the
correct order. The environment is structured so that pressing the correct tile lights it up, while pressing
an incorrect tile resets progress. A reward of +1 is given for the first press of each correct tile after
a reset. The episode ends after a fixed number of steps. To succeed, the agent must memorize the
sequence and navigate it correctly without mistakes. The ability to “jump” over tiles is not available.
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G.3 HALLWAY

The Hallway environment (Littman et al., 1995) is a gridworld with four rooms aligned to the south.
The agent’s goal is to reach the fourth southern room despite stochastic transitions. The environment
provides an integer-based observation indicating visible walls in the agent’s current position. The
agent has five possible actions: no-op, move forward, turn left, turn right, and turn around. To
succeed, the agent must localize itself through observations and navigate effectively. Rewards are 0
for movement and 1 for reaching the goal.

G.4 HEAVEN HELL

The Heaven Hell environment (Geffner & Bonet, 1998) is a T-shaped grid with a priest at the
southern end. The two northern forks represent heaven and hell, but their locations are randomized
each episode. The agent must visit the priest to learn heaven’s position. Observations are integers
indicating position, except when consulting the priest, who provides a hint about heaven’s location.
The agent can move north, south, east, or west. To succeed, the agent must first visit the priest and
then navigate correctly. It receives a reward of 1 for reaching heaven and -1 for reaching hell.

G.5 BSUITE MEMORYLENGTH

The MemoryLength environment (Osband et al., 2020) represents a sequence of observations, where
at each step, the observation obs takes a value of either +1 or -1. The environment is structured so
that a reward is given only at the final step if the agent correctly predicts the i-th value from the initial
observation. The index of this i-th value is specified at the last step observation in obs[1]. To succeed,
the agent must remember the sequence of observations and use this information to make an accurate
prediction at the final step.

G.6 MINIGRID-MEMORY

Minigrid-Memory (Chevalier-Boisvert et al., 2023) is a two-dimensional grid-based environment
that features a T-shaped maze with a small room at the beginning of the corridor, containing an
object. The agent starts at a random position within the corridor. Its task is to reach the room,
observe and memorize the object, then proceed to the junction at the maze’s end and turn towards the
direction where an identical object is located. The reward function is defined as Rt = 1− 0.9× t

T
for a successful attempt; otherwise, the agent receives zero reward. The episode terminates when
the agent makes a choice at the junction or exceeds a time limit of 95 steps. To enforce partial
observability, the agent’s vision is restricted to a 3×3 frame. Consequently, this environment features
a two-dimensional space of image observations, a discrete action space, and a sparse reward function.

G.7 BALLET

In the Ballet environment (Lampinen et al., 2021) tasks take place in an 11×11 tiled room, consisting
of a 9×9 central area surrounded by a one-tile-wide wall. Each tile is upsampled to 9 pixels, resulting
in a 99× 99 pixel input image. The agent is initially placed at the center of the room, while dancers
are randomly positioned in one of 8 possible locations around it. Each dancer has a distinct shape
and color, selected from 15 possible shapes and 19 colors, ensuring uniqueness. These visual features
serve only for identification and do not influence behavior. The agent itself is always represented as a
white square. The agent receives egocentric visual observations, meaning its view is centered on its
own position, which has been shown to enhance generalization.

G.8 PASSIVE VISUAL MATCH

The Passive Visual Match environment (Ni et al., 2023) is a color recognition task where the agent
must memorize a target color and select it among distractors. In each episode, four colors are
randomly chosen from a set of 16, with one as the target and the other three as distractors. These
colors form four squares, each occupying one wall unit.

The episode consists of three phases. First, the agent is placed in a 1× 3 corridor, facing a wall with
the target color at the opposite end. There are no rewards, and this phase lasts for 5 seconds. Next,
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the agent encounters a distractor phase. Finally, the environment expands to 4× 7 with the four color
squares aligned on one side in random order. The agent spawns in the center of the opposite side,
facing them. In front of each square is a ground pad. Stepping on the pad in front of the target color
grants 10 points, while any other pad gives 1 point. If no choice is made within 5 seconds, no reward
is given.

G.9 PASSIVE-T-MAZE

The Passive-T-Maze environment (Ni et al., 2023) is a T-shaped maze with a four-directional action
space {L,R,U,D}. It consists of a corridor of length L, starting at state O (oracle) and ending at
state J (junction), which branches into two possible goal states G1 and G2. The agent observes only
at states {J,O,G1, G2}, with O revealing the goal G ∈ {G1, G2} at the start of an episode. The
agent’s movement is deterministic, the agent remains static upon hitting a wall.

In the passive T-Maze, the oracle state O is equivalent to the start state S, allowing the agent to
immediately observe the goal position G. The length of the corridor is set to L = T − 1. The reward
function is defined as:

Rt(h1:t, at) =
1(xt+1 ≥ t)− 1

T − 1
for t ≤ T − 1, and RT (h1:T , aT ) = 1(oT+1 = G). (1)

The optimal policy moves right for T − 1 steps and then heads to G, achieving an expected return of
1.0. A Markovian policy, which can only guess the goal, yields an expected return of 0.5, while the
worst policy results in −1.0.

G.10 VIZDOOM-TWO-COLORS

The ViZDoom-Two-Colors (Sorokin et al., 2022) is a reinforcement learning environment where an
agent is placed in a room with constantly depleting health. The room contains red and green objects,
one of which restores health (+1 reward), while the other reduces it (-1 reward). The beneficial color
is randomly assigned at the beginning of each episode and indicated by a column. The environment
is structured so that the agent must memorize the column’s color to collect the correct items. Initially,
the column remains visible, but in a harder variant, it disappears after 45 steps, increasing the memory
requirement. To succeed, the agent must maximize survival by collecting beneficial objects while
avoiding harmful ones.

G.11 POPGYM ENVIRONMENTS

The following environments are included from the POPGym benchmark (Morad et al., 2023), which
is designed to evaluate RL agents in partially observable settings. POPGym provides a diverse
collection of lightweight vectorized environments with varying difficulty levels.

G.11.1 POPGYM AUTOENCODE

The environment consists of a deck of cards that is shuffled and sequentially shown to the agent
during the watch phase. While observing the cards, a watch indicator is active, but it disappears
when the last card is revealed. Afterward, the agent must reproduce the sequence of cards in the
correct order. The environment is structured to evaluate the agent’s ability to encode a sequence of
observations into an internal representation and later reconstruct the sequence one observation at a
time.

G.11.2 POPGYM CONCENTRATION

The environment represents a classic memory game where a shuffled deck of cards is placed face-
down. The agent sequentially flips two cards and earns a reward if the revealed cards form a matching
pair. The environment is designed in such a way that the agent must remember previously revealed
cards to maximize its success rate.
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G.11.3 POPGYM REPEAT FIRST

The environment presents the agent with an initial value from a set of four possible values, along with
an indicator signaling that this is the first value. In subsequent steps, the agent continues to receive
random values from the same set but without the initial indicator. The structure requires the agent to
retain the first received value in memory and recall it accurately to receive a reward.

G.11.4 POPGYM REPEAT PREVIOUS

The environment consists of a sequence of observations, where each observation can take one of four
possible values at each timestep. The agent is tasked with recalling and outputting the value that
appeared a specified number of steps in the past.

G.11.5 POPGYM STATELESS CARTPOLE

This is a modified version of the traditional Cartpole environment (Barto et al., 1983) where angular
and linear position information is removed from observations. Instead, the agent only receives
velocity-based data and must infer positional states by integrating this information over time to
successfully balance the pole.

G.11.6 POPGYM STATELESS PENDULUM

In this variation of the swing-up pendulum environment (Doya, 1995), angular position data is omitted
from the agent’s observations. The agent must infer the pendulum’s position by processing velocity
information and use this estimate to determine appropriate control actions.

G.11.7 POPGYM NOISY STATELESS CARTPOLE

This environment builds upon Stateless Cartpole by introducing Gaussian noise into the observations.
The agent must still infer positional states from velocity information while filtering out the added
noise to maintain control of the pole.

G.11.8 POPGYM NOISY STATELESS PENDULUM

This variation extends the Stateless Pendulum environment by incorporating Gaussian noise into
the observations. The agent must manage this uncertainty while using velocity data to estimate the
pendulum’s position and swing it up effectively.

G.11.9 POPGYM MULTIARMED BANDIT

The Multiarmed Bandit environment is an episodic formulation of the multiarmed bandit prob-
lem (Slivkins, 2024), where a set of bandits is randomly initialized at the start of each episode. Unlike
conventional multiarmed bandit tasks, where reward probabilities remain fixed across episodes, this
structure resets them every time. The agent must dynamically adjust its exploration and exploitation
strategies to maximize long-term rewards.

G.11.10 POPGYM HIGHER LOWER

Inspired by the higher-lower card game, this environment presents the agent with a sequence of cards.
At each step, the agent must predict whether the next card will have a higher or lower rank than the
current one. Upon making a guess, the next card is revealed and becomes the new reference. The
agent can enhance its performance by employing card counting strategies to estimate the probability
of future values.

G.11.11 POPGYM COUNT RECALL

At each timestep, the agent is presented with two values: a next value and a query value. The agent
must determine and output how many times the query value has appeared so far. To succeed, the
agent must maintain an accurate count of past occurrences and retrieve the correct number upon
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request. This environment evaluates the agent’s capacity to form and manage a structured memory
representation.

G.11.12 POPGYM BATTLESHIP

A partially observable variation of the game Battleship, where the agent does not have access to
the full board. Instead, it receives feedback on its previous shot, indicating whether it was a HIT or
MISS, along with the shot’s location. The agent earns rewards for hitting ships, receives no reward
for missing, and incurs a penalty for targeting the same location more than once. The environment
challenges the agent to construct an internal representation of the board and update its strategy based
on past observations.

G.11.13 POPGYM MINE SWEEPER

A partially observable version of the computer game Mine Sweeper, where the agent lacks direct
visibility of the board. Observations include the coordinates of the most recently clicked tile and
the number of adjacent mines. Clicking on a mined tile results in a negative reward and ends the
game. To succeed, the agent must track previous selections and deduce mine locations based on the
numerical clues, ensuring it avoids mines while uncovering safe tiles.

G.11.14 POPGYM LABYRINTH EXPLORE

The environment consists of a procedurally generated 2D maze in which the agent earns rewards
for reaching new, unexplored tiles. Observations are limited to adjacent tiles, requiring the agent to
infer the larger maze layout through exploration. A small penalty per timestep incentivizes efficient
navigation and discovery strategies.

G.11.15 POPGYM LABYRINTH ESCAPE

This variation of Labyrinth Explore challenges the agent to find an exit rather than merely exploring
the maze. The agent retains the same restricted observation space, seeing only nearby tiles. Rewards
are only given upon successfully reaching the exit, making it a sparse reward environment where the
agent must navigate strategically to achieve its goal.
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