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ABSTRACT

User interface modeling is inherently multimodal, which involves several distinct
types of data: images, structures and language. The tasks are also diverse, including
object detection, language generation and grounding. In this paper, we present
VUT, a Versatile UI Transformer that takes multimodal input and simultaneously
accomplishes 5 distinct tasks with the same model. Our model consists of a
multimodal Transformer encoder that jointly encodes UI images and structures,
and performs UI object detection when the UI structures are absent in the input.
Our model also consists of an auto-regressive Transformer model that encodes the
language input and decodes output, for both question-answering and command
grounding with respect to the UI. Our experiments show that for most of the
tasks, when trained jointly for multi-tasks, VUT substantially reduces the number
of models and footprints needed for performing multiple tasks, while achieving
accuracy exceeding or on par with baseline models trained for each individual task.

1 INTRODUCTION

Modern graphical user interfaces specifically touchscreen mobile UIs enable a rich problem space for
modeling where the input is inherently multimodal, which consists of several distinct types of data. A
user interface screen exists in both a visual form, i.e., a screenshot, and a structural representation, i.e.,
a tree-like view hierarchy. Based on graphical user interfaces, there is a wide spectrum of modeling
tasks that either directly enhance user experiences or advance the development of intelligent user
interfaces. For example, previous work developed models and datasets for grounding a language
command into an executable UI action (Li et al., 2020a), generating language description for acces-
sibility on mobile devices (Li et al., 2020b; Wang et al., 2021), and understanding the usability of
user interfaces (Swearngin & Li, 2019) or identifying the objects on the screen (Zhang et al., 2021).
Previous work has also started learning effective representation of user interface screens (He et al.,
2020; Li et al., 2021a), which can potentially benefit downstream tasks.

Although these previous works have made progress in addressing individual problems, it is important
to investigate the feasibility of learning all these tasks with a single model. In addition to achieving a
scientific understanding of how these UI tasks are related, it is extremely valuable to obtain such a
multi-task model, which can potentially reduce the number of models that need to be developed and
deployed. This is crucial for mobile devices that have limited computing resources. In this work, we
propose VUT—Versatile UI Transformer, which handles three types of data: images, structures (view
hierarchies) and language, and simultaneously performs five unique tasks that are representative in
the UI modeling literature, including UI object detection, natural language command grounding,
widget captioning, screen summarization and UI tappability prediction.

A major challenge we need to address is how to unify these distinct tasks as well as their heterogeneous
datasets such that they can be learned by a single model. To this end, we devise a general formulation
for UI modeling tasks based on five inherent types of information that define a task. We also
aim to design a compact model architecture such that it remains stable for addressing a diverse
and potentially growing set of tasks, for which we make each model component multi-purpose.
Specifically, VUT comprises two Transformer architectures (Figure 1): the Image-Structure model,
and the Question-Answer model. The Image-Structure model encodes the entire screenshot of a UI
along its view hierarchy tree, with early fusion of the two modalities, which is guided by a focus
map when a given object is inquired. In addition to being the UI encoder, the Image-Structure model
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Figure 1: The VUT model architecture contains two Transformer models, which take image, structure
and language input, and three task heads for achieving five distinct UI modeling tasks.

predicts UI objects when the view hierarchy is absent on the input,which achieves the UI object
detection task. The Question-Answer model encodes a question while attending to the UI encodings
from the Image-Structure model. It decodes a text answer when the task response is language, e.g.,
widget captioning (Li et al., 2020c) or screen summarization (Wang et al., 2021). For the grounding
task whose output is an object reference, the Question-Answer model serves as the question encoder
and its hidden state is used to locate UI elements to be acted upon. We highlight the relation of VUT
with previous works in Table 1, and discuss their differences further in the following section.

We experiment with our model on 5 datasets, and compare the accuracy of VUT when it is trained
alone for each task and jointly with multiple tasks. Our experiments show that VUT is able to perform
all the five tasks simultaneously and achieve the performance on par with or surpass that when each
task is learned alone. The main contributions of our work are as follows.

• We formulate multi-modal multi-task learning for a new domain—graphical user interfaces—
with one model to accomplish a wide range of tasks for enhancing mobile user experiences.

• We design VUT based on a two-tower Transformer architecture, one for handling image-
structure and the other for language data, where each Transformer is multi-purpose by both
encoding and decoding its own modality, with cross-tower attention.

• We experiment with VUT on 5 distinct UI tasks, and thoroughly investigated the effect
of these tasks when learned alone or jointly with ablations and analysis, which show the
feasibility for achieving diverse UI tasks using a single model, which offers the value for
reducing the number of models and storage footprints needed for deployment (Appendix E).

2 RELATED WORK

Extensive work has been conducted in multi-modal modeling with vision and languages (Li et al.,
2019; Lu et al., 2019; Hu & Singh, 2021; Lu et al., 2020; Tan & Bansal, 2019; Kim et al., 2021;
Zhou et al., 2020; Gupta et al., 2021). Existing works differ in the form of input they consume
and the objectives of modeling. One category of work focuses on pretraining to learn an effective
cross-modality representation for downstream tasks and the other directly learns multiple tasks
end-to-end (Table 1). VUT belongs to the latter. In terms of the forms of multimodal data these
models consume, most models handle image and text input. However, a unique form of data in UI
modeling is the structure input of view hierarchies, which only VUT, UIBert and ActionBert use.
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Model Image input Structure input Text input Objectives
ViLBERT (Lu et al., 2019) Object regions None Object captions Pretraining
UIBert (Bai et al., 2021) Object regions View hierarchy Object text Pretraining
ActionBert (He et al., 2020) Object regions View hierarchy Object text Pretraining
ViLT (Kim et al., 2021) Entire image None Image caption Pretraining
VLP (Zhou et al., 2020) Object regions None Image caption Pretraining
LXMERT (Tan & Bansal, 2019) Object regions None Image caption Pretraining
12-in-1 (Lu et al., 2020) Object regions None Task prompts Multi-task
UniT (Hu & Singh, 2021) Entire image None Task prompts Multi-task
GPV-I (Gupta et al., 2021) Entire image None Task prompts Multi-task
VUT (our model) Entire image View hierarchy Task prompts Multi-task

Table 1: Comparison of VUT with several existing multi-modal modeling works.

Many existing works feed object regions, instead of the entire image to the model, which requires a
pretrained object detection model (Lu et al., 2019; Bai et al., 2021; He et al., 2020; Zhou et al., 2020;
Tan & Bansal, 2019; Lu et al., 2020) or address tasks only regarding the entire image (Kim et al.,
2021; Hu & Singh, 2021). Although ActionBert (He et al., 2020) and UIBert (Bai et al., 2021) also
address the UI domain, they are targeted for representation learning, and do not support multiple
tasks simultaneously. As a result, they do not deal with language input of task descriptions. Their
text input is those scraped from the UI screen, e.g., using OCR. In addition, these models require
predetermined object regions similar to many BERT-based multi-modal models. In contrast, object
detection is one of the tasks that VUT addresses.

In terms of modeling techniques, we designed a novel Transformer architecture for multi-task
modeling of the UI domain, based on building blocks previously proposed for natural images and
language, e.g., (Hu et al., 2020; Lu et al., 2020). the work that is closely related to ours is GPV-
I (Gupta et al., 2021), which uses DETR (Carion et al., 2020) for object detection, and ViBERT (Lu
et al., 2019) for multimodal modeling. In addition to the obvious deviation our work, e.g., VUT
uses structure input but GPV-I does not, there are several important architecture differences. While
GPV-I directly embeds DETR, an encoder-decoder model, into its architecture, VUT uses a single
tower design where both the image and object queries are fed to the same Transformer encoder. This
design choice is motivated by our goal to achieve a compact architecture, which the Image-Structure
model serves both image-structure encoding and object detection (when the structure input is absent
in the input). As shown in our experiment, the single tower architecture of VUT’s Image-Structure
model showed clear advantage over the encoder-decoder architecture in DETR for the UI object
detection task. To address the unique domin of UI tasks, we also introduce focus map to guide the
model towards the object being inquired. VUT’s question-answer Transformer is designed based on
existing auto-regressive multi-task language models (Raffel et al., 2019; Brown et al., 2020) where a
question or a command is fed to the model as a prefix, and the responses are decoded token by token.
One difference is that for the language command grounding task, instead of generating a language
response, the last hidden state of the language model is used, as a question encoding, to retrieve a UI
object on the screen.

3 PROBLEM FORMULATION

A graphical user interface contains a collection of UI elements for fulfilling a coherent set of tasks.
There are often five types of data involved to formulate a UI task: < S, V, T,Q,A > (Figure 1). S is
the screenshot image that captures the visual appearance of the UI screen. V is the view hierarchy
tree that represents the underlying structure of the screen. T is the target object on the screen to be
inquired. Q is the natural language description of the task, which can be an open-ended question
such as "What is the caption of the element?", a yes-or-no question such as "Does the object look
clickable?" or a command such as "Click on the Next button.". See the full list of Q used in our
experiments in Appendix A. Finally, A is the natural language answer to the question Q when the
form of the response for the task is supposed to be natural language. Depending on each task setup,
these data types appear as either input or output. We elaborate on the formation of each task here,
and use F to denote the function for achieving each task.
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3.1 UI OBJECT DETECTION

Given the screenshot image, S, the task is to detect each UI element on the screen, such as Text Field,
Toggle Button, or Image View. This task is similar to the typical object detection task in natural
images (Carion et al., 2020) or recent UI object detection work (Zhang et al., 2021). However, our
task is more challenging in that it needs to detect different types of container objects, which determine
how UI objects are visually structured of the screen, such as Linear Layout, Frame Layout or List. In
total there are 21 types of leaf or non-leaf objects in a view hierarchy. See Appendix D for the full
list of objects we detect. UI object detection is important for improving accessibility and enabling
other intelligent features such as UI adaptation when view hierarchy is not available. As a screen
understanding task, UI object detection is beneficial to other UI modeling tasks as we will show in
our experiments. The task is formulated as the follow (Equation 1).

V = F(S, V∅, T∅, Q∅) (1)

Note that this task is achieved solely based on the single-tower Image-Structure Transformer (Figure 1)
and does not rely on the question-answer model. V∅, T∅ and Q∅ represent each type of data masked
out or missing in the input.

3.2 WIDGET CAPTIONING

Generating natural language description for user interface elements is important for accessibility 1

and language-based interaction in general. The widget captioning task was initially proposed by Li
et al. (2020b) and it extends the classic image captioning tasks (Xu et al., 2015) to the UI domain.
In this task, given the UI view hierarchy, V , the screenshot image, S, and the target element to be
captioned, T , the model predicts a natural language phrase, A, that best describes the functionality of
the object (Equation 2).

A = F(S, V, T,Q) (2)

The model uses the information of S, V and T via the Image-Structure model. The examples of Q
are "What is the caption of the element?" and "What best describes the object?", and the examples of
A are "Forward", and "Shopping Cart".

3.3 SCREEN SUMMARIZATION

Instead of focusing on an individual element as the widget captioning task. screen summarization that
is recently proposed by Wang et al. (2021) is the task that describes the entire UI screen (Equation 3)
by producing a summary phrase.

A = F(S, V, T∅, Q) (3)

The examples of task prompts, Q, for screen summarization are "What is the description of the
screen?" and "What best summarizes the UI?" Q signals the model the type of responses it should
generate when it is jointly trained with other tasks such as widget captioning. The screen summariza-
tion task is broadly related to multimodal summarization tasks in the literature, but is specific to the
user interface domain.

3.4 LANGUAGE COMMAND GROUNDING

An important feature of modern smartphone interfaces is to interpret the natural language command of
users as executable actions, e.g., Voice Control 2. Previous work has investigated language grounding
on user interfaces (Pasupat et al., 2018; Li et al., 2020a). In this task, given the UI, S and V , and
the language command, Q, the model needs to predict which object on the screen can fulfill the
command, which is the opposite to the two preceding tasks of language generation.

T = F(S, V, T∅, Q) (4)

1https://support.google.com/accessibility/android/answer/6283677?hl=en
2https://support.apple.com/en-us/HT210417
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Note that instead of generating a natural language response like widget caption and screen summa-
rization, this task locates the target object, T , on the screen. In our dataset, we asked labelers to refer
to an object on the screen in an unconstrained manner. The possibility of Q is unbounded, which
can be any phrase the user feels like using for manipulating the UI, e.g., "Go to the next screen", or
"Tap on the checkout button". A command can also refer to an object indirectly using the relation to
others, such as "Click the icon to the right of the search box."

3.5 TAPPABILITY PREDICTION

Lastly, we include a task related to automatic usability assessment. Whether a user perceives a UI
object as tappable is an important usability issue. The mismatch between the tappability of an object
as perceived by the user and its actual clickability has constantly plagued mobile user experiences.
Swearngin & Li (2019) proposed tappability prediction as a binary classification task based on the
view hierarchy and the screen appearance of the element. In this work, to avoid introducing additional
task heads, we formulate tappability prediction as a yes-or-no QA task (Equation 5).

A = F(S, V, T,Q) (5)

which outputs "yes" when the perception of object is predicted as tappable, and "no" otherwise. Note
that all the tasks share the Image-Structure model. Except the UI Object Detection task, they also
share the Question-Answer model. We do not introduce a special task token. Instead, Q is served as
the natural language task indicator for signaling the model to produce different answers for each task.
Q also carries the actual task specifics for the grounding task to find the object on the UI.

These five tasks are very different in nature. UI object detection only takes image input and generates
UI objects. Command grounding leverages all the input modalities and outputs an object reference.
Tappability, UI summarization and widget captioning share the same input and output modalities
but are fundamentally different. Tappability is concerned with the usability of a specific UI object.
In contrast, UI summarization and widget captioning generate functional descriptions about UIs,
with the former focusing on the entire screen and the latter concentrating on a specific object. These
heterogeneous tasks pose challenges for multi-task learning.

4 MODEL ARCHITECTURE

As shown in Figure 1, the architecture of VUT includes two Transformer models, i.e., the Image-
Structure model and the Question-Answer model, and three output heads for three types of responses
that accomplish 5 tasks.

4.1 IMAGE-STRUCTURE TRANSFORMER

The Image-Structure Transformer is a two-modal model, which takes an image and the corresponding
view hierarchy, and outputs the hidden representation of the image and each node in the view hierarchy.
For the image modality, we compute the content embedding, Cs, and its positional encoding, Ps,
according to DETR (Carion et al., 2020): Cs = Dense(ResNet(S)) and Ps = PE(Smask). Smask

is the binary non-padding mask of the image S. We omit details such as tensor reshaping and
broadcasting in our discussions here. Cs ∈ RM×D and Ps ∈ RM×D where M is the flattened size
of the feature map after ResNet and D is the dimension of the representation.

For the view hierarchy modality, when V is absent in the object detection task (Section 3.1), the
content embedding for the modality, Cv, is all zeros, and the positional encoding, Pv, is a learned
embedding vector for each query position. When the view hierarchy is present in the input, each
object in the view hierarchy tree, V , is embedded based on the set of attributes it possesses. The
discrete attributes such as type, clickability, and text content are embedded separately to the same
dimension and then combined via addition to form the content embedding of each element, Cv.
When there are multiple tokens in text content, max pooling is used to acquire a single fixed-size
representation of text content.

The positional encoding of each object, Pv, is computed based on its bounding box [top, left, right,
bottom] and DOM positions [pre-order idx, post-order idx, depth]. Each is treated as a continuous
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vector position that is encoded via learnable Fourier representation (Li et al., 2021b) and then summed
together to form the positional encoding of the object. When V is not present in the input, the position
encoding is simply a learned embedding for each index position in the input. The final embedding of
the view hierarchy modality includes two tensors: Cv ∈ RN×D and Pv ∈ RN×D.

Ps and Pv are positional encoding within each modality. Because the embeddings from the two
modalities will jointly participate in the self attention of the Transformer encoder, it is important
to make their positional encoding global instead of local to each modality. To this end, we add a
learnable modal embedding to each of these modality-specific positional encoding: P

′

s = Ps +Es

and P
′

v = Pv + Ev , where Es ∈ R1×D and Ev ∈ R1×D are the learnable embeddings for the image
and view hierarchy modality respectively.

When the task is with respect to a specific object on the screen (Section 3.2 and 3.5), T is passed to
the model so that it can pay more attention to the object. To achieve this unique need of UI tasks, we
modulate the content embedding of both modalities, Cs and Cv using a focus map αs produced from
T as follows.

αs = Softmax(Flatten(RegionMask(Tbbx))β + τ)M

C
′

s = αs ⊗ Cs

(6)

RegionMask(·) creates a 2D binary mask from the bounding box of the target object Tbbx where it is
all ones inside the the box and all zeros outside. Flatten(·) flattens the 2D mask to 1D. β and τ are
the hyperparameters that regulate how much the model should focus on the target object versus the
rest of the image. ⊗ denotes element-wise multiplication. We perform a similar modulation for the
target object in V .

αv = Softmax(OneHot(Tidx)β + τ)N

C
′

v = αv ⊗ Cv

(7)

OneHot(·) produces a one-hot vector from the index of the target object, Tidx, in the view hierarchy.
We then concatenate the embeddings of the two modalities along the first dimension to form the input
the Transformer encoder: C = Concat[C

′

s;C
′

v] and P = Concat[P
′

s;P
′

v], where C ∈ R(M+N)×D

and P ∈ R(M+N)×D are the final content embedding and positional encoding respectively, which
are fed to a multi-layer Transformer encoder: H = Transformer_Encoder(C,P ), where the hidden
representation H ∈ R(M+N)×D. We then split H for the hidden representation for each modality:
Hs = H[: M ] and Hv = H[M :] while result in the hidden representations for each modality:
Hs ∈ RM×D and Hv ∈ RN×D.

4.2 QUESTION-ANSWER TRANSFORMER

The Question-Answer Transformer is a language model that encodes the question Q and decodes the
answer A and produces the hidden representation for the grounding task. The input of the model,
X = x1:t, where t is the length of the sequence, is either just the token sequence of Q for the
grounding task (Section 3.4), or the concatenation of Q and the decoded answer A

′
when a language

answer is to be generated. During training with teaching forcing, A
′
= A. During auto-regressive

inference, A
′

is the predicted token sequence up to a step.

g1:t = Transformer_Decoder(E(x1:t), PE(1 : t);Hs, Hv) (8)

where xi is the ith token in the sequence (1 ≤ i ≤ t), and E(·) and PE(·) compute the content
embedding and the positional encoding of each token in the sequence. Hs and Hv are accessed via
Transformer encoder-decoder attention. The sequence of hidden states, g1:t, gi ∈ RD, are used for
predicting the next token for generating an answer or for retrieving a target UI object in the view
hierarchy for the grounding task.
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4.3 OUTPUT HEADS

Object Detection Head: For the UI Object Detection task (Section 3.1), we borrow the object output
layer from DETR (Carion et al., 2020), using Hv as the input the layer: Ytype = HvWtype and
Ybbx = φ(Hv, θbbx)Wbbx where Wtype ∈ RN×22 is the linear projection to output the object type
logits. An additional PADDING type is included on top of the original 21 UI object classes. φ(·)
is the multi-layer perceptron parametized by θbbx and Wbbx ∈ RN×4 is the linear projection for
generating the coordinates. The logits Ytype ∈ RN×22 and the coordinates Ybbx ∈ RN×4 are for
both generating object predictions and computing optimal compound loss using Hungarian Matching
during training Carion et al. (2020).

Text Head: For the three tasks that require a text response, A, (Section 3.2,3.3 and 3.5), we apply a
softmax layer on top of the decoder hidden state, g1:t (Equation 8), to generate each answer token.

ai = argmax(Softmax(g|Q|+i−1Wtxt)) (9)

where ai is the ith token in the answer sequence A, and |Q| is the length of the question. Wtxt ∈
RD×|vocab| is the learnable weights and |vocab| is the vocabulary size. For the three tasks, we optimize
the model for the cross-entropy loss over the predicted and ground-truth answer token sequences.

Pointer Head: For the grounding task (Section 3.4), we use the last hidden state from the Transformer
decoder as a "pointer" Vinyals et al. (2015) to match against all the objects in the UI based on their
hidden representations, using dot product similarity (Equation 10).

t̂ = argmax
1≤j≤N

(Softmax(g|Q|Wptr · hj) (10)

where hj is the jth row in Hv that is the hidden representation of the jth object in the view hierar-
chy. Wptr ∈ RD×D is the learnable projection and g|Q| is the last hidden state from the decoder
(Equation 8), which is able to access the entire question (command) sequence, Q, via the decoder self
attention. Compared to previous UI ground work (Li et al., 2020a), we used the last hidden state as
the "pointer" instead of embedding pooling of a bag of word in a span. We optimize the model by
minimizing the cross-entropy loss between the predicted and the ground-truth object index.

5 EXPERIMENTS

5.1 DATASETS

For the UI Object Detection task, we use RICO, a public corpus of mobile user interfaces (Deka et al.,
2017) that contains 64,462 unique Android screens from 9,362 different apps. Each screen comes
with an RGB screenshot and a corresponding view hierarchy. A view hierarchy is a tree structure of
nodes with 21 unique types, which we consolidated from the Android View class attributes in the
original dataset (see Appendix D). Plus the special PADDING type, there are 22 types to be predicted.
A view hierarchy has a maximum of 128 nodes in our dataset.

For the Widget Captioning task, we used a public dataset (Li et al., 2020b), which includes more
than 200k human annotations for over 46k unique UI objects from 17k RICO screens. For Screen
Summarization, we used a public dataset (Wang et al., 2021) that consists of 112k human created
summaries for 22,301 unique Android screens from RICO.

We created the Language Grounding dataset, which has 10k human annotations for operating UI
objects of 1432 unique screens from 26 Android build-in apps like Settings. A human rater generates
commands such as "Click the button below battery info", and the maximum length of a command
phrase is 20 words. The Tappability Prediction dataset includes tappability annotations for more than
18,669 UI elements from 3,218 Android screens. In the data collection, given a target UI element
highlighted on a screen, 5 different human raters are asked to answer yes or no for whether the target
object looks tappable to them. We use the majority voting to determine the label of each element.

We split each dataset into training, validation and test sets (Table 2), and ensure there is no overlap of
apps (or screens) between a training set and any of the test sets of different tasks. This is important
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Dataset Train Validation Test
UI Object Detection (Deka et al., 2017) 54,611 2,518 2,627
Widget Captioning (Li et al., 2020c) 39,951 3,436 3,531
Screen Summarization (Wang et al., 2021) 17,569 2,298 2,434
Language Command Grounding 7,822 1,024 987
Tappability Prediction 14,783 1,854 2,029

Table 2: Datasets.

because in the multi-task learning condition, VUT learns from all the training sets. Thus the union
of apps and screens across all the training sets should not overlap any of the test set. We also
ensure our test datasets are the same with the released benchmarks for widget captioning and screen
summariztion so that the results are comparable with reported SOTAs. We unify these heterogeneous
datasets to follow the same feature taxonomies based on our problem formulation so that they can be
consumed by the same model.

5.2 RESULTS

5.2.1 COMPARING VUT WITH DETR & CENTERNET FOR OBJECT DETECTION

In this experiment, we compare VUT with two benchmark models for UI Object Detection. The
standard DETR architecture (Carion et al., 2020) uses a 6-layer Transformer encoder and a 6-layer
Transformer decoder. To have a similar number of parameters in the model, we let VUT Image-
Structure transformer to use a 12-layer Transformer encoder in this experiment. CenterNet (Duan
et al., 2019) has been a popular choice for object detection, which achieved SOTA results on natural
images. In this experiment, we let CenterNet use ResNet-101 as its backbone to reach a similar
parameter size. Table 3 shows that VUT’s Image-Structure model clearly outperforms DETR and
CenterNet on the UI Object Detection dataset. Previously, Carion et al. (2020) found more encoding
layers can lead to better accuracy. It is worth noting that VUT’s Image-Structure model uses an
encoder-only architecture that achieves better accuracy.

Model #Params AP AP50 AP75 APsmall APmedium APlarge

CenterNet 49M 31.9 44.3 33.0 1.2 12.6 33.0
DETR6+6 50M 37.8 49.1 39.6 1.8 21.1 38.1
VUT12 48M 39.3 50.1 40.9 3.3 21.6 39.6

Table 3: Comparison of three models for UI Object Detection on the validation dataset.

Note that these results can not be compared directly with those previously reported Zhang et al.
(2021). Our task is more challenging for detecting 21 different UI object types including several
container elements, instead of 12 objects in previous work. In addition, previous work used a dataset
that is manually labeled by human and also employed heavy post-process to improve the accuracy.

5.2.2 COMPARING MULTI-TASK WITH SINGLE TASK LEARNING

For each task, we report its accuracy when it is learned alone and with other tasks jointly. We also
show the benchmark results on these datasets reported by previous works for comparison, when they
are available. In this experiment, we use a 6-layer Image-Structure model and a 6-layer Question-
Answer model. Each task head and model parts are used only for batches that are specific for each
task during training. For Widget Captioning, Screen Summarization and Tappability, text head
(Equation 9) is used for generating answers. For Language Command Grounding, the grounding
head (Equation 10) is used instead. See Appendix B.1 for training schedule details.

As shown in Table 4, 5, 6 and 7, multi-task learning, though more challenging than single-task
learning, can often perform on par with single-task learning. It consistently outperforms single-task
learning for most configurations and metrics. There is a decrease of accuracy for the Grounding task
when text-generation related tasks are involved. We suspect that the grounding task, which relies on
the last hidden state of the Question-Answer model, probably competes with the three text-generation
tasks by “pulling” the hidden representations of the Question-Answer model towards different
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Configurations BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr
SOTA, Li et al. (2020c) 44.9 32.2 - - 44.7 97.0
Widget Captioning alone 45.8 30.2 19.6 12.9 46.0 94.8
Widget Caption + Object Detection 46.7 31.6 21.9 15.0 45.9 98.3
4 tasks (without Object Detection) 43.3 28.5 18.7 14.0 44.0 88.9
All 5 tasks 47.0 32.3 22.7 16.3 46.8 99.3

Table 4: Results for the Widget Captioning task

Configurations BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr
SOTA (Wang et al., 2021) 65.5 45.8 32.4 25.1 48.6 61.3
Screen Summarization alone 68.7 49.4 31.6 19.4 53.8 64.3
Summarization + Object Detection 68.9 50.8 33.5 21.4 54.9 65.6
4 tasks (without Object Detection) 68.2 49.4 32.2 20.2 53.5 56.8
All 5 tasks 67.7 49.2 32.1 20.1 53.9 65.1

Table 5: Results of the Screen Summarization task.

Configurations Ground accuracy (%)
Command Grounding without image input 68.5
Command Grounding alone 75.5
Command Grounding + Object Detection 82.1
4 tasks (without Object Detection) 77.3
All 5 tasks 80.8

Table 6: Results for the Language Command Grounding task.

Configurations Precision (%) Recall (%) F1 (%)
Tappability alone 91.9 81.9 86.6
Tappability + Object Detection 91.0 84.6 87.7
4 tasks (without Object Detection) 86.5 84.8 86.7
All 5 tasks 90.1 86.5 88.3

Table 7: Results for the Tappability task.

Configurations AP AP50 AP75

Object Detection alone 37.0 47.6 38.8
Widget Captioning + Object Detection 36.6 47.8 38.5
Screen Summarization + Object Detection 36.3 47.8 38.3
Command Grounding + Object Detection 36.9 48.4 38.8
Tappability Prediction + Object Detection 37.6 48.4 39.5
All 5 tasks 35.2 46.8 36.8

Table 8: Accuracy for the UI Object Detection task when different tasks are jointly learned.

directions. One phenomenon that we consistently observed is that having the Object Detection task in
multi-task learning often outperforms the configuration without involving Object Detection. For the
Object Detection task itself, we found there is a drop of accuracy when batch-alteration for multi-task
learning starts. Yet, it mostly recovers its accuracy (see Table 8). These experiments show that instead
of treating Object Detection as a standalone pretraining task, it is feasible for it to be part of the
multi-task learning where VUT achieves all the tasks through a single model.

6 CONCLUSION

We present VUT, a multi-modal Transformer for multi-task modeling of user interfaces. Our model
takes in three types of data, i.e., UI screenshot images, view hierarchy structures, and natural
language questions. Our experiments based on 5 datasets show that VUT achieves five types of UI
tasks simultaneously, and show the promise of providing unified modeling for the user interface
domain.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. Uibert: Learning generic multimodal representations for UI understanding.
In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp. 1705–1712.
ijcai.org, 2021. doi: 10.24963/ijcai.2021/235. URL https://doi.org/10.24963/ijcai.
2021/235.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers, 2020.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, UIST ’17, pp. 845–854, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349819. doi: 10.1145/3126594.3126651. URL https://doi.org/
10.1145/3126594.3126651.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet:
Keypoint triplets for object detection. In 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 6568–6577. IEEE,
2019. doi: 10.1109/ICCV.2019.00667. URL https://doi.org/10.1109/ICCV.2019.
00667.

Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem. Towards general purpose
vision systems. CoRR, abs/2104.00743, 2021. URL https://arxiv.org/abs/2104.
00743.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wichers, Gabriel
Schubiner, Ruby B. Lee, and Jindong Chen. Actionbert: Leveraging user actions for semantic
understanding of user interfaces. CoRR, abs/2012.12350, 2020. URL https://arxiv.org/
abs/2012.12350.

Ronghang Hu and Amanpreet Singh. Transformer is all you need: Multimodal multitask learning
with a unified transformer. CoRR, abs/2102.10772, 2021. URL https://arxiv.org/abs/
2102.10772.

Ronghang Hu, Amanpreet Singh, Trevor Darrell, and Marcus Rohrbach. Iterative answer prediction
with pointer-augmented multimodal transformers for textvqa. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp.
9989–9999. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.01001.
URL https://openaccess.thecvf.com/content_CVPR_2020/html/Hu_
Iterative_Answer_Prediction_With_Pointer-Augmented_Multimodal_
Transformers_for_TextVQA_CVPR_2020_paper.html.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 5583–5594. PMLR, 2021. URL
http://proceedings.mlr.press/v139/kim21k.html.

10

https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1109/ICCV.2019.00667
https://doi.org/10.1109/ICCV.2019.00667
https://arxiv.org/abs/2104.00743
https://arxiv.org/abs/2104.00743
https://arxiv.org/abs/2012.12350
https://arxiv.org/abs/2012.12350
https://arxiv.org/abs/2102.10772
https://arxiv.org/abs/2102.10772
https://openaccess.thecvf.com/content_CVPR_2020/html/Hu_Iterative_Answer_Prediction_With_Pointer-Augmented_Multimodal_Transformers_for_TextVQA_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Hu_Iterative_Answer_Prediction_With_Pointer-Augmented_Multimodal_Transformers_for_TextVQA_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Hu_Iterative_Answer_Prediction_With_Pointer-Augmented_Multimodal_Transformers_for_TextVQA_CVPR_2020_paper.html
http://proceedings.mlr.press/v139/kim21k.html


Under review as a conference paper at ICLR 2022

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
and performant baseline for vision and language. In Arxiv, 2019.

Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. Screen2vec: Semantic
embedding of gui screens and gui components. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021a. Association
for Computing Machinery. ISBN 9781450380966. doi: 10.1145/3411764.3445049. URL
https://doi.org/10.1145/3411764.3445049.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile UI action sequences. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 8198–8210, Online, July 2020a. Association
for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.729. URL https://www.
aclweb.org/anthology/2020.acl-main.729.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user interface elements. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5495–5510,
Online, November 2020b. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.443. URL https://www.aclweb.org/anthology/2020.emnlp-main.
443.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user interface elements, 2020c.

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable fourier features for multi-
dimensional spatial positional encoding. CoRR, abs/2106.02795, 2021b. URL https://arxiv.
org/abs/2106.02795.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dÁlché Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. 12-in-1: Multi-task
vision and language representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu, Kelvin Guu, and Percy Liang. Mapping natural
language commands to web elements. In Ellen Riloff, David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 - November 4, 2018, pp. 4970–4976. Association
for Computational Linguistics, 2018. URL https://aclanthology.org/D18-1540/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019. URL http://arxiv.org/abs/1910.10683.

Amanda Swearngin and Yang Li. Modeling Mobile Interface Tappability Using Crowdsourcing and
Deep Learning, pp. 1–11. Association for Computing Machinery, New York, NY, USA, 2019.
ISBN 9781450359702. URL https://doi.org/10.1145/3290605.3300305.

Hao Tan and Mohit Bansal. LXMERT: Learning cross-modality encoder representations from
transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 5100–5111, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1514. URL https://www.aclweb.org/anthology/
D19-1514.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

11

https://doi.org/10.1145/3411764.3445049
https://www.aclweb.org/anthology/2020.acl-main.729
https://www.aclweb.org/anthology/2020.acl-main.729
https://www.aclweb.org/anthology/2020.emnlp-main.443
https://www.aclweb.org/anthology/2020.emnlp-main.443
https://arxiv.org/abs/2106.02795
https://arxiv.org/abs/2106.02795
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://aclanthology.org/D18-1540/
http://arxiv.org/abs/1910.10683
https://doi.org/10.1145/3290605.3300305
https://www.aclweb.org/anthology/D19-1514
https://www.aclweb.org/anthology/D19-1514
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf


Under review as a conference paper at ICLR 2022

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang Li. Screen2words:
Automatic mobile UI summarization with multimodal learning. UIST’21, 2021. URL https:
//arxiv.org/abs/2108.03353.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2048–2057,
Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/
xuc15.html.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and Jeffrey P Bigham. Screen recognition:
Creating accessibility metadata for mobile applications from pixels. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450380966. doi: 10.1145/3411764.3445186.
URL https://doi.org/10.1145/3411764.3445186.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J. Corso, and Jianfeng Gao. Unified
vision-language pre-training for image captioning and VQA. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 13041–13049. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/7005.

A QUESTIONS

As discussed in the paper, there are three types of question input, Q, fed into the Question-Answer
model: commands, questions for yes-or-no responses, and questions for open-ended answers. When
VUT is joint-learning all the tasks, it is required to recognize all the questions for different types of
tasks. For questions that expect a textual response, e.g., Widget Captioning, Screen Summarization,
and Tappability Prediction, VUT also needs to generate an answer corresponding to each type of
question.

A.1 COMMANDS

For the Language Command Grounding task, commands that refer to a specific object in the screen
are fed to the model by which the model is trained to locate the referred object. Example commands
are shown below. These commands are created by human annotators for a target UI object shown
on a screen. A human annotator is asked to come up with different commands referring to each
highlighted target object.

• Click on the notification bar above the status option.
• Press on the back arrow button.
• Select the icon above the clock option.
• Swipe down the notification bar.

A.2 QUESTIONS FOR YES-OR-NO ANSWERS

For the Tappability Prediction task, we generate synthetic Yes-or-No questions based on the following
regular expression pattern. The model is trained to decode yes or no as the answer to the question.

Is the [object|element|widget|control] [clickable|tappable]?

The question examples that are generated based on the regular expression are the following.

• Is the object tappable?
• Is the widget clickable?
• Is the element tappable?
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A.3 QUESTIONS FOR OPEN-ENDED ANSWERS

For Screen Summarization summary and captioning tasks, the model will need to generate an open-
ended answer. We use the following regular expressions to generate questions for these tasks. VUT is
trained to decode a screen summary or a widget caption following the question.

What is the [summary|description] of the [screen|UI]?

What is the [caption|description] of the [object|element|widget|control]?

Below are the question examples generated from the above regular expressions.

• What is the summary of the screen?

• What is the description of the UI?

• What is the caption of the widget?

• What is the description of the object?

B MODEL & TRAINING DETAILS

For the comparison with DETR and CenterNet on the UI Object Detection task, VUT uses a 12-layer
Transformer encoder as the Image-Structure model that amounts to 48M trainable parameters, which
is fewer than 50M trainable parameters of DETR with a 6-layer encoder and a 6-layer decoder,
and 49M parameters of CenterNet. Image Embedder (Figure 1) is the ResNet backbone. For the
remaining experiments, VUT uses a 6-layer Transformer encoder for the Image-Structure model, and
a 6-layer Transformer decoder for the Question-Answer model. When all the tasks are jointly trained,
there are 64M parameters. Task-specific heads and word piece embeddings and projections are the
main contributors to the growth of the parameter size. When only a subset of these tasks is involved
in the training, e.g., Widget Captioning + Object Detection, there will be fewer trainable parameters
involved because only part of the full model is in use. All the VUT variants use the following
configurations: #Attention_Heads=8, Hidden_Dimension=256, Transformer_MLP_Dimension=2048,
Transformer_QKV_Dimension=256.

Note that in our Image-Structure model, positional encoding is added to the input of each layer of
the Transformer. This is in contrast to our Question-Answer model where the positional encoding of
each token is only added to the input of the first layer. We use the learned embedding for positional
encoding in the Question-Answer model. During training, we use 10% for both the attention and the
MLP dropout in the Questions-Answer Transformer, and we also apply 10% dropout on the encodings
from the Image-Structure model before cross attention. During the 5-task joint learning, the attention
and the MLP dropout rates are 10% for the Image-Structure Transformer and the encoder-decoder
cross-attention dropout rate is 20%. During auto-regressive decoding for interference, the maximum
decoding length is 30 that covers the total length of a question and an answer.

We use the same method as BERT for tokenizing phrases into a sequence of word pieces3, which
results in a vocabulary size of 28,536. The maximum size for a screenshot image is 1080 × 1080.
We randomly resize each image for image augmentation. The maximum number of UI objects and
containers on each screen is capped to 128. We implement VUT based in JAX4, a library for machine
learning. We train each VUT model with a batch size of 64 screens/examples, which the training is
parallelized across 64 TPU v3 cores.

B.1 TRAINING SCHEDULE DETAILS

Because the UI Object Detection task requires many more iterations to converge than other tasks,
we start our multi-task learning by training VUT for the UI Object Detection task, and then training
VUT jointly for multiple tasks by alternating batches from each dataset. This learning strategy is
sensible because by learning from the UI Object task, the model can learn useful information about

3https://www.tensorflow.org/tutorials/tensorflow_text/subwords_
tokenizer#overview

4https://github.com/google/jax
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how to encode the screen pixels. As it is consistently shown in our experiments, joint learning that
involves Object Detection can often boost the learning of the other four tasks.

We start the training by learning the Object Detection task that takes 300k steps, using DETR’s
default training schedule (Carion et al., 2020). For joint-learning of all the 5 tasks, we sample batches
from the Object Detection, Widget Captioning, Scren Summarization, Command Grounding and
Tappability datasets with the weights [15, 10, 10, 20, 1] and the model is trained with 100k steps. The
learning rate is 1e-4 and decayed to 1e-5 after 50k steps.

For individual task training, we train each model until it converges with a batch size of 64. For the UI
Object Detection task, we train the model with the most default setup of DETR with 6-layer encoder
and 6-layer decoder and 8-head attention and 256 hidden size, using 300k steps. The learning rate
schedule includes one learning rate decay from 1e-4 to 1e-5 at the 200k steps. The Widget Captioning
task uses a 6-layer Image-Structure model and a 6-layer Question-Answer model plus the Text head.
Similarly, the model was trained 45k steps to converge. For the Screen Summarization task, we used
the same model configuration as Widget Captioning, and the model converges at 50k steps. The
Language Command Grounding task uses a similar model setup as the Widget Captioning and the
Screen Summarization tasks, except that it uses the Grounding Head instead of the Text Head. It
took the model 27k steps to converge. For training the model for each of these tasks, we decay the
learning rate once from 1e-4 to 1e-5 at 15k steps. For learning the Tappability Prediction task alone,
we used the same model setup as the two text related tasks (Summarization and Captioning). We
found the model is very prone to overfitting in spite of using a large dropout rate. So we train the
model with early stopping.

For Object Detection + another individual task, we sampled batches from the two datasets with
weights similar to the ones used for 5 task joint training. For Widget Captioning, Screen Summary
and Grounding, the models are trained to converge with 35k, 50k and 50k steps, with 1e-4 initial
learning rate which decays to 1e-5 at 25k, 15k and 25k steps, respectively. For the Tappability task,
we use a initial learning rate of 1e-5 and train the model with early stopping.

For 4 task joint training (without Object Detection), we sampled batches from the 4 tasks (Widget
Captioning, Screen Summary, Grounding, Tappability) with the weights [5, 5, 10, 1]. We trained the
model with 150k steps and batch size 64. The learning rate schedule includes one learning rate decay
from 1e-4 to 1e-5 at the 50k steps.

Figure 2: The distribution of the 21 UI elements at the log10 scale. The proportion that each type is
used as an inner versus a leaf node is shown within each bar.

C ABLATION STUDY ON FOCUS OBJECT

For Widget Captioning and Tappability task, VUT predicts the caption or the tappability answer
of a given object on the screen—the focus object. To inform the Image-Structure Transformer the
location of the given object, we apply a focus map to the Image Embeder outputs and the embeddings
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of the view hierarchy objects so that the focus object has more weight on its pixel area and object
embedding than the others (see Equation 6 and 7). Specifically, we used β = 2.0 and τ = −1.0 in our
experiments. To show the effectiveness of the focus modulation, we conduct an ablation study using
the Widget Captioning model with three settings: 1) applying the focus map to both the image and
structure modalities, 2) applying the focus map to the structure modality only, and 3) concatenating
an embedding of {0, 1} to the object embedding for the structure modality with 1 indicating the focus
object.

As shown in Table 9, the model performs the best when focus map is used on both the image and the
structure modalities, indicating the necessity and effectiveness to inform the model the focus object
location in the pixels and the object list. Using the focus map only on the object embedding is not
sufficient because the Image-Structure model needs to learn from the data to find the corresponding
pixel areas of the focus object. Yet, using {0, 1} embedding is the least effective.

Configurations BLEU-1 BLEU-2 ROUGE CIDEr
{0, 1} embedding on the structure modality 39.7 26.7 38.6 80.7
Focus map on the structure modality only 41.0 27.3 39.8 84.9
Focus map on both the image and structure modality 46.4 31.4 45.1 98.5

Table 9: Ablation Study Results for Focus Weight

D UI OBJECT TYPES

We process the RICO dataset for the UI Object Detection task. As discussed in the paper, among
the 64,462 screens of the original dataset, we particularly use those verified by human raters for
validation and test datasets. For each element on the screen, we extract its attributes such as its UI
object type, its bounding box position on the screen, whether it is clickable or enabled. We exclude
all the elements that are marked as invisible as they have no correspondence with pixels on the screen.
There are many custom object types in the dataset and many of them inherit from common Android
widget types5. We consolidate rare object types (such as TABWIDGET or VIDEOVIEW) to their
closest ancestor type that are in the common widget library. With the consolidation, there are 21
UI object types in the dataset (Figure 2), which has a long tail distribution. As we can see from
the distribution, some elements are dedicated as leaves in a view hierarchy, e.g., ImageButton or
RadioButtion, and some elements are primarily for determining the layout or as non-terminal nodes,
e.g., LinearLayout. There are cases that a type is used for both leaves and non-leaves, e.g., View. The
View type often catches UI elements that cannot be easily classified into a specific type. Together,
these make UI Object Detection a challenging task.

E MODEL SIZE AND INFERENCE TIME COMPARISON

In this section, we compare model size and inference time of the 5 tasks when they are learned jointly
and individually. We can see the joint model has the largest parameter size, as it includes all the task
heads. However, the size of the 5-task joint model is substantially smaller than the total size of each
individual single-task model (Table 10). The inference time of the joint model for each task is similar
that of the task-specific model (Table 11), as only the part that is required by the task is activated in
the joint model during inference. Altogether, VUT can achieve the five tasks with little inference
time overhead and a substantially small model footprint.

F EXAMPLES OF PREDICTION RESULTS

We here show examples of predictions versus ground-truth for each task, on the test data, as achieved
by a single model of VUT, when it learns all the tasks jointly.

5https://developer.android.com/reference/android/widget/package-summary
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Ground Truth Prediction Ground Truth Prediction

Ground Truth Prediction Ground Truth Prediction

Figure 11: Examples for the UI Object Detection task. In the ground-truth screens, the bounding
boxes of inner objects are highlighted in orange and those of leaf objects are shown in blue. In the
predictions, we render the bounding boxes of predicted objects as inner (orange) versus leaf (blue)
based on the dominant use of the predicted object type, according to Figure 2.
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Command: "tap on the voice
icon"

Command: "press on the icon
below calculator icon"

Command: "select the weather
text which is below the notifica-
tion bar"

Figure 15: Examples for the Language Command Grounding task. The object located by the model
is highlighted with a blue bounding box in each screenshot.

Prediction: "search bar to
search for the location"
Reference: "page displaying a
search box in the app"

Prediction: "page displaying
music track in music app"
Reference: "screen shows mu-
sic playing on an app"

Prediction: "pop-up showing to
create an account"
Reference: "pop-up displaying
to setup the account details"

Figure 19: Examples for the Screen Summarization task. We here display one of the 5 references
(ground-truth summaries) created by human annotators for each screen.
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Prediction: "copy text"
Reference: "copy to clipboard
option"

Prediction: "select the emoji"
Reference: "select guitar
lizard"

Prediction: "enter password"
Reference: "input confirm pass-
word"

Figure 23: Examples for the Widget Captioning task. The target element is highlighted via a blue
bounding box. We here show one of the three references (ground-truth captions) created by human
annotators for each target element.

Prediction: "yes"
Ground Truth: "yes"

Prediction: "no"
Ground Truth: "no"

Prediction: "yes"
Ground Truth: "yes"

Figure 27: Examples for the Tappability Prediction task. The questioned element is highlighted with
a blue bounding box.
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Task 5-Task Joint Model Single-Task Model
Object Detection 63.6 39.5
Widget Captioning 63.6 56.2
Screen Summarization 63.6 56.2
Command Grounding 63.6 63.5
Tappability 63.6 56.2
5 tasks 63.6 271.6

Table 10: Parameter size (millions) comparison between the 5-task joint model and single task model.
The 5-task joint model performs the five tasks simultaneously, which otherwise require five separate
models that amount to a much larger model footprint.

Task 5-Task Joint Model Single-Task Model
Object Detection 12.21 11.59
Widget Captioning 30.02 30.00
Screen Summarization 43.68 42.97
Command Grounding 70.53 71.29
Tappability 51.55 51.09

Table 11: Inference time (ms) comparison between the 5-task joint model and single task model for
each task. The time is calculated by averaging the inference times on the test set. There is little time
overhead for the joint model to perform each task, compared to each task-specific model.
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