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Abstract

Assistive agents should not only take actions on behalf of a human, but also step
out of the way and cede control when there are important decisions to be made.
However, current methods for building assistive agents, whether via mimicking
expert humans or via RL finetuning on an inferred reward, often encourage agents
to complete tasks on their own rather than truly assisting the human attain their
objectives. Additionally, these methods often require costly explicit human feed-
back to provide a training signal. We propose a new approach to tuning assistive
language models based on maximizing the human’s empowerment, their ability to
effect desired changes in the environment. Our empowerment-maximizing method,
Empower, only requires offline text data, providing a self-supervised method for
fine-tuning language models to better assist humans. To study the efficacy of our
approach, we conducted an 18-person user study comparing our empowerment
assistant with a strong baseline. Participants preferred our assistant 78% of the
time (p = 0.015), with a 31% higher acceptance rate and 38% fewer suggestions.
Additionally, we introduce a new environment for evaluating multi-turn code as-
sistance using simulated humans. Using this environment, we show that agents
trained with Empower increase the success rate of a simulated human programmer
on challenging coding questions by an average of 192% over an SFT baseline.
With this empowerment objective, we provide a framework for useful aligned Al
agents at scale using only offline data without the need for any additional human
feedback or verifiable rewards.

Website and code: https://empowerment-for-1lms.github.io/

1 Introduction

Software developers today face a challenge when using LLM coding agents: code suggestions start
out helpful but then start implementing the wrong functions. Often an assistant will suggest a large
block of code, the user accepts it, and then they have to spend time fixing the one part it got wrong,
such as an incorrect assumption. How can we develop coding assistants that still produce helpful
generations, but also know to stop their generations at critical junctures? While this problem is
especially salient for coding assistants (the focus of this paper), such problems are likely to recur in
applications from assistive robotics to interacting with autonomous web agents [5, 38].

Optimizing for helpfulness is challenging. Gathering explicit human labels is expensive and time-
consuming. Additionally, it is unclear how this sort of helpfulness can be learned from traces of
a human expert — the problem is not that generations are unrealistic, but rather that they may be
solving a problem that is different from what the user intends. One approach to this problem is for
agents to ask clarifying questions to better infer the intentions of human users. However, this style of
assistance requires interrupting the user, possibly impeding their flow and making the interaction feel
39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning For
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burdensome. In many situations, it is desirable to have an assistant which does not rely on querying
the user.

The key insight in this paper is to train assistive agents to empower human users, a training method
that does not require that the agents know the human’s underlying intention. Intuitively, empowerment
refers to an agent’s ability to effect changes in the environment. Rather than asking a human for
explicit feedback, the LLM will automatically assess the usefulness of its actions by estimating
whether they enable a human to solve more tasks more quickly. In coding contexts, empowerment
might correspond to implementing helper functions, writing boilerplate, or wrapping up lines of code.
Mathematically, empowerment is defined by a mutual information that measures the degree of control
that an agent’s actions exert on states that occur in the future [20]. The assistive setting, where there
are two agents (an assistant and a human), requires a more nuanced definition of empowerment: we
aim to empower the human agent, enabling the human user’s actions to exert a larger influence over
future outcomes [11, 25]. An agent that maximizes the human’s empowerment will help them reach
goals more effectively, without assuming any prior reward structure. Similar empowerment objectives
are used in psychology to explain certain facets of human learning [12].

We use code generation as a context for studying empowerment-maximizing assistants because it is
one of the few real-world applications today where humans regularly interact with assistive agents
(e.g., Github Copilot). It is also an appealing starting point because preexisting datasets [19] allow us
to measure the efficacy of empowerment maximization in a rigorous way.

Contributions. In this paper, we derive a practical and scalable algorithm for training LLM
agents to maximize empowerment, and demonstrate its effectiveness in the code generation setting.
Specifically, our work makes the following contributions:

1. Empower method (Section 4.2). We propose Empower, a method for aligning LLM agents to
work with humans based on the objective of maximizing effective empowerment. Our method
provides a proof-of-concept for training an LLM agent to maximize a human’s empowerment.

2. Simulated results (Section 5.2). Experimental results with a Gemma-3-27B-it [37] human on
LiveCodeBench [19] show that our method leads to a higher Pass@1 without explicit human
feedback. A Llama-3.1-8B-Instruct model trained with Empower over doubles the Pass@1 rate
compared to the strongest baseline.

3. User study (Section 5.3). We demonstrate in a user study that human coders prefer our em-
powerment assistant over a baseline. Participants preferred our assistant in practice 78% of the
time (p = 0.015), and accepted our assistant’s suggestions 31% more often than the baseline’s
suggestions (p = 0.0002). Additionally, participants tended to delete 26% fewer characters they
had accepted from our method than from the baseline (p = 0.012). This amounts to a stronger
assistant that is more likely to suggest code the user will accept and actually use.

Taken together, our results demonstrate that LLM assistants can be trained without receiving feedback
or interaction from humans by reasoning about how their actions might enable humans to complete
more tasks more quickly.

2 Related Work
Past work has studied empowerment in the context of intrinsic motivation and reinforcement learning.

Empowerment. Informally, empowerment quantifies the influence an agent’s actions have over
outcomes in the environment. Empowerment has traditionally been defined as the channel capacity
between a sequence of actions and the following state [1, 20, 21, 31]. Empowerment objectives have
been used in single-agent reinforcement learning to enable intrinsic motivation and exploration [6, 8].
More recently, empowerment has been explored for collaborative settings, where a robot assistant
learns to maximize the empowerment of a human user. Du et al. [11] propose the AvE algorithm which
enables assistance by computing empowerment with random rollouts. Myers et al. [25] adopt a modi-
fied objective, the effective empowerment, which can be learned with a scalable contrastive objective.
However, these prior works typically use simple gridworld-like or video game-like environments. On
larger web agent benchmarks, Song et al. [34] found that the effective empowerment is highly corre-
lated with LLM task performance. Their work focused on evaluating the correlation between effective
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Figure 1: Training assistive agents via Empower. An LLM generates the cumulative likelihood of
the suffix, shown below each token. Empowering completions are selected as the longest suffix where
the cumulative likelihood is greater than a threshold. This trains the assistant to complete text up to a
decision point. Then, the human will have more choices about where to take the program, so their
next action is empowered.

empowerment and reward, rather than on optimizing LLM agents with an empowerment objective.
To the best of our knowledge, ours is the first to apply this principle to train LLM agents, applying
it at scale to a realistic coding task. This is enabled by our insight that LLM uncertainty can be used
to identify key decision points, and we can empower people by helping them reach those points.

Learning from Human Preferences. Many methods attempt to align Al agents by updating the
agent with human preference information. Christiano et al. [7] used an online stream of human prefer-
ences to train a reward model concurrently with an actor-critic policy. This method (RLHF) was later
adapted to align LLMs to human preferences, enabling conversational agents like InstructGPT [35,
26, 10]. These methods often use PPO or related policy-gradient methods to fine-tune a pre-trained
LLM [32, 36, 9]. Learning and optimizing a reward model can be expensive or unstable, leading to
alternative methods like DPO [28] and IPL [16] that directly optimize the policy to match human pref-
erences without an intermediate reward model. Training with human feedback faces key limitations:
human values may be difficult to represent with reward functions [4], they may change over time [2],
and optimizing them may lead to misaligned behaviors like power seeking and manipulation [39].
Our empowerment objective offers an alternative strategy for aligning LLMs which instead completes
tasks for the human that are obvious and general, rather than aligning assistance to a set of preferences.

Self-Supervision for LLMs. There is existing precedent for having LLMs provide their own
feedback, as in self-critiquing methods that are common in mathematical and logical reasoning
applications [41, 23, 33] or methods that aim to leverage the model itself to provide a learning signal
for self improvement [17, 18, 27, 42]. In contrast, our work places the human back at the center:
rather than optimizing an LLM to produce text that another LLM thinks is correct, we optimize an
LLM to produce code that enables a human to solve more tasks more quickly.

Assistive Agents. One mathematical framework for assistive agents is the assistance game [15]. The
assistance game extends the standard Markov decision process (MDP) definition to include a human
and a robot agent which interact in a shared environment to maximize a joint reward that is only known
to the human. The agent must combine inference of the human rewards or goals with reinforcement
learning to optimize the inferred objective [3, 2, 14, 22]. Methods that learn from human prefer-
ences [7, 28] can be seen as special cases of the assistance game where the human’s actions only exist
to provide information about the reward to the agent. Other works within the assistive setting focus on
task completion with humans in the loop, where the robot assistants need to learn when to ask humans
for help and what to ask them for [30, 29, 24]. Empowerment methods are a special case of assistive
games, where the empowerment objective acts as a proxy for the human’s reward function [25]. Our
work builds on this foundation to study how empowerment methods might be scaled to align LLMs.



Our contribution is to connect empowerment to the problem of aligning LLM agents to human users,
showing that the empowerment objective can provide a scalable self-supervised learning signal for an
LLM agent aiding a human in an assistive setting.

3 Preliminaries

We cast the problem of an LLM agent assisting a human as a Markov decision process (MDP).
The state is the program text at the given timestep. At each state, the LLM agent action suggests a
piece of text to append to the conversation. The human agent first chooses to ACCEPT or REJECT the
suggestion, or FINISH writing the program. Then, unless they choose to FINISH, they will append
some number of tokens.

Notation. In this assistance MDP, the human policy 7 selects an action a™ € Ay, and the LLM
agent’s policy 7R selects an action a® € Agr to complete the code snippet. Let £ be the set of
possible tokens and £* be the set of all strings consisting of these tokens. The human’s actions
are Ag = {{ACCEPT} x L, {REJECT} x L£,FINISH}, where ACCEPT appends the LLM agent’s
suggestion to the conversation followed by the human’s own text, REJECT does not append the
suggestion and only appends the human’s text, and FINISH ends the episode. If the human does not
choose FINISH, they will write one token. The LLM agent’s actions are Agr = L*, where the agent
suggests any sequence of tokens to append to the conversation. Note that /;.; indexes the tokens from
i to j inclusive. We will use s; = /1., to indicate that the current state is n tokens. The assistant’s
suggestion is af‘ = {y4+1:n+i> Where 7 is the number of tokens it proposed. If the human accepts the
suggestion, then the human will write ¢,, ;1 o. If the human rejects the suggestion, then they will
write £, 1.

The dynamics are then defined by the following transitions when s; = ¢.,, and a{{ = lpi1mti

él:n+i+2 for a? = (ACCEPT,€n+i+2)
Si41 = < Ling1 for afl = (REJECT, £, 4i11)
1 for af! = FINISH.

We will define random variables s; and af! to denote the state and human action at time step ¢.
Similarly, in state s; = {1.,, if the human does not accept the assistant’s suggestion let &I;IH represent
the random variable of the next token that the human writes. Let £* be a random variable over
possible future text. Additionally, 7 (€, +1.n+4 | £1.n) denotes a conditional probability distribution
over possible completions. We will choose this to be a pre-trained LLM.

Empowerment. We will define empowerment using the mutual information I(+; -) between two
random variables. In a single-agent MDP, empowerment is defined by Klyubin et al. [20] as the
channel capacity between a sequence of n actions and the resulting state n steps into the future:

C(p(st4n | 0 5¢)) = max I(a};si1n | 5¢). (1)
p(af|st)

Informally, this objective states that empowerment is the maximal degree to which the next n actions
aj selected in the MDP can impact the resulting state s,,,. This objective is intuitively appealing
because it provides a mathematical way of quantifying whether an assistive agent’s actions are useful,
without knowing the humans reward function. However, it is challenging to use this objective in
practice because (i) it involves optimizing over a sequence of actions, and (ii) mutual information is
still non-trivial to compute in high-dimensional environments or over long horizons.

4 Maximizing Empowerment over Language

In this section we discuss how to train empowering assistants in the language domain. Empowerment
is a useful objective for assistance because it helps people quickly reach states where they have many
choices, so it takes broadly useful actions that are helpful for the most people. This leads to a more
natural type of assistance that does not make assumptions about, or even try to infer, the human’s
goal.



Algorithm 1: Logit Threshold Empowerment (Empower)

Input: A text document /1.y with sampled state /5.,
Output: Empowering suggestion ¢, 41.,,+;+ for state (1.,

1: forie {1...N} do > Loop through the possible completion lengths
2: H«+ — log (4 +1:m+i | C1:n) > Compute the one-sample entropy
3: if 1 > 7 then > Check if estimated entropy exceeds threshold
4: | return {1451 > Return the last index that was below threshold
5: return 4, 1.y > Entropy is always within bounds, so return rest of program

Section 4.1 introduces the core problem of constructing a training dataset for the assistant with only
offline human data. Section 4.2 describes Empower, our practical method for choosing completions to
train the assistant. We take the longest completion where the cumulative likelihood of the completion,
as judged by an LLM, is above a certain threshold. Section 4.3 shows that, under certain assumptions,
our method is computing an approximate upper bound on the empowerment of a completion. We
train the LLM assistant to complete text that has a low empowerment — text that is predictable — so
that the human does not have to write it. Instead, the human can focus on important design decisions,
rather than boilerplate code.

4.1 Using Offline Data

Given an offline dataset of text written by the human, /1.y ~ 7y, the challenge is in choosing the best
state-action pairs for finetuning the assistant. One approach would have an assistant model generate
a proposed completion and then use some external feedback, such as whether the human would
accept the suggestion, to score its quality. However, we do not assume access to human preference
data, so the training signal must come from the text the human wrote. Therefore, we will train the
assistant to output the same text that the human wrote in the dataset. This removes the need for
ACCEPT/REJECT feedback, because the assistant proposes text that the human actually wrote, which
we assume would be accepted. Formally, we train the assistant to output £,,11.,,+; When it is given
{1., as the state. For each piece of text in the dataset, we sample a single state ¢.,, by uniformly
sampling ¢ € [1, N]. The difficulty lies in choosing the appropriate length of completion to train on.

4.2 Our Algorithm: Empower

When the human writes boilerplate code, they have a low empowerment because their actions are
easily predicted, so they carry little information about the future. To empower the human, an assistant
should be trained to complete this predictable text so that the human does not have to. Our insight
is that we can use an LLM, 7, to estimate how likely a completion is. We therefore propose the
following algorithm to choose completions to train our assistant on:

it = argmiax{i : _logﬁ-(gnJrl:nJri | el:n) < 77} (2)

This optimization chooses the largest completion length, ¢, such that the negative log likelihood
of that completion as judged by an LLM is below a threshold 1 which we choose. This can
equivalently be viewed as choosing the longest completion length, 7, where the cumulative likelihood
of the completion is greater than 27". We write the optimization with a negative log likelihood to
highlight that it is a one-sample estimate of the entropy. This mathematically connects our method to
empowerment, which we will explain further in Section 4.3.

During training, we first sample a program from an offline dataset, then sample a prefix to that
program which becomes the state ¢1.,. Any suffix is a possible completion. We train on the suffix
£y 41:n+4+ chosen by Equation (2). Intuitively, we are training the assistant on obvious completions —
those that the LLM thinks are likely — thereby leaving the human to write more impactful text in the
future. We summarize our method in Algorithm 1, and show an illustration in Figure 1.

4.3 Mathematical connections with effective empowerment

Under some assumptions, our algorithm can be viewed as training the assistant to suggest text
that would have a low empowerment for the human to write. We use the effective empowerment
objective [25], which provides a computationally-tractable alternative to the canonical empowerment



objective [20] (see Equation (1)). Effective empowerment is defined with respect to a specific policy,
7H, and a future state £*. dWe define the effective empowerment at a state £1.,, as:

E(ma, lip) 2 T 1507 | £1.). A3)

This is the same objective introduced in [25], but with v = 0. This objective measures the impact
that the human’s action, €§+1’ has on their future state. We can upper-bound the mutual information
with an entropy:

I(€§+1;é+ | 61%) = H(EE-H | gl:n) - H(ég-l | £+7£1:n)
< H(KnH+1 | El:n)-

If we can estimate H (E,Ifﬂ | ¢1.,,), we can estimate an upper bound for single-action empowerment.
Computing this entropy exactly requires knowing the true human policy, g (€§+1 | £1.n), which we
do not have access to. Instead, we assume access to another likelihood estimator, fr(ﬁgﬂ | 41.1)s
which can approximate the human’s marginal likelihood of any action at a given state. Then we can
approximate the human’s marginal entropy [ (E,I,;IH | #1.,,) by sampling an action from the human
and using a one-sample monte carlo estimate:

ﬁ(£?+1 | l1) = — 10gﬁ(£§+1 | £1:n).
In practice, we choose our human entropy estimator 7 to be a pre-trained LLM. Our estimated upper
bound on the empowerment becomes:
5(7TH,€1:”) S - logﬁ-(fz;l-ﬁ-l | El:n)'

~

While this is a rough approximation of the entropy, it works well in practice for the purpose of
choosing empowering completions, and is simple to implement. Under these assumptions, the
algorithm described by Equation (2) can be seen as training an assistant to complete text which is
predictable, and therefore would not be empowering for the human to write.

S Experiments: Code Generation

Our experiments apply the empowerment framework discussed in Section 4 to the task of code
generation. In Section 5.1, we describe our experiment setup. We then evaluate our method in a novel
simulated setup using LiveCodeBench (Section 5.2), after which we validate our findings in the real
world by running an 18-person double-blinded human study (Section 5.3).

5.1 Experiment setup

Datasets. We train all models and methods using a dataset of 4,138 unique questions from Code-
forces', each of which is paired with one attempted solution by Gemma-3-27B-it [37]. We do not
filter the dataset for success on the testcases.

Models. We use Llama-3.1-8B-Instruct [13], Qwen3-8B [40], and Qwen3-14B [40] as assistant
models. For the simulated setting, we use Gemma-3-27B-it [37] as the human model. The prompts
we use are provided in Section D. We use all models with their default sampling parameters.

Baselines. We compare against both trained and untrained baselines. (1) SFT-N finetunes the
assistant on the next IV tokens that the human wrote in a particular state, followed by a stop token.
This should teach the model to output correct suggestions which are not too long, so that they do
not make too many assumptions about what the human is trying to do. We evaluate SFT-10 and
SFT-20. (2) SFT-RAND trains on random human completions between 1 and 30 tokens long to
avoid biasing too much towards a specific completion length. (3) Base is simply the base assistant
model without any training or restrictions on top. (4) Base-N is the same as Base, but we cap the
suggestion length at N tokens. We include this baseline since we hypothesize that shorter completion
lengths are more likely to be accepted. We evaluate Base-10 and Base-20.

'nttps://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
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Figure 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-
CodeBench problems. We find Empower to outperform all baselines in terms of pass@1 and DPR.
Error bars show standard errors.

Our Method. Our method, Empower, trains on completions returned from Algorithm 1, which we
run on all completions in the training dataset before the start of training. We use the untrained base
assistant model as our likelihood estimator, 7. Crucially, we do not provide the likelihood model
access to the relevant Codeforces problem, only the text in the state (i.e. the completion tokens
written so far).

5.2 Evaluating empowerment in a simulated setup

To evaluate the empowerment assistant with a simulated human, we adopt the MDP structure
described in Section 3 where the assistant proposes suggested code completions which the human
may accept or reject, and then append their own code. We limit the human action size to Ky = 10
tokens and the number of rounds of human and assistant actions per problem to 50. We evaluate on
LiveCodeBench [19], a benchmark of competitive programming problems that is regularly updated.
We restrict the benchmark to problems from release #6 to avoid contamination.

Evaluation Metrics. To evaluate the performance of Empower compared to the baselines, we
propose the following three different evaluation metrics. (1) Pass@1 measures the success rate of the
generated code snippets by evaluating them on the problem testcases, counting a success only if all of
the testcases pass. The results are averaged across all problems in the dataset. (2) Acceptance rate
provides a measure of the human’s preference for one assistant’s suggestions over another’s.

Our third metric is (3) Discounted Pass Rate (DPR). A higher acceptance rate is not always beneficial
if the suggested completions are not more helpful. Occasionally an assistant will propose a completion
which looks good, but actually introduces a bug or confuses the human, leading to a lower pass@]1.



Human Study Results
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Figure 3: Human study results with the Llama-3.1-8B-Instruct assistant. Exact 95% confidence
intervals are shown for Most Enjoy and Most Relevant as they represent Bernoulli data. Standard
error bars are shown for Accept Ratio and Characters Deleted. In all cases, participants preferred
using our Empower assistant.

Similarly, a lower acceptance rate can lead to a higher pass@ 1, making an assistant appear better even
though the real gain in performance is from the human solving the problem on their own. Therefore,
we introduce a new metric which we call the Discounted Pass Rate (DPR), which is a better measure
of good assistance because it accounts for both the pass rate and the amount of text the human had
to read and write to get to a successful program. An assistant that makes long suggestions will
occasionally be correct, however, more often than not the human will waste effort checking if an
incorrect suggestion is correct. The DPR for a particular solution is defined as:

_ «-Tokens Read+ 3-Tokens Written
DPR = 1Correct Solution * 7Y b (4)

The constant « specifies how “difficult” it is for the human to verify text that the assistant has
suggested. Similarly, 3 specifies how “difficult” it is for the human to write text on their own. Under
this metric, the best assistant will help the human have the highest pass rate, while only suggesting
completions which are most likely to be accepted and bring the program closest to its conclusion. This
measures how useful the assistant is at generating correct solutions, not just how often it convinces
the user to accept their flawed suggestion. To get the total DPR, we take the mean across all problems
in the benchmark. In this work, we use v = 0.999, a = 0.1, and 5 = 0.5 to represent that it is often
more difficult to generate than to verify, as well as to prevent the DPR of a long but correct solution
from approaching 0.

Optimizing the DPR directly requires training with real human interaction data, or using an accurate
human model, both of which are challenging. Our results show that empowerment is able to increase
DPR and other metrics with an entirely offline dataset.

Quantitative Results. Comparisons between the baselines and our method with n = 0.32 are
shown in Figure 2, using Gemma-3-27B-it as the simulated human model. Empower outperforms all
baselines on pass@ 1, accept ratio, and DPR. It is worth noting that the accept ratios of Empower and
Base-10 are close for Llama-3.1-8B-Instruct and Qwen3-8B . We hypothesize that shorter suggestions
are more likely to be accepted, which is why Base-10 has a higher acceptance rate. However, in that
case, acceptance ratio does not correspond to a higher Pass@1, and therefore the DPR is lower. Just
because a suggestion is short does not mean that it is correct. Empower tends to output suggestions
which are more likely to be accepted and at the same time are also more likely to create correct
programs.

We also perform the same set of experiments with Llama-3.3-70B-Instruct as the human model, for
which we show results in Table 1 of Section B. Empower similarly beats the baseline on pass@1 and
DPR. See Section B for the full numeric results.

5.3 Human Study: Evaluating Empowerment for Real-World Code Assistance

To evaluate empowerment at scale, we conducted an 18-person double-blinded user study in a
code-generation setting with an assistant, similar to GitHub Copilot. Participants were randomly
assigned to complete one of two python coding problems with corresponding testcases. The editor
was configured to log whenever they accepted a suggestion or typed a character. They first spent



25 minutes attempting the problem with no assistant. Then, they spent 15 minutes attempting the
problem with Assistant 1, took notes on what they liked and didn’t like about it, and then repeated
this step for Assistant 2. Finally, they were asked to rank the assistants on several metrics including
how relevant they found the suggestions and which assistant they would most enjoy using in practice.
The order of the assistants was randomized and hidden from the researcher’s view.

To choose which two assistants to compare, we ran a pilot study with Llama-3.1-8B-Instruct as the
assistant. Participants in the pilot tended to prefer Empower with n = 4, and the Base-20 baseline, so
we chose these to focus on for the full study.

Survey Results. We show the results of the study in Figure 3. Participants ranked the Empower as-
sistant as the one they would more enjoy using in practice 78% of the time, preferring Empower with
a p-value of 0.015. Additionally, they ranked our assistant as providing more relevant suggestions
61% of the time, although the result was not statistically significant with a p-value of 0.240. Although
both assistants tended to provide relevant suggestions, the Empower assistant was more judicious,
providing fewer suggestions overall. Participants preferred this approach to assistance, which we
attribute to the empowerment objective teaching the model to only complete as long as it is confident
about what the user will type next.

Quantitative Results. We also collected quantitative data about the user-assistant interaction. The
Empower assistant had an acceptance rate of 8.08% compared to the 6.18% of the Base-20 assistant.
Participants accepted suggestions from our assistant more with p = 0.0002. Participants also tended
to delete more accepted text from the Base-20 assistant than from ours. The average number of
deleted characters per accepted suggestion was 12.91 for Base-20 and 9.56 for ours with p = 0.0118.
On average, Empower suggested ~208 suggestions per user, whereas Base-20 suggested ~333. The
baseline also tended to give longer suggestions, at 82.2 characters per suggestion compared to 43.6 for
Empower. These differences highlight the type of assistance that empowerment enables. Rather than
making decisions for the human, our empowerment objective trains an assistant that completes the
obvious and no more. This leads to a more natural interaction, and reduces the feeling of frustration
that comes from an assistant completing too much.

6 Discussion

In this paper, we showed how assistive (LLM) agents can provide their own feedback signal for
learning by estimating how empowered a human coder is. Our logit threshold method tractably
computes empowering suggestions, which maximize the impact that the human will have.

While we demonstrated success in coding assistance, we expect that LLM assistants trained with
empowerment can be useful in many other domains, such as writing assistance or navigating an
application. These also include more agentic applications where the assistant can infer when the
human would predictably take an action, and instead take the action automatically. Our work enables
the training of these agents at scale by simply configuring the likelihood estimator for a given domain.

While there has been much discussion of LLM post-training methods in recent years, there has been
relatively less discussion of how these post-training methods are connected with the training objectives
of the underlying LLMs. LLMs are trained primarily on next-token prediction, a self-supervised
objective. Our work suggests that, in addition to training the base LLM with a self-supervised
objective, the post-training (i.e., alignment) might also be done with a self-supervised objective.

Limitations. All experiments were conducted on competitive programming problems. Real-world
code will often differs significantly in style and difficulty, which may require a more robust marginal
likelihood estimator. The application of empowerment to more general coding tasks is left for future
work.

Reproducibility

To ensure that our results are reproducible, we provide a link to our code in Section A. The algorithm
we used is described in Section 4.2, and the exact prompts we used for the assistants are detailed in



Section D. The study instructions we provided to users, as well as the two problems they attempted,
are given in Section E.

Ethics Statement

The human study was conducted with Institutional Review Board (IRB) approval (Protocol #2025-
03-18427).

Empowerment methods may be used to create better assistive agents, improving the experience of
people who collaborate with LLMs. There is a risk of an assistant being trained to self-empower,
which would create a general power-seeking agent. However, our methods are focused on human-Al
collaboration, which does not pose this risk.
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Base Model Name Pass@1 (1)  Accept Ratio (1) Discounted Pass Rate (1)

Qwen3-8B Empower 0.218(E001) 0.488(+0024) 0.176(+0016)
Qwen3-8B SFT-20 0.167(F0018) 0.192(£0018) 0.1160013)
Qwen3-8B SFT-10 0.152(F0017) 0.299(+0021) 0.114(+0013)
Qwen3-8B SFT-RAND-1-30  0.156(=0017) 0.201(£0:019) 0.109(+0012)
Qwen3-8B Base-10 0.198(+0019) 0.592(£0.023) 0.162(F0015)
Qwen3-8B Base 0.183(+0018) 0.351(+0022) 0.143(F00149)
Llama3.1-8B Instruct ~Empower 0.282(£002D 0317002 0.208(£001)
Llama3.1-8B Instruct  SFT-20 0.097(+0014) 0.165+0017) 0.066(+0010)
Llama3.1-8B Instruct  SFT-10 0.104 (0014 0.257(0021) 0.074(£0010)
Llama3.1-8B Instruct SFT-RAND-1-30  0.112(+0019) 0.184(+0018) 0.075(£0010)
Llama3.1-8B Instruct  Base-10 0.156(0017) 0.537(£0:023) 0.127(+00149)
Llama3.1-8B Instruct  Base 0.170(F0018) 0.297(F0021) 0.134(F0014)
Qwen3-14B Empower 0.249(E020) 0 459(x002) 0.201 (E0016)
Qwen3-14B SFT-20 0.1450017) 0.188(+0018) 0.102(+0012)
Qwen3-14B SFT-10 0.165(+0017) 0.292(+0021) 0.126(+0013)
Qwen3-14B SFT-RAND-1-30  0.145(£0017) 0.226(+0020) 0.106(+0012)
Qwen3-14B Base-10 0.174(F0018) 0.597(£0:023) 0.143(+0019)
Qwen3-14B Base 0.161(F0017) 0.299(+0:021) 0.127(F0019)

Table 1: Assistant results with Llama-3.3-70B-Instruct as the human model. We evaluate on
554 LiveCodeBench problems, and find that Empower outperforms all baselines in terms of Pass@1
and DPR. Standard errors are shown in parentheses.

A  Website and Code

The website that links to the code and configs to reproduce our experiments can be found at https:
//empowerment-for-1lms.github.io/.

B More Results

Full experimental results are presented in Tables 1 and 2. We ablated the choice of human model, also
training models on a Llama-3.3-70B-Instruct generated dataset and using it as the simulated human.

C Training Details

Experiments were performed on a NVIDIA H100 node with 8 GPUs, each with 0GB of VRAM.
Pre-trained weights were taken from the LLaMA-3.1-8B, LLaMA-3.3-70B [13], Qwen3-8B , Qwen3-
14B [40], and Gemma-3-27B-it [37] models, as described in Section 5. We finetuned the assistant
for one epoch on a dataset of 4,138 examples with a test split size of 0.2.

The LlaMA models were used under the Llama 3.1 Community License Agreement. The Qwen
models were used under the Apache 2.0 license. Gemma was used under the Gemma Terms
of Use. Our training dataset was initialized from MatrixStudio/Codeforces-Python-Submissions,
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions.
We de-duplicated the problems and re-generated the solutions using the corresponding human model
that was being assisted.

D Prompts

We provide prompts used for the LLMs in our experiments.

D.1 Assistant Prompt

The assistant system prompt is:
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Base Model Name Pass@1 (1)  Accept Ratio (1) Discounted Pass Rate (1)
Qwen3-8B Empower 0.178(+0.018) 0.630(£0-023) 0.156(£0.016)
Qwen3-8B SFT-20  0.086(09%)  (.299(£002) 0.072(£0011)
Qwen3-8B SFT-10  0.101*00%)  367(£002) 0.086(=001)
Qwen3-8B Base-10 0.090(£0013) 0.582(£0.023) 0.080(£0.012)
Qwen3-8B Base 0.092(£0.014) 0.400(£0:023) 0.083(£0012)
Llama3.1-8B Instruct ~Empower 0.176(E0018) 0.670(£0-022) 0.150(£0.015)
Llama3.1-8B Instruct ~ SFT-20  0.070(X00'2 0,231 (+0020) 0.057(E0010
Llama3.1-8B Instruct ~ SFT-10  0.062(=00')  0.268(+021) 0.053(*0010)
Llama3.1-8B Instruct  Base-10  0.064(*0¢'D) 0,649(=0022) 0.057(*0010)
Llama3.1-8B Instruct ~ Base 0.064001D 0383002 0.055(*0.010)
Qwen3-14B Empower ~ 0.170(X"1®)  0,659(£0022) 0.148(X0019)
Qwen3-14B SFT-20 0.088(+0013) 0.381(+0023) 0.077(£0012)
Qwen3-14B SFT-10  0.101F00 0.461 (£0023) 0.088(£0012)
Qwen3-14B Base-10  0.062(F001D 0.530(£0023) 0.055(£0010)
Qwen3-14B Base 0.086(+0013) 0.312(0:022) 0.077(£0012)

Table 2: Assistant results with Gemma-3-27B-it as the human model. We evaluate on 554 Live-
CodeBench problems. We find Empower outperforms all baselines in terms of Pass@1 and DPR.
Standard errors are shown in parentheses.

I You are assisting a human in a python code generation task. Your
role is to provide suggested completions given

> what they have already typed. Please try to infer what the human
wants the next piece of code to be given the

3 code they have already written. If they have not writtem any code,
please provide a good start to their program, such as with
import statements or function definitionmns.

5 The way you will compose your suggestion is by providing the next
version of the code which would replace the current code.

6 Please re-type the current code and then add in your suggested
completion.

7 DO NOT output any other text, including no quotation marks.

9 ## Remember to always re-type the code written so far and then add
in your suggested completion.

10 If you don't re-type the code written so far *exactly as it is
written* (with all of the functions, comments, import statements
, etc)

1l an error will be raised.

The assistant user prompt is:

I Now it's your turn! Please provide a completion for the following
code:

> " "python

{{ code_to_complete }}

D.2 Few Shot Examples for Assistant

1 # > user

2 # > Now it's your turn! Please provide a completion for the following code:
3 # " python

4 def twoSum(self, nums: List[int], target: int) -> List[int]:

5 numMap = {}

6 n = len(nums)
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# Build the hash table
for i in range(n):
numMap [nums [i]] = i

# Find the complement
for i in range(n):

assistant

Here ts my suggested completion:

“python

twoSum(self, nums: List[int], target: int) -> List[int]:
numMap = {}

n = len(nums)

# Build the hash table
for i in range(n):
numMap [nums [i]] = i

# Find the complement
for i in range(n):
complement = target - nums[i]

user
Now it's your turn! Please provide a completion for the following code:
“python

ef whoami(name:

assistant
Here ©1s my suggested completion:
" python

ef whoami(name: str, age: int) -> str:

D.3 Human Model Prompts

Human Appender Prompt. The prompts given to the human when they are deciding what to
write next. They are provided both a system prompt and a user prompt. The system prompt is the
following:

I You are an expert Python programmer. You will be given a question (

3

problem specification) and will generate a correct Python
program that matches the specification and passes all tests.

*Please do not provide any sample outputs or testcases in your

response. Additionally, you are only allowed to solve the
problem *ONCE=*.

Do not attempt to retry your solution if you are unhappy with it.

4 For example, if your solution is in a function called “solve , you

should only define one function called “solve . DO NOT try to
retry it if you think it has a bug.

For example, you should not write “solve2” if you think “solve ™ has

a bug. Only the first solution will be counted, so simply stop
writing once the first solution is finished--even if it is not
correct.

The user prompt is the following:

» N =

|

5

### Question:
{{problem.question_content}}

### Format:

6 You will use the following starter code to write the solution to the

7

problem and enclose your code within delimiters.

“python

15



{{ problem.starter_code 1}}

{
Read the inputs from stdin solve the problem and write the answer to
stdout (do not directly test on the sample inputs). Enclose
your code within delimiters as follows. Ensure that when the
python program runs, it reads the inputs, runs the algorithm and
writes output to STDOUT.
““python
# YOUR CODE HERE

{

Human Acceptor Prompt. When the human is choosing whether or not to accept or reject a
suggestion, it has a different prompt. There is a system prompt, a user prompt that encourages it
to reason about the suggestion, and finally a user prompt that asks it for its final decision to accept,
reject, or finish. The system prompt is the following:

You are an expert Python programming agent. You will be given a
question (problem specification) and will generate a correct
Python program that matches the specification and passes all
tests.

3 The way you will compose your program is by interacting with the

12

14

15
16
17

18

file editing interface through tools.

In addition, you will be assisted by an automated assistant that
will sometimes propose suggested completions to whatever you are

typing.

At every step you will first write your thoughts on the suggestion
and whether it correctly continues your solution, or instead
introduces bugs.

Please *only consider the assistant suggestion* in your decision to
accept the suggestion, reject the suggestion, or finish and
submit your code for testing.

Previous code that you have written is not able to be changed, so
you should only look at the changes the assistant is proposing.

At the very end of your thought process, you will write omne word to
specify which action you are taking.

Unless you take the "finish" action, you will be prompted afterwards

to write what you would like to append to your program.

Therefore, please accept suggestions as long as they do not
introduce bugs, and either help you solve the problem or improve

the quality of your code.

It's ok if the the suggested completion is incomplete, because you
can always append to it later.

3 You will first be prompted to write your thoughts on the suggestion.

Afterwords, you will be prompted to write which action you would
like to take.

Here are the actions you have access to:

### "accept"
description: Accepts a suggested completion given by an
intelligent assistant. The suggested completion will then be
incorporated into the code you have written.

### "reject"
description: Rejects a suggested completion given by an
intelligent assistant. The suggested completion will not be
incorporated into the code you have written.

### "finish"
description: Tells the editor that you have finished writing the
program and to run the testcases. Only call this tool if you
are confident that your program is finished. You will not be
prompted to write any more code after calling this tool.

16



24 Remember , you will be able to continue writing your program
regardless of whether you accept the suggested completion or not

25 As long as the suggested completion does not introduce bugs, and
either helps you solve the problem or improves the quality of
your code, you should accept it.

26 DO NOT reject a suggestion because it is "minor" or "short". Only
reject the suggestion if it is wrong, introduces a bug, or
otherwise sets you back.

The user reasoning prompt is the following:

I ## You have written the following code:
T “python
5 {code}

&)

6 ## Suggested Completion
7 Here is what your code would look like with a suggested completion:

8 python
9 {suggestion}

12 ## Suggested Completion diff
13 For clarity, here is the diff between your current code and the

suggested completion code:
4 {git_diff_string(code, suggestion)}

16 ## Instructions:

17 What do you think of the suggested completion? Do you think it is
solving the question correctly, or does it introduce a bug or
error?

18 Please write down your thoughts. You are not allowed to write any
new code in your response, only your thoughts on whether the
suggested completion helps you on your way to solving the
problem, or otherwise improves the quality of your code.

19 It is ok if the the suggested completion is incomplete, because you
will be prompted to append to it later.

20 You are also not able to take any actions at this stage.

After it has provided reasoning for whether or not it believes the suggestion is a good one, we prompt
it to make its final decision with the following user prompt:

I Now, please write which action you would like to take.

> Remember , the actions available are "accept" to accept the suggested
completion, "reject" to reject the suggested completion, and "
finish" to finish writing your code and run the tests.

3 Please only call "finish" if you are confident that your code is
correct and you are ready to run the tests.

E Human Study

E.1 Study Instructions

Setup
1. Sign research consent form.
2. Runlocally: git clone https://github.com/festusev/tab_frontend

3. If on Mac:
3.1. Navigate to the cloned repository and run: ./install.sh
4. If on Windows:
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4.1. Install node: https://nodejs.org/en/download
4.2. Runnpm install
4.3. Runnpm start

. If on Linux:

5.1. Run sudo apt install nodejs npm

. Enter your name in the box.

7. Switch the assistant to Assistant 1. Open up the scratchpad, type a few things, and make

Study

0 N N L AW

sure that a suggestion appears (suggestions will not always appear).

. You can accept suggestions using the Tab key.

. You can explicitly reject a suggestion using the Esc key.
10.
11.
12.

Click Back to Launch at the top of the window.
Switch the assistant to No Assistant.

Move on to the Study section.

. You are only allowed to use the Python docs: https://docs.python.org/3/. You may

not use anything else on the internet.

. To run the test cases:

2.1. Save your file (CMD + S).

2.2. At the top of the editor, click Run Testcases. This will copy a command to your
clipboard which you can then paste and run in your terminal.

. Set a timer for 25 minutes.

. Switch the assistant to No Assistant.

. Begin the problem.

. Whenever you or the timer finish, switch to Assistant 1.
. Open up the same problem.

. Set a timer for 15 minutes and solve the problem with Assistant 1. Pay attention to what

you like and dislike about this assistant.

. Fill out your notes in this form: redacted.
10.
11.
12.
13.

Save the file you are working on (CMD + S).
Repeat steps 6-10 for Assistant 2.
Complete the rest of the form and rank the assistants.

Make sure to zip and upload your problems directory to the form.

E.2 Problem 1: Lava Trap

Simulate a single player walking on a square grid with lava squares. After each command, print if
they fell into the lava, or, if they survived, print the player’s current row, column, and facing.

The player will never move out of bounds of the grid. The top left of the grid is (1, 1) and the bottom
right is (N, N).

Board

* An N x N grid of characters:

- . —empty cell
— L—lava

e Cells are 1-indexed: row 1..N, column 1..]NV.
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Player

* Starts at row r, column c, facing dir € {U,D,L,R}.

Commands

You are given () commands:

1. MOVE
Move forward one step in the current direction.

2. FACE X where X € {U,D,L,R}
Set the facing direction.
Tile Effects (after the move)

* If the player moves into lava, the simulation ends, and Game Over is printed.

Input
The input will come from standard in:

1. N
2. N lines of grid (each of length N)
3. rcdir

4.Q

5. @ lines of commands

Constraints
¢« 2< N <50
e 1<r,c<N
* dir € {U,D,L,R}
¢ Commands:
— MOVE

- FACE UIDILIR
e 1<Q<2x10°
Output

After each command, print one line:
r c dir

(with the player’s 1-indexed row/col and facing as U|D|L|R).

Example
Input

3
..L

2 2R
3
MOVE
FACE U
MOVE
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Output

23R
2370
Game Over
Starter Code
|  import sys
2
3
4 def read_grid():
5 """Reads N and then N lines of the grid. Returns (N, grid)."""
6 n = int(sys.stdin.readline().strip())
7 grid = [list(sys.stdin.readline().strip()) for _ in range(n)]
8 return n, grid
9
10
11 def read_starting_ position():
12 """peads r, c, dir. Returns (r, c, dir)."""
13 parts = sys.stdin.readline() .split()
14 r, ¢, d = int(parts[0]), int(parts[1]), parts[2]
15 return r, c, d

16
17 def read_q(Q):

18 """Reads q from stdin."""

19 return int(sys.stdin.readline().strip())
20

21 def read_next_move():

22 """Reads and returns the next command as a string, or None <f EOF."""
23 line = sys.stdin.readline()

24 if not line:

25 return None

26 return line.strip()

27

28

29 def main():

E.3 Problem 2: Special Keyboard

Simulate a user typing on a special keyboard. They will type one character at a time. After they have
finished typing, print what they wrote.

Input
The input will come from standard in:

1. The number of characters that the user will type, ¢ (1 < g < 2000).
2. One character that the user types per line.

3. Characters may include letters, digits, spaces, punctuation, and the markers below.

QOutput

* One line: the transformed string.

Special Toggles

Most keyboards have a Caps Lock key that toggles between lowercase and uppercase letters. This
special keyboard has that, in addition to several non-standard toggles. When the user types a special
toggle key, turn the toggle on, and apply its rule for all of the text that the user types until they type
the special toggle key again to turn it off.

» Toggle keys do not affect previously written text, only future text.
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* Do not append the toggle character to the user’s output.

* More than one toggle may be active at the same time.

Toggle Rules
e ~ — Caps Lock: uppercase all letters while this toggle is active. (In Python: s.upper())

* ~ — While active, consonants (letters that are not vowels) are duplicated, preserving case.
(“y” counts as a consonant.)

* # — While active, only digits and the first ““.” encountered are appended to the output.

— Skip all other characters.
— Ifasecond “.” appears (or any additional one), skip it.

(In Python: check if a character is a digit with s.isdigit().)

Examples

Input

(9]

Yoo

(e]

Output

ABc

Input

) ©

r

10 o

> o

(0]

Output

ABBCCDe

Input

18

[N

~No H # o
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O

QOutput

DBB67.91Acc.

Starter Code

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import sys
from typing import List, Tuple

def

def

def

read_q() -> int:
"""Read the number of typed characters (q) from the first line.
line = sys.stdin.readline()
if not line:

raise EOFError("Expected an integer q on the first line.")
return int(line.strip())

mwn

read_next_char() -> str:

mmnn

Read the next 'character per line'.
nnn
line = sys.stdin.readline()
if line == "":
raise EOFError("Unexpected end of input while reading characters.")
# Take the first character on the line.
return line[0]

main() -> None:

E.4 Questionnaire

This questionnaire was given to participants through a Google Form.

hn A W N =

. What is your name?

. Which question are you solving?

. Assistant 1 Notes (Paragraph entry).

. Assistant 2 Notes (Paragraph entry).

. How relevant are the assistant’s suggestions? (Assign each label to only one assistant)

(a) Assistant 1. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]
(b) Assistant 2. [1 (Most relevant suggestions) or 2 (Least relevant suggestions)]

. How often did you have to delete the assistant’s work? (Assign each label to only one

assistant)

(a) Assistant 1. [1 (Fewest deletes) or 2 (Most deletes)]
(b) Assistant 2. [1 (Fewest deletes) or 2 (Most deletes)]

. Which would you most enjoy using in practice? (Assign each label to only one assistant)

(a) Assistant 1. [1 (Most enjoy) or 2 (Least enjoy)]
(b) Assistant 2. [1 (Most enjoy) or 2 (Least enjoy)]
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E.5 Additional Results

In the survey we asked participants to rank the assistants based on how often they had to delete
the assistant’s work. In total, 17 out of the 18 participants ranked our Empower method over the
baseline (p = 0.00007). As we also collected the participant’s keypresses, we instead included the
exact number of characters which were accepted and later deleted in the main text, which is a more
informative metric.

F LLM Acknowledgment
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