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ABSTRACT

To improve the Out-of-Distribution (OOD) Generalization on Object Detection,
we present a Neural Architecture Search (NAS) framework guided by feature
orthogonalization. We believe that the failure to generalize on OOD data is due to
the spurious correlations of category-related features and context-related features.
The category-related features describe the causal information for predicting the
target objects, such as “a car with four wheels”, while the context-related features
describe the non-causal information, such as “a car driving at night”. However, due
to the distinct data distribution between training and testing sets, the context-related
features are often mistaken for causal information. To address this, we aim to
automatically discover an optimal architecture that can disentangle the category-
related features and the context-related features with a novel weight-based detector
head. Both theoretical and experimental results show that the proposed scheme can
achieve disentanglement and better performance on both IID and OOD.

1 INTRODUCTION
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Figure 1: NAS-DO significantly outperforms base-
lines in terms of OOD performance with the fewest
parameter size among SOTAs. Better view in
zoom-in mode.

Object detection is a fundamental task in com-
puter vision (Ren et al., 2015; Cai & Vasconce-
los, 2018; Lin et al., 2017; Carion et al., 2020;
Liu et al., 2021; Huang et al., 2019; Pang et al.,
2019; Wu et al., 2019; Sun et al., 2020; Zhu
et al., 2021; Tian et al., 2019; Wang et al., 2020;
Ghiasi et al., 2019; Bochkovskiy et al., 2020; Ge
et al., 2021; Zhang et al., 2020; Tan et al., 2020).
However, the generalization ability of object
detection remains a challenging problem, espe-
cially for Out-of-Distribution (OOD) scenarios,
where data are sampled from novel unseen dis-
tributions. For example, imagine the following
situation: a self-driving car equipped with an
object detection system to detect cars and pedes-
trians on the roads. The performance of the
object detection system can drop significantly
when facing OOD scenarios, for example, new
city or weather scenes that do not exist in the
training set. This may lead to serious accidents
as shown in worldwide news about self-driving car accidents that usually happen on scenes rarely
seen in training set (Law, 2021).

To address the issue, we focus this paper on OOD generalization in object detection (OOD-OD).
Currently, the literature on OOD-OD is still scarce as previous works on OOD generalization are
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mostly devoted to image classification tasks. Although it might be possible to apply the same
methodologies on object detectors, the hope of boosting their OOD performance is dim because the
representative methods for classification only show very limited improvement beyond the classic
empirical risk minimization (ERM) (Gulrajani & Lopez-Paz, 2020; Ye et al., 2021). Moreover, most
current OOD algorithms (Arjovsky et al., 2019; Krueger et al., 2021) are built upon the domain-
invariant principle, which assumes that invariant features can be learned to enable generalization
across distributions. However, discovering such invariant features is challenging in object detection
data, which are subject to large variations in viewpoints, lighting, and weather conditions. This can
lead to severe over-fitting on the training dataset (see Appendix A.2 for further information).

Inspired by (Li et al., 2022) suggesting that the architectural design and the capacity of neural
networks are crucial to OOD generalization, we explore the possibility of neural architecture search
(NAS) for OOD-OD. There are many existing NAS methods for object detection (Jiang et al., 2020;
Chen et al., 2019b; Wang et al., 2020; Ghiasi et al., 2019; Xu et al., 2019; Fang et al., 2020), but
none of them have considered the OOD scenario. As we find out, those methods are not suited for
OOD-OD as they aim to achieve maximal in-distribution performance, which tends to synergize with
the easily over-fitting nature of NAS, sacrificing OOD performance.

In this work, we propose a specialized differentiable NAS framework, namely NAS-DO, for OOD-
OD. The search process of NAS-DO is regularized by an OOD-aware objective called feature
orthogonalization (FeatOrth) which favors architectures that are good at disentangling high-dimension
object representations into category-related and context-related features. As previous study (Ye et al.,
2021) suggests that category-related features are key to OOD generalization, FeatOrth, therefore,
helps guide NAS-DO to discover architectures with great potential in OOD-OD. Figure 1 present the
improvement of NAS-DO.

Our main contributions can be summarized as follows:

• To the best of our knowledge, our work is the first attempt to introduce NAS for OOD-
OD, where the searching process is constrained by feature orthogonalization to obtain
category-related information and context-related information.

• Extensive experiments demonstrate NAS-DO empirically outperforms previous SOTA base-
lines with up to 4.7% improvement on challenging OOD scenarios with fewer parameters.

• We theoretically prove the effectiveness of feature orthogonalization constraint for category
and context feature disentanglement as well as the convergence of the proposed algorithm.

2 METHODOLOGY

2.1 NAS FRAMEWORK

We base the differentiable searching framework on a two-stage detector, Cascade R-CNN (Cai
& Vasconcelos, 2018), which consists of a backbone b, feature pyramid network (FPN), region
proposal network (RPN) and prediction head h. The backbone b is replaced by our NAS super-net
and is sequentially stacked by a set of searching cells {c0, . . . , c3}. Each cell is a normal cell or
reduction cell and can be represented by a directed acyclic graph (DAG) consisting of n ordered
nodes X = {x1, x2, . . . , xn} and edges between nodes E = {e(i,j)|1 ≤ i < j ≤ n}. The output of
each edge is the concatenation of m candidate operations O = {o0, o1, . . . , om−1}. Binary variables
α
(i,j)
k ∈ {0, 1} represent which operations will be active. Thus, we have the following formulations

for each node:

xj =

j−1∑
i=1

m∑
k=1

α
(i,j)
k ok(xi) = αT

j oj → sTj oj (1)

where αT
j is converted into continuous sTj relaxation with a softmax(·) function. We apply a

one-stage manner (Liu et al., 2018; Yang et al., 2020) with the architecture parameters constraint
satisfied by formulating new architectures generating problem as a sparse coding problem to eliminate
this performance gap:

zj = argmin
z

1

2
∥Ajz − sj∥22 + λ∥z∥1, 1 ≤ j ≤ n (2)
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where Aj ∈ Rpj×(j−1)m, pj ≤ (j−1)m denotes the measurement matrix and zj is the sparse signal,
which serves as a signal to terminate the searching process when s does not vary a lot. The outputs
of the multi-level searching cells are passed to FPN for calculating the representations in different
receptive scales.

2.2 FEATURE ORTHOGONALIZATION

Considering in real practice, the category-related features are independent of the context, e.g., the
wheels of a car are not causal to the weather, thus, we have the following assumption:

Assumption 2.1. The category features Bcls and the context features Bctx are independent
Bcls |= Bctx, and Bcls is independent to the context label Yctx, that is Bcls |= Yctx.

Intuitively, it is reasonable that the extracted features can be disentangled into causal and non-causal
features, which indicates that the features can be written as a combination of category-related features
and context-related features, then we have the following assumption:

Assumption 2.2. The input of the classifiers can be written as a concatenation (i.e. XC =
[XT

C,cls, X
T
C,ctx]

T ), where XC,cls is a function of the hidden category feature Bcls, (i.e. ∃fcls :

RB,cls → RNC,cls , XC,cls = fcls(Bcls)), and XC,ctx is a function of the hidden context feature
Bctx, (i.e. ∃fctx : RB,ctx → RNC,ctx , XC,ctx = fctx(Bctx)).

Inspired by the above assumptions and to disentangle the extracted features, we design a two-branch
detector head h1 and h2 , which consists of two classifiers to predict category label and context label
respectively and impose weight-based loss to constrain the category branch weight Wcls and context
branch weight Wctx to be orthogonal using context labels 1:
Constraint 2.1. The weights of the category and context classifiers are orthogonal, that is

1(Wcls)
T
1(Wctx) = 0 (3)

where 1(x) is the element-wise indicator function, 1(x) = 1, if x ̸= 0, otherwise, 1(x) = 0. ∥ · ∥F
is Frobenius Norm. 2 Practically, we calculate the left-hand side of the Constraint 2.1 as the feature
orthogonalization penalty Lfeat_orth during the training process.

2.3 THEORETICAL ANALYSIS

Algorithm framework. Our searching process is outlined in Algorithm 1. Firstly, a super-net back-
bone and orthogonal heads are constructed for search. Then, we initialize the super-net parameters,
including network weights ω and architecture parameters s. To control the searching loop, we use a
termination condition when the z of two neighbor iterations are closed. z is recovered by solving the
sparse coding problem (Eq. 2) and then derive the sparse sub-net NS(z). Lastly, network weights
ω and architecture parameters s are optimized by descending gradients using training loss. For the
context branch, we adopt the same loss function as the category branch using image context labels:

Lctx = CE(Yctx(X), Y ∗
ctx(X)) (4)

where CE refers to the cross-entropy loss function; Yctx, Y ∗
ctx indicates the ground-truth context

labels and output context labels respectively. Thus, the overall training loss is defined as:

Ltrain = LRPN + Lcls + Lreg + λctx · Lctx + λp · Lfeat_orth (5)

where LRPN , Lcls and Lreg are consistent with (Cai & Vasconcelos, 2018), λctx and λp are hyper-
parameters to control the weights of Lctx and Lfeat_orth in the whole training loss.

Disentanglement of feature orthogonalization. The efficiency of feature orthogonalization can be
guaranteed by the following theorem:

1The context labels are actually the domain labels which indicate the domain where images are drawn from,
and using such labels is a very common practice in Domain Generalization researches (Section A.1.2)

2We apply the Straight Through Estimator (Courbariaux et al., 2016) to generate gradients for the indicator
function, for more information please refer to Appendix A.5
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Table 1: Comparison with SOTAs on the Weather-shift and Time-shift. APiid and APood measure
the IID and OOD performance. NAS-DO and NAS-OoD are both implemented on Cascade R-CNN
detector (Cai & Vasconcelos, 2018). @X represents the inner dimension of NAS-OoD. Swin1,2

represent using Mask R-CNN and Cascade R-CNN structure introduced by the authors (Liu et al.,
2021), while -T and -S represent the tiny and small version of Swin Transformer. The architectures
of NAS-based methods are searched on Weather-OOD and Time-OOD for Weather-shift and Time-
shift, respectively, and we report the average parameter size. #param. measures the parameter
size in million. NAS-FAD and NAS-OoD are implemented by the authors and other baselines are
implemented by mmdetection (Chen et al., 2019a).

method backbone #param. Weather-shift Time-shift Avgiid AvgoodAPiid APood APiid APood

RetinaNet ResNet-50 37M 24.6 24.8 29.0 21.6 26.8 23.2
RetinaNet ResNet-101 55M 25.8 25.5 35.2 33.2 30.5 29.4
RetinaNet ResNet-152 71M 24.3 24.0 30.4 34.3 27.4 29.2
RetinaNet ResNeXt-50 57M 12.0 20.1 17.5 19.3 14.8 19.7
RetinaNet ResNeXt-101 94M 26.8 27.8 25.6 25.8 26.2 26.8

Cascade R-CNN ResNet-50 69M 30.6 29.6 35.6 30.1 33.1 29.9
Cascade R-CNN ResNet-101 88M 31.4 30.9 38.3 37.2 34.9 34.1
Cascade R-CNN ResNet-152 104M 34.6 32.7 40.3 41.5 37.5 37.1
Cascade R-CNN ResNeXt-50 88M 20.1 20.3 25.0 24.4 22.6 22.4
Cascade R-CNN ResNeXt-101 127M 34.9 35.2 41.9 41.0 38.4 38.1

SwinTransformer Swin-T1 48M 42.0 38.4 44.6 34.3 43.3 36.4
SwinTransformer Swin-S1 69M 42.8 42.0 47.3 39.1 45.1 40.6
SwinTransformer Swin-T2 86M 50.4 42.4 49.1 40.8 49.8 41.6
SwinTransformer Swin-S2 107M 52.1 43.7 49.3 41.8 50.7 42.8

NAS-FPN ResNet-50 59M 31.7 30.2 34.3 26.9 33.0 28.6
NAS-FPN ResNet-101 77M 28.1 25.0 29.2 29.3 28.7 27.2
NAS-FPN ResNet-152 93M 30.1 23.5 32.4 30.1 31.3 26.8
NAS-FPN ResNeXt-50 79M 25.7 24.9 33.8 33.2 29.8 29.1
NAS-FPN ResNeXt-101 116M 23.0 22.1 31.6 26.5 27.3 24.3

NAS-FAD ResNet-50 34M 16.2 13.7 17.4 17.3 16.8 15.5
NAS-FAD ResNet-101 53M 26.5 25.1 30.2 23.3 28.4 24.2
NAS-FAD ResNet-152 68M 29.2 28.4 29.8 29.0 29.5 28.7
NAS-FAD ResNeXt-50 56M 19.7 12.1 18.4 12.0 19.1 12.1
NAS-FAD ResNeXt-101 94M 11.2 10.7 15.0 10.1 13.1 10.4

NAS-OoD NAS-OoD@d-36 47M 36.5 34.9 27.6 27.9 32.1 31.4
NAS-OoD NAS-OoD@d-256 75M 37.8 36.1 29.8 28.4 33.8 32.3

NAS-DO - 68M 51.6 51.3 49.7 43.4 50.7 47.4

Theorem 2.1. (1) Assumption 2.1 and Assumption 2.2 hold; (2) the activation function is Lipschitz
continuous; (3) the derivatives of the loss corresponding to the classifier outputs YC,cls and YC,ctx,
and the derivative of the activation function are stochastically bounded during the training; (4) the
network width goes to infinity; (5) the sample size goes to infinity. Then, Constraint 2.1 is a sufficient
condition for YC,cls |= Yctx.

We prove Theorem 2.1 by using NTK (Neural Tangent Kernel) theorem, where conditions (2) to (4)
are the conditions of NTK and are consistent with the conditions in (Jacot et al., 2018). Condition (5)
guarantees the empirical distribution is close to the real distribution according to the Law of Large
Number. Proof can be found in Appendix A.3.1.
Convergence of the framework. The convergence of our proposed neural architecture search
framework can be guaranteed by the following theorem:

Theorem 2.2. Let Ltrain(ω, s) be continuous on s and max Ltrain ≤ ∞, then the sequence {z}
generated by Alg. 1 has limited points.

The proof can be found in Appendix A.3.2.
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Figure 2: Inference results of Swin Transformer (Top) and NAS-DO (Bottom) on Weather-OOD with
confidence threshold 0.7. Better view in zoom-in mode.

3 EXPERIMENTS

3.1 OOD-OD DATASET CONSTRUCTION

We choose the BDD100K (Yu et al., 2018) dataset, which comprises 100K images of 1.8M objects
categorized into 10 groups, including pedestrians, riders, cars, trucks, buses, trains, motorcycles,
bicycles traffic lights and traffic signs, to construct OOD-OD datasets. We make use of image attribute
labels provided by the official dataset to create multiple domains, such as daytime, dusk, night, etc.
The details of domains in these datasets can be found in Appendix A.6. These labels specify the
weather and time the image was captured. Based on these, we construct two OOD-OD datasets
(Weather-shift and Time-shift). We also construct the No-shift counterpart for each dataset to evaluate
methods’ performance on IID and check the performance degeneration from IID to OOD.

3.2 EXPERIMENTAL RESULTS

Table 1 shows the results on Weather-shift and Time-shift datasets. Despite having smaller sizes,
NAS-DO outperforms the baselines by achieving 51.3% and 43.4% with 68M parameters in OOD
conditions, while baseline methods, such as RetinaNet (Lin et al., 2017), Mask R-CNN (He et al.,
2017), Cascade R-CNN (Cai & Vasconcelos, 2018) and Swin Transformer (Liu et al., 2021), are
susceptible to the subtle disturbance in data distribution as they lean to over-fit on the training set.
Besides, other NAS-based methods are not suited for OOD-OD as they aim at finding the architecture
with maximal in-distribution performance leading to even worse OOD-OD performance. Specifically,
NAS-OoD applies a NAS strategy assisted by a conditional generator to solve OOD, however, it is
hard to train an efficient conditional generator to generate object detection images, which usually
comprise multiple objects and much more complicated, informative context with high resolution.
These results demonstrate the superior OOD generalization ability of our proposed method with the
NAS strategy guided by the FeatOrth regularization to avoid over-fitting on OOD-OD. Note that we
give extra advantages to all the baselines by initializing their parameters using the weights pre-trained
on the ImageNet-1K dataset (Russakovsky et al., 2015), which may contain data in the testing set.

4 CONCLUSION

In this paper, we propose NAS-DO, a novel feature-based neural architecture search framework
for OOD object detection. We design a differentiable backbone super-net to search for the optimal
detection backbone with the best OOD generalization ability guided by an orthogonal constraint on
gradients of detector classifier heads to disentangle the category-related and context-related features.
To the best of our knowledge, this is the first attempt to address NAS on OOD generalization object
detection and simultaneously achieve the best performance. For future work, we will extend our
method for real deployments.
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A APPENDIX

A.1 RELATED WORK

A.1.1 OBJECT DETECTION

Recent object detection methods (Cai & Vasconcelos, 2018; Lin et al., 2017; Carion et al., 2020;
Liu et al., 2021; Zhu et al., 2021; Pang et al., 2019; Huang et al., 2019) are mainly developed on an
inherent assumption, i.e. , the training data and the test data are IID (Independent and Identically
Distributed). However, models trained on IID dataset are susceptible to a subtle disturbance in test data
distribution (Torralba & Efros, 2011). Domain Adaption (DA) methods (Chen et al., 2018; Cai et al.,
2019; Xu et al., 2020; Zheng et al., 2020) are proposed to tackle the distribution gap by fine-tuning
with the unsupervised testing domain images. These DA methods may fail when facing unseen data
distributions in real scenarios. While the setting of OOD(domain) generalization for object detection
is largely under-explored. Region Aware Proposal reweighTing (RAPT) (Zhang et al., 2022) is used
to eliminate dependence within RoI features for domain generalization. Cyclic-Disentangled Self-
Distillation (Wu & Deng, 2022) aims at disentangling domain-invariant representations. However,
these works are short of considering the effect of architecture on OOD setting which may lead to
sub-optimal performance.

Compared with NAS works for the standard image classification tasks, the works of NAS for object
detection (Chen et al., 2019b; Jiang et al., 2020; Ghiasi et al., 2019; Liang et al., 2021; Xu et al., 2019;
Wang et al., 2020; Fang et al., 2020) are relatively rare due to their intricacy. Chen et al. searches
for an efficient backbone by applying single-path training to reduce approximation bias of super-net
(Chen et al., 2019b) following (Cai et al., 2018; Guo et al., 2020). Zhong et al. applies a differentiable
searching strategy to effectively explore the optimal configuration of receptive fields for one-stage
detectors (Fang et al., 2020). Ghiasi et al. designed a search space of scalable architecture to generate
multi-scale feature representations (Ghiasi et al., 2019). Xu et al. focuses on improving the feature
fusion and detection head modules to discover a task-specific network that can adapt well to any
dataset (Xu et al., 2019). The existing NAS methods for object detection mainly focus on IID setting
and this limitation usually leads to over-fitting since the training set and the testing set are derived
from the same distribution, which motivates us to consider OOD generalizable NAS.

A.1.2 OOD GENERALIZATION

Out-of-Distribution (OOD) Generalization, the task of generalizing under such data distribution shifts,
has raised broad interest recently. These works can be grouped into these categories, including the
domain generalization (Peng et al., 2019; Bai et al., 2020; Dou et al., 2019; Ganin et al., 2016), the
causal inference methods (Peters et al., 2017), and the invariant learning methods (Arjovsky et al.,
2019; Ahuja et al., 2020). For example, Peng et al. (Peng et al., 2019) devise an auto-encoder model
to disentangle domain-specific features from class identity. Dou et al. (Dou et al., 2019) improves the
generalization performance by aligning a derived confusion matrix of classification with preserved
general knowledge prior to inter-class relationships. Motivated by learning the invariance from the
heterogeneity that existed in data for classification, the invariant risk minimization method achieves
OOD generalization by regularizing the classifier to achieve similar performance across different
subsets of datasets (Arjovsky et al., 2019). Ahuja et al. further improve its stability due to the strong
regularization effects in optimization (Ahuja et al., 2020). However, these methods have been proven
to show limited improvement in complex classification datasets (Gulrajani & Lopez-Paz, 2020; Ye
et al., 2021) compared to empirical risk minimization and it is not easy to directly apply them to deal
with OOD distribution shifts on the object detection task, which usually requires handling much more
complex data. NAS-OoD (Bai et al., 2021) developed a conditional generator for classification to
generate domain information, however, it is hard to train an efficient conditional generator to generate
object detection images, which usually comprise multiple objects and much more complicated,
informative context with high resolution.

A.2 ANALYSIS OF OOD ALGORITHMS

Figure 3 displays examples of object detection data that exhibit variations in viewpoint and lighting.
Invariant-based OOD algorithms assume that causal features are invariant and can be learned to
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Viewpoint Lighting

Figure 3: Variations in viewpoint and lighting.

Figure 4: The t-SNE visualization of the features extracted by IRM (Arjovsky et al., 2019) on the
Time-OOD dataset. Colors represent object categories. The two on the left are on the training
domains and the right one is on the testing domain.

achieve generalization. However, identifying such invariant features is challenging given the sig-
nificant variations that object detection data undergo, including changes in the viewpoint that can
result in variant causal features. As shown in Figure 4, IRM is capable of learning similar feature
patterns on training domains, however, this pattern fails to generalize to the testing domain, resulting
in over-fitting. This over-fitting problem can be avoided by our proposed method. We leverage the
high-capacity NAS regularized by FeatOrth, which favors architectures that are good at disentangling
high-dimension object representations into category-related and context-related features, to avoid the
easily over-fitting nature of NAS methods. Table 2 shows that our proposed NAS-DO surpasses IRM
by 5.2% on the Time-OOD dataset.

A.3 PROOFS

A.3.1 PROOF OF THEOREM A.1

For completeness, the constraint, assumptions and main theorem are restated as followed. See Figure
5 for better understanding.
Assumption A.1. The category features Bcls and the context features Bctx are independent
Bcls |= Bctx, and Bcls is independent to the context label Yctx, that is Bcls |= Yctx.
Assumption A.2. The input of the classifiers can be written as a concatenation (i.e. XC =
[XT

C,cls, X
T
C,ctx]

T ), where XC,cls is a function of the hidden category feature Bcls, (i.e. ∃fcls :

RB,cls → RNC,cls , XC,cls = fcls(Bcls)), and XC,ctx is a function of the hidden context feature
Bctx, (i.e. ∃fctx : RB,ctx → RNC,ctx , XC,ctx = fctx(Bctx)).
Constraint A.1. The weights of the category and context classifiers are orthogonal, that is

1(Wcls)
T
1(Wctx) = 0 (6)

Theorem A.1. (1) Assumption A.1 and Assumption A.2 hold; (2) the activation function is Lipschitz
continuous; (3) the derivatives of the loss corresponding to the classifier outputs YC,cls and YC,ctx,
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Table 2: Comparison with SOTA OOD algorithms. APw
ood and APt

ood measure the OOD performance
on Weather-OOD and Time-OOD. Avg is the average performance on the two OOD scenarios. The
results show that FeatOrth successfully makes the NAS process depart from sub-optimal OOD
performance.

algorithm #param. APw
ood(%) APt

ood(%) Avg.

ERM (Vapnik, 1998) 61M / 63M 50.4 42.6 46.5
IRM (Arjovsky et al., 2019) 65M / 59M 49.4 38.2 43.8
VREx (Krueger et al., 2021) 74M / 59M 50.0 39.6 44.8
RSC (Huang et al., 2020) 69M / 65M 49.8 38.7 44.3

NAS-DO 68M / 67M 51.3 43.4 47.4

Figure 5: Illustration of the feature orthogonalization mechanism. Black dotted lines indicate the
backward gradient. Blue blocks is the category features and Red blocks is the context features.

and the derivative of the activation function are stochastically bounded during the training; (4) the
network widths goes to infinity; (5) the sample size goes to infinity. Then, Constraint A.1 is a sufficient
condition for YC,cls |= Yctx.

Proof. Firstly, according to NTK theorem (Jacot et al., 2018), we use Wcls(t) and Wctx(t) denote
the Wcls and Wctx at time t respectively for the purpose of representing the variation of the element
in Wcls and Wctx during the training process, then the dynamic of Wcls(t) and Wctx(t) can be
formulated as followed:

∂tWcls(t) = −[
∂Ltrain(t)

∂Wcls(t)
]T (7)

∂tWctx(t) = −[
∂Ltrain(t)

∂Wctx(t)
]T (8)

Ltrain = Lcls + Lreg + Lctx + Lfeat_orth (9)

To simplify, we ignore the λctx and λp in Ltrain and it is obvious that with the Constraint A.1,
Lfeat_orth equals 0.
Secondly, we have the following deduction:

∂Lreg(t)

∂Wcls(t)
=

∂Lreg(t)

∂Wctx(t)
= 0 (10)

∂Ltrain(t)

∂Wcls(t)
=XC(t)

TXC(t)Wcls(t)−XC(t)
TYcls (11)

∂Ltrain(t)

∂Wctx(t)
=XC(t)

TXC(t)Wctx(t)−XC(t)
TYctx (12)

(13)
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Algorithm 1: Object Detection with OOD Generalizable Neural Architecture Search

1: Input: training set D, batch size n, learning rate β.
2: Output: An architecture with optimized parameters.
3: Initialize super-net N (ω, s) ; search_flag ← True.
4: while not converged do
5: if search_flag then
6: Recover z by solving Eq. 2 and project the support set S(z) = {i|z(i) ̸= 0}.
7: Derive the sub-net NS(z); znew := z.
8: if ∥znew − zold∥ ≤ ϵ then
9: search_flag ← False.

10: end if
11: end if
12: for enumerate train set do
13: Sample a batch of data {(xi, yi, y_ctxi)}ni=1.
14: Calculate Ltrain according to Eq. 5.
15: ω ← ω − β · ▽Ltrain(NS(z)(ω, s)).
16: if search_flag then
17: s← s− β · ▽Lval(NS(z)(ω, s)).
18: end if
19: end for
20: zold := znew.
21: end while

and the weights matrices can be written as:

Wcls(t) = e−XT
CXCWcls(0) +

∫ t

o

e−XT
CXCτdτXC(t)

TYcls (14)

Wctx(t) = e−XT
CXCWctx(0) +

∫ t

o

e−XT
CXCτdτXC(t)

TYctx (15)

(16)
as t→∞, we have:

Wcls(∞) =(XT
LXL)

−1XT
LYcls (17)

Wctx(∞) =(XT
LXL)

−1XT
LYctx (18)

Thirdly, according to Assumption A.1 and Assumption A.2, we have XC,cls |= Yctx, based on the
Law of Large Number, XC,cls |= Yctx indicates XT

C,clsYctx = 0, thus as t→∞, we can write Wctx

as following:

Wctx =

[
0

[fctx(Bctx)
T fctx(Bctx)]

−1fctx(Bctx)
TYctx

]
=

[
0

[BT
ctxBctx]

−1BT
ctxYctx

]
(19)

After modifying Constraint A.1, Wcls can be written as:

Wcls =

[
[BT

clsBcls]
−1BT

clsYcls

0

]
(20)

Therefore, we have demonstrated that category prediction will not use the context information and
Constraint A.1 is a sufficient condition for YC,cls |= Yctx.

A.3.2 PROOF OF THEOREM A.2

Theorem A.2. Let Ltrain(ω, s) be continuous on s and max Ltrain ≤ ∞, then the sequence {z}
generated by Alg. 1 has limited points.

Proof. For boundedness, it’s obvious that 0 ≤ Ltrain ≤ max Ltrain ≤ ∞, thus Ltrain is bounded
and Ltrain is closed set as well. For closedness, basically, Ltrain(ω, s) is continuous on s, then
the inverse image {s|Ltrain(ω, s)} of a closed set Ltrain(ω, s) is closed. According to Heine-Borel
Theorem, s is constrained within a compact sub-level set, then sequence {s} has limited points, thus
sequence {z} generated by {s} has limited points.
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Table 3: Details of the two constructed OOD-OD datasets. The IID and OOD conditions of each
dataset are denoted as Weather(Time)-IID and Weather(Time)-OOD. “✓” represents the domain is
chosen to construct training or testing domains.

dataset domain trainiid trainood test

Weather-shift

clear ✓
overcast ✓
foggy ✓ ✓
cloudy ✓ ✓
rainy ✓ ✓
snowy ✓ ✓

Time-shift
daytime ✓
dusk ✓
night ✓ ✓

A.4 SEARCH SPACE DESIGN

Normal cells and reduction cells are the smallest searched units and the whole searching space is
alternately stacked by these two types of cells. We extract the output of the last four cells as the
input of the feature pyramid network followed by detector heads to predict locations and categories.
Moreover, inspired by the success of the attention mechanism (Vaswani et al., 2017), we construct
the searching cells with two types of attention layers and the definitions of candidate operations
O = {o1, o2, . . . , om} are listed as follow:
Attention_layer_sparse(op0). Arguments include Cin(input channel), Cout(output channel),
kernel_size, stride and padding. The whole structure contains two sub-structures, the first one is
the basic layer (Liu et al., 2021) and the other is the convolution block which is applied to maintain
the channel of input and output tensor to be consistent with Cin and Cout. We set the dimension to
96, depth to 2 and head number to 2 for the basic layer.
Attention_layer_dense(op1). The difference between op0 and op1 is that op1 is deeper and wider
than op0 with 192 dimensions, 4 depth and 4 head number for basic layer.

Skip_connect(op2) (Melis et al., 2017). If the current cell is a normal cell, then the size of the output
is the same as the input. If the current cell is a reduction cell, we use a convolutional layer with Cin

input channels and Cout output channels to maintain consistency.

A.5 DIFFERENTIABLE INDICATOR FUNCTION

We implement the feature orthogonalization constraint based on Pytorch and inherit the
torch.nn.Module. The gradient of the loss can be calculated during backward propagation. We
apply the Straight Through Estimator (Courbariaux et al., 2016) to generate gradients for the indicator
function. During the forward calculation, we use the indicator function to map the continuous input
to {−1, 0, 1}. During the backward calculation, STE use the gradients of the continuous input to
optimize parameters instead of gradients of the discrete outputs.

import torch
class LBSign(torch.autograd.Function):

@staticmethod
def forward(ctx, input):

return torch.sign(input)

@staticmethod
def backward(ctx, grad_output):

return grad_output.clamp_(-1, 1)

A.6 EXPERIMENTAL DETAILS OF BDD100K

The original BDD100K contains 80000 labeled images (70000 for training and 10000 for validation)
and each image has three attribute labels. We remove the images with the undefined attribute label

13



Published at ICLR 2023 Workshop on Domain Generalization

and separate the rest into two OOD environments based on these attribute labels. The details of the
constructed OOD-OD datasets can be found in Table 3.

For optimization, We use SGD with 0.025 learning rate, 0.9 momentum and 0.0003 weight decay
for optimizing network weights ω. We apply Adam (Kingma & Ba, 2014) with 0.0003 learning
rate and 0.001 weight decay for optimizing architecture parameters s. We use one sample per GPU,
accounting for a batch size of eight. Object detectors are trained for 500 epochs on all experiments
for convergence.
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