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Abstract

Dataset distillation involves the compression of
large datasets into smaller coresets that sustain
similar performance to the full dataset when down-
stream models are trained on them — thus hugely
simplifying the training task in terms of storage
and computation. The current state-of-the-art
methods utilize Kernel Inducing Points (KIP),
which exploits the link between Kernel Regres-
sion and the Neural Tangent Kernel (NTK) to
learn synthetic coresets that mimic the perfor-
mance of a neural network on the full size, via
a frequentist adaptation of the inducing point
method for Gaussian processes. The frequen-
tist regime prohibits the potential benefits of a
Bayesian analysis of bounds on the number of
inducing points required. The nature of the mean-
squared loss employed does not lend itself to a
probabilistic interpretation, while the algorithm it-
self is computationally intensive, as these they op-
erated directly in the space of the data. To this end,
we introduce a new variational Gaussian process-
based algorithm for fast, scalable dataset distilla-
tion by learning inducing points and soft targets
in the latent space of pre-trained autoencoders.
Via recent observations on the similarity of the
Reproducing Kernel Hilbert Space (RKHS) of the
Laplace kernel and the NTK, we also develop as-
sociated guarantees on the size and efficacy of
coresets over d-dimensional datasets normalized
to the unit hypersphere S?~!, by showing that we
can get vanishingly small KL Divergence with a
polynomially bound subset of the size of the data.
Our method achieves competitive performance to
state-of-the-art algorithms in only a fraction of
the time required, often in less than one minute.
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1. Introduction

First introduced by Wang et al. (2018), dataset distillation
(DD) aims at extracting the knowledge of the entire train-
ing dataset into a few synthetic, distilled datapoints. The
models trained on these distilled datapoints achieve high
performance relative to models trained on the original, large
training datasets. DD is a sensible choice for fast, cost-
effective, and lightweight training of neural network models.
Various applications of DD include continual learning (Liu
et al., 2020; Rosasco et al., 2021; Sangermano et al., 2022;
Wiewel & Yang, 2021; Masarczyk & Tautkute, 2020), neu-
ral architecture search (Zhao & Bilen, 2021; Zhao et al.,
2021; Zhao & Bilen, 2023), and more.

Depending on the similarity metrics chosen for judging how
close the distilled datasets are to the original datasets, dif-
ferent formulations of the DD problem have been proposed.
For instance, Zhao et al. (2021) formulate it as a gradient
matching problem between the gradients of deep neural
network weights trained on the original and distilled data.
Nguyen et al. (2021a; b) formulate it as a kernel ridge re-
gression problem where the distilled data correspond to the
kernel inducing points (KIP). Regardless of the formulation,
DD techniques are rapidly improving, and their application
domains are widening.

Among the many application domains, Nguyen et al.
(2021a) claim that DD is also useful for privacy-preserving
dataset creation by showing that distilled images with 90%
of their pixels corrupted still exhibit limited test accuracy
degradation. Although the distorted images are not humanly
discernible, this illustration lacks a formal privacy defini-
tion. Dong et al. (2022) attempted to connect DD with
differential privacy (Dwork Roth, 2014) based on DD’s
empirical robustness against known attacks. However, the
empirical evaluation and theoretical analysis of their method
have significant flaws, as discussed in Carlini et al. (2022).

For a provable privacy guarantee, Chen et al. (2022) ap-
plied DP-SGD, an off-the-shelf differential privacy algo-
rithm (Abadi et al., 2016), to optimize a gradient match-
ing objective and estimate a differentially private distilled
dataset. More recently, Zheng & Li (2023) proposed a dif-
ferentially private distribution matching framework, further
improving the performance of Chen et al. (2022).
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The current state-of-the-art in dataset distillation, Kernel In-
ducing Points (KIP) (Nguyen et al., 2021a; 2021b), exploits
the link between Kernel Ridge Regression (KRR) and the
Neural Tangent Kernel (NTK) to learn synthetic coresets
that mimic the performance of a neural network trained on
the full dataset. However, KIP suffers from issues in scala-
bility, particularly due to the computational complexity of
the NTK matrix over the coresets at each optimization step.

Additionally, the mean-squared loss employed in KIP does
not provide a probabilistic interpretation, which is a limi-
tation given the potential benefits of leveraging probabilis-
tic frameworks. Recent developments in fast, finite-width
NTKSs suggest promising avenues for overcoming these chal-
lenges (Zheng & Li, 2023).

In this paper, we propose and analyze two new algorithms,
GPD, or GAUSSIAN PROCESS DISTILLATION, wherein we
utilize a variational Gaussian process to learn the coreset in
the space of the data, and LD, or LATENT DISTILLATION,
wherein we extend GPD to learning the coreset in the latent
space. Our main findings and contributions are as follows:

1. We address the interpretability issues of KIP by in-
troducing a theoretically-grounded variational method
that minimizes the KL divergence between the true pos-
terior of the surrogate Gaussian process on the whole
dataset and the approximate posterior on the set of
inducing points via the GAUSSIAN PROCESS DISTIL-
LATION ALGORITHM (GPD).

2. We introduce the LATENT DISTILLATION ALGO-
RITHM, which learns the distilled dataset in the latent
space, which is vastly more scalable than current meth-
ods — at times reducing the dimensionality of the opti-
mization problem from 784 to 32 dimensions with com-
parable performance. For classification tasks, we show
that using the soft labels produced by the Gaussian
process inference on the coreset can serve as superior
labels for downstream training of Neural Networks.

3. Our method provides associated guarantees on the size
and efficacy of coresets over d-dimensional datasets
normalized to the unit hypersphere S¢~1.

4. We leverage the similarity between the Reproducing
Kernel Hilbert Space (RKHS) of the Laplace kernel
and the NTK to achieve vanishingly small KL Diver-
gence with a polynomial bound on the size of the data,
which via the equivalence of KRR with GP Regression,
offers a first theoretical treatment of Dataset Distil-
lation. We also show that coresets produced via our
algorithm are differentially private.

2. Related Work

Dataset Distillation. Dataset distillation methods aim to
summarize large datasets into significantly smaller datasets
that still accurately represent the full dataset for downstream
tasks (Jubran et al., 2019). These smaller datasets are bene-
ficial for speeding up model training (Mirzasoleiman et al.,
2020), reducing catastrophic forgetting (Aljundi et al., 2019;
Rebuffi et al., 2017; Borsos et al., 2020), and enhancing
interpretability (Kim et al., 2016; Bien Tibshirani, 2011).
Recent work has focused on generating synthetic data points
rather than selecting representative data points from the
dataset (Wang et al., 2018; Bohdal et al., 2020; Sucholut-
sky Schonlau, 2019; Zhao et al., 2021; Zhao Bilen, 2021b;
Nguyen et al., 2021b), leveraging continuous gradient-based
optimization techniques.

Neural Tangent Kernels. NTKs have been extensively
studied for their ability to provide exact solutions to the
training dynamics of infinitely-wide neural networks (Jacot
et al., 2018). They offer a powerful tool for understanding
and optimizing neural networks’ training processes and have
been applied in various settings, including dataset distilla-
tion (Nguyen et al., 2021a; b).

Kernel Inducing Points (KIP). KIP (Nguyen et al., 2021a;
2021b) connects Kernel Ridge Regression (KRR) and NTKs
to learn synthetic coresets. This method, however, faces
scalability issues due to the computation of the NTK matrix
at each optimization step. Moreover, the mean-squared loss
employed lacks a probabilistic interpretation.

Variational Gaussian Processes. The Sparse Variational
Gaussian Processes (SVGP) framework enables efficient
Gaussian Process inference by selecting inducing points. It
achieves this by maximizing the Evidence Lower Bound
(ELBO), which approximates the true posterior, providing a
scalable approach to GP inference (Titsias, 2009).

Reproducing Kernel Hilbert Space (RKHS). Recent stud-
ies have highlighted the similarity between the RKHS of
the Laplace kernel and NTK, shedding light on the NN-GP
equivalence (Zheng & Li, 2023). This insight is crucial for
understanding the theoretical underpinnings of NTK-based
methods and their applications in dataset distillation.

Our work builds on these foundations, enhancing dataset
distillation with NTKs and incorporating differential pri-
vacy guarantees to provide a robust, efficient, and privacy-
preserving approach to data distillation.
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Figure 1. A distilled set using LATENT DISTILLATION; TOP:
Distilled MNIST samples, obtained by passing inducing points
through the decoder. BOTTOM: Similar, for CIFAR-10.

3. Our Approach

Algorithm 1 LATENT DISTILLATION: Our proposed
method for dataset distillation proceeds by first constructing
the FINITE NTK of the trained neural network, using the
computed kernel for variational inducing point estimation
for the surrogate Gaussian process. For small cases, initial-
ization via a Determinantal Point Process sampling provides
a warm-start for our inducing points.

Require: Data (X, yg), NEURAL NETWORK Py, AU-

TOENCODER A: A4(Ac(Xo)) = Xo + €

X1 <— Ae (Xo)

fopt < MAXIMIZEy L(y1 | X1,6)

DEFINE kNTK (.TZ', .T]‘) = J(l‘i; HOPT)TJ(mj; QQPT)

INITIALIZE fy ~ GP(0,k = kntk) = GP(0,k =

J(fm; HOPT)TJ(%; OOPT))

5: Lo < log L(y1), the marginal log likelihood of f w.r.t
(X1,91).

We shall now proceed to define the variational optimiza-
tion procedure.

RN

6: INITIALIZE inducing points Z via DETERMINANTAL
POINT PROCESS, D((Xl, yl), kNTK)

7: INITIALIZE f, = GP(0,k = kntk)

8: DEFINE variational distribution ' (u | m, S), where u
are the latent function values of Z.

9: Zopr ¢+ MaxiMiZEz ELBO: L(m,S,Z) ~
MINIMIZEz (Lo — ELBO) = KL[Q || P]

return (A;(Zopr), GP(Zopr)) as the CORESET of @,
for (X1,y1)

We train the downstream neural network on the soft targets
over the inducing points returned by the Gaussian process
trained in the latent space. This incorporates more infor-
mation about each point, and results in enhanced accuracy,
similar to techniques in Knowledge Distillation (Hinton et
al., 2015).

4. Bounding the number of Inducing Points

Here, we give an intuition behind computing a bound on the
number of inducing points, m (also, the size of the subset),

Figure 2. t-SNE plot of chosen inducing points for the Fashion
MNIST dataset, for 100 inducing points (roughly 10 img/cls), and
10 inducing points (roughly 1 img/cls). We overlay uncertainty
information from the inducing points, estimated through the vari-
ance of the variational distribution, to assess model confidence.

for our proposed method.

(Burt et al., 2020) showed that the KL-divergence for GPR,
KL(Q||P), can be made arbitrarily small with m < n
inducing points. It was shown that, for the Squared Ex-
ponential (SE) kernel, m = O(log(n)?), is sufficient for
performing inference. Under certain assumptions on the ker-
nel and the distribution of the observed labels y, if the initial
inducing points are sampled according to an e approximate
m-DPP with K ;¢ as the kernel matrix, then K'L(Q||P) can
be bounded as

(m+1Dn Y, A +2nve
r=m-+1

o2

E[KL(P||Q)] < M
where K[z, 2] = k(z,z) < v,Vz € R? and A, is the r
largest eigenvalue of K. We aim to do develop similar
bounds for the case of the NTK.

The convergence bound given in Equation (1) depends on

oo
the summation > A, of the smallest eigenvalues of the
r=m-+1
kernel K. However, closed form expressions for this sum-

mation are known only for a handful of kernels such as the
SE kernel.

(Chen et al., 2021) proved that when the datapoints are
restricted to the d-dimensional hypersphere, S?~1, the re-
producing kernel Hilbert space (RKHS) of the NTK of a
deep neural network and the Laplace kernel, Equation (??),
contain the same set of functions. Previously, (?) showed
that the NTK for fully connected networks with ReLU acti-
vation, referred to as the ReLU-NTK for the remainder of
this section, is similar to the Laplace kernel and that their
eigenvalues decay polynomially at the same rate. Theorem
1 of the paper shows that the eigenvalues of the ReLU-NTK
decays at a rate of O(r~9), i.e, A\, ~ O(r~9). A similar
result was shown in (?) for the case of a 2-layer ReLU-NTK.

Using these eigenvalue decay rates, Proposition 33 of (?),
states that the number of inducing points is O(n¢), where
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¢ € (0, %). This suggests an upper bound on the num-

ber of inducing points as O(n% ). It remains an open ques-
tion to derive tighter bounds for the size of the inducing
points set. It should be noted that the bound in Equation
(1) and hence, the bound on m holds when the initial set of
inducing points is sampled using e m-DPP. We now discuss
this in more depth and present our primary results.

Lemma 1 (Eigenvalue Decay of Kernel Operators). Let k
be a continuous kernel on R?, and . be a measure on R”
with density p. The associated kernel integral operator K
has eigenvalues bounded by:

Cim™" < A < Com™" 2

forallm > 1, some n > 1 (i.e., polynomial decay), and
arbitrary constants Cy,Co > 0.

Lemma 2 (NTK-Laplace Kernel Correspondence). The
RKHS of the Neural Tangent Kernel is identical to that of
the Laplace Kernel for data constrained to the hypersphere
S9=1 with the same eigenvalue decay of their associated
kernel operator. Specifically, this implies that the NTK is a
polynomial kernel for d > 2 with (Geifman et al., 2020):

NNTK = CNTKA 3
where cNT K Is an arbitrary constant, empirically close to
1.

Theorem 1 (Optimal Inducing Point Size Estimation).
Given the conditions in Lemmas 1 and 2:

a) An inducing point subset of size O(N°¢), where

n—1
Ce (o, ) @
(4 +1n)
is sufficient to derive a good approximation for the exact pos-
terior Gaussian process with a variational approximation,

such that:
KL[Q||P] = Q(N'~"°) )

where Q) is the approximate Gaussian posterior and P is
the exact posterior.

b) For the Neural Tangent Kernel, an inducing point subset
of size O(NSNTK) where

INTK — 1 > ©)

€0,
Cwrx < nnTr (4 + NTK)

is required to approximate the full Gaussian posterior mean.

c) The best approximation, resulting in the lowest value of
KL[Q||P), can be achieved by choosing

|z] = (’)(N%) inducing points )

Proof. We begin with the result from Rasmussen and Wilk
[2020] that Gaussian kernels with exponentially decaying
operators can approximate the full posterior with a log(N)
approximation of the full dataset of /N samples.

For kernels with polynomial decay as described in Lemma
1, we can derive a bound on the size of the inducing point
subset. Let O(N¢) be the size of this subset. The quality of
the approximation, measured by K L[Q|| P], is a decreasing
function of n¢, bounded by:

n¢ < —— (8)

This bound is itself increasing in 7. Solving for {, we obtain
the range given in the theorem.

Geifman and Yadav [2020] showed that the Reproducing
Kernel Hilbert Spaces of the Neural Tangent Kernel is iden-
tical to that of the Laplace Kernel for data constrained to
the hypersphere, with the same eigenvalue decay of their
associated operators. Specifically, the eigenvalues of the
Neural Tangent Kernel operator are bounded by:

Cim™ 4 <\ < Com™@ )

Combining this with Lemma 2, we can substitute nyrx =
cnT K d into our previous results. This gives us the bound
for (y7x as stated in part (b) of the theorem.

For the optimal approximation, we note that K L[Q|| P] is a
decreasing function of (n¢), bounded by Z—;ll. For the NTK,
with nyTx = enTrd and ey empirically close to 1, we
can approximate this as:

NNtk —1 _d—1
Nt +4  d+4

(10)

Therefore, choosing O(N %) inducing points provides the
best bounds on K L[Q|| P]. O

5. Convergence of Variational Approximation

Building upon our previous results on the bounds for NTK
inducing points, we now demonstrate that these bounds en-
sure the convergence of the variational approximation to the
true posterior. Specifically, we show that the KL divergence
between the approximate posterior () from the Sparse Gaus-
sian process and the true posterior P from the Gaussian
process over the full data approaches zero as the number of
inducing points increases, and that empirically, O(N Z;Jri)
is enough to achieve a good approximation of the full data.

We now leverage this result to show the convergence of
KL[Q||P] to zero.
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We start with the decomposition of the KL divergence as
derived in [Mathhews 2016 AISTATS]:

KLIQ|IP] = KL[Qz||Pz]~Eq, llog L(Y| fp)]+log L(Y)
(11)

where,

1. KL[Qz||Pz] is the KL divergence between the varia-
tional distribution over inducing points and the prior.

2. Eg,[log L(Y|fp)] is the expected log-likelihood un-
der the variational predictive distribution.

3. log L(Y") is the log marginal likelihood of the full data.

Experimentally, log L(Y") can be calculated by computing
the Exact Gaussian process over the full data, and the other
two terms are computed as part of the variational approxi-
mation, during the calculation of the ELBO. For a good
approximation of the full data via a set of inducing points z,
K L[QHP] should become vanishingly small as the inducing
points are optimized. [Figure] shows the training process
and the change in K L[Q|| P] across iterations. We observe
that as the inducing points are optimized, the downstream
accuracy of the neural network trained on these points in-
creases, and K L[Q|| P] decreases.

KL[Q, P|, KL Div. between True and Approx. Posteriors
Dii(Q. P)

= S

0 10

20 30 1 2 3 4
Epochs Test MSE (NN trained on distilled data)

Figure 3. The KL Divergence
KL[Q, P] between the AP-
PROXIMATE POSTERIOR on
the distilled data and the
TRUE POSTERIOR based on
the full data steadily de-
creases during the GP Dis-
TILLATION process.

Figure 4. The decrease in KL
Divergence expectedly corre-
sponds to a steady decrease in
the mean-squared error of the
downstream Neural Network
trained on the DISTILLED
DATASET over the data from
the same distribution.

Figure 5. KL Divergence and neural network performance during

the distillation process.

6. Experimentation, Ablation, and Time

Complexity

6.1. Dataset and Preprocessing

We conduct our primary experiments on the FashionM-
NIST, CIFAR-10 and MNIST datasets, which consists of

60,000 grayscale images (28 x 28) across 10 categories.
The dataset is divided into 50,000 training and 10,000 test
samples.

6.2. Model Architectures, Training and Optimization

Autoencoder: We use a fully connected autoencoder with
a latent dimensionality of d; (16, 32, or 64). The encoder
comprises three linear layers: 784 — 256 — 128 — d,
each followed by ReL.U activations. The decoder mirrors
this architecture: d; — 128 — 256 — 784, also with ReLU
activations. The autoencoder is trained using the Adam
optimizer with a learning rate of 1 x 103, The model is
trained for 750 epochs, with Mean Squared Error (MSE) as
the reconstruction loss. We note that prolonged training of
the autoencoder results in lower accuracy of the GPR in the
latent space.

Gaussian Process Regression (GPR): We adopt a latent
sparse Gaussian Process regression model based on GPy-
Torch. A variational strategy with 10, 50, and 100 inducing
points is used, repeated across the latent dimensions. The
GPR model is trained using a variational ELBO loss for
2000 epochs. We use the Adam optimizer with a learning
rate of 3 x 1072, optimizing both the GP and likelihood
parameters. Accuracy is computed by taking the maximum
a posteriori probability from the predicted distribution.

Neural Network: For final classification, we use a fully
connected neural network with two layers: 784 — 128 —
10. ReLU activations are applied after the first layer. It
is trained using the Adam optimizer with a learning rate
of 1 x 1073, on the soft labels returned by the GPR. It
is trained for 500 epochs, and accuracy is measured by
comparing predicted labels with ground truth.

6.3. Evaluation and Ablations

‘We evaluate on a wide series of benchmarks, and conduct
ablations. The projection into latent space via the autoen-
coder is necessary only for very high-dimensional datasets,
so we first evaluate our method on simpler datasets from the
UCI dataset repository. For faster optimization, we initialize
the inducing points with a determinantal point process
based sampling scheme.

To evaluate our theoretical results, we benchmark our
methods on data generated via smooth functions on the d-
dimensional hypersphere, with an appropriate classification
threshold.

Time Complexity: Recent works [Loo et al.] have ad-
vocated for the use of Random Feature approximations
(RFAD) for NNGP kernels for faster kernel matrix com-
putation as compared to the empirical NTK as described
in the original NTK [Nguyen et al.] paper, which reduces
the complexity of the time-consuming kernel evaluation
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Dataset Algorithm | 5img/cl. 10 img/cl.
GPD — NN | 0.289 0312
LD — NN | 0.884 (d, : 32) | 0.902 (d) : 32) | g e Algorithm | 5 img/cl. | 10 img/cl.
MNIST 0.865 (d; : 16) | 0.916 (d; : 64) o Lo omn
KIP = NN_| - 0.889 MNIST KIP — KRR | - 0.966
GPD - NN | 0.101 0.094 bocr loses | oed
LD NN | 0302(d:32) | 0326(i:32) | | cparcio | KIP s KRR | - 0,405
CIFAR-10 ] 0.332 (d; : 64) b or oo o
KIP NN | - 0.362 : :
LD > NN | 0.302 (d; : 32) | 0.802 (d, : 32) Fash MNIST | KIP — KRR | - 0.876
- 0.822 (d; : 64)
Fash.MNIST | KIP — NN | - 0.868

Table 1. For MNIST and Fashion-MNIST, Latent Distillation is faster, and more accurate. The left table shows downstream performance
when a neural network is trained on soft labels returned by the Gaussian process. The right table shows the raw accuracy of the Gaussian
process on the inducing points, compared to accuracy on KRR by KERNEL INDUCING POINTS.

Note: LD stands for Latent Distillation and GPD stands for Gaussian Process Distillation, our proposed algorithms. Arrows indicate
direction of transfer. KIP stands for Kernel Inducing Points [Ngyuen 2021 et al.]

Dataset Algorithm No. of Inducing Points
m=8 | m=16 | m =32
GP DISTILLATION 0.980 0.978 0.979
Breast Cancer, |N| = 569,d = 30 | Coreset w/ DPP 0.900 0.892 0.943
Uniform Random Coreset | 0.833 0.906 0.953
m=95|m=10 | m =20
GP DISTILLATION 0.894 0.920 0.911
Tonosphere, |N| = 351,d = 34 Coreset w/ DPP 0.649 0.803 0.857
Uniform Random Coreset | 0.586 0.777 0.849
m=5|m=10 | m =30
GP DISTILLATION 0.874 0.862 0.885
Heart Disease |[N| = 303,d = 13 | Coreset w/ DPP 0.722 | 0.648 0.833
Uniform Random Coreset | 0.788 0.733 0.762

Table 2. GP DISTILLATION on a variety of Classification tasks, compared to a random sampling of points. While random samples are
usually strong coresets, especially when the coreset itself is sizeable, our algorithm produces pseudo-datapoints that outperform the
uniformly random case. The DPP itself is evidently not a strong coreset, but serves as a good initialization for the Gaussian process due to

guarantees of diversity.

Coreset size, out of 200 90 45 15 6

Dimensions d 32 16 8 4

Random Initialization 0.735 0.665 0.650 0.620
DPP Initialization. 0.740 0.655 0.640 0.680
GPD w/ RBF Kernel 0975 0.855 0.845 0.925
GPD w/ NTK 0.955 0915 0.905 0.950
GPD w/ eNTK 0.775 0.770 0.850 0.710

Table 3. Data on a Hypersphere S”~': Comparing our method
to other ways and different kernels for selecting a representative
subset of the data. The ground-truth is a simple analytical function,
thresholded to ensure equitable binary class distribution.

step from O(|T||S| + |S|?) to O(|T| + |S]), resulting in
roughly two orders of magnitude in speedups, empirically.
Since our method also involves these steps, we can expect

similar performance increases on our algorithm, in addition
to the speedups offered by optimizing in the latent space.
Our basic algorithm itself results in roughly 3-4x speedups
over RFAD for similar downstream performance. For ex-
ample, on Fashion-MNIST, we see 86.8% accuracy with
LATENT DISTILLATION in 46.11 seconds (1.90 seconds for
the autoencoder training, and 44.21 seconds for the GPR
in latent space to reach 90% accuracy). RFAD requires
459.5 seconds to cross 85% accuracy — however, with pro-
longed training, RFAD surpasses our algorithm in accuracy
at around 10 minutes of training.

Choice of Kernels: For simple datasets, we show that
the infinite-width NTK outperforms other kernels when
it comes to downstream accuracy. For larger datasets, the
ease of optimization of the RBF kernel wins out over the
benefits of choosing the NTK (both in the infinite-width
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and empirical case).
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