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Abstract—In the research area of reinforcement learning (RL),
frequently novel and promising methods are developed and
introduced to the RL community. However, although many
researchers are keen to apply their methods on real-world prob-
lems, implementing such methods in real industry environments
often is a frustrating and tedious process. Generally, academic
research groups have only limited access to real industrial data
and applications. For this reason, new methods are usually
developed, evaluated and compared by using artificial software
benchmarks. On one hand, these benchmarks are designed to
provide interpretable RL training scenarios and detailed insight
into the learning process of the method on hand. On the
other hand, they usually do not share much similarity with
industrial real-world applications. For this reason we used our
industry experience to design a benchmark which bridges the gap
between freely available, documented, and motivated artificial
benchmarks and properties of real industrial problems. The
resulting industrial benchmark (IB) has been made publicly
available to the RL community by publishing its Java and Python
code, including an OpenAI Gym wrapper, on Github. In this
paper we motivate and describe in detail the IB’s dynamics and
identify prototypic experimental settings that capture common
situations in real-world industry control problems.

I. INTRODUCTION

Applying reinforcement learning (RL) methods to industrial
systems, such as in process industry like steel processing [1],
pulp and paper processing [2], and car manufacturing [3],
or power generation with gas or wind turbines [4], [5], is
an exciting area of research. The hope is that an intelligent
agent will provide greater energy efficiency and, desirably, less
polluting emissions. However, the learning process also entails
a significant amount of risk: we do not know beforehand how
a particular learning algorithm will behave, and with complex
and expensive systems like these, experiments can be costly.

§ Equal contributions.

Therefore, there is high demand in having simulations that
share some of the properties that can be observed in these
industrial systems.

The existing simulation benchmarks have lead to great
advancements in the field of RL. Traditionally simple dy-
namical systems like pendulum dynamics are studied, whereas
nowadays the focus has shifted towards more complex sim-
ulators, such as video game environments [6]. Also in the
field of robotics very sophisticated simulation environments
exist, on which new learning algorithms can be tested [7], [8].
The existence of such benchmarks has played a vital role in
pushing the frontier in this domain of science.

For industrial control, however, such a test bed is lacking.
In these systems we observe a combination of properties
that usually are not present in existing benchmarks, such as
high dimensionality combined with complex heteroscedastic
stochastic behavior. Furthermore, in industrial control different
experimental settings are of relevance, for instance, the focus is
usually less on exploration, and more on batch RL settings [9].

To this end, we recently developed the industrial bench-
mark (IB), an open source software benchmark1, with both
Java and Python implementations, including an OpenAI Gym
wrapper, available. Previously, this benchmark has already
been used to demonstrate the performance of a particle swarm
based RL policy approach [10]. The contribution of this
paper lies in presenting the complete benchmark framework
as well as mathematical details, accompanied by illustrations
and motivations for several design decisions. The IB aims
at being realistic in the sense that it includes a variety of
aspects that we found to be vital in industrial applications
like optimization and control of gas and wind turbines. It is
not designed to be an approximation of any real system, but

1Java/Python source code: http://github.com/siemens/industrialbenchmark
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to pose the same hardness and complexity. Nevertheless, the
process of searching for an optimal action policy on the IB is
supposed to resemble the task of finding optimal valve settings
for gas turbines or optimal pitch angles and rotor speeds for
wind turbines.

The state and action spaces of the IB are continuous and
high-dimensional, with a large part of the state being latent to
the observer. The dynamical behavior includes heteroscedastic
noise and a delayed reward signal that is composed of multiple
objectives. The IB is designed such that the optimal policy will
not approach a fixed operation point in the three steerings. All
of these design choices were driven by our experience with
industrial challenges.

This paper has three key contributions: in Section II, we
will embed the IB in the landscape of existing benchmarks
and show that it possesses a combination of properties other
benchmarks do not provide, which makes it a useful addition
as a test bed for RL. In Section III we will give a detailed
description of the dynamics of the benchmark. Our third
contribution, described in Section IV, is to define prototype
experimental setups that we find relevant for industrial control.
Our goal is to encourage other researchers to study scenarios
common in real-world situations.

II. PLACEMENT OF THE INDUSTRIAL BENCHMARK IN THE
RL BENCHMARK DOMAIN

In the RL community numerous benchmark suits exist,
on which novel algorithms can be evaluated. For research
in industrial control we are interested in a particular set of
properties, such as stochastic dynamics with high dimensional
continuous state and action spaces. We argue that only few
freely available benchmarks exist fulfilling these properties,
thereby making our contribution, the IB, a useful addition. To
that end, we want to briefly review existing benchmarks in
RL.

Classic control problems in RL literature [11], such as the
cart-pole balancing and mountain car problems, usually have
low dimensional state and action spaces and deterministic
dynamics. In the field of robotics more complex and high-
dimensional environments exist with a focus on robot locomo-
tion, such as the MuJoCo environment [7], [8]. Other examples
are helicopter flight2 [12] or learning to ride a bicycle [13].
These systems, while complex, usually have deterministic
dynamics or only limited observation noise.

Utilizing games as RL benchmarks recently brought promis-
ing results of deep RL into the focus of a broad audience.
Famous examples include learning to play Atari games3 [6],
[14] based on raw pixels, achieving above-human performance
playing Ms. Pac-Man [15], and beating human experts in the
game of Go [16]. In these examples, however, the action space
is discrete and insights from learning to play a game may not
translate to learning to control an industrial system like gas or
wind turbines.

2https://sites.google.com/site/rlcompetition2014/domains/helicopter
3https://github.com/mgbellemare/Arcade-Learning-Environment
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Fig. 1. Qualitative comparison of different RL benchmarks with continuous
actions. The state space of the wet chicken 2D benchmark [17] is rather low,
but it is highly stochastic which makes it a challenging RL problem. Cart-pole
and mountain car are deterministic benchmarks with few state dimensions
and only a single action variable. The bicycle benchmark introduces some
noise to simulate imperfect balance. The helicopter software simulation has
a 12-dimensional state space and a 4-dimensional continuous action space.
Stochasticity is introduced to simulate wind effects on the helicopter. The
state space of the IB is high, since multiple past observations have to be taken
into account to approximate the true underlying Markov state. Stochasticity
is not only introduced by adding noise on different observations, but also by
stochastic state transitions on hidden variables.

In Figure 1 we give a qualitative overview on the placement
of the proposed IB with respect to other RL benchmarks for
continuous control. Here, we focus on stochasticity and dimen-
sionality of the benchmarks at hand. Note that by stochasticity
we do not only refer to the signal to noise ratio, but also to the
structural complexity of the noise, such as heteroscedasticity
or multimodality. We conclude that the IB is a useful addition
to the set of existing RL benchmarks. In particular, Figure 1
illustrates that the combination of high dimensionality and
complex stochasticity appears to be novel compared to existing
environments. In the following section, a detailed description
and motivation for the applied IB dynamics is presented.

III. DETAILED DESCRIPTION

At any time step t the RL agent can influence the environ-
ment, i.e., the IB, via actions at that are three dimensional
vectors in [−1, 1]3. Each action can be interpreted as three
proposed changes to the three observable state variables called
current steerings. Those current steerings are named velocity
v, gain g, and shift h. Each of those is limited to [0, 100] as
follows:

at = (∆vt,∆gt,∆ht), (1)

vt+1 = max(0,min(100, vt + dv∆vt)), (2)
gt+1 = max(0,min(100, gt + dg∆gt)), (3)
ht+1 = max(0,min(100, ht + dh∆st)), (4)

https://sites.google.com/site/rlcompetition2014/domains/helicopter
https://github.com/mgbellemare/Arcade-Learning-Environment


with scaling factors dv = 1, dg = 10, and dh = 5.75. The step
size for changing shift is calculated as dh = 20 sin(150)/0.9 ≈
5.75.

After applying action at, the environment transitions to the
next time step t + 1 in which it enters internal state st+1.
State st and successor state st+1 are the Markovian states of
the environment that are only partially observable to the agent.

An observable variable of the IB, setpoint p, influences
the dynamical behavior of the environment but can never
be changed by actions. An analogy to such a setpoint is,
for example, the demanded load in a power plant or the
wind speed actuating a wind turbine. As we will see in
the upcoming description, different values of setpoint p will
induce significant changes to the dynamics and stochasticity
of the benchmark. The IB has two modes of operation: a)
fixing the setpoint to a value p = const, thereby acting as a
hyperparameter or b) as a time-varying external driver, making
the dynamics become highly non-stationary. We give a detailed
description of setting b) in Subsection III-D.

The set of observable state variables is completed by two
reward relevant variables, consumption ct and fatigue ft. In the
general RL setting a reward rt+1 for each transition t→ t+1
from state st via action at to the successor state st+1 is drawn
from a probability distribution depending on st, at, and st+1.
In the IB, the reward is given by a deterministic function of
the successor state rt+1 = r(st+1), i.e.,

rt+1 = −ct+1 − 3ft+1. (5)

In the real-world tasks that motivated the IB, the reward
function has always been known explicitly. In some cases it
itself was subject to optimization and had to be adjusted to
properly express the optimization goal. For the IB we therefore
assume that the reward function is known and all variables
influencing it are observable.

Thus the observation vector ot at time t comprises current
values of the set of observable state variables, which is a subset
of all the variables of Markovian state st, i.e.,

1) the current steerings, velocity vt, gain gt, and shift ht,
2) the external driver, setpoint pt,
3) and the reward relevant variables consumption ct and

fatigue ft.
Appendix A gives a complete overview on the IB’s state space.

The data base for learning comprises tuples
(ot, at, ot+1, rt). The agent is allowed to use all previous
observation vectors and actions to estimate the Markovian
state st.

The dynamics can be decomposed into three different sub-
dynamics named operational cost, mis-calibration, and fatigue.

A. Dynamics of operational cost

The sub-dynamics of operational cost are influenced by
the external driver setpoint p and two of the three steerings,
velocity v and gain g. The current operational cost θt is
calculated as

θt = exp

(
2pt + 4vt + 2.5gt

100

)
. (6)

The observation of θt is delayed and blurred by the following
convolution:

θc
t =

1

9
θt−5 +

2

9
θt−6 +

3

9
θt−7 +

2

9
θt−8 +

1

9
θt−9. (7)

The convoluted operational cost θct cannot be observed di-
rectly, instead it is modified by the second sub-dynamic,
called mis-calibration, and finally subject to observation noise.
The motivation for this dynamical behavior is that it is non-
linear, it depends on more than one influence, and it is
delayed and blurred. All those effects have been observed
in industrial applications, like the heating process observable
during combustion. In Figure 4b we give an example trajectory
of the convolution process over a rollout of 200 time steps.
The delayed and blurred relations between operational cost θt
and the convoluted costs θct are clearly visible.

B. Dynamics of mis-calibration

The sub-dynamics of mis-calibration are influenced by
external driver setpoint p and steering shift h. The goal is
to reward an agent to oscillate in h in a pre-defined frequency
around a specific operation point determined by setpoint p.
Thereby, the reward topology is inspired by an example from
quantum physics, namely Goldstone’s ”Mexican hat” potential.

In the first step, setpoint p and shift h are combined to an
effective shift he calculated by:

he = max

(
−1.5,min

(
1.5,

h

20
− p

50
− 1.5

))
. (8)

Effective shift influences three latent variables, which are
domain δ, response ψ, and direction φ. Domain δ can enter two
discrete states, which are negative and positive, represented
by integer values −1 and +1, respectively. Response ψ can
enter two discrete states, which are disadvantageous and
advantageous, represented by integer values −1, and +1,
respectively. Direction φ ∈ {−6,−5, . . . , 6} is a discrete index
variable, yielding the position of the current optima in the mis-
calibration penalty space.

Figure 2 is a visualization of the mis-calibration dynamics
introduced in equation form in the following paragraphs. In
each time step t → t + 1 the mis-calibration dynamics are
transitioned starting with δ and ψ as follows:

δ̂t+1 =

{
δt if |he| ≤ z
sgn(he) else,

(9)

ψ̂t+1 =

{
1 if δt 6= δ̂t+1

ψt else,
(10)

where safe zone z (area in the center of Figure 2) is calculated
using z = sin(π · 15/180)/2 ≈ 0.1309. Note that the policy
itself is allowed to decide when to leave the safe zone.

In the next step, direction index φ is updated accordingly:

φ̂t+1 = φt + ∆φt+1,with (11)
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Fig. 2. Visual description of the mis-calibration dynamics. Blue color
represents areas of low penalty (-1.00), while yellow color represents areas
of high penalty (1.23). If the policy keeps he in the so-called safe zone, φ
is driven towards 0 stepwise. When φ = 0 is reached the mis-calibration
dynamics are reset, i.e., domain δ = 1 and response ψ = 1. The policy is
allowed to start the rotation cycle at any time by leaving the safe zone and
entering the positive or the negative domain. Consider positive domain δ = 1:
After initially leaving the safe zone, response is in the state advantageous, i.e.,
φ is increased stepwise. The upper right area is a reversal point for φ. As soon
as φ = 6, response switches from advantageous ψ = 1 to disadvantageous
ψ = −1. In the subsequent time steps φ is decreased until either the policy
brings he back to the safe zone or φ reaches the left boundary at -6. If the
latter occurs, phi is kept constant at -6, i.e., the policy yields a high penalty
in each time step. Since the mis-calibration dynamics are symmetric around
(φ, he) = (0, 0), opposite dynamics are applied in the negative domain at
the lower part of the plot.

∆φt+1 =


− sgn(φt) if |he| ≤ z
0 if |he| > z ∧ φt = −6δ̂t+1

ψ̂t+1 · sgn(he) else.
(12)

The first option realizes the return of φ if the policy returns
into the safe zone. The second option stops the rotation if
φ reaches the opposite domain bound (upper left and lower
right area in Figure 2). The third option implements the cyclic
movement of φ depending on response ψ and the direction of
effective shift he.

If, after this update, the absolute value of direction index φ
reaches or exceeds the predefined maximum index of 6 (upper
right and lower left area in Figure 2), response enters state
disadvantageous and index φ is turned towards 0.

ˆ̂ψt+1 =

{
−1 if |φ̂t+1| ≥ 6

ψ̂t+1 else.
(13)

φt+1 =

{
12− ((φ̂t+1 + 24) mod 24) if |φ̂t+1| ≥ 6

φ̂t+1 else.
(14)

In the final step of the mis-calibration state transition, it is
checked if effective shift he has returned to safe zone z while
at the same time direction index φ has completed a full cycle
(reset area in the center of Figure 2). If this is the case, domain
δ and response ψ are reset to their initial states positive and
advantageous, respectively:

δt+1 =

{
1 if φt+1 = 0 ∧ |he| ≤ z
δ̂t+1 else.

(15)

ψt+1 =

{
1 if φt+1 = 0 ∧ |he| ≤ z
ˆ̂ψt+1 else.

(16)

Note that in this state the policy can again decide to start a
new cycle (positive or negative direction) or to remain in state
φ = 0.

The penalty landscape of mis-calibration is computed as
follows. Based on the current value of φ, the penalty function
m(φ, he) computes the performance of maintaining shift in the
beneficial area. The penalty function m is defined as a linearly
biased Goldstone potential computed by

m = −αω2 + βω4 + κρsω. (17)

The definition of radius ω can be found in Appendix B. From
direction index φ the sine of direction angle ρ is calculated as
follows:

ρs = sin
( π

12
φ
)
. (18)

Note that this sine function represents the optimal policy for
the mis-calibration dynamics. Exemplary policy trajectories
through the penalty landscape of mis-calibration are depicted
and described in Figure 3.

The resulting mis-calibration mt is added to the convoluted
operational cost θc

t , giving ĉt,

ĉt = θc
t + 25mt. (19)

Before being observable as consumption ct, the modified
operational cost ĉt is subject to heteroscedastic observation
noise

ct = ĉt + gauss(0, 1 + 0.02 ĉt) , (20)

i.e., a Gaussian noise with zero mean and a standard deviation
of σ = 1+0.02 ĉt. In Figure 4c we show in an example rollout
of 200 steps how both convoluted operational cost θct and mis-
calibration mt affect consumption ct.

C. Dynamics of fatigue

The sub-dynamics of fatigue are influenced by the same
variables as the sub-dynamics of operational cost, i.e., setpoint
p, velocity v, and gain g. The IB is designed in such a
way that, when changing the steerings velocity v and gain
g as to reduce the operational cost, fatigue will be increased,
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Fig. 3. Comparison of three mis-calibration policies. Depicted is a visual representation of the Goldstone potential based function m(φ, he). Areas yielding
high penalty are colored yellow, while areas yielding low penalty are colored blue. The highlighted area in the center depicts the safe zone from −z to z.
(a) A policy which maintains he such that a sine-shaped trajectory is generated yields lowest penalty. Note that the policy itself starts the rotation cycle at
any time by leaving the safe zone. After returning to the safe zone, while at the same time φ = 0, the dynamics are reset and a new cycle can be initiated
at any following time step in positive or negative direction. (b) The depicted policy starts initiating the rotation cycle by leaving the safe zone, but returns
after six steps. After this return φ is decreased in four steps back to 0. Subsequently, the dynamics are reset. This policy yields lower penalty compared to a
constant policy that remains in the safe zone the whole time. (c) The depicted policy approaches one of the global optima of m(φ, he) by directly leaving
the safe zone z by constantly increasing he. Subsequently, it remains at this point. However, the rotation dynamic yields a steady decrease in φ after reaching
the right boundary at φ = 6. This decrease ”pushes” the agent to the left, i.e., the penalties received are increased from step to step. After reaching the left
boundary at φ = −6, the dynamics remain in this area of high penalty. Note that the policy could bring the dynamics back to the initial state φ = 0 by
returning to he < z. This benchmark property ensures that the best constant policies are the ones which remain in the safe zone.

leading to the desired multi-criterial task, with two reward-
components showing opposite dependencies on the actions.
The basic fatigue f b is computed as

f b = max

(
0,

30000

5 v + 100
− 0.01 g2

)
. (21)

From basic fatigue f b, fatigue f is calculated by

f = f b(1 + 2α)/3 , (22)

where α is an amplification. The amplification depends on two
latent variables µv and µg, effective velocity ve, and effective
gain ge. Furthermore, it is affected by noise,

α =

{
1

1+exp(−gauss(2.4,0.4)) if max(µv, µg) = 1.2

max(ηv, ηg) else.
(23)

In Eq. (23) we see that α can undergo a bifurcation if one of
the latent variables µv or µg reaches a value of 1.2. In that
case, α will increase and lead to higher fatigue, affecting the
reward negatively.

The noise components ηv and ηg, as well as the latent
variables hv and hg, depend on effective velocity ve, and
effective gain ge. These are calculated by setpoint-dependent
transformation functions

Tv(v, g, p) =
g + p+ 2

v − p+ 101
, (24)

Tg(g, p) =
1

g + p+ 1
. (25)

Based on these transformation functions, effective velocity
ve and effective gain ge are computed as follows:

ve =
Tv(v, g, p)− Tv(0, 100, p)

Tv(100, 0, p)− Tv(0, 100, p)
(26)

ge =
Tg(g, p)− Tg(100, p)

Tg(0, p)− Tg(100, p)
. (27)

To compute the noise components ηv and ηg, six random
numbers are drawn from different random distributions: ηve

and ηge are obtained by first sampling from an exponential dis-
tribution with mean 0.05 and applying the logistic function to
these samples afterwards, ηvb and ηgb are drawn from binomial
distributions Binom(1, ve) and Binom(1, ge), respectively, ηvu

and ηgu are drawn from a uniform distribution in [0, 1]. Noise
components ηv and ηg are computed as follows:

ηv = ηve + (1− ηve), ηvuηvbve (28)
ηg = ηge + (1− ηge)ηguηgbge . (29)

The latent variables µv and µg are calculated as

µv
t =


ve if ve ≤ 0.05

min(5, 1.1µv
t−1) if ve > 0.05 ∧ µv

t−1 ≥ 1.2

0.9µv
t−1 + ηv

3 else,
(30)

µg
t =


ge if ge ≤ 0.05

min(5, 1.1µg
t−1) if ge > 0.05 ∧ µg

t−1 ≥ 1.2

0.9µg
t−1 + ηg

3 else.
(31)

The sub-dynamic of fatigue results in a value for fatigue
f , which is relevant for the reward function (Eq. 5). An
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Fig. 4. Visualization of relevant variables of the IB in a rollout using random actions over 200 time steps. (a): Shown are latent variable µg and fatigue f .
As seen in Eq. (23), the latent variable can lead to a bifurcation of the dynamics. In the scenario shown at t = 90, we observe the beginning of a runaway
effect that originates from the second case in Eq. (31). (b): Shown are operational cost θt and convoluted sigma θc

t given by Eq. (7). At around t = 10 the
delayed effect of the convolution is clearly visible: θt decreases sharply while θc

t is still ascending. (c): Shown is the composition of visible consumption
c(t) (purple) by the two components σc

t and mis-calibration mt. (d): Shown is the composition of final negative reward −rt by its two components, fatigue
(blue) and consumption (red). In this case, the runaway effect from Figure (a) has the most prominent effect on the reward signal.

example interplay of the components of the fatigue dynamics
is visualized in Figure 4a. From t = 0 up to t = 80 we see
the effect of the noise components described in Eq. (28): the
combination of binomial and exponential noise components
yields heterogeneous spike-like behavior. From t = 80 to
t = 100 we observe a self-amplifying process in µg. This self-
amplification originates from the second case of Eq. (31). At
around t = 100, the fatigue dynamics rapidly change towards
higher, less noisy regions. This change originates from the
bifurcation in α in Eq. (23), which we pointed out earlier.

D. Setpoint dynamics

Setpoint p can either be kept constant or it is variable over
time. In the variable setting, it will change by a constant
value b over a fixed period of l time steps in the benchmark
dynamics. Afterwards, a new sequence length and change rate
is determined.

We sample sequence length l uniformly from U{1, 100} and
draw rate b from a mixture of a uniform distribution U(0, 1)
and a delta distribution δ(x) with weighting probabilities 0.9
and 0.1. For each time step t + 1 we update the setpoint
according to:

pt+1 = max(0,min(100, pt + bt+1)), (32)

bt+1 =

{
−bt if (pt = 0 ∨ pt = 100) ∧ z < 0.5

bt else,
(33)

where z ∼ U(0, 1) will flip change rate b with a probability
of 50% if the setpoint reaches one of the two bounds at
p = 0 or p = 100. Note that the equation above produces
piecewise linear functions of constant change. We visualized
four example trajectories in Figure 5.
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Fig. 5. Four example trajectories of the setpoint of the IB in a variable
setpoint setting.

IV. EXPERIMENTAL PROTOTYPES

The IB aims at being realistic in the sense, that it includes
a variety of aspects that we found to be vital in industrial
applications. In this section we want to outline prototypes
of experimental settings that include key aspects present in
industrial applications.

A. Batch Reinforcement Learning

In this setting, we are given an initial batch of data D
from an already-running system and are asked to find a better
(ideally near-optimal) policy.

The learners task is therefore to return a policy π(st) that
can be deployed on the system at hand, solely based on the
information provided by the batch [9]. These scenarios are
common in real-world industry settings where exploration is
usually restricted to avoid possible damage to the system.

Two scenarios using the IB for batch RL experiments are
described subsequently.

Random exploration: In this setting, we generate a batch of
state transitions using a random behavior policy, for instance
by sampling action proposals from a uniform distribution.
Example instances of these settings can be found in [18] and
[10].

In the cited examples, the benchmark is initialized for
ten different setpoints p ∈ {10, 20, . . . , 100} with the latent
variables in their default values and the three steering variables
at 50 each. Then, for each setpoint p the behavior policy is
applied on the benchmark for 1,000 time steps, resulting in a
total of 10,000 recorded state transitions. This process can be
repeated to study the performance using different batch sizes.

For evaluation, the system is either initialized to its start
settings [10], or at a random place in state space [18], at which
point the policy drives the system autonomously.

Safe behavior policy: In real industrial settings, we seldom
will run a fully random policy on the system at hand. A more
realistic setting is that we have a batch of data generated
by a safe, but suboptimal, behavior policy πb with limited

randomness. In this setting, the task is to improve πb. Unlike in
the random exploration setting, the difficulty here is that large
parts of the state space will be unavailable in the batch. The
batch of data will likely contain more information of specific
areas in state space and few information everywhere else. An
example experiment can be found in [19].

B. Transfer Learning

A common situation in industrial control is that we have
data from different industrial systems, or data from one
industrial system that operates in different contexts. We expect
that each instance will behave similarly on a global level, while
we can expect significant deviations on a low level.

In the IB, this is realized by the setpoint p, a hyperparameter
of the dynamics. Each value of p ∈ [0, . . . , 100] will define
a different stochastic system, where the dissimilarity of two
systems grows with the distance in p.

In transfer learning, we want to transfer our knowledge from
system A to system B. For example, suppose we have a large
batch D1 of state transitions from the IB with p = 50. We also
have a small batch of state transition D2 with p = 75. If our
goal is to learn a good model for a system with p = 75, the
challenge of transfer learning is how to efficiently incorporate
the batch D1 to improve learning. An example instance of this
setup, albeit using pendulum dynamics, can be found in [20].

V. CONCLUSION

This paper introduced the IB, a novel benchmark for RL,
inspired by industrial control. We have shown that it provides
a useful addition to the set of existing RL benchmarks due to
its unique combination of properties. Furthermore, we outlined
prototype experimental setups relevant for industrial control.
Our contributions are a step towards enabling other researchers
to study RL in realistic industrial settings to expand the
economical and societal impact of machine learning.
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APPENDIX A
STATE DESCRIPTION

Only a part of the state variables is observable. This
observation vector is also called observable state, but one has
to keep in mind, that it does not fulfill the Markov property.
The observation vector ot at time t comprises current values
of velocity vt, gain gt, shift ht, setpoint pt, consumption ct,
and fatigue ft.

The preferred minimal Markovian state fulfills the Markov
property with the minimum number of variables. It comprises
20 values. These are the observation vector (velocity vt, gain
gt, shift ht, setpoint pt, consumption ct, and fatigue ft) plus
some latent variables of the sub-dynamics. The sub-dynamics
of operational cost add a list of previous operational costs,

θt−i with i ∈ 1, · · · , 9. Note that the current operational cost
θt is not part of this state definition. It would be redundant,
as it can be calculated by vt, gain gt, and setpoint pt. The
sub-dynamics of mis-calibration need three additional latent
variables, δ, ψ, and φ, (Section III-B). The sub-dynamics of
fatigue add 2 additional latent variables hv and hg, (Eq. (30)
and (31)).
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– setpoint pt

velocity vt
gain gt
shift ht
consumption ct
fatigue ft

operational cost at t− 1 θt−1

operational cost at t− 2 θt−2

operational cost at t− 3 θt−3

operational cost at t− 4 θt−4

operational cost at t− 5 θt−5

operational cost at t− 6 θt−6

operational cost at t− 7 θt−7

operational cost at t− 8 θt−8

operational cost at t− 9 θt−9

1st latent variable of mis-calibration δ
2nd latent variable of mis-calibration ψ
3rd latent variable of mis-calibration φ
1st latent variable fatigue µv

2nd latent variable fatigue µg

TABLE I
IB MARKOVIAN STATE.

APPENDIX B
GOLDSTONE POTENTIAL BASED EQUATIONS

The resulting penalty of the mis-calibration reward com-
ponent is computed by adopting a so-called linearly biased
Goldstone potential. The following constants are pre-defined
to subsequently compute the respective penalty:

ε =
3
√

1 +
√

2√
3

≈ 0.7745, (34)

ζ = ε+
1

3ε
≈ 1.2048, (35)

λ = 2ζ2 − ζ4 + 8

√
2

27
ζ ≈ 3.4193, (36)

α =
2

λ
≈ 0.5849, (37)

β =
1

λ
≈ 0.2924, (38)

κ =
−8
√

2
27

λ
≈ −0.6367. (39)

Given effective shift he and the sine of direction angle ρ,
which is denoted as ρs, function ω(ρs, he) is computed using



the following set of equations:

ω =

{
(h

e|rmin|)
|ropt| if |he| ≤ |ropt|

sgn(he) · ω̂ else,
(40)

ω̂ = |rmin|+ 2− |rmin|
(2− |ropt|) ˆ̂ω

· (|he| − |ropt|) ˆ̂ω, (41)

ˆ̂ω =
2− |ropt|
2− |rmin|

, (42)

ropt = % ·max(|ρs|, 2z), (43)

rmin =

{
u+ 1

3u if q < −
√

1/27

%
√

4
3 cos

(
1
3 · acos(−q

√
27)
)

else,
(44)

u =
3

√
−%q +

√
q2 − 1

27
, (45)

q =
κ|ρs|
8β

, (46)

% = sgn(ρs). (47)
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