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Abstract

Multi-hop question answering (QA) involves
finding multiple relevant passages and step-by-
step reasoning to answer complex questions,
indicating a retrieve-and-read paradigm. How-
ever, previous retrievers were customized for
two-hop questions, and most of them were
trained separately across different hops, result-
ing in a lack of supervision over the entire
multi-hop retrieval process and leading to poor
performance in complicated scenarios beyond
two hops. In this work, we introduce Beam
Retrieval, an end-to-end beam retrieval frame-
work for multi-hop QA. This approach models
the multi-hop retrieval process in an end-to-end
manner by jointly optimizing an encoder and
two classification heads across all hops. More-
over, Beam Retrieval maintains multiple partial
hypotheses of relevant passages at each step,
expanding the search space and reducing the
risk of missing relevant passages. To estab-
lish a complete QA system, we incorporate a
supervised reader or a large language model
(LLM). Experimental results demonstrate that
Beam Retrieval achieves a nearly 50% improve-
ment compared with baselines on challenging
MuSiQue-Ans, and it also surpasses all pre-
vious retrievers on HotpotQA and achieves
99.9% precision on 2WikiMultiHopQA. Pro-
viding high-quality context, Beam Retrieval
helps our supervised reader achieve new state-
of-the-art performance and substantially im-
proves the few-shot QA performance of LLMs.

1 Introduction

Question Answering (QA) has been a mainstream
research in natural language processing (NLP) for
a long time. With the development of pretrained
language models (PLMs), simple QA tasks can be
solved by adopting a BERT-like PLM (Devlin et al.,
2019). As a result, researchers have been increas-
ingly drawn to more complex QA benchmarks,
such as multi-hop QA. This presents a significant
challenge, as it requires reasoning across multiple
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Figure 1: An example of multi-hop QA from MuSiQue-
Ans benchmark. This complicated 4-hop question re-
quires the model to select relevant passages based on
the question and previously chosen passages.

and diverse passages to accurately answer com-
plicated multi-hop questions. Many high-quality
multi-hop QA datasets have been introduced, such
as HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), MuSiQue (Trivedi et al.,
2022) and so on. Figure 1 illustrates an example
of an actual question taken from MuSiQue-Ans
dataset.

Mainstream methods for multi-hop QA often
follow a retrieve-and-read paradigm (Chen et al.,
2017; Zhu et al., 2021), including a passage re-
triever to filter out extraneous information and a
reader to obtain the final answer (Chen et al., 2017,
Tu et al., 2020; Xiong et al., 2021; Zhao et al.,
2021; Wu et al., 2021; Trivedi et al., 2022; Li et al.,
2023; Zhangyue et al., 2023). However, these meth-
ods have primarily focused on two-hop scenarios,
exhibiting limited adaptability to more complex



situations beyond two hops. Additionally, while
multi-hop retrieval requires identifying next hop
passage based on the question and previously se-
lected passages (see figure 1), few of them focus on
supervision over the entire retrieval process. Fur-
thermore, these retrievers exhibit limited robust-
ness, as the entire retrieval process is susceptible
to failure if the first stage identifies irrelevant pas-
sages. In conclusion, previous retrievers perform
poorly when handling questions with more than
2 hops and provide low-quality context for down-
stream QA tasks.

To address the described problems, we pro-
pose Beam Retrieval, an end-to-end beam retrieval
framework for multi-hop QA. Beam Retrieval uti-
lizes an encoder and two classification heads to
model the entire multi-hop retrieval process in an
end-to-end manner and can be adapted to a ques-
tion with a variable hop. During training, Beam
Retrieval accumulates the loss at each step and
jointly optimizes the encoder and two classification
heads in the backpropagation phase, enabling the
model to learn the entire retrieval process. During
inference, Beam Retrieval searches the relevant pas-
sage at each step until the highest predicted score
falls below a predefined threshold. In summary,
Beam Retrieval produces a chain of relevant pas-
sages with the highest score using a single forward
pass, effectively learning the entire multi-hop re-
trieval process. Moreover, we employ the beam
search paradigm by keeping track of multiple par-
tial hypotheses of relevant passages at each step.
This approach enables our model to learn more neg-
ative passage pairs in the expanded search space,
enhances the probability of obtaining the truly rele-
vant passages, and mitigates the impact of retrieval
errors that may occur in the early stages. To reduce
the gap between training and reasoning, Beam Re-
trieval is designed to reason using the same beam
size as it employs during training.

Beam Retrieval can also serve as a plugin in the
QA domain, providing high-quality relevant con-
text and enhancing the performance of downstream
QA tasks. Based on Beam Retrieval, we implement
a multi-hop QA system to extract the answers by
incorporating a supervised reader (Li et al., 2023;
Zhangyue et al., 2023) following conventional ma-
chine reading comprehension setting or a few-shot
large language model (LLM) (Brown et al., 2020;
OpenAl, 2023). We validate Beam Retrieval by
extensive experiments on three benchmark datasets
MuSiQue-Ans, HotpotQA and 2WikiMultihopQA,

and experimental results demonstrate that Beam
Retrieval surpasses all previous retrievers by a large
margin. Consequently, Beam Retrieval substan-
tially improves the QA performance of downstream
QA readers on all three datasets.

We highlight our contributions as follows:

* We propose Beam Retrieval, which models
the entire multi-hop retrieval process in an
end-to-end manner by jointly optimizing an
encoder and two classification heads across
all hops. Designed to handle questions with
variable hops, Beam Retrieval shows great
performance, especially in complex scenarios
beyond two hops.

* Our Beam Retrieval keeps multiple hypothe-
ses of relevant passages at each step during
end-to-end training and inference, which mit-
igates the impact of retrieval errors that may
occur in the early steps. This beam search
paradigm brings further improvement.

* We evaluate our multi-hop QA system on
three multi-hop QA datasets to validate the
effectiveness of Beam Retrieval. Beam
Retrieval achieves a nearly 50% improve-
ment compared with baselines on challenging
MuSiQue-Ans, and it also surpasses all pre-
vious retrievers on HotpotQA and achieves
99.9% precision on 2WikiMultiHopQA. Pro-
viding high-quality context, Beam Retrieval
helps our supervised reader achieve new
state-of-the-art performance and substantially
improves the few-shot QA performance of
LLM:s.

2 Related Work

Retrievers in Multi-Hop QA Mainstream meth-
ods for multi-hop QA often follow a retrieve-and-
read paradigm (Chen et al., 2017; Zhu et al., 2021),
where a retriever is used to find passages relevant
to the multi-hop question, followed by a reader
that answers the question based on the retrieved
content. Previous retrievers focus on two types of
multi-hop QA settings: the open-domain setting
and the reading comprehension setting. In the open-
domain setting, models are required to retrieve rel-
evant passages within a large-scale corpus, while
the reading comprehension setting involves search-
ing within a smaller set of candidate passages. In
open-domain multi-hop QA, retrievers can be cate-
gorized into semantic retrieval methods like BM25



(Chen et al., 2017) and dense retrieval methods
like MDR (Xiong et al., 2021) and BeamDR (Zhao
et al., 2021). Retrievers in the reading compre-
hension setting are almost cross-encoders, divided
into two types. One type is the one-step methods.
SAE (Tu et al., 2020) and MuSiQue SA Selector
(Trivedi et al., 2022) concatenate each candidate
passage and the question as inputs fed to BERT,
then select out the most relevant passages with the
highest scores. Such methods do not utilize the
dependency between relevant passages, resulting
in a limited performance. The other type is the two-
step methods. S2G (Wu et al., 2021) and FE2H (Li
et al., 2023) select the first hop passage in the same
way as one-step. In the second stage, they identify
the second hop relevant passage by pairing the se-
lected passage with the other candidate passages.
R? (Zhangyue et al., 2023) selects three passages in
the first stage, then combines them two by two and
identifies the true passage pair in the second stage.
Notice that the unselected passages in the first stage
will not be utilized in the second stage, leaving lim-
itations in retrieval. The Beam Retrieval proposed
in this paper, primarily aimed at the reading com-
prehension setting, similarly introduces the idea
of beam search as in BeamDR. However, unlike
BeamDR, Beam Retrieval emphasizes modeling
the entire multi-hop retrieval process and dealing
with complex scenarios beyond two hops.

3 Beam Retrieval

Beam Retrieval is designed to handle a k-hop multi-
hop questions () and accurately selects the most
relevant passages, providing nearly noiseless con-
text for downstream QA tasks. In this section, we
clarify how Beam Retrieval infers and trains in an
end-to-end manner, which is illustrated in Figure 2.

3.1 Problem Formulation

Given a k-hop question () and a candidate set with
n passages as D = {p1,pa, ..., P}, multi-hop re-
trieval aims to produce a relevant passages chain
(P1, P2, ---, Dk)- Most existing work formulates it
as a one-step or two-step sequence labeling task,
classifying every passage p; € D as relevant or
not. However, this method lacks generality and
precision.

In contrast, we align multi-hop retrieval task
with text decoding, proposing a more general re-
trieval framework with higher precision. Con-
ceptually, a passage p; € D corresponds to a

token w; € V and the question () corresponds
to a special start token “<s>”. Similarly, we
also denote the output of a multi-hop retriever as
% = f (Q,p1, ..., Pt—1), given the concatenated se-
quence of question and passages identified so far,
(@, p1, ..., Pt—1), which we write as p- for short.
The output Z; € R™.

We use an auto-encoder language model as an en-
coder to derive embeddings for the concatenated se-
quence (Q, p1, ..., Pt—1, 2t). Subsequently, a fully
connected layer is utilized to project the final di-
mension of the “[CLS]” representations of these
embeddings into a 2-dimensional space, represent-
ing “irrelevant” and “relevant” respectively. The
logit in “relevant” side serves as the score for the
sequence. This scoring process is denoted by a
function S(%;|p<¢), and it is shown in Figure 2.

The probability distribution over the next possi-
ble relevant passage being p € D is the softmax:

, ) S(41p
Py = plp<t) = > (ilp<c)

pED\{p1,pe1} S (PlD<t)

Vi, € D \ {]51, ...,ﬁtfl}

ey

We should keep the uniqueness of each passage

within the sequence, as there is no duplicated pas-

sages in the only one ground-truth relevant pas-

sage chain. This requirement differs from the text

decoding process, where such uniqueness is not
necessarily enforced.

3.2 Scoring

As described in Section 3.1, every hypothesis will
be scored at each step. Beam Retrieval also em-
ploys a scoring function S(%;|p<) as illustrated in
Figure 2, which utilizes an encoder and two classifi-
cation heads to obtain scores for each hypothesis of
passages. At the first hop, for every passage p; € D
we concatenate “[CLS] + @Q + p; + [SEP]” to the
encoder and derive the encoded (Q, p;) representa-
tions H' = [h%, hi, ,hlLL] € REXP where L; de-
notes the length of the concatenated sequence and h
denotes the output dimension of the encoder. Then
a classification head named “classi fier;” project
every H' into a 2-dimensional space, represent-
ing “irrelevant” and “relevant” respectively. We
take the logit in “relevant” side as the score for the
sequence (@, p;). At subsequent hop ¢, we concate-
nate “[CLS] + Q + p1 + ... + pr_1 + 4+ + [SEP]”
for every 2, € D\ {p1,....,0t—1}. We use the
same encoder but another classification head named
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Figure 2: A visualization of Beam Retrieval with a beam size of 2 for the example in Figure 1. The left part shows
how to obtain scores for each hypothesis, where M denotes the number of hypotheses at each hop, L denotes the
max length of the hypotheses and h denotes the output dimension of the encoder. The right part shows how Beam
Retrieval reasons and trains in an end-to-end way, where the red path refers to the ground-truth relevant passages.

“classi fiery” to obtain the score of concatenate se-
quence (@, p1, ..., Dt—1, %¢) in the same way. The
structures of “classi fier,” and “classi fiery” are
totally same, the only difference is “classi fier;”
handles a fixed n sequences while “classifiery”
deals with a variable number of sequences in an
expanded search space.

3.3 End-to-End Inference

Compared with previous customized two-step re-
trieval methods (Wu et al., 2021; Li et al., 2023;
Zhangyue et al., 2023), Beam Retrieval employs
the beam search paradigm to retrieve multiple rele-
vant passages at each hop, discovering all the rele-
vant passages of () in an end-to-end way. Let B be
the predefined beam size. Starting from the ques-
tion (), Beam Retrieval pairs it with n passages
in D and scores these n concatenated sequences
through the encoder and classi fiery, choosing the
B passages with the highest scores as the first se-
lected passages. At subsequent hop ¢, Beam Re-
trieval keeps track of B partial hypotheses, denoted
asP? , = {ph,....,p? 1}, b € [1, B]. Then we con-
catenate (Q, P?_,, %) forevery 4, € D\'PP_, asin-
put concatenated sequences. In this way Beam Re-
trieval expands the search space, producing M hy-
potheses of passages, where M is slightly less than

B xn as we should keep the uniqueness of each pas-
sage within the sequence. Then we score these hy-
potheses using the encoder and classi fiers, choos-
ing the B hypotheses with the highest scores. This
process continues until the current highest pre-
dicted score falls below a predefined threshold T,
and we take the passage sequence from the previ-
ous step that has the highest score.

Beam Retrieval finishes the multi-hop retrieval
task using a single forward pass, where it calls
k times encoder, 1 time classifiery, and k — 1
times classi fiero. Additionally, as we can see in
Figure 2, for methods that select only one passage
at a time, choosing an irrelevant passage in the first
stage could fail in the entire multi-hop retrieval
process. In conclusion, Beam Retrieval reduces the
risk of missing hidden relevant passage sequences
by keeping the most likely B hypotheses at each
hop and eventually choosing the hypothesis that
has the overall highest score.

3.4 Jointly Optimization

We jointly optimize the encoder, classi fier; and
classi fiers across all hops in an end-to-end man-
ner. Let (p1,p2, ..., k) be the ground truth rele-
vant passages. At the first hop, the loss can be
represented as:



L =— Z ll,pZOQS(p’Q)+
peD (2)

(1 =lip)log(1 = S(plQ))

where [1 , is the label of p and S(p|Q) is the score
function described in Section 3.1. At subsequent
hop t, the loss can be represented as:

B
»Ct — Z Z lt’pZO'gS(p‘Pffla Q)

b=1 peD\P}_, ©)
+ (1= lyp)log(l — S(p|P}_1,Q))

where [; ;, is the label of p. As the beam size B in-
creases, there is a corresponding rise in the number
of irrelevant passage sequences. This increment
augments Beam Retrieval’s capability to accurately
identify irrelevant paragraph sequences, allowing
the model to halt at the appropriate point during in-
ference, reducing instances of either under-retrieval
or over-retrieval of passages.

It is important to note that not all datasets of-
fer the ground-truth relevant passage for each hop.
Consequently, for ¢t € [1, k] we define [; ;,, under
two scenarios: one with a provided order of rele-
vant passages and another without a specified order.
If the order of ground-truth relevant passages is
given, l; , is set as:

1 ifp=
lhp = Speb )
0 ifp 7é Pt

Otherwise [; ;, is set as:

1
L., =
t,p {0

The overall training loss of Beam Retrieval is:

L= Z,ci (6)

4 Experimental Setup

if p € {p1,p2,..., Pk}

. %)
lfp ¢ {pla P2, 7pk}

4.1 Datasets

We focus on the retrieval part of Multi-hop QA
and primarily aim at the reading comprehension
setting. All experiments are conducted on three
benchmark datasets MuSiQue-Ans (Trivedi et al.,
2022), distractor-setting of HotpotQA (Yang et al.,
2018) and 2WikiMultihopQA (Ho et al., 2020).
For each question, MuSiQue-Ans, HotpotQA, and

2WikiMultihopQA provide 20, 10, and 10 can-
didate passages, respectively. MuSiQue-Ans re-
quires the model to answer the complicated multi-
hop questions, while HotpotQA and 2WikiMulti-
hopQA additionally require the model to provide
corresponding supporting sentences. In the setting
of Beam Retrieval augmented LLM, we evaluate
our method on the partial part of three multi-hop
datasets, where we use the 500 questions for each
dataset sampled by (Trivedi et al., 2023).

HotpotQA and 2WikiMultihopQA share a sim-
ilar format and have 2-hop and 2,4-hop questions
respectively. Furthermore, 2WikiMultihopQA has
entity-relation tuples support, but we do not use this
annotation in our training or evaluation. To eval-
uate Beam Retrieval’s performance in more com-
plex scenarios, main experiments are conducted
on MuSiQue-Ans, which has 2,3,4-hop questions
and is more challenging, as it requires explicit con-
nected reasoning.

4.2 Models
4.2.1 Beam Retrieval

Beam Retrieval selects all the relevant passages in
an end-to-end way. We set the predefined threshold
T to -1. We employ the base and the large version
of DeBERTa (He et al., 2021) as our encoder. We
use a single RTX4090 GPU and set the number of
epochs to 16 and the batch size to 1 (here batch
size means the number of examples taken from the
dataset, and the actual batch size is the hypothesis
number M'). Owing to our multiple calls of encoder
during training, we set gradient checkpointing to
True, otherwise it requires a huge amount of mem-
ory. We use AdamW (Loshchilov and Hutter, 2017)
with a learning rate of 2e-5 for the optimization and
set the max position embeddings to 512. Consid-
ering the long concatenated sequences, we adopt a
truncation method. If the total length exceeds the
max length, we calculate the average length of each
passage and truncate the extra part. To enhance the
robustness of the model, we shuffle the inner order
of the concatenated passages within the hypothesis.

4.2.2 Downstream Reader

We implement a downstream reader to receive the
retrieved relevant passages as the context C, and
we concatenate input “[CLS] + @ + [SEP] + C +
[SEP]” to feed our reader. Specifically, we conduct
experiments with two types of readers: supervised
setting and few-shot LLM setting.



(i) Supervised Reader For MuSiQue-Ans
dataset, we train a reading comprehension
model following BertForQuestionAnswering (De-
vlin et al., 2019; Wolf et al., 2020). For Hot-
potQA and 2WikiMultihopQA, we train a multi-
task reader which extracts the answer and the sup-
porting facts of the question, following FE2H (Li
et al., 2023) and R? (Zhangyue et al., 2023), where
you can refer to Appendix A for details. In the su-
pervised setting, we employ the large version of De-
BERTa for MuSiQue and 2WikiMultihopQA and
the xxlarge version of DeBERTa for HotpotQA. We
use a single RTX4090 GPU to train the large ver-
sion reader and a single A100 to train the xxlarge
version reader. We set the number of epochs
to 12 and the batch size to 4. We use AdamW
(Loshchilov and Hutter, 2017) with a learning rate
of 5e-6 for the optimization and set the max posi-
tion embeddings to 1024. To enhance the robust-
ness of the model, we shuffle the inner order of the
concatenated passages within the context.

(i))Few-Shot LLM In addition to the supervised
reader above, we also incorporate a LLM as the
downstream reader to benchmark the few-shot QA
performance of Beam Retrieval augmented LLM.
In the few-shot LLM setting, given that each ex-
ample contains up to 20 passages, we choose long-
input LLMs. Specifically, we use closed model
gpt-3.5-turbo- 16k provided from API of OpenAl
and open model longchat-13b-16k running locally
on two 80G-A100 with the help of FastChat (Zheng
et al., 2023). We use the template described in Ap-
pendix B to obtain the answers directly.

4.3 Evaluation Metrics

Generally, we use Exact Match (EM) and F1 scores
to evaluate the retrieval performance. Retrieval EM
means whether the passage-level prediction is the
same as the ground truth, while retrieval F1 is the
harmonic mean of precision and recall, and both
of them are irrespective of the inner order between
relevant passages. In the retrieve-and-read setting,
retrieval EM is particularly critical, as missing rele-
vant passages can significantly impact the perfor-
mance of downstream readers.

For MuSiQue-Ans, we report the standard F1-
based metrics for answer (An) and support pas-
sages identification (Sp). Actually, Sp F1 in
MuSiQue-Ans is equivalent to retrieval F1. For
HotpotQA and 2WikiMultihopQA, we report the
EM and F1 metrics for the answer prediction task
(Ans) and supporting facts prediction task (Sup).

In the Beam Retrieval augmented LLM setting, we
report the answer F1.

5 Results

Appropriate Beam Size We first explore the in-
fluence of different beam sizes on MuSiQue-Ans,
as shown in Table 1, where the encoder is the base
version. Beam Retrieval performs well even with a
beam size of 1, showing that modeling the multi-
hop retrieval process in an end-to-end manner in-
deed yields significant improvement, and a beam
size of 2 brings further improvement, which is con-
sistent with (Sutskever et al., 2014). However, a
beam size greater than 2 leads to a slight decline
in performance, which we assume is due to the
increase in the number of irrelevant sequences as
the beam size expands, making the retrieval task
more difficult. It is worth mentioning that in our ex-
perimental setting, the candidate set size n ranges
from 10 to 20. As the beam size expands, both
the necessary training memory and training dura-
tion increase rapidly. Due to these considerations,
we do not conduct experiments with a beam size
larger than 4. In conclusion, we employ beam sizes
of 1 and 2 for Beam Retrieval in our subsequent
experiments.

beam size EM F1  Mem (%) Speed (%)
1 74.18 87.46 100% 100%
2 75.47 88.27 119% 58%
3 74.56 87.84 150% 42%
4 74.43 87.65 194% 36%

Table 1: Influence of different beam sizes among re-
trieval performance, training memory required and train-
ing speed. A beam of size 2 offers the optimal balance
between retrieval performance and training costs.

Beam Retrieval Performance We compare our
Beam Retrieval with previous retrievers on three
multi-hop datasets, as shown in Table 2. Beam
Retrieval achieves new SOTA performance across
all datasets, significantly outperforming existing
methods even when using a beam size of 1, and
notably attaining a nearly 50% EM improvement
(from 53.50 to 77.37) on challenging MuSiQue-
Ans. This result highlights the effectiveness of our
proposed approach in handling more complex sit-
uations. As demonstrated in Table 1, employing a
beam size of 2 consistently improves performance
on both MuSiQue-Ans and HotpotQA datasets, val-
idating the benefits of an expanded search space.
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Figure 3: Answer F1 for gpt-3.5-turbo-16k (Left) and longchat-13b-16k (Right) under two conditions on three
multi-hop datasets. Beam Retrieval substantially improves the few-shot QA performance of LLMs.

Methods % Methods I\:gLues-sns
MuSiQue-Ans EE (Trivedi et al., 2022) 407 69.4
gi g“i,vegi_ ot ai" ;8% § (1) ‘3‘; ?;gé SA (Trivedi et al., 2022) 523 752
rivedi et al., . . . .
Ex(EE) (Trivedi et al., 2022) 4878 77.79 Ex(EE) (Trivedi etal., 2022) | 464 78.1
Ex(SA) (Trivedi et al., 2022) 5350 79.24 Ex(SA) (Trivedi etal., 2022) | 49.0  80.6
Beam Retrieval, beam size 1 77.37 89.77 ROoHT™* (Zhang et al., 2023) | 63.6 0
Beam Retrieval, beam size 2 79.31 90.51 Beam Retrieval, beam size 1 66.9 90.0
HotpotQA Beam Retrieval, beam size 2 69.2 914
SAE (Tu et al., 2020) 91.98 95.76
SA Selector* (Trivedi et al., 2022) 93.06 96.43 Table 3: Overall performance on the test set of
S2G (Wu et al., 2021) 95.77 97.82 MuSiQue-Ans. Beam Retrieval achieves a new SOTA.
FE2H (Li et al., 2023) 96.32 98.02
Smoothing R? (Zhangyue et al., 2023) | 96.85 98.32
Beam Retrieval, beam size 1 91.29  98.55 Thanks to the retrieved high-quality context, Beam
Beam Retrieval, beam size 2 97.52 98.68 . . . )
2WikiMultihopQA Retrieval with a beam size of 2 achieves new SOTA
SA Selector* (Trivedi et al., 2022) 9825 99.13 on all three datasets. Specifically, on MuSiQue-
Beam Retrieval, beam size 1 99.93  99.96 Ans our Sp performance (91.4) is comparable to

Table 2: Retrieval performance on the development
set of MuSiQue-Ans, HotpotQA, 2WikiMultihopQA in
comparison with previous work. SA Selector* indicates
that we reproduce SA Selector by training it on the
full HotpotQA and 2WikiMultihopQA. Beam Retrieval
surpasses all previous retrievers by a large margin.

As the high-performance retrievers in HotpotQA
are customized for two-hop issues, we do not re-
produce them for the other two datasets. A large
version encoder is employed for all datasets except
2WikiMultihopQA, where a base version encoder
achieves a remarkable 99.9% retrieval precision.
Therefore we do not conduct further experiments
with larger beam sizes or encoders for this dataset.

Downstream QA Performance Table 3 and Ta-
ble 4 compare multi-hop QA performance between
Beam Retrieval augmented supervised reader (here-
inafter referred to as Beam Retrieval) and other
strong multi-hop systems across three datasets.

the Human Score (93.9) reported in (Trivedi et al.,
2022). To evaluate the degree of enhancement
Beam Retrieval can provide, we compare the few-
shot QA performance of few-shot LLMs under two
conditions: one using all candidate passages (re-
ferred to as “without BR"), and the other only in-
corporating relevant passages retrieved by Beam
Retrieval (referred to as “with BR"), which is de-
picted in Figure 3. LLMs perform poorly in di-
rectly handling complex multi-hop QA tasks, while
Beam Retrieval significantly boosts the few-shot
QA performance of both gpt-3.5-turbo-16k and
longchat-13b-16k, some of which are comparable
to supervised methods.

Ablation Study To understand the strong perfor-
mance of Beam Retrieval, we perform an ablation
study by employing inconsistent beam sizes be-
tween training and reasoning and using different
numbers of classification heads, as illustrated in
Table 5. Performance declines when the training
beam size differs from the reasoning beam size, and



Answer Supporting
Methods EM FI__EM FI
HotpotQA
HGN (Fang et al., 2020) 69.22 82.19 62.76 88.47
SAE (Tu et al., 2020) 66.92 79.62 61.53 86.86
S2G (Wu et al., 2021) 70.72 83.53 64.30 88.72
FE2H (Li et al., 2023) 71.89 84.44 6498 89.14
Smoothing R? (Zhangyue et al., 2023) | 72.07 84.34 65.44 89.55
Beam Retrieval, beam size 2 72.69 85.04 66.25 90.09
2WikiHotpotQA

CRERC (Fu et al., 2021) 69.58 72.33 82.86 90.68
NA-Reviewer (Fu et al., 2022) 76.73 8191 89.61 94.31
BigBird-base model (Ho et al., 2023) | 74.05 79.68 77.14 92.13
Beam Retrieval, beam size 1 88.47 90.87 95.87 98.15

Table 4: Overall performance on the blind test set of HotpotQA and 2WikiMultihopQA in comparison with previous

work. Beam Retrieval achieves SOTA in both datasets

Methods Retrieval Methods Retrieval EM
EM F1 MDR (direct) (Xiong et al., 2021) 65.9
Beam Retrieval; 1 74.18 87.46 MDR (reranking) (Xiong et al., 2021) 81.2
Beam Retrievals o 75.47 88.27 MDR (Beam Retrieval reranking) 82.2
Beam Retrievals 3 74.56 87.84 MDR (gold reranking) 85.6
w/o Consistent Beam Size
Beam Retrievals o 7431 8784 Table 6: Fullwiki HotpotQA reranked retrieval results.
Beam Retrievalg,:l 74.06 87.67 Retrieval EM means whether both gold passages are in-
Beam Retrievaly ; 75.13  88.17 cluded in the top two retrieved passages (top one chain).
w/o 2 Classification Heads Gold reranking refers to whether both gold passages are
BR,,; with 4 Classification Heads | 72.16 87.04 included among all the retrieved chains.
BR;,; with 1 Classification Head | 73.11 87.32

Table 5: Ablation study results on MuSiQue-Ans dataset.
The subscript  ,, indicates training with beam size x
and reasoning with beam size y.

it drops more sharply as the gap between training
and reasoning widens. We do not investigate situ-
ations where the reasoning beam size exceeds the
training beam size, as it is evident that the model
cannot perform hard reasoning after easy training.
We also vary the number of classification heads to
verify if two heads are the optimal setting. First
we use 4 classification heads as there are up to 4-
hop questions and we arrange one head for one
hop, however it results in a 2-point decrease in
EM. Then we employ a unified classification head,
which also leads to a one-point performance drop.
These results confirm that using one head for the
first hop and another head for subsequent hops is
the best configuration.

Reranking in Open-Domain Setting Beam Re-
trieval can serve as a reranker in open-domain
multi-hop retrieval, and we conduct a simple exper-
iment on fullwiki HotpotQA to assess the impact

of Beam Retrieval as a re-ranker, as illustrated in
Table 6. We choose MDR (Xiong et al., 2021) as
the baseline, initially employing it to obtain 100
retrieved passage chains. Subsequently, Beam Re-
trieval is utilized to rerank the passages within these
chains, where we take the top two passages for met-
ric calculation. As an effective reranker, Beam Re-
trieval further enhances the retrieval performance
of open-domain retrieval based on MDR.

6 Conclusion

We present Beam Retrieval, an end-to-end beam re-
trieval framework for multi-hop QA. This approach
models the entire retrieval process in an end-to-end
manner and maintains multiple partial hypotheses
of relevant passages at each step, showing great per-
formance in complex scenarios beyond two hops.
Experimental results on three datasets prove the
effectiveness of Beam Retrieval and demonstrate it
could substantially improve the QA performance
of downstream readers. In general, Beam Retrieval
establishes a strong baseline for complex multi-hop
QA, where we hope that future work could explore
more advanced solutions.



Limitations

There are two major limitations to this work. First,
the resource consumption during training will in-
crease with larger beam sizes. Second, Beam Re-
trieval struggles with being independently applied
to open-domain settings. We will work on methods
to reduce the training consumption of the model
and enable its application to open-domain multi-
hop retrieval with variable hops.

Ethics Statement

This work is a fundamental research work that fo-
cuses on technical improvement, thus we have not
applied additional filtering techniques to the textual
data we used, beyond what has been performed on
the original datasets. The textual data we used may
have information naming or uniquely identifying
individual people or offensive content that we have
not been able to identify, as those are out of the
focus of this work.
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loss item denoted as L y. Similarly, we employ an-
other linear layer to project H and identify the start
and end positions of the answer, denoting the start
position loss and the end position loss as L4+ and
Lend, respectively, as introduced in BERT. Finally,
the total answer span loss L5 is described using
the following formulas.

Eans :)\l(ﬁstart + ﬁend) (7)

where \; is 0.5 in our setting. Formally, the total
loss L4, can be jointly calculated as:

Eqa :)\2£type + /\3£sf + )\4£ans (8)

where A2 is 0.2 and A3, A4 are 1 in our setting. Here
each loss function is the cross-entropy loss.

B Few-Shot Templates

We use the prompt following (Liu et al., 2023). To
ensure diversity in the demonstrations, we selected
demonstrations with different hops and question
types. The number of demonstrations is 3.

B.1 Prompt: Without Beam Retrieval
Write a high-quality answer for the given question using
only the provided search results (some of which might
be irrelevant).
For example:
{examples}

{search_results}

Question: {question}
Answer:

B.2 Prompt: With Beam Retrieval

Write a high-quality answer for the given question using only
the provided search results.

For example:
{examples}
{search_results}

Question: {question}
Answer:
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