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Abstract

Multi-hop question answering (QA) involves001
finding multiple relevant passages and step-by-002
step reasoning to answer complex questions,003
indicating a retrieve-and-read paradigm. How-004
ever, previous retrievers were customized for005
two-hop questions, and most of them were006
trained separately across different hops, result-007
ing in a lack of supervision over the entire008
multi-hop retrieval process and leading to poor009
performance in complicated scenarios beyond010
two hops. In this work, we introduce Beam011
Retrieval, an end-to-end beam retrieval frame-012
work for multi-hop QA. This approach models013
the multi-hop retrieval process in an end-to-end014
manner by jointly optimizing an encoder and015
two classification heads across all hops. More-016
over, Beam Retrieval maintains multiple partial017
hypotheses of relevant passages at each step,018
expanding the search space and reducing the019
risk of missing relevant passages. To estab-020
lish a complete QA system, we incorporate a021
supervised reader or a large language model022
(LLM). Experimental results demonstrate that023
Beam Retrieval achieves a nearly 50% improve-024
ment compared with baselines on challenging025
MuSiQue-Ans, and it also surpasses all pre-026
vious retrievers on HotpotQA and achieves027
99.9% precision on 2WikiMultiHopQA. Pro-028
viding high-quality context, Beam Retrieval029
helps our supervised reader achieve new state-030
of-the-art performance and substantially im-031
proves the few-shot QA performance of LLMs.032

1 Introduction033

Question Answering (QA) has been a mainstream034

research in natural language processing (NLP) for035

a long time. With the development of pretrained036

language models (PLMs), simple QA tasks can be037

solved by adopting a BERT-like PLM (Devlin et al.,038

2019). As a result, researchers have been increas-039

ingly drawn to more complex QA benchmarks,040

such as multi-hop QA. This presents a significant041

challenge, as it requires reasoning across multiple042
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Question:
The gold spike in the city where Falling in 
Reverse formed is owned by a person whose 
alma mater has how many undergraduates?

Title: Falling in Reverse
Falling in Reverse is an American rock band 
based in Las Vegas, Nevada and formed in 2008, 
signed to Epitaph Records

Title: Gold Spike (property)
… at the Gold Spike, a 50 - room three floor hotel 
located in downtown Las Vegas. It was owned by 
entrepreneur Tony Hsieh and …

Title: LinkExchange
It was founded in March 1996 by 23-year-old 
Harvard graduates Tony Hsieh …

Title: Harvard University
Harvard's 2,400 professors, lecturers, and 
instructors instruct 7,200 undergraduates and 
14,000 graduate students. . …

…city where Falling in 
Reverse formed…

…gold spike… owned 
by a person… 

… alma mater… 

...how many 
undergraduates…

First 
Hop

Second 
Hop

Third 
Hop

Last 
Hop

Figure 1: An example of multi-hop QA from MuSiQue-
Ans benchmark. This complicated 4-hop question re-
quires the model to select relevant passages based on
the question and previously chosen passages.

and diverse passages to accurately answer com- 043

plicated multi-hop questions. Many high-quality 044

multi-hop QA datasets have been introduced, such 045

as HotpotQA (Yang et al., 2018), 2WikiMulti- 046

HopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 047

2022) and so on. Figure 1 illustrates an example 048

of an actual question taken from MuSiQue-Ans 049

dataset. 050

Mainstream methods for multi-hop QA often 051

follow a retrieve-and-read paradigm (Chen et al., 052

2017; Zhu et al., 2021), including a passage re- 053

triever to filter out extraneous information and a 054

reader to obtain the final answer (Chen et al., 2017; 055

Tu et al., 2020; Xiong et al., 2021; Zhao et al., 056

2021; Wu et al., 2021; Trivedi et al., 2022; Li et al., 057

2023; Zhangyue et al., 2023). However, these meth- 058

ods have primarily focused on two-hop scenarios, 059

exhibiting limited adaptability to more complex 060
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situations beyond two hops. Additionally, while061

multi-hop retrieval requires identifying next hop062

passage based on the question and previously se-063

lected passages (see figure 1), few of them focus on064

supervision over the entire retrieval process. Fur-065

thermore, these retrievers exhibit limited robust-066

ness, as the entire retrieval process is susceptible067

to failure if the first stage identifies irrelevant pas-068

sages. In conclusion, previous retrievers perform069

poorly when handling questions with more than070

2 hops and provide low-quality context for down-071

stream QA tasks.072

To address the described problems, we pro-073

pose Beam Retrieval, an end-to-end beam retrieval074

framework for multi-hop QA. Beam Retrieval uti-075

lizes an encoder and two classification heads to076

model the entire multi-hop retrieval process in an077

end-to-end manner and can be adapted to a ques-078

tion with a variable hop. During training, Beam079

Retrieval accumulates the loss at each step and080

jointly optimizes the encoder and two classification081

heads in the backpropagation phase, enabling the082

model to learn the entire retrieval process. During083

inference, Beam Retrieval searches the relevant pas-084

sage at each step until the highest predicted score085

falls below a predefined threshold. In summary,086

Beam Retrieval produces a chain of relevant pas-087

sages with the highest score using a single forward088

pass, effectively learning the entire multi-hop re-089

trieval process. Moreover, we employ the beam090

search paradigm by keeping track of multiple par-091

tial hypotheses of relevant passages at each step.092

This approach enables our model to learn more neg-093

ative passage pairs in the expanded search space,094

enhances the probability of obtaining the truly rele-095

vant passages, and mitigates the impact of retrieval096

errors that may occur in the early stages. To reduce097

the gap between training and reasoning, Beam Re-098

trieval is designed to reason using the same beam099

size as it employs during training.100

Beam Retrieval can also serve as a plugin in the101

QA domain, providing high-quality relevant con-102

text and enhancing the performance of downstream103

QA tasks. Based on Beam Retrieval, we implement104

a multi-hop QA system to extract the answers by105

incorporating a supervised reader (Li et al., 2023;106

Zhangyue et al., 2023) following conventional ma-107

chine reading comprehension setting or a few-shot108

large language model (LLM) (Brown et al., 2020;109

OpenAI, 2023). We validate Beam Retrieval by110

extensive experiments on three benchmark datasets111

MuSiQue-Ans, HotpotQA and 2WikiMultihopQA,112

and experimental results demonstrate that Beam 113

Retrieval surpasses all previous retrievers by a large 114

margin. Consequently, Beam Retrieval substan- 115

tially improves the QA performance of downstream 116

QA readers on all three datasets. 117

We highlight our contributions as follows: 118

• We propose Beam Retrieval, which models 119

the entire multi-hop retrieval process in an 120

end-to-end manner by jointly optimizing an 121

encoder and two classification heads across 122

all hops. Designed to handle questions with 123

variable hops, Beam Retrieval shows great 124

performance, especially in complex scenarios 125

beyond two hops. 126

• Our Beam Retrieval keeps multiple hypothe- 127

ses of relevant passages at each step during 128

end-to-end training and inference, which mit- 129

igates the impact of retrieval errors that may 130

occur in the early steps. This beam search 131

paradigm brings further improvement. 132

• We evaluate our multi-hop QA system on 133

three multi-hop QA datasets to validate the 134

effectiveness of Beam Retrieval. Beam 135

Retrieval achieves a nearly 50% improve- 136

ment compared with baselines on challenging 137

MuSiQue-Ans, and it also surpasses all pre- 138

vious retrievers on HotpotQA and achieves 139

99.9% precision on 2WikiMultiHopQA. Pro- 140

viding high-quality context, Beam Retrieval 141

helps our supervised reader achieve new 142

state-of-the-art performance and substantially 143

improves the few-shot QA performance of 144

LLMs. 145

2 Related Work 146

Retrievers in Multi-Hop QA Mainstream meth- 147

ods for multi-hop QA often follow a retrieve-and- 148

read paradigm (Chen et al., 2017; Zhu et al., 2021), 149

where a retriever is used to find passages relevant 150

to the multi-hop question, followed by a reader 151

that answers the question based on the retrieved 152

content. Previous retrievers focus on two types of 153

multi-hop QA settings: the open-domain setting 154

and the reading comprehension setting. In the open- 155

domain setting, models are required to retrieve rel- 156

evant passages within a large-scale corpus, while 157

the reading comprehension setting involves search- 158

ing within a smaller set of candidate passages. In 159

open-domain multi-hop QA, retrievers can be cate- 160

gorized into semantic retrieval methods like BM25 161
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(Chen et al., 2017) and dense retrieval methods162

like MDR (Xiong et al., 2021) and BeamDR (Zhao163

et al., 2021). Retrievers in the reading compre-164

hension setting are almost cross-encoders, divided165

into two types. One type is the one-step methods.166

SAE (Tu et al., 2020) and MuSiQue SA Selector167

(Trivedi et al., 2022) concatenate each candidate168

passage and the question as inputs fed to BERT,169

then select out the most relevant passages with the170

highest scores. Such methods do not utilize the171

dependency between relevant passages, resulting172

in a limited performance. The other type is the two-173

step methods. S2G (Wu et al., 2021) and FE2H (Li174

et al., 2023) select the first hop passage in the same175

way as one-step. In the second stage, they identify176

the second hop relevant passage by pairing the se-177

lected passage with the other candidate passages.178

R3 (Zhangyue et al., 2023) selects three passages in179

the first stage, then combines them two by two and180

identifies the true passage pair in the second stage.181

Notice that the unselected passages in the first stage182

will not be utilized in the second stage, leaving lim-183

itations in retrieval. The Beam Retrieval proposed184

in this paper, primarily aimed at the reading com-185

prehension setting, similarly introduces the idea186

of beam search as in BeamDR. However, unlike187

BeamDR, Beam Retrieval emphasizes modeling188

the entire multi-hop retrieval process and dealing189

with complex scenarios beyond two hops.190

3 Beam Retrieval191

Beam Retrieval is designed to handle a k-hop multi-192

hop questions Q and accurately selects the most193

relevant passages, providing nearly noiseless con-194

text for downstream QA tasks. In this section, we195

clarify how Beam Retrieval infers and trains in an196

end-to-end manner, which is illustrated in Figure 2.197

3.1 Problem Formulation198

Given a k-hop question Q and a candidate set with199

n passages as D = {p1, p2, ..., pn}, multi-hop re-200

trieval aims to produce a relevant passages chain201

(p̂1, p̂2, ..., p̂k). Most existing work formulates it202

as a one-step or two-step sequence labeling task,203

classifying every passage pi ∈ D as relevant or204

not. However, this method lacks generality and205

precision.206

In contrast, we align multi-hop retrieval task207

with text decoding, proposing a more general re-208

trieval framework with higher precision. Con-209

ceptually, a passage pi ∈ D corresponds to a210

token wi ∈ V and the question Q corresponds 211

to a special start token “<s>”. Similarly, we 212

also denote the output of a multi-hop retriever as 213

źt = f́(Q, p̂1, ..., p̂t−1), given the concatenated se- 214

quence of question and passages identified so far, 215

(Q, p̂1, ..., p̂t−1), which we write as p̂<t for short. 216

The output źt ∈ Rn. 217

We use an auto-encoder language model as an en- 218

coder to derive embeddings for the concatenated se- 219

quence (Q, p̂1, ..., p̂t−1, źt). Subsequently, a fully 220

connected layer is utilized to project the final di- 221

mension of the “[CLS]” representations of these 222

embeddings into a 2-dimensional space, represent- 223

ing “irrelevant” and “relevant” respectively. The 224

logit in “relevant” side serves as the score for the 225

sequence. This scoring process is denoted by a 226

function S(źt|p̂<t), and it is shown in Figure 2. 227

The probability distribution over the next possi- 228

ble relevant passage being p ∈ D is the softmax: 229

Ṕ (p̂t = p|p̂<t) =
S(źt|p̂<t)∑

p∈D\{p̂1,...,p̂t−1} S(p|p̂<t)

∀źt ∈ D \ {p̂1, ..., p̂t−1}
(1) 230

We should keep the uniqueness of each passage 231

within the sequence, as there is no duplicated pas- 232

sages in the only one ground-truth relevant pas- 233

sage chain. This requirement differs from the text 234

decoding process, where such uniqueness is not 235

necessarily enforced. 236

3.2 Scoring 237

As described in Section 3.1, every hypothesis will 238

be scored at each step. Beam Retrieval also em- 239

ploys a scoring function S(źt|p̂<t) as illustrated in 240

Figure 2, which utilizes an encoder and two classifi- 241

cation heads to obtain scores for each hypothesis of 242

passages. At the first hop, for every passage pi ∈ D 243

we concatenate “[CLS] + Q + pi + [SEP]” to the 244

encoder and derive the encoded (Q, pi) representa- 245

tions Hi = [hi
1,hi

2, ...,hi
Li
] ∈ RLi×h, where Li de- 246

notes the length of the concatenated sequence and h 247

denotes the output dimension of the encoder. Then 248

a classification head named “classifier1” project 249

every Hi into a 2-dimensional space, represent- 250

ing “irrelevant” and “relevant” respectively. We 251

take the logit in “relevant” side as the score for the 252

sequence (Q, pi). At subsequent hop t, we concate- 253

nate “[CLS] + Q + p̂1 + ... + p̂t−1 + źt + [SEP]” 254

for every źt ∈ D \ {p̂1, ..., p̂t−1}. We use the 255

same encoder but another classification head named 256
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Scoring

Input Concatenated 
Sequences  𝒳 ∈ ℝ!×#

𝒳 ∈ ℝ!×#×$

𝒴 ∈ ℝ!×%

𝒳 ∈ ℝ!×$

𝒳 ∈ ℝ!×&

The gold spike in 

𝑝!"
[Falling in Reverse]

𝑝#
[Gold Spike 
(property)]
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[LinkExchange]
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[Harvard 
University]
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[Education in India]

Score:0.33

Score:0
.67

Sc
or
e:0
.51

Score:0.49

Sco
re:0
.01

Score:0.99

1-hop

Classifier1 backward
Classifier2 backward

Q

The gold spike in the city where Falling in Reverse formed is owned by a person 
whose alma mater has how many undergraduates?

Q

2-hop 3-hop 4-hop

ℒ1 ℒ2 ℒ3 ℒ4

ℒ

Argmax

Scores for Each 
Hypothesis

Relevant Side Logits

Classification Head

CLS Representation

Encoder

Figure 2: A visualization of Beam Retrieval with a beam size of 2 for the example in Figure 1. The left part shows
how to obtain scores for each hypothesis, where M denotes the number of hypotheses at each hop, L denotes the
max length of the hypotheses and h denotes the output dimension of the encoder. The right part shows how Beam
Retrieval reasons and trains in an end-to-end way, where the red path refers to the ground-truth relevant passages.

“classifier2” to obtain the score of concatenate se-257

quence (Q, p̂1, ..., p̂t−1, źt) in the same way. The258

structures of “classifier1” and “classifier2” are259

totally same, the only difference is “classifier1”260

handles a fixed n sequences while “classifier2”261

deals with a variable number of sequences in an262

expanded search space.263

3.3 End-to-End Inference264

Compared with previous customized two-step re-265

trieval methods (Wu et al., 2021; Li et al., 2023;266

Zhangyue et al., 2023), Beam Retrieval employs267

the beam search paradigm to retrieve multiple rele-268

vant passages at each hop, discovering all the rele-269

vant passages of Q in an end-to-end way. Let B be270

the predefined beam size. Starting from the ques-271

tion Q, Beam Retrieval pairs it with n passages272

in D and scores these n concatenated sequences273

through the encoder and classifier1, choosing the274

B passages with the highest scores as the first se-275

lected passages. At subsequent hop t, Beam Re-276

trieval keeps track of B partial hypotheses, denoted277

as Pb
t−1 = {p̂b1, ..., p̂bt−1}, b ∈ [1, B]. Then we con-278

catenate (Q, Pb
t−1, źt) for every źt ∈ D\Pb

t−1 as in-279

put concatenated sequences. In this way Beam Re-280

trieval expands the search space, producing M hy-281

potheses of passages, where M is slightly less than282

B×n as we should keep the uniqueness of each pas- 283

sage within the sequence. Then we score these hy- 284

potheses using the encoder and classifier2, choos- 285

ing the B hypotheses with the highest scores. This 286

process continues until the current highest pre- 287

dicted score falls below a predefined threshold τ , 288

and we take the passage sequence from the previ- 289

ous step that has the highest score. 290

Beam Retrieval finishes the multi-hop retrieval 291

task using a single forward pass, where it calls 292

k times encoder, 1 time classifier1, and k − 1 293

times classifier2. Additionally, as we can see in 294

Figure 2, for methods that select only one passage 295

at a time, choosing an irrelevant passage in the first 296

stage could fail in the entire multi-hop retrieval 297

process. In conclusion, Beam Retrieval reduces the 298

risk of missing hidden relevant passage sequences 299

by keeping the most likely B hypotheses at each 300

hop and eventually choosing the hypothesis that 301

has the overall highest score. 302

3.4 Jointly Optimization 303

We jointly optimize the encoder, classifier1 and 304

classifier2 across all hops in an end-to-end man- 305

ner. Let (p1,p2, ...,pk) be the ground truth rele- 306

vant passages. At the first hop, the loss can be 307

represented as: 308
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L1 =−
∑
p∈D

l1,plogS(p|Q)+

(1− l1,p)log(1− S(p|Q))

(2)309

where l1,p is the label of p and S(p|Q) is the score310

function described in Section 3.1. At subsequent311

hop t, the loss can be represented as:312

Lt =−
B∑
b=1

∑
p∈D\Pb

t−1

lt,plogS(p|Pb
t−1, Q)

+ (1− lt,p)log(1− S(p|Pb
t−1, Q))

(3)313

where lt,p is the label of p. As the beam size B in-314

creases, there is a corresponding rise in the number315

of irrelevant passage sequences. This increment316

augments Beam Retrieval’s capability to accurately317

identify irrelevant paragraph sequences, allowing318

the model to halt at the appropriate point during in-319

ference, reducing instances of either under-retrieval320

or over-retrieval of passages.321

It is important to note that not all datasets of-322

fer the ground-truth relevant passage for each hop.323

Consequently, for t ∈ [1, k] we define lt,p under324

two scenarios: one with a provided order of rele-325

vant passages and another without a specified order.326

If the order of ground-truth relevant passages is327

given, lt,p is set as:328

lt,p =

{
1 if p = pt

0 if p ̸= pt
(4)329

Otherwise lt,p is set as:330

lt,p =

{
1 if p ∈ {p1, p2, ...,pk}
0 if p /∈ {p1, p2, ...,pk}

(5)331

The overall training loss of Beam Retrieval is:332

L =
k∑

i=1

Li (6)333

4 Experimental Setup334

4.1 Datasets335

We focus on the retrieval part of Multi-hop QA336

and primarily aim at the reading comprehension337

setting. All experiments are conducted on three338

benchmark datasets MuSiQue-Ans (Trivedi et al.,339

2022), distractor-setting of HotpotQA (Yang et al.,340

2018) and 2WikiMultihopQA (Ho et al., 2020).341

For each question, MuSiQue-Ans, HotpotQA, and342

2WikiMultihopQA provide 20, 10, and 10 can- 343

didate passages, respectively. MuSiQue-Ans re- 344

quires the model to answer the complicated multi- 345

hop questions, while HotpotQA and 2WikiMulti- 346

hopQA additionally require the model to provide 347

corresponding supporting sentences. In the setting 348

of Beam Retrieval augmented LLM, we evaluate 349

our method on the partial part of three multi-hop 350

datasets, where we use the 500 questions for each 351

dataset sampled by (Trivedi et al., 2023). 352

HotpotQA and 2WikiMultihopQA share a sim- 353

ilar format and have 2-hop and 2,4-hop questions 354

respectively. Furthermore, 2WikiMultihopQA has 355

entity-relation tuples support, but we do not use this 356

annotation in our training or evaluation. To eval- 357

uate Beam Retrieval’s performance in more com- 358

plex scenarios, main experiments are conducted 359

on MuSiQue-Ans, which has 2,3,4-hop questions 360

and is more challenging, as it requires explicit con- 361

nected reasoning. 362

4.2 Models 363

4.2.1 Beam Retrieval 364

Beam Retrieval selects all the relevant passages in 365

an end-to-end way. We set the predefined threshold 366

τ to -1. We employ the base and the large version 367

of DeBERTa (He et al., 2021) as our encoder. We 368

use a single RTX4090 GPU and set the number of 369

epochs to 16 and the batch size to 1 (here batch 370

size means the number of examples taken from the 371

dataset, and the actual batch size is the hypothesis 372

number M ). Owing to our multiple calls of encoder 373

during training, we set gradient checkpointing to 374

True, otherwise it requires a huge amount of mem- 375

ory. We use AdamW (Loshchilov and Hutter, 2017) 376

with a learning rate of 2e-5 for the optimization and 377

set the max position embeddings to 512. Consid- 378

ering the long concatenated sequences, we adopt a 379

truncation method. If the total length exceeds the 380

max length, we calculate the average length of each 381

passage and truncate the extra part. To enhance the 382

robustness of the model, we shuffle the inner order 383

of the concatenated passages within the hypothesis. 384

4.2.2 Downstream Reader 385

We implement a downstream reader to receive the 386

retrieved relevant passages as the context C, and 387

we concatenate input “[CLS] + Q + [SEP] + C + 388

[SEP]” to feed our reader. Specifically, we conduct 389

experiments with two types of readers: supervised 390

setting and few-shot LLM setting. 391
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(i) Supervised Reader For MuSiQue-Ans392

dataset, we train a reading comprehension393

model following BertForQuestionAnswering (De-394

vlin et al., 2019; Wolf et al., 2020). For Hot-395

potQA and 2WikiMultihopQA, we train a multi-396

task reader which extracts the answer and the sup-397

porting facts of the question, following FE2H (Li398

et al., 2023) and R3 (Zhangyue et al., 2023), where399

you can refer to Appendix A for details. In the su-400

pervised setting, we employ the large version of De-401

BERTa for MuSiQue and 2WikiMultihopQA and402

the xxlarge version of DeBERTa for HotpotQA. We403

use a single RTX4090 GPU to train the large ver-404

sion reader and a single A100 to train the xxlarge405

version reader. We set the number of epochs406

to 12 and the batch size to 4. We use AdamW407

(Loshchilov and Hutter, 2017) with a learning rate408

of 5e-6 for the optimization and set the max posi-409

tion embeddings to 1024. To enhance the robust-410

ness of the model, we shuffle the inner order of the411

concatenated passages within the context.412

(ii)Few-Shot LLM In addition to the supervised413

reader above, we also incorporate a LLM as the414

downstream reader to benchmark the few-shot QA415

performance of Beam Retrieval augmented LLM.416

In the few-shot LLM setting, given that each ex-417

ample contains up to 20 passages, we choose long-418

input LLMs. Specifically, we use closed model419

gpt-3.5-turbo-16k provided from API of OpenAI420

and open model longchat-13b-16k running locally421

on two 80G-A100 with the help of FastChat (Zheng422

et al., 2023). We use the template described in Ap-423

pendix B to obtain the answers directly.424

4.3 Evaluation Metrics425

Generally, we use Exact Match (EM) and F1 scores426

to evaluate the retrieval performance. Retrieval EM427

means whether the passage-level prediction is the428

same as the ground truth, while retrieval F1 is the429

harmonic mean of precision and recall, and both430

of them are irrespective of the inner order between431

relevant passages. In the retrieve-and-read setting,432

retrieval EM is particularly critical, as missing rele-433

vant passages can significantly impact the perfor-434

mance of downstream readers.435

For MuSiQue-Ans, we report the standard F1-436

based metrics for answer (An) and support pas-437

sages identification (Sp). Actually, Sp F1 in438

MuSiQue-Ans is equivalent to retrieval F1. For439

HotpotQA and 2WikiMultihopQA, we report the440

EM and F1 metrics for the answer prediction task441

(Ans) and supporting facts prediction task (Sup).442

In the Beam Retrieval augmented LLM setting, we 443

report the answer F1. 444

5 Results 445

Appropriate Beam Size We first explore the in- 446

fluence of different beam sizes on MuSiQue-Ans, 447

as shown in Table 1, where the encoder is the base 448

version. Beam Retrieval performs well even with a 449

beam size of 1, showing that modeling the multi- 450

hop retrieval process in an end-to-end manner in- 451

deed yields significant improvement, and a beam 452

size of 2 brings further improvement, which is con- 453

sistent with (Sutskever et al., 2014). However, a 454

beam size greater than 2 leads to a slight decline 455

in performance, which we assume is due to the 456

increase in the number of irrelevant sequences as 457

the beam size expands, making the retrieval task 458

more difficult. It is worth mentioning that in our ex- 459

perimental setting, the candidate set size n ranges 460

from 10 to 20. As the beam size expands, both 461

the necessary training memory and training dura- 462

tion increase rapidly. Due to these considerations, 463

we do not conduct experiments with a beam size 464

larger than 4. In conclusion, we employ beam sizes 465

of 1 and 2 for Beam Retrieval in our subsequent 466

experiments.

beam size EM F1 Mem (%) Speed (%)
1 74.18 87.46 100% 100%
2 75.47 88.27 119% 58%
3 74.56 87.84 150% 42%
4 74.43 87.65 194% 36%

Table 1: Influence of different beam sizes among re-
trieval performance, training memory required and train-
ing speed. A beam of size 2 offers the optimal balance
between retrieval performance and training costs.

467

Beam Retrieval Performance We compare our 468

Beam Retrieval with previous retrievers on three 469

multi-hop datasets, as shown in Table 2. Beam 470

Retrieval achieves new SOTA performance across 471

all datasets, significantly outperforming existing 472

methods even when using a beam size of 1, and 473

notably attaining a nearly 50% EM improvement 474

(from 53.50 to 77.37) on challenging MuSiQue- 475

Ans. This result highlights the effectiveness of our 476

proposed approach in handling more complex sit- 477

uations. As demonstrated in Table 1, employing a 478

beam size of 2 consistently improves performance 479

on both MuSiQue-Ans and HotpotQA datasets, val- 480

idating the benefits of an expanded search space. 481
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Figure 3: Answer F1 for gpt-3.5-turbo-16k (Left) and longchat-13b-16k (Right) under two conditions on three
multi-hop datasets. Beam Retrieval substantially improves the few-shot QA performance of LLMs.

Methods Retrieval
EM F1

MuSiQue-Ans
EE (Trivedi et al., 2022) 21.47 67.61
SA (Trivedi et al., 2022) 30.37 72.30
Ex(EE) (Trivedi et al., 2022) 48.78 77.79
Ex(SA) (Trivedi et al., 2022) 53.50 79.24
Beam Retrieval, beam size 1 77.37 89.77
Beam Retrieval, beam size 2 79.31 90.51

HotpotQA
SAE (Tu et al., 2020) 91.98 95.76
SA Selector* (Trivedi et al., 2022) 93.06 96.43
S2G (Wu et al., 2021) 95.77 97.82
FE2H (Li et al., 2023) 96.32 98.02
Smoothing R3 (Zhangyue et al., 2023) 96.85 98.32
Beam Retrieval, beam size 1 97.29 98.55
Beam Retrieval, beam size 2 97.52 98.68

2WikiMultihopQA
SA Selector* (Trivedi et al., 2022) 98.25 99.13
Beam Retrieval, beam size 1 99.93 99.96

Table 2: Retrieval performance on the development
set of MuSiQue-Ans, HotpotQA, 2WikiMultihopQA in
comparison with previous work. SA Selector* indicates
that we reproduce SA Selector by training it on the
full HotpotQA and 2WikiMultihopQA. Beam Retrieval
surpasses all previous retrievers by a large margin.

As the high-performance retrievers in HotpotQA482

are customized for two-hop issues, we do not re-483

produce them for the other two datasets. A large484

version encoder is employed for all datasets except485

2WikiMultihopQA, where a base version encoder486

achieves a remarkable 99.9% retrieval precision.487

Therefore we do not conduct further experiments488

with larger beam sizes or encoders for this dataset.489

Downstream QA Performance Table 3 and Ta-490

ble 4 compare multi-hop QA performance between491

Beam Retrieval augmented supervised reader (here-492

inafter referred to as Beam Retrieval) and other493

strong multi-hop systems across three datasets.494

Methods MuSiQue-Ans
An Sp

EE (Trivedi et al., 2022) 40.7 69.4
SA (Trivedi et al., 2022) 52.3 75.2
Ex(EE) (Trivedi et al., 2022) 46.4 78.1
Ex(SA) (Trivedi et al., 2022) 49.0 80.6
RoHTmix (Zhang et al., 2023) 63.6 0
Beam Retrieval, beam size 1 66.9 90.0
Beam Retrieval, beam size 2 69.2 91.4

Table 3: Overall performance on the test set of
MuSiQue-Ans. Beam Retrieval achieves a new SOTA.

Thanks to the retrieved high-quality context, Beam 495

Retrieval with a beam size of 2 achieves new SOTA 496

on all three datasets. Specifically, on MuSiQue- 497

Ans our Sp performance (91.4) is comparable to 498

the Human Score (93.9) reported in (Trivedi et al., 499

2022). To evaluate the degree of enhancement 500

Beam Retrieval can provide, we compare the few- 501

shot QA performance of few-shot LLMs under two 502

conditions: one using all candidate passages (re- 503

ferred to as “without BR"), and the other only in- 504

corporating relevant passages retrieved by Beam 505

Retrieval (referred to as “with BR"), which is de- 506

picted in Figure 3. LLMs perform poorly in di- 507

rectly handling complex multi-hop QA tasks, while 508

Beam Retrieval significantly boosts the few-shot 509

QA performance of both gpt-3.5-turbo-16k and 510

longchat-13b-16k, some of which are comparable 511

to supervised methods. 512

Ablation Study To understand the strong perfor- 513

mance of Beam Retrieval, we perform an ablation 514

study by employing inconsistent beam sizes be- 515

tween training and reasoning and using different 516

numbers of classification heads, as illustrated in 517

Table 5. Performance declines when the training 518

beam size differs from the reasoning beam size, and 519
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Methods Answer Supporting
EM F1 EM F1

HotpotQA
HGN (Fang et al., 2020) 69.22 82.19 62.76 88.47

SAE (Tu et al., 2020) 66.92 79.62 61.53 86.86
S2G (Wu et al., 2021) 70.72 83.53 64.30 88.72
FE2H (Li et al., 2023) 71.89 84.44 64.98 89.14

Smoothing R3 (Zhangyue et al., 2023) 72.07 84.34 65.44 89.55
Beam Retrieval, beam size 2 72.69 85.04 66.25 90.09

2WikiHotpotQA
CRERC (Fu et al., 2021) 69.58 72.33 82.86 90.68

NA-Reviewer (Fu et al., 2022) 76.73 81.91 89.61 94.31
BigBird-base model (Ho et al., 2023) 74.05 79.68 77.14 92.13

Beam Retrieval, beam size 1 88.47 90.87 95.87 98.15

Table 4: Overall performance on the blind test set of HotpotQA and 2WikiMultihopQA in comparison with previous
work. Beam Retrieval achieves SOTA in both datasets

Methods Retrieval
EM F1

Beam Retrieval1,1 74.18 87.46
Beam Retrieval2,2 75.47 88.27
Beam Retrieval3,3 74.56 87.84

w/o Consistent Beam Size
Beam Retrieval3,2 74.31 87.84
Beam Retrieval3,1 74.06 87.67
Beam Retrieval2,1 75.13 88.17

w/o 2 Classification Heads
BR1,1 with 4 Classification Heads 72.16 87.04
BR1,1 with 1 Classification Head 73.11 87.32

Table 5: Ablation study results on MuSiQue-Ans dataset.
The subscript x,y indicates training with beam size x
and reasoning with beam size y.

it drops more sharply as the gap between training520

and reasoning widens. We do not investigate situ-521

ations where the reasoning beam size exceeds the522

training beam size, as it is evident that the model523

cannot perform hard reasoning after easy training.524

We also vary the number of classification heads to525

verify if two heads are the optimal setting. First526

we use 4 classification heads as there are up to 4-527

hop questions and we arrange one head for one528

hop, however it results in a 2-point decrease in529

EM. Then we employ a unified classification head,530

which also leads to a one-point performance drop.531

These results confirm that using one head for the532

first hop and another head for subsequent hops is533

the best configuration.534

Reranking in Open-Domain Setting Beam Re-535

trieval can serve as a reranker in open-domain536

multi-hop retrieval, and we conduct a simple exper-537

iment on fullwiki HotpotQA to assess the impact538

Methods Retrieval EM
MDR (direct) (Xiong et al., 2021) 65.9

MDR (reranking) (Xiong et al., 2021) 81.2
MDR (Beam Retrieval reranking) 82.2

MDR (gold reranking) 85.6

Table 6: Fullwiki HotpotQA reranked retrieval results.
Retrieval EM means whether both gold passages are in-
cluded in the top two retrieved passages (top one chain).
Gold reranking refers to whether both gold passages are
included among all the retrieved chains.

of Beam Retrieval as a re-ranker, as illustrated in 539

Table 6. We choose MDR (Xiong et al., 2021) as 540

the baseline, initially employing it to obtain 100 541

retrieved passage chains. Subsequently, Beam Re- 542

trieval is utilized to rerank the passages within these 543

chains, where we take the top two passages for met- 544

ric calculation. As an effective reranker, Beam Re- 545

trieval further enhances the retrieval performance 546

of open-domain retrieval based on MDR. 547

6 Conclusion 548

We present Beam Retrieval, an end-to-end beam re- 549

trieval framework for multi-hop QA. This approach 550

models the entire retrieval process in an end-to-end 551

manner and maintains multiple partial hypotheses 552

of relevant passages at each step, showing great per- 553

formance in complex scenarios beyond two hops. 554

Experimental results on three datasets prove the 555

effectiveness of Beam Retrieval and demonstrate it 556

could substantially improve the QA performance 557

of downstream readers. In general, Beam Retrieval 558

establishes a strong baseline for complex multi-hop 559

QA, where we hope that future work could explore 560

more advanced solutions. 561
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Limitations562

There are two major limitations to this work. First,563

the resource consumption during training will in-564

crease with larger beam sizes. Second, Beam Re-565

trieval struggles with being independently applied566

to open-domain settings. We will work on methods567

to reduce the training consumption of the model568

and enable its application to open-domain multi-569

hop retrieval with variable hops.570

Ethics Statement571

This work is a fundamental research work that fo-572

cuses on technical improvement, thus we have not573

applied additional filtering techniques to the textual574

data we used, beyond what has been performed on575

the original datasets. The textual data we used may576

have information naming or uniquely identifying577

individual people or offensive content that we have578

not been able to identify, as those are out of the579

focus of this work.580
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A Multi-Task Supervised Reader 748

After receiving the relevant passages (p̂1, p̂2, ..., p̂k) 749

from the retriever, our reader is expected to com- 750

plete both the answer prediction task and the sup- 751

porting facts prediction task. Following SAE and 752

R3, we also implement a multi-task model to ex- 753

tract the answer and the supporting facts, jointly 754

training the answer prediction and supporting sen- 755

tence classification in a multi-task learning way. 756

We define three types of tasks: supporting facts 757

prediction, answer type prediction, and answer 758

span prediction. Following R3, we incorporate 759

a special placeholder token “<d>” before each 760

passage’s title and a token “<e>” before each sen- 761

tence to provide additional information and guide 762

the model to predict at the sentence level. 763

We concatenate the question and the retrieved 764

passage chain (p̂1, p̂2, ..., p̂k) as “[CLS] + question 765

+ [SEP] + p̂1 + p̂2 + ... + p̂k + [SEP]”. We denote 766

the BERT-like PLM output as H = [h1, ..., hL] ∈ 767

RL×d where L is the length of the input sequence 768

and d is the hidden dimension of the backbone 769

model. For answer type prediction, we perform 770

a 3-class ("Yes", "No" and "Span") classification, 771

with the corresponding loss item denoted as Ltype. 772

To extract the supporting facts prediction, we ap- 773

ply a linear layer on H to classify each sentence 774

as either a supporting facts sentence or not (using 775

the sentence token “<e>”), with its corresponding 776
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loss item denoted as Lsf . Similarly, we employ an-777

other linear layer to project H and identify the start778

and end positions of the answer, denoting the start779

position loss and the end position loss as Lstart and780

Lend, respectively, as introduced in BERT. Finally,781

the total answer span loss Lans is described using782

the following formulas.783

Lans =λ1(Lstart + Lend) (7)784

where λ1 is 0.5 in our setting. Formally, the total785

loss Lqa can be jointly calculated as:786

Lqa =λ2Ltype + λ3Lsf + λ4Lans (8)787

where λ2 is 0.2 and λ3, λ4 are 1 in our setting. Here788

each loss function is the cross-entropy loss.789

B Few-Shot Templates790

We use the prompt following (Liu et al., 2023). To791

ensure diversity in the demonstrations, we selected792

demonstrations with different hops and question793

types. The number of demonstrations is 3.794

B.1 Prompt: Without Beam Retrieval795
Write a high-quality answer for the given question using796
only the provided search results (some of which might797
be irrelevant).798

799
For example:800

801
{examples}802

803
{search_results}804

805
Question: {question}806
Answer:807

B.2 Prompt: With Beam Retrieval808
Write a high-quality answer for the given question using only809
the provided search results.810

811
For example:812

813
{examples}814

815
{search_results}816

817
Question: {question}818
Answer:819
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