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Abstract
The analysis of compositional longitudinal data,
particularly in microbiome time-series, is a chal-
lenging task due to its high-dimensional, sparse,
and compositional nature. In this paper, we intro-
duce a novel Gaussian process (GP) prior vari-
ational autoencoder for longitudinal data anal-
ysis with a multinomial likelihood (MNLVAE)
that is specifically designed for compositional
time-series analysis. Our generative deep learn-
ing model captures complex interactions among
microbial taxa while accounting for the compo-
sitional structure of the data. We utilize centered
log-ratio (CLR) and isometric log-ratio (ILR)
transformations to preprocess and transform com-
positional count data, and utilize a latent multi-
output additive GP model to enable prediction of
future observations. Our experiments demonstrate
that MNLVAE outperforms competing method,
offering improved prediction performance across
different longitudinal microbiome datasets.

1. Introduction
The analysis of compositional longitudinal data, especially
in the context of microbiome time-series, has gained in-
creasing attention in recent years. Microbiome studies focus
on understanding the complex microbial communities and
their interactions within various ecosystems, including the
human body. Longitudinal analysis of microbiome data
allows researchers to explore temporal patterns, community
dynamics, and the impact of various factors on the microbial
ecosystem. However, analyzing high-dimensional, sparse,
and compositional count data from microbiome time-series
presents significant challenges.

Early works on analyzing microbiome dynamics ignored

1Department of Computer Science, Aalto University, Espoo,
Finland 2Integrated Omics AI, United States. Correspondence
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the compositional nature and analyzed the temporal profiles
of individual microbes or strains separately, e.g. (Kostic
et al., 2015; Vatanen et al., 2016; 2019). Äijö et al. (2018)
proposed a Bayesian non-parametric method for composi-
tional analysis of microbiome time-series using multi-output
Gaussian process (GP) together with the multinomial likeli-
hood but allowed accounting only for time covariate. More
recently, recurrent neural network (RNN) based machine
learning methods (Metwally et al., 2019; Sharma & Xu,
2021; Chen et al., 2021) as well as differential equation
based models, such as the generalized Lotka-Volterra model
(Joseph et al., 2020b), have been employed to address these
issues.

In this paper, we propose a novel generative model for com-
positional longitudinal data analysis. The main contribu-
tions of our work can be summarized as follows. First,
we introduce a new multi-output additive Gaussian process
prior VAE with a multinomial likelihood (MNLVAE) that is
specifically designed for modeling compositional longitudi-
nal data, such as microbiome time-series analysis, but also
applicable to other compositional data domains. Second,
our generative deep learning model enables the prediction of
future unseen observations, providing valuable insights into
microbial community dynamics and potential responses to
various factors. Third, by employing a deep latent variable
model together with centered log-ratio (CLR) and isometric
log-ratio (ILR) transformations, we can effectively capture
complex interactions and dependencies among microbial
taxa in a more amenable Euclidean space while accounting
for the compositional nature of the data. Lastly, we assess
the performance of our proposed method on real-world mi-
crobiome datasets, demonstrating its performance over an
existing approach in terms of predictive capabilities.

2. Method
Notation: Consider P as the total number of distinct in-
stances (such as individuals), with each instance p contain-
ing np time-series samples. The complete set of longitudinal
samples is given by N =

∑P
p=1 np. For each individual p,

the time-series data comprises a pair Xp = [xp1, . . . ,x
p
np
]T

and Yp = [yp1, . . . ,y
p
np
]T , where xpt ∈ X signifies aux-

iliary covariate data, and ypt ∈ Y denotes dependent
count variables. The longitudinal data is represented as
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(X,Y ), with X = [XT
1 , . . . , X

T
P ]
T = [x1, . . . ,xN ]T and

Y = [Y T1 , . . . , Y
T
P ]T = [y1, . . . ,yN ]T .

The domain of xn is given by X = X1× . . .×XQ, whereQ
represents the total number of auxiliary covariates, and Xq
corresponds to the domain of the qth covariate, which can
be continuous, categorical, or binary. The domain of yn =
(yn1, . . . , ynD) is defined as Y = Y1 × . . . × YD, where
Yd = {0, 1, . . .} for each data dimension d with D specify-
ing the dimensionality of the observed longitudinal count
data. The total count of the sample n is Mn =

∑D
d=1 ynd.

Finally, theL-dimensional latent embedding of Y is denoted
by Z = [z1, . . . ,zN ]

T
= [z̄1, . . . , z̄L] ∈ RN×L.

2.1. Transformations

Aitchison’s log-ratio transformations, namely additive log-
ratio (ALR), and centered log-ratio (CLR), are widely used
in the analysis of compositional data (Aitchison, 1982).
These transformations convert compositional data to a Eu-
clidean space while preserving the relative information of
the data. The ALR transformation is defined as ALR(y) =
(log y1

yD
, log y2

yD
, . . . , log yD−1

yD
)T , where y is a composi-

tional vector of D parts. The CLR transformation is given
by CLR(y) = (log y1

g(y) , log
y2
g(y) , . . . , log

yD
g(y) )

T , where

g(y) = D

√∏D
i=1 yi is the geometric mean of the parts.

The ILR transformation utilizes an orthonormal basis ma-
trix, denoted as Ψ, and is defined as ILR(y) = ΨCLR(y)
(Egozcue et al., 2003; Egozcue & Pawlowsky-Glahn, 2005).

In our MNLVAE model, we employed both CLR and ILR
transformations to handle compositional data. We utilized
the ILR transformation, as it is particularly suited for micro-
biome data where the phylogenetic tree can be expressed
as a binary tree, which in turn can be represented by an or-
thonormal basis matrix (Morton et al., 2021). For an internal
node l, the lth column vertor of Ψ can be formed as:

Ψ.l = (0, . . . 0︸ ︷︷ ︸
k

, a, . . . a︸ ︷︷ ︸
r

, b, . . . , b︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
t

)

a =

√
|s|√

|r|(|r|+ |s|)
b =

−
√
|r|√

|s|(|r|+ |s|)
,

where r, s, k and t are left children, right children, nodes
to the left, and nodes to the right of the internal node, re-
spectively. The ILR transformation allows for the efficient
encoding of hierarchical relationships among microbial taxa
while preserving the original structure of the compositional
data.

On the other hand, we also employed the CLR transforma-
tion to facilitate comparison and evaluate the performance of
our model using different transformation methods. The CLR
transformation is a widely used technique in compositional
data analysis (Aitchison, 1982) and provides an alternative
approach to transforming count data into a more amenable

Euclidean space. By comparing the results obtained with
CLR and ILR transformations, we aimed to gain a deeper
understanding of the impact of these transformations on the
performance of our MNLVAE model.

2.2. Longitudinal Variational Autoencoder

Contrary to the classical VAE model, the longitudinal vari-
ational autoencoder (L-VAE) model specifies the struc-
ture of the data among observed samples by employing
an additive multi-output GP prior over the latent space
z|x ∼ GP(µ(x), k(x,x′|θ)), with the prior mean func-
tion assumed zero, and the covariance function being mod-
elled using the sum of additive components k(x,x′|θ) =∑R
r=1 k

(r)(x(r),x′(r)|θ(r)), where each component de-
pends on a subset of auxiliary covariates. The GP prior for
the latent variables z is assumed to factorize across latent di-
mensions, but the generative model of L-VAE consists also
of a probabilistic decoder pψ(y|z) that can introduce arbi-
trary correlations across the latent dimension. The decoder
assumes normally distributed data. The KL divergence be-
tween the variational posterior of the latent variables and the
multi-output additive GP prior can be computed in closed-
form, but its exact computation is expensive. An efficient
mini-batch compatible upper bound is proposed for the KL
divergence that scales linearly to big data, by assuming a
standard low-rank inducing point approximation for the co-
variance function. For a comprehensive understanding of
the method and its details, we refer to Section 2.3 and further
encourage readers to consult the work by (Ramchandran
et al., 2021).

2.3. Multinomial Longitudinal Variational Autoencoder

We devised the MNLVAE, drawing inspiration from L-VAE
(Ramchandran et al., 2021), and HL-VAE (Öğretir et al.,
2022), to effectively handle compositional data by imple-
menting transformations of compositional count data. See
Fig. 1 for model overview. To this end, we employed both
centered log-ratio (CLR) and isometric log-ratio (ILR) trans-
formations to efficiently process compositional data. The
use of ILR was particularly advantageous, as it enabled us
to represent phylogenetic trees as binary trees, which can
then be expressed using orthonormal basis matrices.

The generative model of MNLVAE is formulated in the
following equation:

pω(Y | X) =

∫
Z

pψ(Y | Z,X)︸ ︷︷ ︸
Multinomial likelihood

pθ(Z | X)︸ ︷︷ ︸
GP prior

dZ

=

∫
Z

N∏
n=1

pψ (yn | zn) pθ(Z | X)dZ,

where ω = {ψ, θ} is the set of parameters. The data is
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Figure 1. Overview of the proposed MNLVAE model.

modelled with a multinomial likelihood:

pψ (yn | zn) = Mult (Mn, ϕ(ηn))

ηn|zn = fψ (zn)

with the total number of counts Mn for sample n. The
probability vector ϕ(ηn) is obtained with the inverse trans-
formation function of the parameters ηn, where ϕ(·) can
either be the softmax or the inverse ILR transformation,
depending on the chosen transformation technique. The pa-
rameters ηn is obtained with the decoder function fψ(zn),
which is a function of the latent embeddings zn.

We approximate the true posterior of Z variationally using

qϕ(Z | Y,X) =

N∏
n=1

L∏
l=1

N
(
znl | µϕ,l (yn) , σ2

ϕ,l (yn)
)
,

which is learned together with the generative model pa-
rameters via the ELBO objective (see (Ramchandran et al.,
2021) for details). Using the trained MNLVAE model with
parameters ϕ, ψ, θ, we can make future predictions by ap-
proximating the predictive distribution. The resulting pre-
dictive distribution incorporates covariates associated with
unseen test data, and their corresponding latent embeddings
as detailed in (Ramchandran et al., 2021).

3. Experiments and Results
We utilized three datasets to assess the effectiveness and
robustness of our approach for microbiome time-series anal-
ysis. We compared our model against the generalized Lotka-
Volterra (gLV) model, which is a widely-used ecological
model that describes the dynamics of interacting species in
a community (Bucci et al., 2016; Stein et al., 2013; Joseph
et al., 2020a). The gLV model captures the growth rates,
competition, and mutualistic interactions among species,
typically represented as a system of ordinary differential

equations. It allows for the prediction of species abundance
over time, given their initial conditions and interaction pa-
rameters, making it suitable for studying various ecological
systems and their stability.

3.1. Datasets

We selected two curated datasets from the DIABIMMUNE
project and one Seeding dataset obtained from (Song et al.,
2021) . The DIABIMMUNE project aims to investigate the
relationship between the human microbiome and the devel-
opment of autoimmune diseases. The curated datasets from
DIABIMMUNE provide a valuable resource for studying
the dynamics of the microbiome over time (Kostic et al.,
2015; Vatanen et al., 2016; Yassour et al., 2016) . The
Seeding dataset, on the other hand, offers an opportunity to
evaluate the performance of our method on a different type
of microbiome data, ensuring a comprehensive assessment
of MNLVAE.

3.2. Data Preprocessing

Before conducting our experiments, we preprocessed the
datasets to ensure compatibility with our method. This pre-
processing step involved filtering the datasets and splitting
them into training and testing sets, enabling us to assess
the prediction performance of our method on unseen data.
Additionally, we utilized a validation dataset for MNLVAE,
which was derived from the initial training dataset, to pre-
vent overfitting and to fine-tune the model’s hyperparame-
ters by early stopping.

In the data preprocessing phase, we encountered a challenge
with the Seeding and Diabimmune-I datasets when using
gLV, which employs ALR as a transformation. In order to
calculate the log-ratio, it was necessary to have at least one
microbe counted in all observations to serve as a denomi-
nator. Consequently, we removed some observations from
these datasets to satisfy this requirement. For the MNLVAE
experiments, we denoted these modified datasets using the
abbreviation (.)gLV .

3.3. Experimental Setup

For our experiments, we compared the performance of MN-
LVAE with the gLV model. We evaluated the prediction
performance of the models using the normalized root mean
squared error (NRMSE) metric, focusing on test subjects
and test observations that are common across all datasets,
specifically those based on the generalized Lotka-Volterra
(gLV) model. Additionally, we investigated the impact of
different GP configurations, data dimensions, and data trans-
formations on the performance of MNLVAE. This compre-
hensive evaluation allowed us to assess the effectiveness
of our method across a wide range of scenarios and condi-
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Figure 2. Comparison of NRMSE over time for the test subjects’
unobserved measurements. The subfigures illustrate the perfor-
mance of the models over three datasets.

tions. In our analysis, we explored the performance of the
MNLVAE model under various data dimensionalities. We
selected four different dimensionalities for this purpose ac-
cording to sparsity of the microbe counts: A dimensionality
of 50, which is a common choice for reduced data represen-
tation and the one used in the gLV model. A dimensionality
of 300, allowing us to investigate the model’s performance
at a higher level of granularity. The maximum available
dimensions for the Diabimmune datasets, which are 654
and 599, representing the complete set of dimensions for
each respective dataset. A dimensionality of 1000 for the
Seeding dataset, as a higher-dimensional choice to assess
the model’s behavior under a large number of dimensions.

In our experiments, we utilized a single hidden layer for
both the encoder and decoder networks. We also tested
various different latent dimensions and selected the best
performing one for our final results. The detailed neural
network structures are given in Supplementary Material-A.

3.4. Results

We observed that MNLVAE consistently outperforms alter-
native approaches across all datasets, as illustrated in Fig. 2.
As shown in Table 1 for DIABIMMUNE datasets, the per-
formance differences between various GP configurations

Table 1. Comparison of the GP Configurations for the two datasets,
DIABIMMUNE-I and DIABIMMUNE-II. GP Conf. abbrevia-
tions: T = time, ID = individual identifier, T1D = type 1 diabetes
status, G = gender, and C = country.

DIABIMMUNE-I DIABIMMUNE-II
GP Conf CLRgLV -50 ILR-654 CLR-50 CLR-599
T+ID 0.138 0.128 0.139 0.136
T+ID+T1D 0.132 0.125 0.134 0.129
T+ID+G 0.132 0.125 0.134 0.131
T+ID+G+T1D 0.133 0.126 0.132 0.130
T+ID+G+C 0.136 0.126 0.133 0.131
T+ID+G+C+T1D 0.139 0.125 0.134 0.131

Table 2. NRMSE values for each model in the respective datasets

MODEL SEEDING DIABIMMUNE-1 DIABIMMUNE-2

MNLVAE

ILR-MAX 0.093 0.123 0.131
CLR-MAX 0.094 0.124 0.128

ILR-300 0.098 0.124 0.129
CLR-300 0.095 0.125 0.130

ILR-50 0.100 0.130 0.132
CLR-50 0.105 0.132 0.130

ILRGLV -50 0.108 0.132 -
CLRGLV -50 0.108 0.130 -

GLV

GLV-50 0.164 0.304 0.277

in MNLVAE were not significant in most cases, indicating
that our model is robust to the choice of GP configurations
and serves as a versatile tool for microbiome time-series
analysis. We also noted that different datasets display dis-
tinct behavior, underscoring the importance of evaluating
our method on a diverse range of microbiome time-series
data to fully comprehend its capabilities and limitations.

Our experiments demonstrated that increased data dimen-
sions consistently result in enhanced prediction performance
for MNLVAE, as shown in Table 2. This observation high-
lights the advantages of utilizing the high-dimensional na-
ture of microbiome data, allowing our model to more ef-
fectively capture complex interactions and dependencies
among microbial taxa. Table 2 also shows the impact of
CLR and ILR transformations on the performance of MN-
LVAE. Our results indicate that for lower data dimensions,
the CLR transformation yields better performance, while for
higher data dimensions, the ILR transformation outperforms
CLR. This insight can help guide the choice of data trans-
formation techniques in future applications of our method.

We also explored the effect of including a key covariate,
such as birth mode or T1D status, on MNLVAE’s predic-
tion performance. Our results suggest that in simpler GP
configurations, the addition of a key covariate may have a
positive impact on performance. However, further investi-
gation is needed to fully understand the role of indicator
covariates in our model and to determine the best strategy
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for incorporating covariates into MNLVAE.

4. Discussion
In this paper, we presented MNLVAE, a novel method for
analyzing compositional longitudinal data, specifically de-
signed for microbiome time-series analysis. Our experi-
ments have demonstrated that MNLVAE outperforms com-
peting methods and offers improved prediction performance
across different datasets. Nevertheless, it is not without
limitations.

While our MNLVAE model employs interactive kernels in
the Gaussian process prior to capture some forms of non-
additive interactions among microbial taxa, it is worth not-
ing that these may not fully represent all possible complex
interactions.

We have addressed the scalability issue with an efficient,
mini-batch compatible upper bound for the KL divergence,
which assumes a low-rank inducing point approximation
for the covariance function. While this solution enhances
computational efficiency, it may introduce bias or affect the
model’s ability to fully capture the data’s complexity.

Future research should focus on developing strategies on
exploring extensions to our model that can incorporate a
wider range of complex interactions. Additionally, further
investigation into the impact of our assumption of a low-rank
inducing point approximation on the model’s performance,
and potential alternatives to this approximation, could be
beneficial.
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Härkönen, T., Ryhänen, S. J., Franzosa, E. A., Vlamakis,
H., Huttenhower, C., Gevers, D., et al. Natural history of
the infant gut microbiome and impact of antibiotic treat-
ment on bacterial strain diversity and stability. Science
translational medicine, 8(343):343ra81–343ra81, 2016.

6



A. Supplementary Material
A.1. Experimental Setup

Hyperparameter Seeding DIABIMMUNE-I DIABIMMUNE-II

Inference
network

Dimensionality of input 50, 300, 1000 50, 300, 654 50, 300, 599
Number of feedforward layers 1 1 1
Number of elements in each feedforward layer 15 15 15
Dimensionality of latent space 18,20,22,24 6,8,10,12,18 6,8,10,12,18
Activation function of layers SoftPlus SoftPlus SoftPlus

Generative
network

Dimensionality of input 18,20,22,24 6,8,10,12,18 6,8,10,12,18
Number of feedforward layers 1 1 1
Number of elements in each feedforward layer 15 15 15
Activation function of feedforward layers SoftPlus SoftPlus SoftPlus
Transformations inv ILR, Softmax ILR, Softmax ILR, Softmax

Table 3. Neural network architectures used in the Seeding, DIABIMMUNE-I, and DIABIMMUNE-II datasets.
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