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ABSTRACT

The pursuit of universal black-box optimization (BBO) algorithms is a longstanding
goal. However, unlike domains such as language or vision, where scaling structured
data has driven generalization, progress in offline BBO remains hindered by the
lack of unified representations for heterogeneous numerical spaces. Thus, existing
offline BBO approaches are constrained to single-task and fixed-dimensional set-
tings, failing to achieve cross-domain universal optimization. Recent advances in
language models (LMs) offer a promising path forward: their embeddings capture
latent relationships in a unifying way, enabling universal optimization across dif-
ferent data types possible. In this paper, we discuss multiple potential approaches,
including an end-to-end learning framework in the form of next-token prediction,
as well as prioritizing the learning of latent spaces with strong representational
capabilities. To validate the effectiveness of these methods, we collect offline
BBO tasks and data from open-source academic works for training. Experiments
demonstrate the universality and effectiveness of our proposed methods. Our find-
ings suggest that unifying language model priors and learning string embedding
space can overcome traditional barriers in universal BBO, paving the way for
general-purpose BBO algorithms.

1 INTRODUCTION

The pursuit of universal black-box optimization (BBO) algorithms, i.e., capable of adapting to diverse
problems, has been a long-standing challenge (Wolpert & Macready, 1997; Chen et al., 2022b;
Lehre & Lin, 2024). Traditional BBO methods, including Bayesian optimization (Garnett, 2023) and
evolutionary algorithms (Bäck, 1996; Zhou et al., 2019), excel in many tasks (Turner et al., 2021).
However, these traditional BBO methods are not only confined to single-type and fixed-dimensional
settings (Chen et al., 2022b; Song et al., 2024a; Fan et al., 2024) but also struggle to leverage
large-scale offline data (Song et al., 2024d), heavily relying on online evaluations, which is a severe
limitation that becomes particularly challenging in many real-world expensive scenarios.
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Offline black-box optimization (Trabucco et al., 2021; 2022; Kim et al., 2025; Xue et al., 2024) aims
to identify optimal designs for an unknown objective function using only a fixed and pre-collected
dataset, which attempts to mitigate the issue mentioned above. Existing offline BBO approaches have
shown impressive performance, such as real-world engineering design (Kumar et al., 2022; Shi et al.,
2023), protein design (Chen et al., 2023b; Kim et al., 2023), and molecule design (Gaulton et al.,
2012; Stanton et al., 2022; Xue et al., 2024). Their success relies on two assumptions: (1) the training
and test tasks share identical input dimensions and variable types, and (2) sufficient historical data
exists for each task.

While real-world optimization problems often exhibit inherent correlations across domains (Bai
et al., 2023; Wang et al., 2024), existing offline BBO methods face two challenges: (1) insufficient
training data for model development (Nguyen et al., 2023; Dara et al., 2022), and (2) fundamental
inability to exploit cross-task relationships. These limitations create an urgent need for universal
offline BBO. However, the critical barrier lies in the heterogeneity of search spaces. This limitation
forces practitioners to collect large datasets for every new problem, due to their inability to unify
parametric representations across domains, which is unsustainable in practical scenarios characterized
by sparse data availability and diverse task requirements.

Fortunately, recent advances have demonstrated the feasibility of universal optimization in string-
based search spaces using language models (LMs; Song et al., 2024b;c; Nguyen et al., 2024; Tang
et al., 2025; Song & Bahri, 2025). By tokenizing numerical parameters into string sequences, LM-
based optimizers outperform traditional regression models in cross-task generalization, particularly
when trained on multi-task datasets spanning diverse domains. However, there are still several critical
gaps in universal offline BBO. First, prior work does not discuss distinct paradigms in detail, failing to
clarify their relative strengths or compatibility. Second, these works neglect the unique requirements
of offline BBO, where algorithms must avoid overfitting to limited historical data (Trabucco et al.,
2021; Fu & Levine, 2021; Yu et al., 2021; Chen et al., 2022a; Qi et al., 2022; Dao et al., 2024b;
Tan et al., 2025). Besides, the geometric properties of learned latent spaces remain under-explored,
despite their direct impact on optimization stability and sample efficiency.

In this paper, we propose a universal string-based offline BBO framework, UniSO. We first introduce
several components for UniSO, including string-based data representation, and metadata formula-
tion. Then, we use two model architectures for universal offline BBO, including token-targeted
regressor (Song et al., 2024b) and numeric-targeted regressor (Nguyen et al., 2024), formulating
two Vanilla UniSO variants, i.e., UniSO-T and UniSO-N, respectively. However, several issues exist
when directly applying these Vanilla UniSO variants to offline BBO tasks, as shown in Figure 3.
To address these issues, we propose two improvements, i.e., embedding distribution alignment via
metadata guidance and local embedding smoothness enhancement. Experiments demonstrate the
universality and effectiveness of our proposed methods, particularly showing that UniSO-T achieves
superior cross-task generalization through multi-task training on heterogeneous search spaces.

Our findings reveal three key insights: (1) a unified representation through string-based space enables
universal offline BBO possible, (2) geometric regularization of embedding spaces significantly
enhances optimization stability, and (3) metadata-guided learning effectively bridges the domain
gap between training and unseen test tasks. These advancements collectively overcome traditional
barriers in universal offline BBO, paving the way for general-purpose optimization across various
types and dimensions.

2 PRELIMINARIES

In this section, we first introduce the formal definition of offline BBO as well as several typical
approaches. Then, we extend to the setting of universal offline BBO.

2.1 OFFLINE BBO

Given the design space X , where X could be be DOUBLE, INTEGER, CATEGORICAL, or
PERMUTATION, and a fixed offline dataset D, offline BBO (Trabucco et al., 2022; Kim et al.,
2025; Xue et al., 2024) aims to seek an optimal design x∗ that maximizes a black-box objective
function f : X → R, i.e., x∗ = argmaxx∈X f(x). This optimization process relies solely on the
available dataset, with no online evaluations permitted during optimization. Specifically, an algorithm
operates exclusively on a fixed datasetD = {(xi, yi)}Ni=1, where each instance xi represents a design
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Figure 1: Framework of universal string-based offline BBO.

(e.g., the composition of a DNA sequence), and its corresponding scalar value yi = f(xi) denotes the
objective score (e.g., a specific property score of the designed DNA sequence). Besides, for an offline
BBO task, there usually exists task-level metadata m, which can distinguish it from other tasks and
potentially hint the information of the unknown objective function f . Thus, similar to the multi-task
regression case (Song et al., 2024b), an offline BBO task can be formulated as T = (X , f,D,m).

A prevalent approach for offline BBO is the forward approach, which first trains a surrogate model,
typically a deep neural network f̂θ : X → R parameterized by θ, to learn a scoring function for the
designs where the output corresponds to the predicting score, and then searches for the final design by
maximizing the model’s output. The scoring function can be learned by regression (Trabucco et al.,
2021; Chen et al., 2023a) or ranking (Tan et al., 2025). However, this type of approach suffers from
its error in out-of-distribution (OOD) regions, which might mislead the model-internal search (Yao
et al., 2024). We deliver a detailed related work, including both the mentioned forward and backward
approaches, as well as LLM for BBO in Appendix A.

2.2 UNIVERSAL OFFLINE BBO

Recent advances in foundational models for black-box optimization research (Song et al., 2024b;c;
Nguyen et al., 2024; Tang et al., 2025; Song & Bahri, 2025) have shown the potential of universal
optimization in string-based space. Thus, we first extend conventional offline BBO to the universal
setting. The goal of universal offline BBO is to simultaneously address multiple tasks through a
universal foundational model. Consider nT optimization tasks {Ti}nT

i=1 with three key characteristics:
(1) Heterogeneous design spaces: Mixed-type parameters and varying dimensionality across tasks;
(2) Divergent objectives: Unique optimization functions and dataset scales for each task; and (3)
Task-specific metadata: Distinct auxiliary information accompanying each task.

While more challenging than single-task offline BBO, the universal approach offers two key advan-
tages. First, it enables knowledge transfer between related tasks (e.g., morphology optimization in
Ant (Brockman et al., 2016) and D’Kitty (Ahn et al., 2020)), overcoming the isolation assumption
of conventional methods that process tasks independently. Second, it addresses the data scarcity
challenge common in real-world applications (Nguyen et al., 2023), where traditional methods fail
with limited historical data, the universal offline BBO model can leverage cross-task patterns to guide
optimization.

3 METHOD

In this section, we introduce potential methods to solve universal offline BBO. We begin by outlining
the general framework of universal string-based offline BBO in Section 3.1, where we will present
two variants based on modeling. Then, we discuss the issues of these variants in Section 3.2, which
motivate us to improve the framework via metadata guidance and smoothness enhancement in
Section 3.3 and Section 3.4, respectively. In Section 3.5, we discuss how to balance multiple losses
and apply the improvement to the variants.

3.1 UNISO: UNIVERSAL STRING-BASED OFFLINE BBO

In this subsection, we present the general framework for universal offline BBO, which is illustrated in
Fig. 1. The framework comprises four main components. Firstly, we convert the design-score offline
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data into string representations due to the heterogeneity of different search spaces from different
tasks. Next, we discuss the importance and formulation for metadata, which facilitates the subsequent
universal multi-task regressor training intended for downstream optimization. We propose two
modeling variants for universal regressor instantiation based on different ways of handling objective
scores, which are derived from recent advancements of string-based LLM for BBO (Song et al.,
2024b; Nguyen et al., 2024; Tang et al., 2025). Finally, we elaborate on our string-based search
strategy within the model. This pipeline aligns with the forward approach in traditional offline BBO,
which typically encompasses training a scoring model followed by model-inner optimization, as
discussed in Section 2.1.

3.1.1 STRING-BASED DATA REPRESENTATION

To solve multiple offline BBO problems with heterogeneous design spaces simultaneously, traditional
methods that restrict the algorithm inside a fixed search scope are inapplicable, which calls for
a more flexible representation for design-score pair data. Recently, Song et al. (2024b); Nguyen
et al. (2024) show that string representation over x using LLM is efficient and beneficial for BBO,
enabling optimization in dynamic design spaces. Following Nguyen et al. (2024), we represent
each design x by a JSON dictionary-like format, e.g., a design x = (0, 1)⊤ can be represented as
{"x0":0,"x1":1}.
As for the score y, details of handling y encompass token-based method and numeric-based method,
which are determined by modeling methods of the regressor, which we will introduce in Section 3.1.3.

3.1.2 FORMULATION OF METADATA

While the mentioned string-based data representation exhibits flexibility, it alone is insufficient for
effectively distinguishing between tasks and performing optimization in a multi-task suite. The inte-
gration of metadata into algorithms is quite essential for universal offline BBO, due to the following
reasons: (1) utilizing a single algorithm to solve multiple offline BBO problems simultaneously solely
on general design-score data is impossible due to the no free lunch theorem (Wolpert & Macready,
1997; Lehre & Lin, 2024), and expert priors (Hvarfner et al., 2022; 2024) or user-defined task-specific
metadata should be considered for optimization (Song et al., 2024c; Lindauer et al., 2024); (2)
metadata enables training acceleration (Gao et al., 2025) and is crucial for task distinguishment when
expert priors are limited (Chen et al., 2022b).

Thus, we extend each string x by inserting its associated metadata m in the beginning. In order to
maintain concision and preserve key information for optimization, we formulate the expressions of
metadata m, consisting of three text-based task specifications: (1) task name to distinguish from
other tasks; (2) brief description of the task with a concise natural language summary; and (3)
detailed specification of the optimization objective. We provide all the metadata we used in our
experiments in Appendix E. We tokenize the (m,x) data using SentencePiece tokenizer (Kudo &
Richardson, 2018) by default.

3.1.3 MULTI-TASK REGRESSOR TRAINING FOR UNIVERSAL OFFLINE BBO

The scoring model for offline BBO can be modeled by regression or ranking model. Here, we initiate
the scoring model by a universal multi-task regressor for simplification. As shown in Fig. 2, we
consider two variants of universal end-to-end regressors, UniSO-T and UniSO-N, which differ from
how to deal with the objective score y.

UniSO-T: Token-targeted regressor. UniSO-T is a regressor with the objective of predicting the y
tokens. Specifically, it encodes the score y into a list of tokens, trains a sequence-to-sequence auto-
regressive model to predict the objective sequence, and then maps the sequence back to numerical
values. A typical modeling of UniSO-T is OmniPred (Song et al., 2024b) , which tokenizes y
by digits using P10 encoding1 from Charton (2022) and trains a universal regressor that based on
next token prediction. Inspired by OmniPred, we tokenize y using P10 encoding and implement
a lightweight variant of the T5 model (Raffel et al., 2020). The model architecture incorporates
Prefix-LM training (Liu et al., 2018) and is trained using cross-entropy loss on our custom dataset, as
the training data of OmniPred follows a distinct organizational structure and remains unavailable.

1For example, y = 1.31 = 131× 10−2 is encoded into <+><1><3><1><E-2>
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Figure 2: Model structure of UniSO-T (left) and UniSO-N (right).

UniSO-N: Numeric-targeted regressor. UniSO-N is another type of universal multi-task regressor,
which first embeds the inputs into a unified latent space, and then trains a downstream regressor to map
from embeddings to numerical objective scores. Inspired by Nguyen et al. (2024), which uses a pre-
trained T5 encoder (Raffel et al., 2020) and trains an in-context regressor for Bayesian optimization,
we also employ a pre-trained t5-small embedder2, and train a MLP regressor mapping from
embeddings to y with mean squared error (MSE). We also normalize y from different tasks using the
same strategy in Nguyen et al. (2024), which incorporates three steps: 1) utilize z-score normalization
the shift the score of a single task; 2) implement a normal distribution fitting procedure on the subset
of observations falling below the median value, utilizing a percentile-to-z-score transformation, to
reduce sensitivity to bad outliers; 3) transform the scoring distribution through sequential application
of min-max scaling y ← y−ymin

ymax−ymin
and logarithmic transformation for re-scaling. Besides, although

regressor training in conventional offline BBO utilizes global z-score normalization, global statistics
like mean value or standard variation of the embeddings are inaccessible, thus batch normalization is
applied to the embeddings before objective regression.

3.1.4 STRING-BASED MODEL-INNER SEARCH

Upon completion of model training, the final designs are obtained through output maximization via
model-inner search. Given the inherent challenges of computing exact gradients in discrete string
space compared to continuous numerical space, we adopt black-box optimization strategies for this
search process. Our implementation primarily employs evolutionary algorithms (EAs; Bäck, 1996),
which have demonstrated superior performance in gradient-free optimization scenarios. The technical
specifications of our EA implementation, including variation operators and selection mechanisms can
be found in our code implementation.

3.2 ISSUES OF THE VANILLA UNISO

Although the typical methods for UniSO-T and UniSO-N have demonstrated success in online
BBO (Nguyen et al., 2024), there still exists limitations for offline BBO. Firstly, both the regressors
in UniSO-T and UniSO-N cannot effectively distinguish different tasks without billions of data. To
understand this, we visualize the t-SNE (der Maaten & Hinton, 2008) plots of the embeddings of
vanilla UniSO-T in the left figure of Fig 3, where the latent embeddings of vanilla UniSO-T show
overlapping and circular pattern, lacking clear boundaries to distinguish tasks.

Besides, the embedding latent space for both UniSO-T and UniSO-N are not particularly designed
for BBO, while properties of the latent spaces, like smoothness (Lee et al., 2023) or invariance (Qi
et al., 2022), are usually important for downstream optimization.

Aiming at addressing these limitations, we introduce our proposed improvements that can be applied
to both the modelings in the following subsections, which regulate the embedding space based on
two different perspectives, metadata guidance and smoothness enhancement.

2https://huggingface.co/google-t5/t5-small
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Figure 3: t-SNE plots comparing embedding distributions of vanilla UniSO-T and improved UniSO-T
on five Design-Bench (Trabucco et al., 2022) tasks. The embedding distributions of vanilla UniSO-T
show mixed and overlapping embeddings with a circular pattern, lacking clear task boundaries.
Our improved method (right) achieves three improvements: (1) separating embeddings into distinct
clusters for better task discrimination, (2) maintaining proximity between similar tasks (e.g., Ant
and D’Kitty) to enable knowledge sharing between related domains, and (3) generating compact and
smooth intra-task embedding distributions for stable representations.

3.3 EMBEDDING DISTRIBUTION ALIGNMENT VIA METADATA GUIDANCE

As discussed above, the embeddings exhibit strange shape and cannot distinguish different tasks. Thus,
we adopt a novel approach to align the distribution of input embeddings with their corresponding
metadata embeddings via contrastive learning. The core idea is to guide the learning process by
encouraging input embeddings to exhibit similarity patterns that mirror those observed in the metadata
space.

Specifically, we first encode the input strings through the encoder to derive their embeddings, while
simultaneously employing a pre-trained expert language model embedder (t5-small by default)
to generate embeddings for metadata. After implementing mean pooling on both embeddings, we
transform these intermediate representations through their respective nonlinear projection heads
(initiated by two linear layers with ReLU activation) into a shared embedding space, yielding the
final latent representations zx ∈ Rn×d and zm ∈ Rn×d, where n denotes the batch size and d
represents the dimension of the shared embedding space. Such a nonlinear projection is widely used
in contrastive learning (Chen et al., 2020).

These projected representations are then utilized to compute the contrastive loss to align the distribu-
tion of input embeddings with their corresponding metadata embeddings:

Lcon = − 1

N(N − 1)

∑
1≤i<j≤N

ŝmij log

(
exp(sxij/τ)∑
k ̸=i exp(s

x
ik/τ)

)
,

where: (1) sxij =
zx
i
⊤zx

j

∥zx
i ∥·∥zx

j ∥
represents the cosine similarity between input embeddings, and similarly,

smij is defined as the cosine similarity of the metadata embedding; (2) ŝmij =
smij−mini,j(s

m
ij )

maxi,j(smij )−mini,j(smij )
is

the normalized metadata similarity; (3) τ is the temperature parameter; (4) N is the data size.

The contrastive loss function enforces a dual objective by minimizing the KL divergence between the
input embedding similarity distribution and the metadata-derived target distribution. An illustrative
understanding of this loss function is that embeddings of the inputs with similar metadata remain
proximate while dissimilar ones maintain distinct boundaries. As shown in the right figure in Fig. 3,
compared to the vanilla UniSO-T case, our proposed improvement is capable of distinguishing
dissimilar tasks with the clearer clusters, while similar tasks like Ant and D’Kitty remain close,
enabling structured information sharing for similar tasks.

However, this contrastive loss would raise non-smoothness3 inside a task. The input embeddings from
a same task (i.e., with same metadata) can occupy arbitrary positions within a localized region of the

3In this work, smoothness refers to continuity in the embedding space.
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high-dimensional space, forming either distinct clusters or non-uniform distributions, as long as they
maintain adequate contrast (i.e., cosine similarity in the loss function) with respect to embeddings
with dissimilar metadata. In Section 3.4, we further enhance the local smoothness of embeddings
from a single task.

3.4 LOCAL EMBEDDING SMOOTHNESS ENHANCEMENT

Smoothness is crucial for neural network generalization (Nakkiran et al., 2019) and robustness (Weng
et al., 2018), and smoothness of latent representation is also important for BBO (Zhang et al., 2020;
Lee et al., 2023). For a given task T , to enhance the local smoothness of embedding from T , inspired
by Lee et al. (2023), we regulate the embedding space via the Lipschitz loss:

LlipT =
∑

1≤i<j≤NT

max

(
0,
|yi − yj |
∥zi − zj∥2

− L

)
,

where NT is the dataset size of task T and L represents the local Lipschitz constant. We set L as the
median value of the Lipschitz matrix, i.e., L = median1≤i<j≤nT (

yi−yj

∥zi−zj∥2
), by default following

Lee et al. (2023). The Lipschitz loss increases the correlation between the Euclidean distance of
latent embeddings and the differences in their corresponding objective scores, enforcing the local
embeddings to remain a local smoothness similar to the corresponding scores. Then, we compute
the weighted sum of Lipschitz losses across all tasks, where the weights are designed to balance the
impact of varying dataset sizes of different tasks:

Llip =

nT∑
i=1

∑nT
j=1 NTj

NTi

LlipTi
,

where nT denotes the number of tasks, and
∑nT

j=1 NTj

NTi
represents the weighting coefficient for task Ti

to compensate for the disparity in dataset sizes across tasks. In our implementation, due to insufficient
task-specific samples in individual batches of the shuffled training dataset, we utilize an un-shuffled
dataset that presents tasks sequentially for computing the Lipschitz loss.

3.5 LOSS BALANCING AND APPLICATION TO UNISO

With the main loss Lmain to train the universal regressor (i.e., cross-entropy for UniSO-T) and the
mentioned regularization losses in hand, a naı̈ve approach to handle these losses is to sum them up
directly. However, simply summing them up would be effected by the scales of the losses, which
focuses mainly on the loss with the largest scale during gradient backpropagation (Chen et al., 2018).
Thus, a crucial problem is how to balance the effects of these losses for training?

To solve this, inspired by MetaBalance (He et al., 2022) which normalizes the gradients of different
losses based on the gradient norm, we employ a similar yet simple technique to automatically balance
the gradient of different losses based on the loss values. Specifically, for the main loss Lmain and
regularization losses Lcon,Llip, we calculate the gradient as:

∂Ltotal

∂θ
=

∂Lmain

∂θ
+
Lmain

Lcon + δ
· ∂Lcon

∂θ
+
Lmain

Llip + δ
· ∂Llip

∂θ
, (1)

where θ represents the parameters of the model and δ = 1 × 10−10 is a small constant added for
numerical stability. This loss propagation mechanism adjusts the relative contributions of auxiliary
losses by scaling them with respect to the main loss, maintaining task balance while preserving the
principal optimization direction.

The balanced loss function is incorporated into both modeling frameworks as follows. For UniSO-T
modeling, since an end-to-end universal regressor is trained from scratch, we update the parameters
θ with respect to Eq.1 during training where we view the last hidden state of the encoder model as
embeddings. For UniSO-N modeling, since the vanilla approach employs a pre-trained embedder
without parameter updates during downstream numerical regressor training, we propose a two-stage
approach: first fine-tuning the embedder via ∂Ltotal

∂θ = ∂Lcon

∂θ + Lcon

Llip+δ ·
∂Llip

∂θ similar to Eq. 1, and
then training the regressor while keeping the embedder parameters frozen.
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Table 1: Score in unconstrained tasks from Design-Bench and SOO-Bench, where the best and
runner-up results on each task are Blue and Violet, respectively. D(best) denotes the best score
in the offline dataset and BN represents batch normalization for numerical input designs. Both
numeric-input experts and string-input UniSO methods are trained within a single task.

Numeric-input Experts String-input UniSO
Task D(best) BN + EAs BN + Grad UniSO-T UniSO-N

Ant 165.326 118.877 ± 127.688 229.462 ± 165.869 245.212 ± 165.083 254.720 ± 102.151
D’Kitty 199.363 111.205 ± 66.986 183.263 ± 62.436 229.114 ± 25.766 188.642 ± 26.306

Superconductor 74.000 93.951 ± 7.039 97.137 ± 6.113 88.720 ± 9.884 63.930 ± 6.748
TF Bind 8 0.439 0.984 ± 0.007 0.959 ± 0.023 0.948 ± 0.028 0.949 ± 0.000

TF Bind 10 0.005 0.905 ± 0.326 0.888 ± 0.229 0.623 ± 0.115 0.600 ± 0.006
GTOPX 2 -195.586 -88.054 ± 20.878 -128.310 ± 15.616 -76.479 ± 4.815 -117.022 ± 51.671
GTOPX 3 -151.190 -64.028 ± 22.678 -151.190 ± 0.000 -46.526 ± 13.434 -71.784 ± 16.665
GTOPX 4 -215.716 -96.432 ± 10.868 -215.716 ± 0.000 -87.714 ± 8.795 -101.304 ± 18.492
GTOPX 6 -112.599 -64.217 ± 14.602 -112.599 ± 0.000 -48.186 ± 9.486 -80.391 ± 12.469

Avg. Rank / 2.222 ± 1.030 3.000 ± 1.054 1.889 ± 1.100 2.889 ± 0.875

4 EXPERIMENT

In this section, we empirically study our proposed framework of universal string-based offline BBO
on various tasks. We first introduce the experimental settings and the tasks we used in Section 4.1,
then we show the performance of UniSO in Section 4.2 and answer several important research
questions (RQs).

4.1 EXPERIMENTAL SETTINGS AND TASKS

Details settings. Following prior works in string-based LLM for BBO (Song et al., 2024b; Nguyen
et al., 2024), we adopt a lightweight T5 (Raffel et al., 2020) for both UniSO variants. For UniSO-N,
the downstream regressor consists of a two-layer MLP with 2048 hidden units, trained using AdamW
optimizer (Loshchilov & Hutter, 2019) for 200 epochs with a batch size of 128. After training, we
employ EAs to search within the model for 200 iterations, maintaining a population size of 128 in
accordance with standard offline BBO practices (Trabucco et al., 2022).

Selected tasks. We evaluate on unconstrained tasks from Design-Bench (Trabucco et al., 2022) and
SOO-Bench (Qian et al., 2025). From Design-Bench4, we select Ant Morphology (Brockman et al.,
2016), D’Kitty Morphology (Ahn et al., 2020), Superconductor (Hamidieh, 2018), TF Bind 8 and TF
Bind 10 (Barrera et al., 2016). From SOO-Bench, we include GTOPX 2,3,4,6 (Schlueter et al., 2021).
These tasks span both DOUBLE and CATEGORICAL search spaces with varying dimensionality.
Detailed task descriptions and properties are provided in Appendix C.

4.2 EXPERIMENTAL RESULTS

In this section, we present our experimental findings, aiming to answer the following RQs.

RQ1: Is the string-based representation for designs versatile to offline BBO in the single task
cases? While prior research has demonstrated the effectiveness of string-based representations in
universal regression (Song et al., 2024b; Tang et al., 2025) and online BBO algorithms (Nguyen
et al., 2024), their applicability to offline BBO remains an open question. To bridge this gap, we first
conduct a comparative study between string-based UniSO variants and conventional numeric-input
expert models in single-task offline BBO settings. For fair comparison, we implement expert models
with identical architecture to UniSO-N’s objective regressor, with numerical inputs undergoing batch
normalization followed by model-inner optimization through both EAs and gradient ascent.

As shown in Table 1, the UniSO methods consistently exceed the best score in the offline dataset
D(best) across most tasks, with UniSO-T demonstrating superior performance by achieving an
average rank of 1.889 and outperforming other methods in 5 out of 10 tasks, while the strongest
baseline, BN + EAs, achieves an average rank of 2.222. Although UniSO-N shows lower performance
compared to BN + EAs, it maintains superiority over BN + Grad and consistently exceeds D(best).
These results provide evidence for the versatility of string-based representations in offline BBO.

4Following recent works in offline BBO (Tan et al., 2025; Yun et al., 2024), we exclude three tasks from
Design-Bench, and provide detailed explanation in Appendix C.1
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Table 2: Score in unconstrained tasks from Design-Bench and SOO-Bench, where the best and
runner-up results on each task are Blue and Violet, respectively. D(best) denotes the best score in
the offline dataset and BN represents batch normalization for numerical input designs. Single-task
experts are trained within one task, while UniSO-T and UniSO-N are done in a multi-task manner.

Single-task Experts UniSO-T UniSO-N
Task D(best) BN + EAs BN + Grad Vanilla Improved Vanilla Improved

Ant 165.326 118.877 ± 127.688 229.462 ± 165.869 275.216 ± 90.820 374.665 ± 56.057 268.399 ± 82.858 269.691 ± 77.425
D’Kitty 199.363 111.205 ± 66.986 183.263 ± 62.436 216.070 ± 23.209 225.752 ± 8.521 130.655 ± 83.106 173.911 ± 46.662

Superconductor 74.000 93.951 ± 7.039 97.137 ± 6.113 86.795 ± 13.466 92.200 ± 15.209 81.266 ± 16.073 67.333 ± 16.838
TF Bind 8 0.439 0.984 ± 0.007 0.959 ± 0.023 0.940 ± 0.027 0.903 ± 0.041 0.944 ± 0.016 0.833 ± 0.005

TF Bind 10 0.005 0.905 ± 0.326 0.888 ± 0.229 0.830 ± 0.539 0.823 ± 0.542 0.603 ± 0.005 0.959 ± 0.115
GTOPX 2 -195.586 -88.054 ± 20.878 -128.310 ± 15.616 -132.023 ± 63.084 -72.848 ± 9.576 -117.022 ± 51.671 -124.995 ± 56.170
GTOPX 3 -151.190 -64.028 ± 22.678 -151.190 ± 0.000 -60.941 ± 17.235 -45.602 ± 8.433 -88.601 ± 31.865 -62.622 ± 22.261
GTOPX 4 -215.716 -96.432 ± 10.868 -215.716 ± 0.000 -100.943 ± 15.044 -84.271 ± 8.307 -99.834 ± 20.837 -110.284 ± 17.559
GTOPX 6 -112.599 -64.217 ± 14.602 -112.599 ± 0.000 -71.749 ± 28.497 -47.794 ± 11.943 -71.174 ± 12.932 -57.435 ± 18.832
Avg. Rank / 3.111 ± 1.728 4.111 ± 1.792 3.667 ± 1.333 2.111 ± 1.663 4.222 ± 1.030 3.778 ± 1.618

RQ2: How do the universal string-based offline BBO methods perform across a wide range of
offline BBO tasks? In Table 2, we report the results of our main experiments, which demonstrates
the effectiveness of universal string-based offline BBO methods across diverse tasks. We compare
UniSO-T and UniSO-N against batch-normalized D(best) and single-task experts. Our findings
reveal that: (1) both vanilla and improved versions of UniSO methods generally outperform D(best)
across tasks, with only three exceptions in total; (2) UniSO methods achieve comparable or superior
performance to single-task experts, with improved UniSO-T showing particularly strong results with
an average rank of 2.111 among six methods; (3) our latent space regularization techniques yield
consistent improvements in both performance and average rank for both UniSO variants. The t-SNE
visualization of improved UniSO-T (Fig. 3, right) reveals enhanced task separation while maintaining
proximity between related tasks, facilitating effective information sharing, along with more coherent
within-task embedding distributions in the latent space.

RQ3: Can UniSO generalize to unseen tasks? We evaluate the generalization capability of improved
UniSO-T through zero-shot and few-shot experiments on three unseen tasks: RobotPush, Rover (Wang
et al., 2018), and LunarLander (Brockman et al., 2016). This evaluation is motivated by the strong
generalization performance demonstrated by string-based universal online BBO methods (Nguyen
et al., 2024). For zero-shot inference, we directly optimize the model’s output by concatenating
metadata with converted string designs. In the few-shot setting, we fine-tune UniSO-T on 100 lowest-
performing data provided by Wang et al. (2024) using cross-entropy loss and SGD optimizer at a
learning rate of 2× 10−5 for 5 epochs before design optimization. The results in Table 3 demonstrate
the model’s strong generalization ability: zero-shot performance surpasses D(best), while few-shot
results outperform the z-score normalized single-task expert.

Table 3: Zero-shot and few-shot results of improved UniSO-T on RobotPush, Rover, and LunarLander,
compared to single-task experts based on z-score normalization.

Single-Task Experts Improved UniSO-T
Task D(best) Z-score + EAs Z-score + Grad Zero-shot Few-shot

RobotPush 0.102 2.423 ± 1.181 5.816 ± 1.132 3.171 ± 0.984 7.067 ± 0.169
Rover -16.148 -14.651 ± 4.692 -11.578 ± 0.351 -8.888 ± 2.119 -8.239 ± 1.270

LunarLander 7.038 38.164 ± 87.671 271.838 ± 52.982 31.186 ± 27.971 248.573 ± 45.386
Avg. Rank / 4.000 ± 0.000 2.000 ± 0.816 2.667 ± 0.471 1.333 ± 0.471

In Appendix D, we show the effectiveness of each component of the proposed losses and metadata
processing on UniSO-T by conducting ablation studies. Besides, we compare the best-performing
UniSO variant, improved UniSO-T, to the well-studied expert single-task offline BBO methods,
where improved UniSO-T obtains an average rank of 9.8 across 21 expert single-task offline BBO
methods, demonstrating the potential improvement for universal offline BBO.

5 CONCLUSION

In this paper, we propose UniSO to overcome barriers in universal offline BBO by unifying string-
based representation, latent space regularization, and metadata-guided learning, showing universality
and effectiveness. Future work includes training on more data and exploring in-context learning for
enhanced performance in diverse real-world scenarios.
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A RELATED WORK

Offline BBO. Offline BBO (Kim et al., 2025; Trabucco et al., 2022; Xue et al., 2024; Qian et al.,
2025) methods can be generally categorized into two types, one of which is called forward approach.
This category usually trains a scoring surrogate and maximizes the output to obtain the final design.
However, these methods suffer from OOD issue such that errors made by the surrogate in OOD region
would mislead the search procedure. To mitigate it, NEMO (Fu & Levine, 2021), COMs (Trabucco
et al., 2021), IOM (Qi et al., 2022), RoMA (Yu et al., 2021), BOSS (Dao et al., 2024b) and
IGNITE (Dao et al., 2024a) regulate the model from different perspectives, while Tri-Mentoring (Chen
et al., 2023a) and ICT (Yuan et al., 2023) ensemble surrogates to enhance robustness. Besides,
BDI (Chen et al., 2022a), MATCH-OPT (Hoang et al., 2024), and Cliqueformer (Kuba et al., 2024b;a)
incorporate more information distilled from the offline dataset, and ARCOO (Lu et al., 2023),
PGS (Chemingui et al., 2024), GABO (Yao et al., 2024), and DEMO (Yuan et al., 2024) employ
different techniques to guide the model-inner search. Recently, Tan et al. (2025) point out that
regression is not suitable for offline BBO and call for a paradigm shift to rank the designs. Backward
approach typically fits a probabilistic model p(x|y), and samples promising designs from the model,
which can be instantiated by prevalent generative models. For example, MINs (Kumar & Levine,
2020) uses GAN (Goodfellow et al., 2014), while DDOM (Krishnamoorthy et al., 2023), RGD (Chen
et al., 2024), and DiffOPT (Kong et al., 2024) utilize diffusion model (Ho et al., 2020). Recent
works also focus on learning from trajectories (Mashkaria et al., 2023; Yun et al., 2024), synthetic
priors (Nguyen et al., 2023), or sampling-free latent variables (Yu et al., 2024).

LLM for BBO. Recent progress in LLM has demonstrated the potential applicability of LLM to solve
BBO problems (Song et al., 2024c), mainly incorporating prompt-based, attention-based, token-based,
and string-based methods. Prompt-based methods mimick the optimization via query-answer-based
prompts using LLM. However, they do not involve fine-tuning the LLM parameters but only relies
on the in-context learning abilities, which may limit optimization performance. EoH (Liu et al.,
2024a), LLaMoCo (Ma et al., 2024), and LLMOPT (Jiang et al., 2025) generate optimization code
via directly utilizing LLM, fine-tuning pre-trained LLM, and training from scratch, respectively.
Many of other works employ LLM as components of BBO optimizers, e.g., LLAMBO (Liu et al.,
2024b) simulates components of Bayesian optimization, such as regressor and acquisition function,
with LLM. However, such method is limited by the training corpus and lacks interpretability. Given
that attention-based Transformers (Vaswani et al., 2017) has superior scalability (Brown et al.,
2020) and can learn in-context well (Garg et al., 2022), TNPs (Nguyen & Grover, 2022; Maraval
et al., 2023) employs raw Transformers as in-context regressor for BBO. Note that Transformers
trained with synthetic priors performs well on tabluar data (Hollmann et al., 2025) and Bayesian
inference (Müller et al., 2022), works like PFNs4BO (Müller et al., 2023), LICO (Nguyen & Grover,
2025) and ExPT (Nguyen et al., 2023) utilize such priors for in-context optimization on both online
and offline BBO. Attention-based methods exhibit superior performance in BBO field, but they
usually optimize in a fixed search space. Token-based methods instantiate a design or a parameter
as a token, and learn in-context from historical trajectories to simulate optimization. For example,
OptFormer (Chen et al., 2022b) views a parameter value as a token for hyper-parameter optimization
and employs Transformer structure, combined with metadata, to represent an optimization trajectory,
while Dery et al. (2022) consider a multi-step improvement for OptFormer and Song et al. (2024a)
plug a regret-to-go token into the algorithm history to solve BBO problems. Recent pioneering works
utilize string-based representation on designs for BBO. OmniPred (Song et al., 2024b) regresses in
multi-task suite based on string-based representation for arbitrary designs, metadata and scores, while
Nguyen et al. (2024); Tang et al. (2025) use LLM embeddings to pre-train an in-context regressor for
BBO. Motivated by the superior performance of these methods, in this work, we use string-based
representation to solve universal offline BBO, as discussed in Section 3.

B EXPERIMENTAL SETTINGS

We adopt the T5X architecture (Raffel et al., 2020) as our base model architecture, which can be
accessed through the open-source repository. For embedder in UniSO-N and metadata embedder
in UniSO-T, we directly leveraged the pretrained T5-small model. The important hyperparameters,
most of which are defaulted.

17



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

C DETAILS OF TASKS AND DATASET

In this section, we introduce details of different tasks and datasets we use in our experiments, which
range across 7 test suites with 28 tasks, 222 trials, and a dataset size of 204K in total.

C.1 DESIGN-BENCH TASKS

Design-Bench (Trabucco et al., 2022)5 is a famous benchmark suite for offline BBO. It includes
various realistic tasks from real-world optimization problems, and each task corresponds to an oracle
function for evaluation and a large static offline dataset. In this paper, we mainly consider 6 tasks
in Design-Bench, and we directly use the open-sourced dataset of Design-Bench6 as a part of the
training data. Details of these tasks are as follows.

Ant and D’Kitty Morphology. These two tasks are both robot morphology optimization problems,
and the goal is to optimize the morphological structure of two simulated robots: Ant from OpenAI
Gym (Brockman et al., 2016) and D’Kitty from ROBEL (Ahn et al., 2020). Specifically, the objective
of Ant Morphology is to make the Ant robot run quickly and that of D’Kitty Morphology is to let the
D’Kitty robot move exactly to the predefined location. Both these tasks use a task-specific pre-trained
Soft Actor Critic (Haarnoja et al., 2018) policy as controller, and simulate in the MuJoCo (Todorov
et al., 2012) simulator with a timestep of 100. The design dimension of Ant Morphology is 56 and
that of D’Kitty Morphology is 60, both of which include size, orientation, and location of the limbs.
The dataset sizes of these two tasks are both 10004 with DOUBLE design spaces.

Superconductor. The objective of the Superconductor task (Hamidieh, 2018) is to maximize
the critical temperature which derived from the chemical formula for a superconducting material.
Although the actual critical temperature of a decoded material is inaccessible, which needs physical
experiments, the evaluation is conducted using a pre-trained random forest regressor from Fannjiang
& Listgarten (2020) as oracle function, which achieves a Spearman rank-correlation coefficient of
0.9210 on a held-out validation set. The design space consists of 86 DOUBLE variables, and the
dataset size is 17010.

TF Bind 8 and TF Bind 10. The objective of TF Bind 8 and TF Bind 10 (Barrera et al., 2016) is
to maximize the binding affinity score of the designed length 8 and length 10 DNA sequence with
a prevalent human transcription factor SIX6 REF R1. Scores are obtained via direct lookup from
the exhaustive evaluation database established by Barrera et al. (2016). The design dimension is
8 for TF Bind 8 and 10 for TF Bind 10, and the design spaces are both CATEGORICAL where the
number of categories of all dimensions are 4. The TF Bind 8 dataset contains 32898 design-score
pairs. Although the TF Bind 10 dataset in Design-Bench includes 4161482 design-score pairs, which
is too large and beyond our computation budget, we sample a subset with size of 10000 following
recent work in the field of offline BBO (Tan et al., 2025).

We exclude two tasks in Design-Bench, following Yu et al. (2024); Yun et al. (2024); Tan et al.
(2025). Specifically, we exclude ChEMBL (Gaulton et al., 2012) because almost all methods pro-
duce the same oracle prediction results, as shown in Krishnamoorthy et al. (2023); Mashkaria
et al. (2023), which is not appropriate for comparison. We exclude synthetic NAS on CI-
FAR10 (Hinton et al., 2012) due to its high computation cost for exact evaluation over multiple
seeds, which exceeds our computation resources. We also excluder Hopper Controller (Brock-
man et al., 2016) in Design-Bench since it has a normalization and de-normalization issue due
to the stochastic policy (see https://github.com/brandontrabucco/design-bench/
issues/8#issuecomment-1086758113 for details) and recent works in offline BBO (Yu
et al., 2024; Yun et al., 2024; Tan et al., 2025) do not benchmark on this task as well.

C.2 SOO-BENCH TASKS

SOO-Bench (Qian et al., 2025) is a recent benchmark for offline BBO, which not only provides more
test problems but also proposes a novel method to evaluate the stability of the forward methods for
offline BBO. We select the unconstraint tasks in SOO-Bench, GTOPX 2, GTOPX 3, GTOPX 4, and
GTOPX 6 from GTOPX benchmark (Schlueter et al., 2021), except for hybrid 1 due to environment

5https://github.com/brandontrabucco/design-bench
6https://huggingface.co/datasets/beckhamc/design_bench_data
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conflicts during installation. We use the open-source code of SOO-Bench7 and generate task data
following the default settings in the SOO-Bench paper. Specifically, for a given task, the dataset size
is 1000 times the variable dimension and the data is uniformly drawn from the middle 50% of the
overall distribution with respect to the score values. We set the random seed of the data generation
procedure as 1 by default. Both these tasks are under DOUBLE design spaces and their evaluations are
done through simulation library modules provided by Schlueter et al. (2021)8. Detailed description
of our selected tasks are as follows.

GTOPX encompasses a comprehensive suite of real-world space trajectory optimization prob-
lems(Izzo & Manuel López-Ibáñez, 2022; Izzo, 2010). Specifically, GTOPX 2 encompasses the
optimization of an intricate interplanetary trajectory for a Saturn rendezvous mission, featuring
22 decision variables with the objective of minimizing the total velocity increment (∆V ) required
throughout the mission. GTOPX 3 and GTOPX 4 both address trajectory optimization for Mercury
missions, where the primary objective is to minimize the total mission ∆V . These problems are
distinguished by their treatment of resonant flybys: GTOPX 3 explicitly excludes such maneu-
vers and operates in an 18-dimensional design space, while GTOPX 4 incorporates them within a
26-dimensional space. GTOPX 6 focuses on the optimization of multi-gravity-assist trajectories
targeting Comet 67P/Churyumov-Gerasimenko, employing 22 design variables to minimize the total
∆V requirements.

C.3 REAL-WORLD TASKS

Following Wang et al. (2024), we evaluate our method on three real-world tasks, LunarLander,
RobotPush, and Rover, and use the open-sourced dataset by Wang et al. (2024). Detailed information
of these tasks are as follows.

LunarLander. LunarLander is a 12-dimensional DOUBLE task implemented in OpenAI Gym (Brock-
man et al., 2016)9 that aims to learn the parameters of a controller for a lunar lander. The objective is
to maximize the expected average return over 50 randomly generated environments.

RobotPush. RobotPush aims to minimize the distance between a designated target location and
a pair of robotically-controlled objects, where there are 14 DOUBLE controllable variables, e.g.,
orientation and speed. The function is implemented in Wang et al. (2018)10 with a physics engine
Box2D (Parberry, 2017).

Rover. Rover is a 2D trajectory optimization task that simulates a rover navigation task, which is
defined by Wang et al. (2018)11. The trajectory is optimized within a 60-dimensional DOUBLE unit
hypercube. A cost function c(·) is defined in the hypercube to measure the trajectory quality, and the
objective is to minimize the total cost.

To generate diverse task trials, Wang et al. (2024) employ a transformation from RIBBO (Song et al.,
2024a)12 that introduces a scaling factor s and a translation vector t, where the transformed objective
is computed as y = s · f(x − t). These factors are deterministically generated based on random
seeds, allowing different seeds to map to distinct task. We randomly choose one seed for one task for
evaluation.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results, including ablation studies on UniSO-T
and its comparison to traditional single-task offline BBO methods.

7https://anonymous.4open.science/r/SOO-Bench-9025
8https://www.midaco-solver.com/index.php/about/benchmarks/gtopx
9https://www.gymlibrary.dev/environments/box2d/lunar_lander

10https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/
test_functions/push_function.py

11https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/
test_functions/rover_function.py

12https://github.com/songlei00/RIBBO/blob/dcfbed5326a411e8c285d226a6899d922317c7d6/
problems/real_world_problem.py#L139
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Ablation studies: How do the metadata and designed improvement losses contribute to the
performance? We additionally analyze the effects of each component of the proposed losses and
metadata processing on UniSO-T. To better validate the effectiveness of the two components of the
improved losses, we evaluate the model by removing each one. As shown in Table 4, the superior
performance of UniSO-T over others show the contribution of each loss.

Table 4: Ablation studies of each component of the improved losses in UniSO-T few-shot performance
on RobotPush, Rover, and LunarLander.

Task D(best) UniSO-T UniSO-T w/o Llip UniSO-T w/o Lcon UniSO-T w/o {Llip,Lcon}
Ant 165.326 374.665 ± 56.057 292.644 ± 65.145 232.399 ± 66.642 275.216 ± 90.820

D’Kitty 199.363 225.752 ± 8.521 175.796 ± 64.079 224.668 ± 23.942 216.070 ± 23.209
Superconductor 74.000 92.200 ± 15.209 90.910 ± 6.538 80.910 ± 14.995 86.795 ± 13.466

TF Bind 8 0.439 0.903 ± 0.041 0.916 ± 0.044 0.945 ± 0.049 0.940 ± 0.027
TF Bind 10 0.005 0.823 ± 0.542 0.623 ± 0.062 0.823 ± 0.542 0.830 ± 0.539
GTOPX 2 -195.586 -72.848 ± 9.576 -112.357 ± 39.361 -87.305 ± 24.428 -132.023 ± 63.084
GTOPX 3 -151.190 -45.602 ± 8.433 -50.294 ± 6.184 -56.067 ± 11.332 -60.941 ± 17.235
GTOPX 4 -215.716 -84.271 ± 8.307 -96.550 ± 12.745 -84.152 ± 15.571 -100.943 ± 15.044
GTOPX 6 -112.599 -47.794 ± 11.943 -67.276 ± 24.305 -43.334 ± 8.402 -71.749 ± 28.497

Avg. Rank / 1.667 ± 0.943 2.889 ± 0.737 2.333 ± 1.155 3.111 ± 0.994

Furthermore, since our improvement takes metadata into account, we compare both improved and
vanilla UniSO-T in cases with or without metadata. We present the universal offline BBO performance
in Table 5, and the zero-shot and few-shot optimization results in Table 6 and Table 7, respectively.
From the results in Table 5, vanilla UniSO-T combined with metadata generally performs better
than without metadata, except for GTOPX 6, while improved UniSO-T performs similarly with or
without metadata, which might result from incorporating metadata in the metadata guidance loss.
However, the differences between these two cases significantly increase in the further zero-shot
results in Table 6 and few-shot results in Table 7, where improved UniSO-T with metadata performs
better than without metadata.

Table 5: Ablation studies of the metadata in UniSO-T on unconstrained tasks from Design-Bench
and SOO-Bench. D(best) denotes the best score in the offline dataset.

Improved UniSO-T Vanilla UniSO-T
Task D(best) w/ metadata w/o metadata w/ metadata w/o metadata

Ant 165.326 374.665 ± 56.057 358.379 ± 64.211 275.216 ± 90.820 233.853 ± 85.996
D’Kitty 199.363 225.752 ± 8.521 227.169 ± 12.278 216.070 ± 23.209 198.221 ± 42.524

Superconductor 74.000 92.200 ± 15.209 90.871 ± 10.611 86.795 ± 13.466 88.715 ± 13.042
TF Bind 8 0.439 0.903 ± 0.041 0.950 ± 0.025 0.940 ± 0.027 0.935 ± 0.041
TF Bind 10 0.005 0.823 ± 0.542 0.651 ± 0.121 0.830 ± 0.539 0.823 ± 0.542
GTOPX 2 -195.586 -72.848 ± 9.576 -79.864 ± 13.338 -132.023 ± 63.084 -254.215 ± 414.579
GTOPX 3 -151.190 -45.602 ± 8.433 -48.178 ± 12.638 -60.941 ± 17.235 -75.579 ± 28.713
GTOPX 4 -215.716 -84.271 ± 8.307 -79.887 ± 14.729 -100.943 ± 15.044 -172.288 ± 196.360
GTOPX 6 -112.599 -47.794 ± 11.943 -45.764 ± 7.685 -71.749 ± 28.497 -69.066 ± 37.746

Avg. Rank / 1.778 ± 0.916 1.778 ± 0.916 2.889 ± 0.875 3.556 ± 0.497

Table 6: Ablation studies of the metadata in UniSO-T zero-shot performance on RobotPush, Rover,
and LunarLander. D(best) denotes the best score in the offline dataset.

Improved UniSO-T Vanilla UniSO-T
Task D(best) w/ metadata w/o metadata w/ metadata w/o metadata

RobotPush 0.102 3.171 ± 0.984 2.517 ± 1.640 2.451 ± 2.335 2.080 ± 0.877
Rover -16.148 -8.888 ± 2.119 -9.089 ± 3.070 -11.188 ± 3.949 -14.920 ± 2.768

LunarLander 7.038 31.186 ± 27.971 6.251 ± 53.042 21.183 ± 51.881 -58.135 ± 40.322

Avg. Rank / 1.000 ± 0.000 2.333 ± 0.471 2.667 ± 0.471 4.000 ± 0.000

Is the best-performing UniSO variant comparable to the well-studied expert single-task offline
BBO methods? In Table 1 and Table 2, we use batch normalization for numerical inputs on single-
task expert methods for a fair comparison. However, a more widely-used practice in the field of offline
BBO is to employ a global z-score normalization for inputs (Trabucco et al., 2022). Thus, to better
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Table 7: Ablation studies of the metadata in UniSO-T few-shot performance on RobotPush, Rover,
and LunarLander. D(best) denotes the best score in the offline dataset.

Improved UniSO-T Vanilla UniSO-T
Task D(best) w/ metadata w/o metadata w/ metadata w/o metadata

RobotPush 0.102 7.067 ± 0.169 6.155 ± 1.495 3.071 ± 2.007 5.602 ± 1.939
Rover -16.148 -8.239 ± 1.270 -10.511 ± 2.070 -13.451 ± 4.753 -10.833 ± 2.930

LunarLander 7.038 248.573 ± 45.386 233.919 ± 60.467 61.819 ± 118.019 214.205 ± 66.742

Avg. Rank / 1.000 ± 0.000 2.000 ± 0.000 4.000 ± 0.000 3.000 ± 0.000

Table 8: Normalized score in Design-Bench, where the best and runner-up results on each task are
Blue and Violet. D(best) denotes the best score in the offline dataset. All methods are trained within
on task, while UniSO-T are done in a multi-task manner. Results of all compared methods are referred
from Tan et al. (2025).

Method Venue Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Avg. Rank

D(best) / 0.565 0.884 0.400 0.439 0.467 /

BO-qEI 0.812 ± 0.000 0.896 ± 0.000 0.382 ± 0.013 0.802 ± 0.081 0.628 ± 0.036 17.8 / 22
CMA-ES 1.712 ± 0.754 0.725 ± 0.002 0.463 ± 0.042 0.944 ± 0.017 0.641 ± 0.036 11.4 / 22

REINFORCE 0.248 ± 0.039 0.541 ± 0.196 0.478 ± 0.017 0.935 ± 0.049 0.673 ± 0.074 13.8 / 22
Grad. Ascent 0.273 ± 0.023 0.853 ± 0.018 0.510 ± 0.028 0.969 ± 0.021 0.646 ± 0.037 11.2 / 22

Grad. Ascent Mean 0.306 ± 0.053 0.875 ± 0.024 0.508 ± 0.019 0.985 ± 0.008 0.633 ± 0.030 10.6 / 22
Grad. Ascent Min

Baselines

0.282 ± 0.033 0.884 ± 0.018 0.514 ± 0.020 0.979 ± 0.014 0.632 ± 0.027 11.2 / 22

CbAS ICML’19 0.846 ± 0.032 0.896 ± 0.009 0.421 ± 0.049 0.921 ± 0.046 0.630 ± 0.039 15.6 / 22
MINs ICML’19 0.906 ± 0.024 0.939 ± 0.007 0.464 ± 0.023 0.910 ± 0.051 0.633 ± 0.034 12.6 / 22

DDOM ICML’23 0.908 ± 0.024 0.930 ± 0.005 0.452 ± 0.028 0.913 ± 0.047 0.616 ± 0.018 14.2 / 22
BONET ICML’23 0.921 ± 0.031 0.949 ± 0.016 0.390 ± 0.022 0.798 ± 0.123 0.575 ± 0.039 14.6 / 22

GTG NeurIPS’24 0.855 ± 0.044 0.942 ± 0.017 0.480 ± 0.055 0.910 ± 0.040 0.619 ± 0.029 13.6 / 22

COMs ICML’21 0.916 ± 0.026 0.949 ± 0.016 0.460 ± 0.040 0.953 ± 0.038 0.644 ± 0.052 9.0 / 22
RoMA ICML’21 0.430 ± 0.048 0.767 ± 0.031 0.494 ± 0.025 0.665 ± 0.000 0.553 ± 0.000 18.0 / 22
IOM NeurIPS’22 0.889 ± 0.034 0.928 ± 0.008 0.491 ± 0.034 0.925 ± 0.054 0.628 ± 0.036 12.6 / 22
BDI NeurIPS’22 0.963 ± 0.000 0.941 ± 0.000 0.508 ± 0.013 0.973 ± 0.000 0.658 ± 0.000 5.4 / 22
ICT NeurIPS’23 0.915 ± 0.024 0.947 ± 0.009 0.494 ± 0.026 0.897 ± 0.050 0.659 ± 0.024 8.8 / 22

Tri-Mentoring NeurIPS’23 0.891 ± 0.011 0.947 ± 0.005 0.503 ± 0.013 0.956 ± 0.000 0.662 ± 0.012 7.0 / 22
PGS AAAI’24 0.715 ± 0.046 0.954 ± 0.022 0.444 ± 0.020 0.889 ± 0.061 0.634 ± 0.040 13.4 / 22
FGM AISTATS’24 0.923 ± 0.023 0.944 ± 0.014 0.481 ± 0.024 0.811 ± 0.079 0.611 ± 0.008 12.8 / 22

MATCH-OPT ICML’24 0.933 ± 0.016 0.952 ± 0.008 0.504 ± 0.021 0.824 ± 0.067 0.655 ± 0.050 7.6 / 22
RaM-ListNet ICLR’25 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 2.0 / 22

UniSO-T (Ours) / 0.850 ± 0.062 0.915 ± 0.015 0.489 ± 0.062 0.947 ± 0.036 0.673 ± 0.136 9.8 / 22

understand the performance of UniSO methods, in Table 8, we compare improved UniSO-T, the best-
performing universal offline BBO method in Table 2, to a wide range of offline BBO methods, which
are mainly based on z-score normalization, on Design-Bench. Here the improved UniSO-T method is
trained solely using Design-Bench tasks, and the detailed results of compared methods are referred
from a recent work on offline BBO (Tan et al., 2025). As shown in Table 8, UniSO-T achieved an
average rank of 9.8 across 21 expert single-task offline BBO methods, outperforming some recently
proposed methods specifically designed for single-task offline BBO, and even achieving the best
results on TF-Bind-10. However, compared to the state-of-the-art single-task offline BBO methods,
UniSO still has room for improvement, making it crucial to propose better techniques specifically for
universal scenarios as important future work.
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E METADATA IN THE EXPERIMENTS

In Table 9, we deliver all the metadata we used in our experiments.

Table 9: Metadata illustration we used in the experiments.
Name Description Objective

Ant Morphology a quadruped robot morphology optimization to run as fast as possible

D’Kitty Morphology D’Kitty robot morphology optimization to navigate the robot to a fixed location

Superconducor critical temperature maximization to design the chemical formula for a superconducting
material that has a high critical temperature

TF Bind 8 DNA sequence optimization to find the length-8 DNA sequence with maximum
binding affinity with SIX6 REF R1 transcription factor

TF Bind 10 DNA sequence optimization to find the length-10 DNA sequence with maximum
binding affinity with SIX6 REF R1 transcription factor

Cassini 2 Complex interplanetary missions to Saturn to achieve a rendezvous with Saturn,
aiming to minimize the total velocity change

Messenger (reduced) Simulation of interplanetary missions to Mercury to minimize the total velocity change
over the course of the mission

Messenger (full) Interplanetary missions to Mercury,
with resonant flybys of the planet

to minimize the total velocity
change incurred throughout the mission

Rosetta Simulation of multi-gravity-assisted space missions
to Comet 67P/Churyumov-Gerasimenko

to minimize the total velocity change
required throughout the mission
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