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ABSTRACT

Supervised learning can improve the design of state-of-the-art solvers for
combinatorial problems, but labelling large numbers of combinatorial instances
is often impractical due to exponential worst-case complexity. Inspired by the
recent success of contrastive pre-training for images, we conduct a scientific study
of the effect of augmentation design on contrastive pre-training for the Boolean
satisfiability problem. While typical graph contrastive pre-training uses label-
agnostic augmentations, our key insight is that many combinatorial problems
have well-studied invariances, which allow for the design of label-preserving
augmentations. We find that label-preserving augmentations are critical for the
success of contrastive pre-training. We show that our representations are able to
achieve comparable test accuracy to fully-supervised learning while using only 1%
of the labels. We also demonstrate that our representations are more transferable to
larger problems from unseen domains.

1 INTRODUCTION

Combinatorial problems, e.g., Boolean satisfiability (SAT) or mixed-integer linear programming
(MILP), have many applications in the industry and can encode many fundamental computational
tasks. These problems are NP-complete, so solvers that perform efficiently in the worst case are not
within reach. However, learning can be used to improve the average complexity of solvers on the
population of combinatorial problems found in the wild (Nair et al., 2020).

Supervised learning is a promising approach to combinatorial solver design (e.g., Selsam & Bjørner,
2019; Nair et al., 2020). Unfortunately, the need for labels is a severe limitation. Many read-world
problems, such as cryptography SAT instances, are extremely hard or, in some cases, even impossible
to solve (Nejati & Ganesh, 2019). Computing expert branching labels for large-scale MILPs requires
sophisticated parallel solvers (Nair et al., 2020).

In order to scale learning for combinatorial problems, we ask: how much can we learn from unlabelled
combinatorial instances? In this work, we consider a contrastive learning approach, which begins by
creating multiple “views” of every unlabelled instance, a process called augmentation. An encoder is
trained to maximize the similarity between the representations of augmentations that come from the
same instance, while minimizing the similarity between those of distinct ones (Chen et al., 2020a).
This has been successful in computer vision: contrastive representations can be used with linear
predictors to achieve competitive accuracies on ImageNet using a fraction of the labelled instances
(Chen et al., 2020a; He et al., 2020; Chen et al., 2020b).

Our key insight is that combinatorial problems have well-studied invariances that can be used
to design extremely effective augmentations for contrastive learning. Contrastive learning theory
indicates that augmentations should be (roughly) label-preserving in order to confer guarantees
on downstream prediction (Arora et al., 2019; Tosh et al., 2021; HaoChen et al., 2021). This is
in contrast to the majority of label-agnostic graph contrastive frameworks (e.g., You et al., 2020;
Hassani & Khasahmadi, 2020). For some combinatorial problems, label-preserving transformations
are available from subroutines of existing solvers, e.g., variable elimination modifies SAT formulas
while preserving their satisfiability. Our augmentations produce new formulas by randomly applying
such satisfiability-preserving transformations. Crucially, our augmentations do not require full solves
and are much cheaper to compute than the labels.
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Figure 1: Our contrastive learning framework for combinatorial problems. Given an instance ϕ, a
pair of augmented samples (ϕ̂1, ϕ̂2) are formed using label-preserving augmentations. (ϕ̂1, ϕ̂2) are
then transformed to graph formats (G1, G2). An encoder is used to extract graph representations
(z1, z2). Lastly, a standard contrastive loss is applied over a mini-batch of instances.

We study data augmentations for contrastive learning for SAT. We demonstrate that:

• Augmentation design is critical for contrastive pre-training on combinatorial problems. In
particular, our augmentations are sufficient for strong performance, while existing graph
augmentations are not.

• Our contrastive method matches the best supervised baseline while using 100× fewer
training labels.

2 BACKGROUND AND RELATED WORK

SAT. A Boolean formula in propositional logic consists of Boolean variables composed by logical
operators “and” (∧), “or” (∨) and “not” (¬). A literal is a variable v or its negation ¬v. A clause is a
disjunction of literals

∨n
i=1 li. SAT is the problem of deciding, for a given formula ϕ, if there exists a

satisfying assignment (SAT) or not (UNSAT). We can represent a SAT formula ϕ by a bipartite graph
called literal-clause incidence graph (LIG+) (Figure 4 in Appendix B).

Graph Contrastive Learning. Existing graph contrastive frameworks can, in principle, be used
to learn representations for combinatorial problems. Common augmentations in graph contrastive
learning include: 1) perturbing structures, such as, node dropping, subgraph sampling or graph
diffusion (You et al., 2020), and 2) perturbing features, such as, masking or adding noise to the node
features (Hassani & Khasahmadi, 2020).

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

Similar to contrastive algorithms in other domains (e.g., images), we learn representations by
contrasting augmented views of the same instance against negative samples. Inspired by SimCLR
Chen et al. (2020a), we propose a contrastive learning framework for combinatorial problems (Figure
1). Our framework consists of four major components: augmentations, format transformation, encoder
and contrastive loss. The detailed description of each component can be found in Appendix C.

3.2 LABEL-PRESERVING AUGMENTATIONS

To guarantee downstream predictive performance, augmentations for contrastive learning should
(mostly) preserve the labels of downstream tasks (Arora et al., 2019; Tosh et al., 2021; HaoChen
et al., 2021; Dubois et al., 2021). Label-preserving augmentations (LPAs) are well-studied for
many combinatorial problems and are much cheaper to obtain than labels. For SAT, LPAs should
preserve satisfiability of an instance. Common preprocessing techniques from SAT solvers can be
used as LPAs. Our work studies four common LPAs for SAT: add unit literal (AU), subsumed clause
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Figure 2: Heatmap: linear evaluation accuracy of SSL models trained with different single LPA
augmentations (diagonal) or paired combinations (off-diagonal). Each column denotes different
datasets. For off-diagonal entries on each heatmap, the row corresponds to the first augmentation
applied.

elimination (SC), clause resolution (CR) and variable elimination (VE). Their detailed descriptions
are in Appendix D.

4 EMPIRICAL STUDY OF AUGMENTATIONS

Our first experiments study the role of augmentations in contrastive learning for SAT prediction.
Following the standard linear evaluation protocol to evaluate representations (Chen et al., 2020a), we
report test accuracy of a linear classifier trained on top of frozen representations. We primarily used
the encoder of NeuroSAT (Selsam et al., 2018) as the GNN architecture. We experimented using
four SAT generators: SR (Selsam et al., 2018), Power Random 3SAT (PR) (Ansótegui et al., 2009),
Double Power (DP) and Popularity Similarity (PS) (Giráldez-Cru & Levy, 2017). The generator
produced a set of new unlabelled instances for each batch during SSL training. We used 100 labelled
instances to train our linear evaluators. The test set consisted of 104 instances. More details of
architectures, experiments and datasets are in Appendix E and Appendix H.

We also adopted four label-agnostic augmentations (LAAs) from a graph contrastive learning
framework, GraphCL (You et al., 2020): drop clauses (DC), drop variables (DV), link perturbation
(LP) and subgraph (SG). Unlike LPAs, these LAAs have no guarantee of preserving satisfiability.
The heatmaps for LPAs and LAAs on four datasets are shown in Figure 2 and 5 respectively.

LPAs learn significantly better representations than LAAs. As Figure 2 and Figure 5 show,
the accuracy (%) for the best LPA pair is: 95.1 for SR, 93.3 for PR, 86.0 for DP and 96.9 for PS,
while the corresponding number (%) for LAAs is much lower: 54.4, 59.1, 70.0 and 65.5. These
results imply that SSL models trained with LPAs learn significantly better representations than
those with LAAs. This performance gap between LPAs and LAAs meets our intuition. LAAs do
not guarantee preserving satisfiability, which could result in false positive pairs that hurt the SAT
prediction performance.

Resolution-based augmentations are the most powerful. In Figure 2, the best pair for each
dataset includes either CR or VE. Both of them are based on the resolution rule in propositional
logic. Resolution is a powerful inference rule in propositional logic. In fact, we can build a sound
and complete propositional theorem prover with only resolutions (Genesereth & Kao, 2013). The
Davis–Putnam algorithm (Davis & Putnam, 1960), the basis of practical SAT solvers, iteratively
applies resolution until reaching satisfiability certificates. Resolution-based augmentations in
contrastive learning may help the neural work learn the essence of resolution, which leads to better
satisfiability prediction.

Composing different augmentations is beneficial across datasets. The highest accuracy in Figure
2 always comes from off-diagonal entries, i.e., composition of different augmentations. In PR,
every singular augmentation failed to obtain accuracy higher than 60% by itself. While singular
augmentations achieved decent accuracy on SR and DP, combinations further improved the accuracy.
Similar to image and graph, composing different augmentations resulted in harder positives and better
representations.
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Figure 3: Our method (SSL + LPA) achieves significantly higher accuracy after linear evaluation and
fine-tuning than all baselines in low-label regime and is comparable to supervised models that have
been given more labels. We vary the number of training labelled instances from 2 to 104 and report
the average accuracy and standard error over 3 trials for all methods.

5 COMPARISON WITH OTHER METHODS

In addition to our model (SSL with LPA), we studied 4 baselines: SSL with LAA, supervised
models trained without augmentations, supervised models trained with LPA or LAA. The details of
experiments are in G. We varied the number of labelled instances from 2 to 104.

As shown in Figure 3, our method achieved substantially higher accuracy than others across all
datasets in the low-label regime. For example, with 10 training labelled instances, the improvement
(%) of ours compared from the second best method was: 9.42 for SR, 14.07 for PR, 30.81 for DP,
22.18 for PS. Our model’s accuracy was also on par with supervised models that had access to
significantly more labels: for all datasets, the accuracy of our models trained with 100 labels matched
or exceeded the accuracy of our best supervised baselines trained with 104 labels, a 100× reduction
in the number of labels needed.

On the other hand, SSL models trained with LAAs were not much better than random-initialized ones
under linear evaluation. We also found that using LAAs for supervised models even hurt performance,
possibly because LAAs add label noise. For example, with 10000 labels on DP(40), adding LAAs
gave 20.21% lower accuracy than supervised without augmentations.

6 CONCLUSIONS AND OUTLOOK

We studied the effect of data augmentations on contrastive learning for the Boolean satisfiability
problem. We designed label-preserving augmentations using well-studied transformations, e.g.,
clause resolution or variable elimination, and confirmed the hypothesis that data augmentations
should be label-preserving to help in downstream prediction. The design of our augmentations was
critical; we found that resolution-based augmentations, which produced more distinct augmentations,
were necessary for strong results. Our contrastive method was able to learn strong SAT predictors (at
least as strong as our best supervised baselines) with 100× fewer labelled training instances.

Although our results are restricted to Boolean satisfiability, they hold lessons for solver design more
broadly. For example, the convex hull of MILP feasible sets is invariant to cuts, which suggests that
contrastive pre-training could be used to improve Neural Diving (Nair et al., 2020). In general, our
results strongly suggest that studying and exploiting invariances can dramatically improve the sample
complexity of heuristics learned via imitation learning.

The study of combinatorial problems is fruitful for the broader machine learning community, because
these problems are non-trivial and so much is known about their invariances. In particular, experiments
can be designed that exactly satisfy the assumptions of invariant learning theory, making combinatorial
problems fantastic test beds for the emerging field of contrastive and self-supervised learning.
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A MACHINE LEARNING FOR COMBINATORIAL OPTIMIZATION

Supervised Learning for Combinatorial Optimization (CO). Almost all modern approaches to
machine learning for CO, use variations of a GNN architecture. On the supervised front, the work of
Nowak et al. (2018) on Quadratic Assignment Problem, Joshi et al. (2019) and Prates et al. (2019) on
Travelling Salesman Problem (TSP) have shown encouraging results. Gasse et al. (2019) trained a
branching heuristic for MILPs by imitating an expert policy. Later, Nair et al. (2020) extended those
ideas to make them scalable to substantially larger instances. In SAT, Selsam et al. (2018) proposed a
way to train GNNs to solve SAT problems in an end-to-end fashion. The same architecture was used
in Selsam & Bjørner (2019) to guide variable branching across conventional solvers.

Reinforcement Learning for CO. Supervised learning is bottlenecked by the need for labels.
Consequently, many have explored the use of Reinforcement Learning (RL). Node selection policy
of Dai et al. (2017) for TSP and Kool et al. (2018) for Vehicle Routing Problem are examples of
that effort. Lederman et al. (2020) and Yolcu & Póczos (2019) used REINFORCE to train variable
branching heuristic for quantified Boolean formulas and local search algorithm WalkSAT, respectively.
Kurin et al. (2019) used DQN for SAT and Vaezipoor et al. (2021) improved a SOTA #SAT solver via
Evolution Strategy. We refer to (Cappart et al., 2021; Bengio et al., 2021) for more comprehensive
record of efforts in this area.

Unsupervised Learning for CO. Toenshoff et al. (2021) proposed an unsupervised approach to
solve constrained optimization problems on graphs by minimizing a problem dependent loss function.
Amizadeh et al. (2019a;b) solved SAT and CircuitSAT problems by minimizing an energy function.
Lastly, inspired by probabilistic method, Karalias & Loukas (2020) trained a GNN in an unsupervised
way to act as a distribution over possible solutions of a given problem, by minimizing a probabilistic
penalty loss. Our method is distinct from other unsupervised techniques in that we do not minimize
a problem-dependent loss function and rather learn problem representations through contrastive
learning. To the best of our knowledge this is the first attempt at applying contrastive learning in the
domain of combinatorial optimization.

B BIPARTITE GRAPH REPRESENTATIONS OF SAT

Figure 4: A bipartite graph representation (LIG+) of a SAT formula ϕ := (x∨¬y∨¬z)∧(¬x∨y∨z).
The subgraph without edges is the LIG of ϕ.

C DESCRIPTIONS OF EACH COMPONENT IN FIGURE 1

Augmentations. Given a combinatorial instance ϕ, a stochastic augmentation is applied to form a
pair of positive samples, denoted by (ϕ̂1, ϕ̂2). Our key insight is the tailored design of augmentations
for combinatorial problems should preserve the label of the problem, e.g., satisfiability for SAT.

Format Transformation (E). Formulas (ϕ̂1, ϕ̂2) are transformed into (e.g., LIG+) graphs (G1, G2).
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Encoder. A neural encoder is trained to extract graph-level representations z1, z2 ∈ Rd from the
augmented graphs G1 and G2. This encoder can be any GNN such as GCN (Kipf & Welling, 2016)
and the encoder proposed by NeuroSAT.

Contrastive Loss. In the end, SimCLR’s (Chen et al., 2020a) contrastive loss L is applied to the
graph representations {zi}2ni=1, obtained from a mini-batch of n instances. We follow Chen et al.
(2020a) and use an MLP projection head to project each zi to mi. For a positive pair of projected
representations (mi,mj), the loss Li,j is a cross-entropy loss of differentiating the positive pair from
the other 2(n− 1) negative samples (i.e., augmented samples of other instances):

Li,j = − log
exp(sim(mi,mj) / τ)∑2N

k=1 1k ̸=i exp(sim(mi,mk) / τ)
, (1)

where τ is the temperature parameter, 1 is the indicator function, and sim measures the similarity
between two representations: sim(mi,mj) := mT

i mj/ ∥mi∥ ∥mj∥. The final loss L is the average
of Li,j over all positive pairs. After training is completed, we only keep the encoder to extract the
representation zi for downstream tasks.

D LPAS FOR SAT

D.1 LABEL-PRESERVING AUGMENTATIONS FOR SAT

The LPAs for SAT preserve satisfiability of any Boolean formula. In other words, a (un)satisfiable
instance remains (un)satisfiable after the applications of LPAs. We review some common LPAs for
SAT below, with examples and time complexity results provided in Appendix D.

Unit Propagation (UP). A clause is a unit clause if it contains only one literal. If an instance ϕ
contains a unit clause ℓ, we can 1) remove all clauses in ϕ containing the literal ℓ and 2) delete ¬ℓ
from all other clauses.

Add Unit Literal (AU). The inverse of UP: 1) construct a unit clause from a new literal ℓ, 2) add its
negation ¬ℓ to some other clauses and 3) create new clauses containing ℓ.

Pure Literal Elimination (PL). A variable v is called pure if it occurs with only one polarity in ϕ.
We can delete all clauses in ϕ containing v.

Subsumed Clause Elimination (SC). If a clause c1 is a subset of c2, i.e., all literals in c1 are also in
c2, then deleting c2 does not change satisfiability of ϕ.

Clause Resolution (CR). Resolution produces a new clause implied by two clauses containing
complementary literals:

ℓ ∨ a1 ∨ · · · ∨ an,¬ℓ ∨ b1 ∨ · · · bm
a1 ∨ · · · ∨ an ∨ b1 ∨ · · · bm

(2)

The new clause c is called the resolvent of c1, c2: c = c1 ⊗ c2. Adding c to ϕ does not change
satisfiability.

Variable Elimination (VE). Let Sℓ be a set of clauses containing the literal ℓ, and S¬ℓ be a set of
clauses containing its negation ¬ℓ. Then a new set S is obtained by pairwise resolving on clauses
of Sℓ and S¬ℓ: S = {c1 ⊗ c2|c1 ∈ Sℓ, c2 ∈ S¬ℓ}. Replacing Sℓ ∪ S¬ℓ with S does not change
satisfiability Eén & Biere (2005).

Note that some augmentations, such as VE, have the worst-case exponential complexity if run until
convergence. However, in our paper, we only eliminate a small and fixed number of variables.
Therefore, all LPAs listed here are cheap and have polynomial-time complexity.

D.2 EXAMPLES

See Table 1

D.3 TIME COMPLEXITY

Let n denote the number of clauses in the instance.
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Original UP
c1 : x1 x1

c2 : x2 ∨ x3 x2 ∨ x3

c3 : x1 ∨ ¬x3 ∨ x4 x1 ∨ ¬x3 ∨ x4

c4 : ¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ¬x1∨x2 ∨ x3 ∨ ¬x4

AU SC
¬x5

x5∨ x1 x1

x2 ∨ x3 x2 ∨ x3

x1 ∨ ¬x3 ∨ x4 x1 ∨ ¬x3 ∨ x4

¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ¬x1 ∨ x2 ∨ x3 ∨ ¬x4

¬x5 ∨ x1 ∨ ¬x2 ∨ x3

CR VE
x1 x1

x2 ∨ x3 x2 ∨ x3

x1 ∨ ¬x3 ∨ x4 x1 ∨ ¬x3 ∨ x4

¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ¬x1 ∨ x2 ∨ x3 ∨ ¬x4

x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4

Table 1: Examples of LPAs for SAT. UP: remove c1, c3 and ¬x from c4. AU: add unit literal ¬x5,
add x5 to c1 and create a new random clauses containing ¬x5 . SC: remove c4 because c2 ⊂ c4. CR:
add c2 ⊗ c3. VE: eliminate x3 by adding c2 ⊗ c3 and c4 ⊗ c3.

Rule Explanation Time Complexity

UP Eliminate one Unit Clause O(n)
AU Add one Unit Clause O(n)
PL Eliminate one pure literal O(n)
SC Eliminate all subsumed clauses O(n2)
CR Resolve one pair of clauses O(n)
VE Eliminate one variable O(n2)

Table 2: Complexity results of LPAs

E SETTINGS OF SECTION 4

Architecture. We primarily used the encoder of NeuroSAT (Selsam et al., 2018) as the GNN
architecture. Using the NeuroSAT architecture, we obtained the graph-level representations by
average-pooling over all literal representations. We followed the design details of the original
NeuroSAT paper.

Experimental Setting. We used the contrastive loss in Equation 1 with the temperature 0.5. We used
Adam optimizer with learning rate 2× 10−4 and weight decay 10−5. The batch size was 128 and
the maximum training epoch was 5000. The generator produced a set of new unlabelled instances
for each batch. We used 100 labelled instances to train our linear evaluators, and another 500 as the
validation set to pick the hyperparameters (ranging from 10−3 to 103) of L2 regularization. The test
set consisted of 104 instances.

Datasets. We experimented using four generators: SR (Selsam et al., 2018), Power Random 3SAT
(PR) (Ansótegui et al., 2009), Double Power (DP) and Popularity Similarity (PS) (Giráldez-Cru &
Levy, 2017). SR and PR are the synthetic generators. DP and PS are pseudo-industrial generators
producing instances that mimic real-world problems. We generated instances of 10 variables for SR
and PR, and 20 for DP and PS. The number inside the parenthesis denotes the number of variables
per instance. We also tweaked the parameters of the generators so that they produce roughly balanced
SAT and UNSAT. More details are in Appendix H.
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F THE HEATMAP FOR LAAS

See 5.
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Figure 5: Heatmap: linear evaluation accuracy of SSL models trained with different single LAA
augmentations (diagonal) or paired combinations (off-diagonal). Each column denotes different
datasets. For off-diagonal entries on each heatmap, the row corresponds to the first augmentation
applied.

G SETTINGS OF SECTION 5

The details of training SSL models follow Section 4. For supervised models, we used the same
architecture as NeuroSAT. The hyperparameters for supervised were the same as SSL in Section 4,
except the learning rate was chosen to be 2× 10−5, following Selsam et al. (2018). For each dataset,
we chose the best augmentation combination for LPA and LAA according to Figure 2. The degree
parameter associated with each augmentation was tuned separately for SSL and supervised models.
We used 200 instances as validation sets for early stopping of all methods.

Unless otherwise specified, all datasets used in this section have 40 variables per instance. For
SR datasets, following NeuroSAT, we trained on SR(U(10, 40)) and tested on SR(40). Training
procedures for all models were the same as Section E, except the batch size was 80 for SR(40) to
avoid memory issues. When fine-tuning NeuroSAT, we used different learning rates for the encoder
and aggregator, which were separately tuned for different models on each dataset.

H DATASETS

H.1 BRIEF DESCRIPTION

• SR (Selsam et al., 2018) A random SAT generator proposed as a challenge for neural
networks to learn intrinsic properties about satisfiability without cheating on some
miscellaneous statistics about the dataset.

• PR (Ansótegui et al., 2009) A random k-SAT generator where the frequency of each
variable is sampled from a power-law distribution.

• DP (Ansótegui et al., 2009) A pseudo-industrial generator based on PR with varying clause
length

• PS (Giráldez-Cru & Levy, 2017) A pseudo-industrial generator based on the notion of
locality.

H.2 PARAMETERS

For the purpose of reproducibility, we show the parameters of each generator used in the paper below:

• SR(10) / SR(40) All parameters follow NeuroSAT.
• PR(10) Number of variables: 10. Number of clauses: 41. Variable per clause: 3. Power-law

exponents of variables: 1.7.
• PR(40) Number of variables: 40. Number of clauses: 147. Variable per clause: 3. Power-law

exponents of variables: 2.5.
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• DP(20) Number of variables: 20. Number of clauses: 34. Average variables per clause: 4.
Power-law exponents of variables: 1.7.

• DP(40) Number of variables: 40. Number of clauses: 75. Average variables per clause: 5.
Power-law exponents of variables: 1.7.

• PS(20) Number of variables: 20. Number of clauses: 58. Min variable per clause: 2.
Average variables per clause: 4.

• PS(40) Number of variables: 40. Number of clauses: 73. Min variable per clause: 2.
Average variables per clause: 5.
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