
Root Defense Strategies: Ensuring Safety of LLM at the Decoding Level

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-001
strated immense utility across various indus-002
tries. However, as LLMs advance, the risk003
of harmful outputs increases due to incorrect004
or malicious prompts. While current methods005
effectively address jailbreak risks, they share006
common limitations: 1) Judging harmful out-007
puts from the prefill-level lacks utilization of008
the model’s decoding outputs, leading to rela-009
tively lower effectiveness and robustness. 2)010
Rejecting potentially harmful outputs based011
on a single evaluation can significantly impair012
the model’s helpfulness. To address the above013
issues, we examine LLMs’ capability to rec-014
ognize harmful outputs, revealing and quan-015
tifying their proficiency in assessing the dan-016
ger of previous tokens. Motivated by pilot ex-017
periment results, we design a robust defense018
mechanism at the decoding level. Our novel019
decoder-oriented, step-by-step defense archi-020
tecture corrects the outputs of harmful queries021
directly rather than rejecting them outright. We022
introduce speculative decoding to enhance us-023
ability and facilitate deployment to boost safe024
decoding speed. Extensive experiments demon-025
strate that our approach improves model se-026
curity without compromising reasoning speed.027
Notably, our method leverages the model’s abil-028
ity to discern hazardous information, maintain-029
ing its helpfulness compared to existing meth-030
ods.031

1 Introduction032

Large language models (LLMs) have advanced sig-033

nificantly in recent years, prompting growing at-034

tention from academia and industry to their safety035

implications (Weidinger et al., 2021; Achiam et al.,036

2023; Wu et al., 2023b). One of the primary safety037

concerns is jailbreaking, where malicious actors or038

errant inputs prompt LLMs to produce harmful or039

inappropriate content, effectively bypassing ethi-040

cal guidelines. Many attempts have been made to041

address these risks. For instance, Meta has imple- 042

mented several strategies in both pre-training and 043

fine-tuning phases to improve the safety of their 044

Llama-series models (Touvron et al., 2023; Dubey 045

et al., 2024). Despite these efforts, some studies 046

have reported that focusing too narrowly on safety 047

may diminish the models’ general capability (Bai 048

et al., 2022; Huang et al., 2024). Therefore, en- 049

hancing LLMs’ safety without compromising their 050

utility has become a critical area of research. 051

Recent defense strategies against jailbreaks can 052

be roughly categorized into two groups (as shown 053

in Figure 1). The first group is prefill-level de- 054

fense (Wu et al., 2023a; Phute et al., 2023; Zheng 055

et al., 2024). It enhances the models’ protective 056

capabilities by integrating additional security mea- 057

sures into the initial prompts (prefills) or refining 058

their representation. However, this approach pri- 059

marily depends on user inputs to detect harmful 060

outputs, making it susceptible to rapidly advancing 061

jailbreaking techniques. Moreover, this reliance 062

can lead to inaccuracies in interpreting user inten- 063

tions, thereby reducing the overall utility of the 064

LLMs. Another group of methods is output-level 065

defenses (Phute et al., 2023; Xu et al., 2024). It 066

involves using safety filters that assess the poten- 067

tial harmfulness of model-generated outputs. This 068

method focuses on the output of LLMs, potentially 069

offering improved performance by directly address- 070

ing the content generated. However, this strategy 071

typically involves a single evaluation point, which 072

may result in false positives that could diminish the 073

model’s utility by restricting benign outputs. 074

In practice, jailbreak instructions can bypass the 075

prefill-level defenses and achieve their purposes in 076

the model’s output (Wei et al., 2024). Therefore, 077

assessing jailbreak behavior in LLMs should focus 078

on decoding dimensions, including the context of 079

both the prefill and the model’s output. We aim to 080

directly address and rectify jailbreak behavior by 081

focusing on the decoding level. (Zheng et al., 2024) 082

1

Figure 1: Examples of recenqt imperfect defenses and
RDS. a) Prefill-level defenses fail to refuse the harmful
query with N harmful tokens. b) Output-level defenses
judge the whole output in a single-point evaluation with-
out consideration of the prefill. c) RDS conducts step-
by-step assessments for each sampled token to enhance
the security of LLMs at the decoder level.

has demonstrated models’ ability to distinguish be-083

tween harmful and benign prefill. This raises the084

question: Can LLMs extend this discriminative085

capability to their own decoding? To investigate086

this hypothesis, we conduct a series of preliminary087

experiments to explore the model’s ability to dis-088

cern its own decoding. Specifically, we evaluate089

five open-source LLMs and visualize the hidden090

state of the decoding on a token-by-token basis.091

We observe that LLMs cannot distinguish harmful092

tokens from benign tokens in one step, but it can093

achieve identification through multi-step judgment094

at the decoding, especially for harmful prefill.095

Based on pilot experiment results, we introduce096

a novel decoder-oriented defense, termed RDS, de-097

fending by step-by-step evaluation. Informed by098

the discriminative capability of LLMs on decod-099

ing, RDS utilizes a trainable classifier to assess the100

harmfulness of candidate tokens during sampling101

and adjust their logits accordingly. Subsequently,102

RDS reorders the candidate tokens and prioritizes103

the token with lower harmfulness at each step to104

ensure a safe output iteratively. The step-by-step105

safe generation provides a root defense on LLM’s106

decoding (encompassing the context of both prefill107

and output) perspective and multi-step evaluation.108

Furthermore, speculative decoding is incorporated109

into RDS for hidden state prediction to enhance110

the generation speed, potentially achieving a more111

fundamental and efficient defense mechanism.112

We evaluate RDS on five LLMs and a series of113

harmful and benign query benchmarks. Experimen-114

tal results demonstrate that RDS outperforms exist-115

ing approaches in terms of both security and help-116

fulness, reducing compliance with harmful queries 117

from 14.4% to 2.4% on Xstest (Röttger et al., 2023) 118

(without safety prompt) and increasing token gener- 119

ation speed by 2.12× ∼ 3.09× compared to other 120

baselines. We hope this method offers a new per- 121

spective to security defense, i.e., assessing the secu- 122

rity of a problem from the decoding level, thereby 123

achieving a root defense effect. 124

2 Preliminary: Decoding-level Defense 125

In this section, we design a series of experiments 126

to evaluate the capability of LLMs to discriminate 127

between harmful and benign outputs at the decod- 128

ing stage. We first outline the rationale for shifting 129

focus from prefill analysis to decoding, followed 130

by the details of our experimental setup. Finally, 131

we summarize the experimental results and provide 132

a deeper analysis of their implications. 133

2.1 LLMs’ Discriminative Capability of 134

Decoding 135

The prefill stage for LLMs typically includes a 136

user query, often accompanied by prefixed or suf- 137

fixed elements such as system prompts. Previous 138

study (Zheng et al., 2024) has demonstrated that 139

LLMs can discriminate between different types of 140

prefill and use this ability to enhance safety mecha- 141

nisms. However, relying solely on prefill analysis 142

for security evaluations presents significant limita- 143

tions: 1) Jailbreaking behaviors often manifest in 144

the model’s output, and focusing solely on prefill 145

may overlook these behaviors, compromising over- 146

all robustness; 2) Evaluation based purely on prefill 147

places excessive dependence on the model’s initial 148

discriminative capacity, and a single-stage evalu- 149

ation may lead to rejecting outputs prematurely, 150

reducing the model’s utility. 151

To address these limitations, we explore whether 152

LLMs can discriminate harmful from benign con- 153

tent during decoding, which encompasses both 154

the prefill and the model’s generated outputs. If 155

LLMs can reliably evaluate the safety of their 156

own outputs in real time, they can offer a more 157

comprehensive and proactive approach to security. 158

Decoding-based defenses leverage the dynamic na- 159

ture of model outputs, allowing for a more funda- 160

mental and continuous risk assessment. Following 161

DRO (Zheng et al., 2024), we use the hidden states 162

of the harmful and benign queries at the top layer 163

of the model for classifier training. Details of the 164

classifier’s training objective is provided as follows. 165

2

u =
1

n

∑n
i=1hi, (1)166

167
mi = VT (hi − u), (2)168

169
ĉi = WTmi + b, (3)170

171

L(ci, ĉi) = − 1

n

∑n
i=1(ci log ĉi+(1−ci) log (1− ĉi)),

(4)172

where u ∈ Rd is the mean value of all hidden173

states of queries, V ∈ Rd×m represents the m174

principal components, W ∈ R1×d and b ∈ R1 are175

the trainable parameters. ĉi and ci represent the176

predicted score and the label of query, respectively.177

2.2 Preliminary settings178

We utilize Principal Component Analysis (PCA)179

to visualize the hidden states during the decoding180

process. To facilitate classifier training, we cu-181

rate the training dataset Custom from DRO (Zheng182

et al., 2024) to fit the classifier, consisting of183

100 harmful and 100 benign queries. The eval-184

uated LLMs are: Llama-2-chat-7B (Touvron185

et al., 2023), Llama-3-8b-Instruct (AI@Meta,186

2024), Qwen2-7B-Instruct (Yang et al., 2024),187

Vicuna-7B-v1.3, and Vicuna-13B-v1.3 (Chiang188

et al., 2023). Notably, some models, such as Llama-189

2-chat-7B, have been aligned in safety.190

We visualize the hidden state from the top layer191

of each generated token to verify the classifier abil-192

ity at decoding. The outputs of harmful queries are193

assessed using Llama-guard (Bhatt et al., 2023),194

which is a safety classification model based on195

LLaMA-2 (Touvron et al., 2023). While the out-196

put of benign queries are evaluated through string197

matching. If refusal strings are identified in the198

output, it is categorized as a refusal output; other-199

wise, it is not. A compliant answer is assigned an200

evaluation score s of 1, otherwise 0. The compliant201

outputs to harmful queries are treated as harmful202

outputs. Others including the refusal outputs to203

harmful queries and benign queries, and compli-204

ant outputs to benign queries are treated as benign205

outputs. In the preliminary experiment, we sample206

one output for each query. The initial defense of207

these five LLMs is presented in Appendix C.208

2.3 Visualization Analysis209

We apply PCA to visualize the hidden state and210

select the first four principal components of the211

hidden states. Refusal outputs often start with spe-212

cial tokens, such as “I’m sorry” or “As an AI”. As213

refusal outputs are distinguished from compliant 214

outputs at the start, we samples the first few to- 215

kens to verify the classifier performance on output. 216

Besides, we additionally sample the last token of 217

the output. Figure 2 respectively show the visual 218

results of the first eight tokens of the outputs. The 219

boundary (the black dashed line) separates harm- 220

ful queries (red cross) and benign queries (blue 221

circles), which illustrates that LLMs can naturally 222

discern the harmfulness of the inputs. 223

Can LLMs extend this discriminative capa- 224

bility to their own decoding? In Figure 2, from 225

1-th to 3-th token, almost all the tokens to benign 226

queries maintain at the benign side. Although re- 227

fusal tokens to harmful queries refer to benign out- 228

puts, some of them maintain at the harmful side. 229

While compliant tokens maintain at the benign side. 230

The classifier performs poorly in hard classification. 231

On the contrary, we observe that benign tokens of 232

harmful queries are closer to the harmful side com- 233

pared to harmful tokens. That is to say, for harmful 234

queries, benign tokens receive higher scores from 235

the classifier than harmful tokens, which means a 236

distribution differentiation rather than hard classifi- 237

cation. We interpret the distribution differentiation 238

between harmful and benign tokens as the LLMs’ 239

discriminative capacity of LLMs of decoding. 240

Can LLMs recognize benign decoding based 241

on a single judgment? The current step confirms 242

the safety of the immediate decoding without guar- 243

anteeing the safety of subsequent decoding. Mak- 244

ing a single-step judgment is insufficient to ensure 245

the safety of whole output. Due to the random 246

sampling strategy, we observe that there is a phe- 247

nomenon of rejecting first and then answering in 248

the outputs. As described in (Zhou et al., 2024), 249

deepening the consistency of security measures be- 250

yond merely aligning the first few tokens can signif- 251

icantly improve the security of LLMs. Therefore, 252

we believe a step-by-step assessment approach at 253

the decoding can ensure the robustness of defense. 254

3 Methodology 255

Motivated by validating the capability to recognize 256

outputs, we propose RDS to ensure the safety of 257

LLMs at the decoder level. The architecture of 258

RDS is illustrated in Figure 3. We design a step-by- 259

step defense mechanism that directly corrects the 260

harmful token into a safe token when generating 261

the output. Additionally, we introduce speculative 262

decoding into RDS to speed up token generation. 263

3

(1) i=1 (2) i=2 (3) i=3 (4) i=4

Figure 2: Performance of the classifier at the decoding from the i-th token of the output. Harmful and benign tokens
are represented by “harmful + i” and “harmless + i”, respectively. The crosses represent the hidden states of output
for harmful queries, while the circles represent the hidden states of output for benign queries. See the visual results
from the 5-th token to the 8-th in Appendix D.

Benefitting from step-by-step safe generation and264

speculative decoding, RDS achieves root security265

without compromising helpfulness and speed.266

3.1 Problem Formulation267

Let xi as the LLM’s decoding at step ti, ci = f(xi)268

represents the score of the sampled token xi calcu-269

lated by the classifier f(·). RDS aims to minimize270

ci at each step, which can be formulated as follows:271

min

xi

N∑
i=1

ci ; xi = LLM(xi−1;Ci) (5)272

where N is the length of outputs, and at each step273

ti, the LLM obtains prior decoding xi−1 and the274

harmful results Ci of candidate tokens to generate275

next token xi. RDS constructs the candidate tokens276

according to the logit value and samples a new277

token from the candidate tokens. By ensuring the278

security of each step, RDS promises a safe output.279

3.2 Step-by-step safe generation 280

During the autoregressive decoding of LLMs, LLM 281

maps the hidden state of its decoding xi−1 at step 282

ti−1 to the vocabulary dimension and sample the 283

next token by top-k (Fan et al., 2018): 284

Ii,Vi = Topk(softmax(li−1)), (6) 285

where li−1 = LM_Head(hi−1) represents logits at 286

step ti−1, hi−1 represents the hidden state of the 287

decoding at step ti−1, Ii and Vi represent the set 288

of top-k candidate tokens and the logits values of 289

these candidate tokens, respectively. 290

Safety disclaimers frequently rank among the 291

top tokens (Zheng et al., 2023) in the inference pro- 292

cess. To enhance security, RDS aims to adjust the 293

logits of these tokens further. The classifier from 294

the pilot experiments is integrated into the sampling 295

strategy during decoding. This integration provides 296

a real-time safety assessment of candidate tokens, 297

4

Figure 3: RDS comprises two key modules: 1) Step-by-step token generation: The root classifier is designed based
on the discriminative capacity of queries. By adjusting the logits of candidate tokens, RDS reorders the token and
prioritizes the benign token. 2) Speculative decoding: RDS predicts the hidden state from speculative decoding
instead of multiple transformer blocks.

adjusting the top-k tokens to safer alternatives, en-298

suring the safety of the next generated token. Con-299

sequently, the computation of ci in Equation (5) is300

detailed into the following components:301

mk = VT (hk
i − u), (7)302

303
ck = WTmk + b, (8)304

305
xi = argmax(Ci), (9)306

where hk
i is the hidden state of the dececoding307

at step ti concatenated with the candidate token308

from Ii, mk ∈ Rm represents the first m principal309

components of hk, ck ∈ R1 is the harmful score of310

the candidate token, Ci is the set of harmful scores311

of the candidate tokens.312

3.3 Hidden State Prediction313

RDS leverages the discriminative ability of decod-314

ing for defense by computing the harmful score of315

candidate tokens based on their hidden states. It316

concatenates decoding at step t− 1 with candidate317

tokens to obtain the hidden state at step t resem-318

bling EAGLE (Li et al., 2024) that predict hidden319

states from decoding and tokens. RDS extends EA-320

GLE_Head in resampling process to generate the321

hidden state of the candidate tokens.322

Unlike traditional LLMs that compute hidden323

state through autoregressive decoding with multiple324

Transformers blocks, RDS utilizes EAGLE_Head 325

to predict the hidden state hi at step ti, thereby 326

accelerating the inference process. This prediction 327

is based on the candidate token and the hidden 328

state of decoding at step ti−1. The hidden state in 329

Equation (7) can be expressed as: 330

hk
i = EAGLE_Head(hi−1, ek), (10) 331

where EAGLE_Head consists of a fully- 332

connected layer and a decoder layer from the 333

original LLM; ek is the embedding of the candi- 334

date token xk. After predicting the hidden state at 335

step ti, the step-by-step safe token generation is 336

conducted on this predicted hidden state. 337

We summarize the inference process of RDS as 338

Draft_Model, which can be formulated as: 339

xN = Draft_Model(h0). (11) 340

where h0 denotes the hidden state of the prefill at 341

step t0, xN represents the output of LLMs. Equa- 342

tion (11) reveals that RDS only generates the safe 343

output from the hidden state of prefill, without addi- 344

tional LLMs training nor other models introduced. 345

3.4 Highlights 346

As a decoder-oriented defense, the advantages of 347

RDS are summarized as follows: 348

5

First, RDS demonstrates a root defense by lever-349

aging the discriminative capabilities in LLMs’ de-350

coding level. It fully utilizes the model’s under-351

standing of context by evaluating the harmfulness352

from both input and output dimensions. Guided353

by a classifier with fewer parameters, RDS iden-354

tifies harmful tokens during the early inference355

stage and corrects them to safe tokens, thereby356

reducing harmfulness in the output. Subsequent ex-357

perimental results indicate that RDS can enhance358

the model’s defensive capability without additional359

training for the LLMs.360

Secondly, RDS adopts a step-by-step correction361

strategy by incrementally adjusting the token logits362

during the sampling process and progressively cor-363

recting harmful labels. Instead of relying on single-364

point evaluations, RDS improves the safety of365

LLMs through multi-step evaluations, thereby pro-366

viding stronger assistance capabilities and a lower367

false alarm rate for user queries. Furthermore, ex-368

periments demonstrate that RDS is more helpful369

than other methods on various safety benchmarks,370

further indicating the transferability of RDS.371

Finally, to enhance the reasoning speed of RDS372

and facilitate its practical implementation, we in-373

corporate a speculative head into the prediction of374

hidden states of the candidate tokens. It leverages375

the advantages of the step-by-step mechanism to376

accelerate the generation process. Experimental377

results demonstrate that the token generation speed378

of RDS is approximately 2.12× ∼ 3.09× faster379

than that of the baselines, which demonstrates both380

the effectiveness and efficiency of RDS.381

4 Experiments382

4.1 Experimental setup383

Benchmarks We evaluate the security improved384

by different defense strategies on three harm-385

ful benchmarks: HEx-PHI (Qi et al., 2023),386

AdvBench (Zou et al., 2023), MaliciousIn-387

struct (Huang et al., 2023). We assess the impact388

of LLMs after applying defense methods on two389

benign datasets: Held-out (Zheng et al., 2024),390

Xstest (Röttger et al., 2023). In addition, we evalu-391

ate the helpfulness of the output on Just-Eval (Lin392

et al., 2023) from the aspects of helpfulness, clarity,393

factuality, depth, and engagement.394

Baselines We select five defense methods as395

the baselines. Prefill-based defenses contain: (1)396

safety prompt, which is the official safety prompt397

of LLaMA-2 illustrated in Appendix E. The safety398

prompt serves as the system prompt of LLMs. (2) 399

Self-Reminder (Wu et al., 2023a), which encapsu- 400

lates the user’s query in a system prompt to remind 401

LLMs to respond responsibly. (3) DRO (Zheng 402

et al., 2024), which utilizes the distinguished abil- 403

ity at the prefill level to train the safety prompt 404

embedding to improve the moving direction of the 405

input. Output-based defenses contain: (4) Self- 406

Examination (Phute et al., 2023), which checks 407

the output by the LLM itself and filter out harm- 408

ful output. (5) SafeDecoding (Xu et al., 2024), 409

which amplifies the sampling probabilities of the 410

output that matches the string of safety disclaimers 411

learned from an additional trained export model. 412

Evaluation Metric In the main results, we select 413

5 samples for each query and follow the evaluation 414

strategy in Section 2.2 to judge whether a output 415

is compliant. For Just-Eval, we use the official 416

prompt and GPT-4 as the evaluator to score the 417

output from 1 to 5 in terms of helpfulness, clarity, 418

factuality, depth, and engagement. 419

4.2 Main Results 420

Table 1 presents the compliance ratio on harmful 421

benchmarks and refusal ratio on benign bench- 422

marks of the baselines and RDS. From Table 1, 423

we have the following inclusions. 424

Firstly, RDS demonstrates excellent defense 425

ability at the decoder level. Compared with 426

other baselines, RDS effectively reduces compli- 427

ance to harmful queries, particularly with regard 428

to LLMs that exhibit suboptimal initial perfor- 429

mance (i.e., Vicuna-7B). Safety prompt does not 430

always work (i.e., Vicuna-7B on MaliciousInstruct). 431

Furthermore, baselines reliant on the LLMs’ self- 432

assessment, such as DRO, exhibit varying degrees 433

of performance degradation due to the subpar ca- 434

pabilities of LLM itself. While RDS leverages the 435

discriminative capabilities at the decoding level for 436

security defense, regardless of the functionality of 437

LLM itself. Though trained on Custom, the clas- 438

sifier still works on out-of-domain datasets, which 439

demonstrates the transferability of the classifier and 440

the generalization of RDS. 441

Secondly, RDS conducts security defense with- 442

out increasing the rejection rate. RDS shows 443

fewer refusal results compared to the existing se- 444

curity defenses. SafeDecoding will select the 445

matched rejection output and ignore whether the 446

query is harmful or not. Therefore, SafeDecod- 447

ing tends to reject benign query. DRO relies on 448

6

Table 1: Evaluation results on harmful and benign
benchmarks. We report the percentages of harm-
ful/benign queries where models generate compli-
ance/refusal outputs in 5 samplings.

Model Defense Compliance on Harmful Queries (↓) Refusal on Harmless Queries (↓)

HEx-PHI Advbench Malicious
Instruct Average Held-out Xstest Average

No defense 89 22 16 42.3 0 4 2.0
safety prompt 37 6 16 19.7 0 16 8.0
Self-Reminder 41 0 0 13.7 3 52 27.5

Vicuna-7B DRO 33 2 3 12.7 0 32 16.0
Self-Examination 23 0 0 7.7 2 24 13.0

SafeDecoding 21 0 0 7.0 4 64 24.0
RDS 16 0 0 5.3 0 0 0

No defense 46 22 16 28.0 0 20 10.0
safety prompt 14 6 16 12.0 2 28 15.0
Self-Reminder 11 0 0 3.7 2 48 25.0

Vicuna-13B DRO 3 2 3 2.7 0 72 36.0
Self-Examination 5 0 0 1.7 1 28 14.5

SafeDecoding 6 0 0 2.0 4 72 38.0
RDS 4 0 0 1.3 0 12 6.0

No defense 13 2 3 6.0 0 12 6.0
safety prompt 0 0 3 1.0 0 8 4.0
Self-Reminder 0 0 0 0 1 24 12.5

Qwen2 DRO 0 0 2 0.6 0 24 12.0
Self-Examination 0 0 0 0 0 24 12.0

SafeDecoding 0 0 0 0 3 60 31.5
RDS 0 0 0 0 0 12 6.0

No defense 27 0 0 9.0 1 64 32.5
safety prompt 0 0 0 0 3 88 45.5
Self-Reminder 0 0 0 0 1 96 48.5

Llama2 DRO 13 0 0 4.3 3 88 45.5
Self-Examination 0 0 0 0 100 100 100.0

SafeDecoding 0 0 0 0 16 96 56.0
RDS 0 0 0 0 1 64 32.5

No defense 5 1 0 2.0 0 12 6.0
safety prompt 0 0 0 0 0 36 18.0
Self-Reminder 0 1 0 0.3 8 92 50.0

Llama3 DRO 0 0 1 0.3 0 36 18.0
Self-Examination 0 0 0 0 10 48 29.0

SafeDecoding 0 0 0 0 2 64 33.0
RDS 0 0 0 0 0 12 6.0

Table 2: Evaluation results on Just-Eval. We analyze the
output for benign queries from the aspect of helpfulness,
clarity, factuality, depth, and engagement.

Data Defense Helpfulness Clarity Factuality Depth Engagement Average

Vicuna-13B

No defense 4.55 4.87 4.48 4.28 4.29 4.49
DRO 3.90 4.69 4.12 3.37 3.89 3.99
Self-Examination 4.58 4.87 4.46 4.34 4.26 4.50
SafeDecoding 4.23 4.87 4.35 4.00 4.18 4.33
RDS 4.41 4.78 4.36 4.16 4.20 4.38

Llama2

No defense 4.59 4.95 4.42 4.51 4.67 4.63
DRO 3.52 4.59 4.00 3.06 4.13 3.86
Self-Examination 1.35 3.53 2.50 1.32 1.62 2.06
SafeDecoding 4.59 4.92 4.36 4.58 4.51 4.59
RDS 4.24 4.83 4.30 4.16 4.57 4.42

the initial classification ability of LLMs on input.449

Figure 9 illustrates the classifier’s results on all450

datasets. Notably, LLMs demonstrate robust clas-451

sification capabilities on all datasets except Xstest.452

On Xstest, a few of benign inputs are interspersed453

to the harmful side. This corresponds to the results454

that the original LLMs is more prone to rejection455

on Xstest on Table 1. This poor classification on456

Xstest aligns with the serious rejections of RDS on457

Xstest. In contrast, RDS solely assesses the outputs458

for defense, disregarding inputs. Thus, the superior459

utility of RDS on Xstest underscores the benefits460

of defense mechanisms at the decoder level.461

4.3 Utility Analysis462

Table 2 evaluates the impact of security defense463

methods applied to Vicuna-13B and Llama2 across464

five aspects, respectively. We observe that the util-465

Table 3: Number of tokens generated per second of the
baselines and RDS (tokens /s ↑). “- w/o SD” removes
the speculative decoding of RDS.

Model Vicuna-7B Vicuna-13B LLaMA2 LLaMA3 Qwen2

No defense 41.68 31.74 42.30 38.77 34.61
Self-Reminder 31.85 25.62 32.27 29.15 40.81
DRO 43.69 32.99 43.02 39.41 35.48
Self-Examination 32.19 25.70 25.15 25.00 39.75
SafeDecoding 31.99 25.32 31.71 28.75 37.30

RDS 73.17 78.29 97.77 69.98 73.46
- w/o SD 21.25 16.85 21.04 22.25 20.39

ity of LLMs remains largely unaffected after ap- 466

plying RDS. In contrast, the application of other 467

security defense methods has led to performance 468

degradation in LLMs to some extent, most notably 469

in Llama2. We attribute the degradation to the over- 470

sensitivity of these defenses, which aligns with the 471

high refusal on harmless queries as shown in Table 472

1. These findings demonstrate that the resampling 473

strategy of RDS does not compromise the seman- 474

tics of the output and preserves the utility of 475

LLMs during safety defense. 476

4.4 Efficiency Analysis 477

We evaluate the efficiency of RDS and report the 478

number of tokens generated per second in Table 479

3. With the support of speculative decoding, the 480

generation speed of RDS is 2.12x ∼ 3.09x faster 481

than other baselines. We design another variant, 482

“- w/o SD”, that removes the speculative decod- 483

ing of RDS. In “- w/o SD”, The inference speed 484

significantly drops. We include the reason for the 485

drop that “- w/o SD” predicts the hidden state of 486

candidate tokens by autoregressive decoding. 487

4.5 Case study 488

Figure 4 showcases the outputs of defense meth- 489

ods for an example harmful query. Even safety 490

prompt has been added to the prompt, LLMs fail 491

to reject this harmful. Other safety defenses are 492

semantically singular to reject the harmful query 493

with the same rejection template. Though starting 494

with “The best way of stealing a car is”, RDS gives 495

a rejection of “not advisable” in the following to- 496

kens to the harmful query. This reflects that RDS 497

identifies the harmful output during the inference 498

and corrects it to safe tokens step-by-step. 499

5 Related Work 500

5.1 Existing Defenses 501

Existing safety defenses can be divided into input- 502

based defenses and output-based defenses. 503

7

Figure 4: Case study of baselines and RDS for a harmful query: “What’s the best way of stealing a car?”.

Prefill-level defenses induce LLMs to reject504

harmful questions by optimizing the input, such505

as adding a safety system prompt or filtering the506

input. For instance, IAPrompt (Zhang et al., 2024b)507

delves into the intent of input before decoding.508

Perplexity filtering (Alon and Kamfonas, 2023)509

proposes to detect the adversarial suffixes as the510

signal of harmful input before generating a out-511

put. However, prefill-level defenses can be broken512

through by prefill-level attack (Zhao et al., 2024).513

At present, multiple methods have successfully car-514

ried out jailbreak attacks from user input, such as515

GCG (Zou et al., 2023), Auto-DAN (Zhu et al.,516

2023), Evil Geniuses (Tian et al., 2023). Besides,517

input-based defenses show poor helpfulness with518

over-defense (Zhou et al., 2024).519

Output-level defenses enhance the security of520

LLMs by judging the generated output, which fol-521

lows the paradigm of generate then judge. For522

instance, Self-Examination (Phute et al., 2023)523

checks the output itself by a pre-defined prompt.524

SafeDecoding (Xu et al., 2024) captures the safety525

disclaimers and amplifies their sampling probabili-526

ties. Output-level defenses must fully generate the527

output before judging, which affects the model’s528

efficiency. While RDS monitors the token step-by-529

step, forcing safe token generation in time.530

5.2 Speculative Decoding531

Traditionally, token generation is performed step-532

by-step, where the model generates one token for533

each step by autoregressive decoding. The gener-534

ated token concatenated to the input serves as the535

new input for the next step (Chen et al., 2023a).536

This approach is straightforward but can be com-537

putationally expensive and slow, particularly when 538

generating long text (Kim et al., 2023). 539

Speculative Decoding is an optimization tech- 540

nique used in LLMs to accelerate the process of 541

token generation (Leviathan et al., 2023; Chen 542

et al., 2023b). By the Draft-then-Verify paradigm, 543

speculative decoding generates multiple tokens at 544

each step (Xia et al., 2024). For example, Tinyl- 545

lama (Zhang et al., 2024a) proposes to use the same 546

serious but more minor LLM as the draft model 547

without additional training. Not all models have 548

a smaller draft model; self-draft becomes a new 549

paradigm instead of using a separate draft model. 550

For instance, Medusa (Cai et al., 2024) incorpo- 551

rates feedforward neural heads atop the decoder to 552

predict tokens in different positions in parallel. 553

6 Conclusions 554

Our study delves into and confirms the discrim- 555

inative capacity of LLMs at the decoder level. 556

Through preliminary validation, we indicate that 557

LLMs consistently can discern the harmfulness of 558

output tokens at multiple steps. Motivated by these 559

findings, we propose a Root Defense Strategy orig- 560

inating from the decoding level, namely RDS. The 561

incremental safe token generation process enforces 562

security measures. Furthermore, speculative decod- 563

ing is introduced in RDS to enhance usability and 564

facilitate deployment. Comparative experiments 565

demonstrate that RDS offers robust and efficient 566

security defense without compromising utility. 567

7 Limitations 568

RDS filters safe tokens among the top-k tokens of 569

LLMs. If the security disclaimer does not exist in 570

8

the top-k tokens, RDS maybe cannot generate a571

security answer. In addition, for harmless queries,572

if the LLMs tend to give a rejection, i.e., the top-k573

answers are all security disclaimers, RDS will also574

generate a rejection. How to optimize the model’s575

overcorrection while ensuring the security of LLMs576

will be the future research point.577

References578

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama579
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,580
Diogo Almeida, Janko Altenschmidt, Sam Altman,581
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.582
arXiv preprint arXiv:2303.08774.583

AI@Meta. 2024. Llama 3 model card.584

Gabriel Alon and Michael Kamfonas. 2023. Detect-585
ing language model attacks with perplexity. arXiv586
preprint arXiv:2308.14132.587

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda588
Askell, Anna Chen, Nova DasSarma, Dawn Drain,589
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.590
2022. Training a helpful and harmless assistant with591
reinforcement learning from human feedback. arXiv592
preprint arXiv:2204.05862.593

Manish Bhatt, Sahana Chennabasappa, Cyrus Niko-594
laidis, Shengye Wan, Ivan Evtimov, Dominik Gabi,595
Daniel Song, Faizan Ahmad, Cornelius Aschermann,596
Lorenzo Fontana, et al. 2023. Purple llama cyber-597
seceval: A secure coding benchmark for language598
models. arXiv preprint arXiv:2312.04724.599

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,600
Jason D Lee, Deming Chen, and Tri Dao. 2024.601
Medusa: Simple llm inference acceleration frame-602
work with multiple decoding heads. arXiv preprint603
arXiv:2401.10774.604

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,605
Jean-Baptiste Lespiau, Laurent Sifre, and John606
Jumper. 2023a. Accelerating large language model607
decoding with speculative sampling. arXiv preprint608
arXiv:2302.01318.609

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,610
Jie Huang, and Kevin Chen-Chuan Chang. 2023b.611
Cascade speculative drafting for even faster llm infer-612
ence. arXiv preprint arXiv:2312.11462.613

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,614
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan615
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.616
2023. Vicuna: An open-source chatbot impressing617
gpt-4 with 90%* chatgpt quality. See https://vicuna.618
lmsys. org (accessed 14 April 2023), 2(3):6.619

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,620
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,621
Akhil Mathur, Alan Schelten, Amy Yang, Angela622

Fan, et al. 2024. The llama 3 herd of models. arXiv 623
preprint arXiv:2407.21783. 624

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. 625
Hierarchical neural story generation. arXiv preprint 626
arXiv:1805.04833. 627

Caishuang Huang, Wanxu Zhao, Rui Zheng, Huijie Lv, 628
Shihan Dou, Sixian Li, Xiao Wang, Enyu Zhou, Jun- 629
jie Ye, Yuming Yang, et al. 2024. Safealigner: Safety 630
alignment against jailbreak attacks via response dis- 631
parity guidance. arXiv preprint arXiv:2406.18118. 632

Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai 633
Li, and Danqi Chen. 2023. Catastrophic jailbreak of 634
open-source llms via exploiting generation. arXiv 635
preprint arXiv:2310.06987. 636

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen 637
Dong, Xiuyu Li, Sheng Shen, Michael W Ma- 638
honey, and Kurt Keutzer. 2023. Squeezellm: 639
Dense-and-sparse quantization. arXiv preprint 640
arXiv:2306.07629. 641

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 642
2023. Fast inference from transformers via spec- 643
ulative decoding. In International Conference on 644
Machine Learning, pages 19274–19286. PMLR. 645

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 646
Zhang. 2024. Eagle: Speculative sampling re- 647
quires rethinking feature uncertainty. arXiv preprint 648
arXiv:2401.15077. 649

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, 650
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan- 651
dra Bhagavatula, and Yejin Choi. 2023. The unlock- 652
ing spell on base llms: Rethinking alignment via 653
in-context learning. In The Twelfth International 654
Conference on Learning Representations. 655

Mansi Phute, Alec Helbling, Matthew Hull, ShengYun 656
Peng, Sebastian Szyller, Cory Cornelius, and 657
Duen Horng Chau. 2023. Llm self defense: By self 658
examination, llms know they are being tricked. arXiv 659
preprint arXiv:2308.07308. 660

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi 661
Jia, Prateek Mittal, and Peter Henderson. 2023. Fine- 662
tuning aligned language models compromises safety, 663
even when users do not intend to! arXiv preprint 664
arXiv:2310.03693. 665

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, 666
Giuseppe Attanasio, Federico Bianchi, and Dirk 667
Hovy. 2023. Xstest: A test suite for identifying exag- 668
gerated safety behaviours in large language models. 669
arXiv preprint arXiv:2308.01263. 670

Yu Tian, Xiao Yang, Jingyuan Zhang, Yinpeng Dong, 671
and Hang Su. 2023. Evil geniuses: Delving into 672
the safety of llm-based agents. arXiv preprint 673
arXiv:2311.11855. 674

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-675
bert, Amjad Almahairi, Yasmine Babaei, Nikolay676
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti677
Bhosale, et al. 2023. Llama 2: Open founda-678
tion and fine-tuned chat models. arXiv preprint679
arXiv:2307.09288.680

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.681
2024. Jailbroken: How does llm safety training fail?682
Advances in Neural Information Processing Systems,683
36.684

Laura Weidinger, John Mellor, Maribeth Rauh, Conor685
Griffin, Jonathan Uesato, Po-Sen Huang, Myra686
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,687
et al. 2021. Ethical and social risks of harm from688
language models. arXiv preprint arXiv:2112.04359.689

Fangzhao Wu, Yueqi Xie, Jingwei Yi, Jiawei Shao,690
Justin Curl, Lingjuan Lyu, Qifeng Chen, and Xing691
Xie. 2023a. Defending chatgpt against jailbreak at-692
tack via self-reminder.693

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,694
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,695
Xiaoyun Zhang, and Chi Wang. 2023b. Auto-696
gen: Enabling next-gen llm applications via multi-697
agent conversation framework. arXiv preprint698
arXiv:2308.08155.699

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,700
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and701
Zhifang Sui. 2024. Unlocking efficiency in large702
language model inference: A comprehensive sur-703
vey of speculative decoding. arXiv preprint704
arXiv:2401.07851.705

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan706
Jia, Bill Yuchen Lin, and Radha Poovendran.707
2024. Safedecoding: Defending against jailbreak708
attacks via safety-aware decoding. arXiv preprint709
arXiv:2402.08983.710

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,711
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan712
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2713
technical report. arXiv preprint arXiv:2407.10671.714

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and715
Wei Lu. 2024a. Tinyllama: An open-source small716
language model. arXiv preprint arXiv:2401.02385.717

Yuqi Zhang, Liang Ding, Lefei Zhang, and Dacheng Tao.718
2024b. Intention analysis prompting makes large719
language models a good jailbreak defender. arXiv720
preprint arXiv:2401.06561.721

Xuandong Zhao, Xianjun Yang, Tianyu Pang, Chao Du,722
Lei Li, Yu-Xiang Wang, and William Yang Wang.723
2024. Weak-to-strong jailbreaking on large language724
models. arXiv preprint arXiv:2401.17256.725

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie726
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun727
Peng. 2024. Prompt-driven llm safeguarding via di-728
rected representation optimization. arXiv preprint729
arXiv:2401.18018.730

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 731
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 732
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 733
Judging llm-as-a-judge with mt-bench and chatbot 734
arena. Advances in Neural Information Processing 735
Systems, 36:46595–46623. 736

Andy Zhou, Bo Li, and Haohan Wang. 2024. Ro- 737
bust prompt optimization for defending language 738
models against jailbreaking attacks. arXiv preprint 739
arXiv:2401.17263. 740

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Bar- 741
row, Zichao Wang, Furong Huang, Ani Nenkova, and 742
Tong Sun. 2023. Autodan: Interpretable gradient- 743
based adversarial attacks on large language models. 744
In First Conference on Language Modeling. 745

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, 746
J Zico Kolter, and Matt Fredrikson. 2023. Univer- 747
sal and transferable adversarial attacks on aligned 748
language models. arXiv preprint arXiv:2307.15043. 749

10

A ETHICS STATEMENT750

Our research (including papers, code, and data)751

may have potential adverse effects, as jailbreaks752

could exploit our methods to target commercial753

APIs, creating harmful content or privacy viola-754

tions. Despite the risk of misuse, we consider the755

current work justifiable. As LLMs perform out-756

standingly, researchers are presently concentrating757

on enhancing their helpfulness. Hence, investigat-758

ing and mitigating security vulnerabilities is cru-759

cial, as these models could be vulnerable to black-760

box attacks when the exact specifics of the target761

model are undisclosed. The technology we have762

introduced can effectively thwart such misuse and763

empower the Red Team to deploy efficiently ahead764

of time, progressively achieving secure generation765

starting at the decoder level. In conclusion, our766

study underscores the significance of security de-767

fense starting at the decoder level.768

B Case study on Xstest769

The results of the symmetry benign problem on770

Xstest are shown in Figure 5. For the same behav-771

ior “stealing a car”, it is a harmful behavior in a772

real-world scenario. However, LLMs serve as tools773

and must respond to video game user requests. We774

found that all defenses except RDS give a rejection.775

It is worth noting that although SafeDecoding rec-776

ognizes GPT4 as a game, it still rejects the query.777

At the same time, when it replies, RDS gives a778

friendly hint (i.e., “it is illegal and not endorsed by779

Rockstar Games”).780

C Evaluation ersults of the initial defense781

ability of LLMs in preliminary782

experiment783

Table 4 shows the evaluation results of the five784

LLMs on Custom.785

Table 4: Defense performance of the five models on
Custom.

Models Compliance on Harmful Queries ↓ Refusal on benign Queries ↓

Vicuna-7B-v1.3 5 3
Vicuna-13B-v1.3 0 0
llama-2-chat-7B 0 0

LLaMA3-Instruct-8B 9 0
Qwen2-7B-Instruct 0 0

D Visualization at deeper decoding786

Figure 6 respectively shows the visual results from787

the 1-th to 3-th token and the last token of Llama3-788

8B-Instruct and Vicuna-7B-v1.3. Figure 8 respec- 789

tively shows the visual results from the 4-th to 7-th 790

token of the five LLMs. 791

E Safety prompt 792

We illustrated the safety prompt of LLaMa-2 Offi- 793

cial and Self-Reminder in Figure 7. 794

F LLMs can distinguish harmful queries 795

and harmless queries 796

Figure 9 visualizes the classifier’s performance on 797

custom and out-of-domain datasets. Table 5 shows 798

the quantitative results of the classifier on differ- 799

ent benchmarks. Notably, LLMs demonstrate ro- 800

bust classification capabilities on all datasets except 801

Xstest. On Xstest, some benign queries are on the 802

harmful side. We speculate that this is because 803

queries in Xstest contains words that are subcon- 804

sciously harmful but semantically harmless. 805

Table 5: Evaluation results (AUC) of the classifier on
harmful and benign benchmarks. Custom is the training
data. ’Others’ includes MaliciousInstruct, AdvBench,
and Held-out datasets.

Models Custom Others Xstest

Vicuna-7B-v1.3 1.00 0.99 0.71
Vicuna-13B-v1.3 1.00 0.99 0.83
llama-2-chat-7B 1.00 1.00 0.65

LLaMA3-Instruct-8B 1.00 1.00 0.82
Qwen2-7B-Instruct 1.00 1.00 0.89

11

Figure 5: An example of baselines and RDS for a barmless query. The user inputs “What is the best way of stealing
a car in GTA 4?” as the query. All defenses except RDS give a rejection.

(1) i=1 (1) i=2 (1) i=3 (1) i=4

Figure 6: Performance of the classifier at the decoding from the 1-th to the 3-th token and last token of the output.
The red crosses represent the hidden states for harmful queries, while the blue circles represent the hidden values
for benign queries.

Figure 7: Illustration of safety prompt used in LLaMa-2 Official and Self-Reminder.

12

(3) i=4 (3) i=5 (3) i=6 (3) i=7

Figure 8: Performance of the classifier at the decoding from the 4-th to 7-th token.

13

(1) Custom (2) Out-of-domain benchmarks (3) Xstest

Figure 9: Performance of the classifier at all datasets. (1) Custom is the training data of the classifier. (2) AdvBench
and MaliciousInstruct are the harmful benchmark. Held-out is a benign benchmark. (3) For better visualization, we
select symmetrical data from Xstest and visualize both the harmful and benign queries in symmetry pairs.

14

	Introduction
	Preliminary: Decoding-level Defense
	LLMs' Discriminative Capability of Decoding
	Preliminary settings
	Visualization Analysis

	Methodology
	Problem Formulation
	Step-by-step safe generation
	Hidden State Prediction
	Highlights

	Experiments
	Experimental setup
	Main Results
	Utility Analysis
	Efficiency Analysis
	Case study

	Related Work
	Existing Defenses
	Speculative Decoding

	Conclusions
	Limitations
	ETHICS STATEMENT
	Case study on Xstest
	Evaluation ersults of the initial defense ability of LLMs in preliminary experiment
	Visualization at deeper decoding
	Safety prompt
	LLMs can distinguish harmful queries and harmless queries

