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Abstract

Gaussian process state-space models describe time
series data in a probabilistic and non-parametric
manner using a Gaussian process transition func-
tion. As inference is intractable, recent methods
use variational inference and either rely on simpli-
fying independence assumptions on the approxi-
mate posterior or learn the temporal states itera-
tively. The latter hampers optimization since the
posterior over the presence can only be learned
once the posterior governing the past has con-
verged. We present a novel inference scheme that
applies stochastic variational inference for the
Gaussian process posterior and the Laplace ap-
proximation on the temporal states. This approach
respects the conditional dependencies in the model
and, through the Laplace approximation, treats the
temporal states jointly, thereby avoiding their se-
quential learning. Our method is computationally
efficient and leads to better calibrated predictions
compared to state-of-the art alternatives on syn-
thetic data and on a range of benchmark datasets.

1 INTRODUCTION

Uncertainty estimation in time-series modeling [see e.g.
Särkkä, 2013] is a hard task since two different noise sources
have to be taken into account: First, the observation noise
that stems from possibly noisy measurements of the system
under consideration and second, the process noise associated
with the uncertain development of the system. Especially the
second noise source leads to an accumulation of uncertainty
over time and renders predictions far into the future difficult.

Gaussian processes [Rasmussen and Williams, 2006] pro-
vide a well established framework for dealing with uncer-
tainty. They define a distribution over functions f ∼ p(f)
and can be used as building blocks in state-space models for

modeling complex temporal dependencies. This model class,
aptly called Gaussian process state-space models [Frigola,
2015], can be used to model observations yt ∈ Rdy from a
time series, where t = 1, . . . , T is the time index. It assumes
that each observation yt is emitted by a latent state xt ∈ Rdx ,
yt ∼ p(yt|xt), and that the latent states have a Markovian
structure, i.e., xt+1 ∼ p(xt+1|xt, f). The noise of this so-
called transition model and the function uncertainty of the
Gaussian process are propagated over time, resulting in
complex and non-Gaussian behavior. The flexibility of this
model class paired with its probabilistic predictions makes
it an interesting building block e.g. for model-based rein-
forcement learning [e.g Deisenroth and Rasmussen, 2011].

Since the first work on Gaussian process state space mod-
els [Wang et al., 2005], much work has been devoted to
deriving efficient and accurate inference schemes. The
arguably most expressive model at this point is by Ia-
longo et al. [2019] which assumes a flexible, parametric
Markov-structured Gaussian posterior over the temporal
states, xt ∼ q(xt|xt−1, f), and allows for dependencies
with the Gaussian process posterior. However, its empirical
performance often does not match its theoretical expressive-
ness: In the original publication the authors report many
cases in which this model is outperformed by an easier
alternative that simply sets q(xt|xt−1, f) to the prior transi-
tion [Doerr et al., 2018]. The gap between the empirical and
theoretical performance of Ialongo et al. [2019] can most
likely be attributed to the hard learning problem created
by employing a flexible, parametric q(xt|xt−1, f): These
additional parameters have to be estimated, and, moreover,
one can only start optimizing the parameters governing the
temporal state xt once the parameters governing xt−1 begin
converging since the inference scheme is built on sequential
sampling of the temporal states.

In this work we address these issues by presenting a novel
inference algorithm for Gaussian process state-space mod-
els. Our approach applies stochastic variational inference
over the Gaussian process posterior [Hensman et al., 2013]
and, conditioned on it, the Laplace approximation [see e.g.
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MacKay, 2003] over the temporal states, thereby allowing
for complex dependencies. Inference is performed via a dou-
ble loop algorithm in which we optimize over the Gaussian
process posterior in the outer loop and over temporal states
in the inner loop. The resulting approximate posterior over
the temporal states, q(xt|xt−1, f), has a Markov Gaussian
form and is found by a joint optimization over all tempo-
ral latent states. The latter addresses the issue of Ialongo
et al. [2019] (which we also witness empirically), in which
the parameters governing xt can only be learned once the
estimate of the previous state, xt−1, is meaningful. In the
experiments we confirm the benefits of our novel inference
scheme which provides higher quality uncertainty estimates
than its state-of-the-art alternatives.

Our method is computationally efficient since we (i) can
compute cheap gradients through the Laplace approximation
by using the inverse function theorem [see e.g. Krantz and
Parks, 2002], (ii) exploit the Markovian structure of our
model [see e.g. Bell, 2000], (iii) approximate the Gaussian
process posterior using inducing points [Quinonero-Candela
and Rasmussen, 2005] and (iv) apply minibatching.

The remainder of this paper is structured as follows. In
Sec. 2, we provide background, while we introduce our new
method in Sec. 3. We relate it to existing work in Sec. 4,
report experimental results in Sec. 5, and conclude in Sec. 6.

2 BACKGROUND

In this section we first provide background on the Laplace
approximation for parametric state-space models and then
on variational inference for Gaussian process state-space
models before we briefly discuss general differences be-
tween the two approximate inference techniques.

2.1 STATE-SPACE MODELS AND THE LAPLACE
APPROXIMATION

State-space models [see e.g. Särkkä, 2013] offer a principled
way to model time series, i.e., noisy observations YT =
{yt}Tt=1 from a dynamical system, where yt ∈ Rdy . In
order to disentangle the dynamics from the observational
noise, state-space models use latent states XT0 = {xt}Tt=0

with xt ∈ Rdx that are then assumed to form a Markov
sequence.1 Such a model is completely described by the
initial distribution pθ(x0), a transition model pθ(xt|xt−1)
and the emission model pθ(yt|xt), resulting in

pθ(YT , XT0
) = pθ(x0)

T∏
t=1

pθ(yt|xt)pθ(xt|xt−1), (1)

1We denote with capital letter with a capital index (YT , XT0 )
the collection of the respective lower case variables, and the index
signifies the length of the collection (YT = {yt}Tt=1). We use the
index T0 to denote the inclusion of x0 in the collection XT .

where generally the transition and emission model, and the
initial distribution depend on model parameters θ that we
wish to infer. Except for linear state-space models [Kalman,
1960], computing the marginal likelihood of the observa-
tions YT under our model (also called evidence),

L(θ) = pθ(YT ) =

∫
pθ(YT , XT0)dXT0 , (2)

is not analytically possible and we have to resort to ap-
proximations. In the following, we introduce the Laplace
approximation [see e.g. MacKay, 2003, Skaug and Fournier,
2006] which can be used to obtain an approximate max-
imum likelihood estimate of the parameters: Our goal
is to find the setting of the parameters θ∗ that maxi-
mizes the evidence, i.e., θ∗ = argmaxθ L(θ). Defin-
ing g(XT0 , θ) = log pθ(YT , XT0) (note that YT is con-
stant and hence not considered as a variable), we denote
its maximizer2 with respect to (wrt.) the latent states as
X̂T0

= argmax XT0 g(XT0
, θ). Performing a second order

Taylor approximation of g(XT0 , θ) around X̂T0 , plugging
this back into Eq. (2), and then evaluating the resulting Gaus-
sian integral yields (see Appx. B for a detailed derivation)

L(θ) ≈ p̃θ(YT ) ∝ pθ(YT , X̂T0
) det (H(θ))

− 1
2 , (3)

H(θ) = − ∂2

∂X2
T0

g(XT0
, θ)

∣∣∣∣
XT0=X̂T0

. (4)

Here and in the following we use p̃ to denote a distribution,
where the Laplace approximation has been applied to XT0

(and which therefore depends on X̂T0
). The expression in

Eq. (3) can then be optimized numerically wrt. θ in order
to estimate the parameters θ∗ [Skaug and Fournier, 2006].
Note that this can be done efficiently since the Hessian H
in Eq. (4) is sparse and structured (see Sec. 3.3). The same
methodology can also be applied efficiently to other latent
variable models with a sparse or structured Hessian [e.g.
Rue et al., 2009, Kristensen et al., 2016].

2.2 VARIATIONAL INFERENCE FOR GAUSSIAN
PROCESS STATE-SPACE MODELS

Gaussian process state-space models [GPSSMs, see e.g.
Frigola, 2015] are non-parametric extensions of the state-
space models in Eq. (1). They employ a Gaussian process
(GP) to model the possibly unknown dynamical transitions
of the system. Next, we briefly describe GPs, how they can
be used in state-space models, and how inference can be
performed.

2This is in general a local optimum as the optimization prob-
lem is non-convex. However, if the observations are dense, the
locally linear approximation to the dynamics made implicitly by
the Laplace approximation is a reasonable assumption [see e.g.
Eleftheriadis et al., 2017] leading to well-identifiable optima.



Gaussian processes A zero-mean GP f ∼ GP (0, k(·, ·))
is a distribution over functions and is fully specified by a
positive-definite, symmetric kernel k(·, ·) : Rdx×Rdx → R.
For every finite set of input points XM = {xm}Mm=1,
xm ∈ Rdx , the outputs FM = {f(xm)}Mm=1 are dis-
tributed according to a Gaussian distribution pθ(FM ) =
N (FM |0,KMM ), where KMM = {k(xm, xm′)}Mm,m′=1.
Predictions for a new input point xt can be made by using
the joint Gaussianity of ft ≡ f(xt) with the FM , and formu-
las for Gaussian conditionals resulting in p(ft|xt, FM ) =
N (ft|µ(xt, FM ),Σ(xt)), with mean and covariance

µ(xt, FM ) = KtMK
−1
MMFM , (5)

Σ(xt) = ktt −KtMK
−1
MMK

⊤
tM . (6)

Here ktt = k(xt, xt), and KtM = {k(xt, xm)}Mm=1. For a
detailed introduction see Rasmussen and Williams [2006].

Gaussian process state-space models In a GPSSM, a
GP prior is placed on the (mean of the) transition model
that learns the mapping from a latent state xt−1 to the next,
xt. Placing iid. Gaussian noise (with variance Q) on the
transitions leads to

pθ(xt|xt−1, ft−1) = N (xt|xt−1 + ft−1, Q) . (7)

The resulting joint model is then given by

pθ(YT ,XT0 , FT ) = pθ(x0)pθ(FT |XT0)

×
T∏
t=1

pθ(yt|xt)pθ(xt|xt−1, ft−1), (8)

where FT = {f(xt)}T−1
t=0 . The emission model and the

initial distribution remain unspecified since the methodology
introduced in the following does not depend on them.

Variational inference Recent inference methods for
GPSSMs [e.g. Doerr et al., 2018, Ialongo et al., 2019]
rely on variational inference (VI). This approximate infer-
ence method works by choosing a parametric family of
distributions qψ(XT0 , FT ) and optimizing the setting of the
parameters ψ such that q is closest to the true posterior
pθ(XT0

, FT |YT ) as measured by the Kullback-Leibler (KL)
divergenceKL(q ∥ p). It can be shown that minimizing this
KL divergence is equivalent to maximizing the so-called
evidence lower bound (ELBO),

LVI(ψ, θ) = Eqψ(XT0 ,FT ) log
pθ(XT0

, FT , YT )

qψ(XT0
, FT )

, (9)

wrt. ψ [for more details see Blei et al., 2016]. Furthermore,
since the ELBO is a lower bound to the model evidence
log pθ(YT ) [cf. Eq. (2)], we can simultaneously learn the
optimal model parameters θ∗ by maximizing Eq. (9) wrt. θ.
These model parameters include for instance the hyperpa-
rameters of the GP (e.g. kernel length scales).

The different variational approximations to GPSSMs all
have in common that they use sparse GPs [Snelson and
Ghahramani, 2005, Titsias, 2009, Hensman et al., 2013] to
model the GP part of the approximate posterior. The main
idea of sparse GPs is to use a set of M pseudo data points
{XM , FM} to summarize the information in the latent GP
evaluations FT . Here, the XM = {xm}Mm=1 with xm ∈
Rdx are the inducing inputs that are placed in the same space
as the latent states xt, and the FM = {f(xm)}Mm=1 are the
so-called inducing outputs that share a joint Gaussian distri-
bution, pθ(FT , FM ), with the FT . The model by Doerr et al.
[2018] that we will use in this work employs the fully inde-
pendent training conditional (FITC) approximation [Snel-
son and Ghahramani, 2005] that assumes independence of
the latent GP evaluations given the inducing outputs, i.e.,
pθ(FT |XT0

, FM ) ≈
∏T−1
t=0 pθ(ft|xt, FM ). Notably, Do-

err et al. [2018] also use this approximation in the aug-
mented prior [cf. Eq. (8)], leading to pθ(YT , XT0

, FM ) =
pθ(FM )pθ(YT , XT0 |FM ) with

pθ(YT , XT0
|FM ) = pθ(x0)

T∏
t=1

pθ(yt|xt)pθ(xt|xt−1, FM ).

(10)
Here we have already marginalized the FT from the prior
model which can be done because of the FITC assumption:

pθ(xt|xt−1, FM )

=

∫
pθ(xt|xt−1, ft−1)pθ(ft−1|xt−1, FM )dft−1

= N (xt|xt−1 + µ(xt−1, FM ), Q+Σ(xt−1)) , (11)

where we used Eqs. (5)- (7) and standard formulas for Gaus-
sian integrals. While the FITC assumption might seem quite
restrictive and is criticized by Ialongo et al. [2019], we show
in Appx. A that recent methods [including Ialongo et al.,
2019] implicitly use this approximation as well, i.e., the
methods could have used the approximation and would have
arrived at the same optimization objective. This substantially
weakens the criticism of Ialongo et al. [2019] on the choice
of Doerr et al. [2018] on the FITC prior and motivates us to
use it as well in our method. We discuss differences between
these and other works in Sec. 4.

2.3 LAPLACE APPROXIMATION VERSUS
VARIATIONAL INFERENCE

Before we finally present our proposed method that com-
bines the approximate inference approaches presented in the
previous sections we provide a short comparison of them.
Using variational inference with a Gaussian variational fam-
ily leads to a similar approach to the Laplace approximation
since both methods use the same functional form for the
approximate distribution and both approaches are mode
seeking (see Fig. 1 left). While the Laplace approximation
fits the mean to a mode of the distribution and has the same
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Figure 1: Qualitative difference between the Laplace approx-
imation (brown, solid) and variational inference (magenta,
dashed) for different ground-truth distributions (see subplot
titles) depicted in gray.

curvature as the true function at this mode, variational infer-
ence minimizes the KL-divergence between the approximate
and the true distribution. Due to the KL-divergence being
heavily penalized by placing mass in regions that have zero
mass under the true distribution, variational inference avoids
this (see Fig. 1, right). Both approximations are not ideally
suited to approximating heavy-tailed distributions due to
their Gaussianity assumptions, but the Laplace approxima-
tion even slightly less so since matching the curvature at the
mode typically leads to narrower distributions in this case
(see Fig. 1, middle).

However, as we introduce next, in our model we only use
the Laplace approximation for approximating the posterior
over the temporal states. For many real-world applications,
the dynamics can often be well described locally by a linear
model justifying the Gaussian approximation [e.g. Eleftheri-
adis et al., 2017].

3 METHOD

In this section we propose a new inference method for the
model used in Doerr et al. [2018], i.e. Eq. (10). Instead of
relying solely on VI as previous works have done, we em-
ploy it in combination with the Laplace approximation. This
allows us to treat the local latent variables, i.e. the temporal
states XT0

, and the global latent variables, i.e. the induc-
ing outputs FM , differently. Note that naively applying the
Laplace approximation to this model, i.e., without making
a distinction between the different sets of latent variables,
(i) does not lead to an efficient algorithm since the resulting
Hessian would not have an exploitable sparsity structure
(see Sec. 3.3), (ii) would assume a linear relationship be-
tween the two latent variable classes and (iii) would make
the Gaussian assumption more questionable.

We start by deriving our optimization objective in Sec. 3.1
and then, in Sec. 3.2, discuss a caveat that we encounter
when trying to naively optimize this objective. Afterwards,
we show how the sparsity of the Hessian in the Laplace
approximation can be exploited for computational savings
(Sec. 3.3) before summarizing the algorithm in Sec. 3.4.

3.1 COMBINING VARIATIONAL INFERENCE
AND THE LAPLACE APPROXIMATION

Similarly as the previous methods, we wish to find an ap-
proximation to the log marginal likelihood log pθ(YT ). We
start from its definition given the model under consideration,

log pθ(YT ) = log

∫
pθ(YT |FM )pθ(FM )dFM , (12)

where pθ(YT |FM ) =
∫
pθ(YT , XT0

|FM )dXT0
. Using the

Laplace approximation (Sec. 2.1) on this integral leads to

log pθ(YT ) ≈ log

∫
p̃θ(YT |FM )pθ(FM )dFM . (13)

Here, p̃θ(YT |FM ) is given by [cf. Eq. (3)]

p̃θ(YT |FM ) ∝ pθ(YT , X̂T0
|FM ) det (H(θ, FM ))

− 1
2 ,
(14)

where X̂T0 is a mode of the log-density

gGP(XT0 , θ, FM ) = log pθ(YT , XT0 |FM ), (15)

that can be evaluated using Eq. (10), and H is the cor-
responding Hessian (cf. Eq. (4)). We proceed by using
the VI methodology to lower bound the expression in
Eq. (13): First, we multiply the term within the integral by
qψ(FM )/qψ(FM ), where qψ(FM ) is the variational distri-
bution, an arbitrary distribution over the FM parameterized
by ψ. Then, we use Jensen’s inequality to push the logarithm
inside of the resulting integral (thereby lower bounding the
expression), and use the definition of the KL-divergence to
arrive at our optimization objective,

L(θ, ψ) =
∫
qψ(FM ) log p̃θ(YT |FM )dFM

−KL(qψ(FM ) ∥ pθ(FM )), (16)

which obeys log pθ(YT ) ⪆ L(θ, ψ). There are two things
to note abound this bound: First, it is an approximate lower
bound, since the Laplace approximation does not provide a
valid bound but only an approximation. Second, the property
that we minimize a KL-divergence between the true pos-
terior pθ(FM |YT ) and the approximate posterior qψ(FM )
by optimizing this bound (see Sec. 2.2), also only holds
approximately. In fact, the KL-divergence that is minimized
by optimizing this bound is KL [qψ(FM ) ∥ p̃θ(FM |YT )],
i.e. qψ(FM ) approximates the posterior after applying the
Laplace approximation to the latent states XT0 .

In principle, we could now go ahead, choose a parametric
family for qψ(FM ) and then evaluate our bound in Eq. (16)
and use automatic differentiation to optimize the parameters
θ and ψ. However, this is inefficient for two reasons: First,
evaluating Eq. (14) involves an optimization to obtain X̂T0

and automatic differentiation through this optimization is
inefficient. Second, we need the determinant of the Hessian
H(θ, FM ) in Eq. (14) which scales cubically in its size. In
the following two subsections we provide solutions to both
of these efficiency problems.



3.2 IMPLICIT FUNCTION THEOREM

Next, we turn to an important dependence in our construc-
tion: The mode X̂T0

depends on the setting of the model
parameters θ. Since our optimization objective L(θ, ψ)
in Eq. (16) involves the mode X̂T0

of the log-density

gGP(XT0 , θ, FM ) [Eq. (15)], we require the derivative ∂X̂T0
∂θ

in order to compute ∂L
∂θ .3 Being used to automatic differenti-

ation we would usually leave this calculation to our favorite
framework, since obtaining the mode X̂T0

is nothing but a
(rather long) sequence of summations and multiplications
which automatic differentiation can deal with. Nevertheless,
since several optimization steps are needed to compute the
mode, backpropagating through optimization would lead to
an enormous memory footprint and long execution times.
Instead, we can calculate the derivative of the mode wrt. θ
solely with the value of X̂T0 , i.e. independent of the steps
taken to get there, with the help of the implicit function the-
orem [IFT, see e.g. Krantz and Parks [2002]].4 In Appx. C,
we show that the required derivative can be obtained as

∂X̂T0(θ)

∂θ
= H−1(θ, FM )

∂h(X̂T0 , θ, FM )

∂θ
, (17)

which we derive using the IFT and where h [Eq. (42) in
Appx. C] is the Jacobian of the function gGP [Eq. (15)] [see
also Skaug and Fournier, 2006]. Both terms on the right
hand side of Eq. (17) can be obtained using automatic dif-
ferentiation and require only the value of X̂T0

such that the
complete computational graph of how it has been obtained
is no longer required. Note that Eq. (17) exchanges poten-
tially costly automatic differentiation computations with a
Hessian solve. Naively, this would incur memory and time
costs scaling quadratically and cubically in the size of the
latent state, respectively. Therefore, this does only lead to
an efficient algorithm by also exploiting the structure of the
Hessian, as we will discuss next.

3.3 STRUCTURE OF THE HESSIAN

Taking a closer look at the definition of the Hessian
H(θ, FM ) appearing in Eqs. (14) and (17), H(θ, FM ) =

−∂2gGP(XT0 ,θ,FM )

∂X2
T0

, we realize that it is given as the sec-

ond partial derivatives of a sum of T + 1 terms since
gGP [Eq. (15)] is defined as the log-density of the distri-
bution pθ(YT , XT0

|FM ) that consists of a product of T + 1
terms [Eq. (10)]. Due to the Markovian structure of our
model, all second partial derivatives wrt. latent states being
more than one time step t apart vanish, i.e., Htt′(θ, FM ) =

3Through the FM , there is also a dependence on ψ which must
be treated in the same way. We omit the equivalent derivation for
the sake of clarity and conciseness.

4The website implicit-layers-tutorial.org provides an introduc-
tion to the IFT geared to the Machine Learning practitioner.

−∂2gGP(XT0 ,θ,FM )

∂xt∂xt′
= 0 for t′ /∈ {t−1, t, t+1}. This results

in a block-tridiagonal structure of the Hessian:

H =



A0 B1 0 · · · 0

B⊤
1 A1 B2

. . .
...

0 B⊤
2 A2 B3 0

...
. . . . . . . . .

...
0 · · · 0 B⊤

T AT

 , (18)

where At = − ∂2gGP
∂xt∂xt

, Bt = − ∂2gGP
∂xt∂xt−1

∈ Rdx×dx such

that H ∈ Rdx(T+1)×dx(T+1). This structure can also be
found in similar models [see e.g. Bell, 2000] and the recent
work by Durrande et al. [2019] considers the efficient im-
plementation of computations for similar structures (banded
matrices) into automatic differentiation frameworks.

The structure in Eq. (18) reveals another interesting aspect
of our algorithm: The first step of the Laplace approximation
consists of making a multivariate Gaussian approximation to
the posterior pθ(XT0 |YT , FM ), where X̂T0 is the mean and
H(θ, FM ) is the precision matrix (see Appx. B, especially
Eq. (40)). Therefore, the structure of H tells us something
about the underlying (implicit) structural assumption that
we have used to approximate pθ(XT0

|YT , FM ). Exploiting
the structure in Eq. (18) and using standard formulas for
Gaussian conditionals, we can rewrite the approximate pos-
terior to find a linear Markov Gaussian model,

N
(
XT0

|X̂T0
, H−1

)
=

T∏
t=0

N (xt|at + btxt−1, ct) ,

(19)
where the coefficients at, bt, and ct depend on X̂t−1:T and
the blocks At:T and Bt:T of the Hessian H (here we used
the shorthand At:T = {At′}Tt′=t). Such a linear Markov
Gaussian model is also used by Eleftheriadis et al. [2017],
where the authors use parameters at, bt, and ct that have to
be optimized during inference while the conditional depen-
dence on the FM is not taken into account.

There are three aspects of the algorithm for which we can
achieve considerable computational savings when we take
the structure of the Hessian into account: i) obtaining the
blocks At and Bt [Eq. (18)] of the Hessian while not cal-
culating the unnecessary zero blocks, ii) calculating the
determinant of the Hessian required for Eq. (14), and finally
iii) performing the Hessian solve in Eq. (17). Problem i),
while not hard, requires a technical solution which we detail
in Appx. D.1. Problems ii) and iii) can both be solved by
following e.g. Koulaei and Toutounian [2007] in noting that
the Hessian H in Eq. (18) allows a factorization that can
be exploited as we show in Appx. D.2. Implementing these
improvements leads to a reduction of the memory footprint
of the algorithm from O(T 2d2x) to O(Td2x) [mainly through
i)] and a reduction of the theoretical runtime from O(T 3d3x)
to O(Td3x) through ii) and iii).

http://implicit-layers-tutorial.org/


3.4 ALGORITHM

In order to evaluate and optimize our optimization objec-
tive L(θ, ψ) in Eq. (16), we need to choose a parametric
family for qψ(FM ). We follow the literature [e.g. Ialongo
et al., 2019] and take a Gaussian distribution qψ(FM ) =
N (FM |m,S), allowing an analytical evaluation of the KL-
term in Eq. (16). The first term on the right hand side of
Eq. (16) is analytically intractable so we resort to sampling,

∫
qψ(FM ) log p̃θ(YT |FM )dFM ≈

N∑
n=1

log p̃θ(YT |F (n)
M ),

(20)
with F (n)

M ∼ qψ(FM ), and we use reparameterized samples
[e.g. Kingma and Welling, 2014] to be able to compute
derivatives wrt. ψ. The resulting basic algorithm to evaluate
and optimize L(θ, ψ) is summarized in Alg. 1 in Appx. E.

There are three extensions of this algorithm that are typ-
ically required for applying GPSSMs in practice (e.g. in
Sec. 5.2), i) minibatches, ii) multi-dimensional latent states
and iii) control inputs: Many time series are too long to be
handled in one batch such that using i) minibatches helps
obtaining a computationally tractable algorithm. For many
real-world problems a one-dimensional latent state is not
expressive enough [Frigola, 2015] and we require ii) multi-
dimensional latent states xt. Lastly, many datasets come
with an additional time series ut ∈ Rdu of iii) external in-
puts that control the behavior of the system. We discuss the
implementation of theses features into Alg. 1 in Appx. E.2.

4 RELATED WORK

There are two lines of work that directly relate to our ap-
proach: The first is on inference techniques for GPSSMs, the
second on optimizing model parameters for latent variable
models using the Laplace approximation.

Inference for GPSSMs The idea of using GPs to model
transitions in state-space models goes back to Wang et al.
[2005], where learning was performed by finding a maxi-
mum a posteriori estimate of the latent variables. The first
Bayesian treatment of the latent states and the transition
function in GPSSMs can be found in Frigola et al. [2013]
using Markov Chain Monte Carlo. Due to the computational
complexity of this approach, later works focused on varia-
tional approximations, beginning with Frigola et al. [2014]:
They used a sparse GP in the flavor of Titsias [2009], in-
troducing inducing outputs FM to deal with the transition
function and using an independence assumption between
the FM and the latent states XT0

in the variational posterior.
This allowed them to find optimal variational distributions
q(FM ) and q(XT0) using variational calculus, where the lat-
ter is analytically intractable. This leads, similarly as in our
work, to a double-loop algorithm, where in the inner loop

the distribution q(XT0) is approximated and in the outer
loop q(FM ) has to be obtained. The authors of Frigola et al.
[2014] opt for a particle filtering method in the inner loop
(note that the Laplace approximation would have also been
possible here), but in contrast to our work do not take the
conditional dependencies between the FM and the XT0

into
account. Furthermore, this assumption allows for alternating
updates for the parameters of FM and XT0 without having
the need to differentiate through the latent states XT0

.

Eleftheriadis et al. [2017] improved upon this method by
using a doubly stochastic variational inference scheme that
allows for the first time, and similarly as our approach, for
minibatches. They opt for a parametric Gaussian distribu-
tion q(FM ), a linear Markov Gaussian model for q(XT0

)
and additionally employ a recognition model to amortize
the inference of the many parameters of such an approach.
It is worth noting that our Laplace approximation (implic-
itly) also leads to a linear Markov Gaussian model as an
approximation to the posterior p(XT0

|YT , FM ). However,
our approach respects the conditional dependence of the
temporal states on the inducing outputs FM , and does not
require any additional parameters to be learned since the
means and variances of the Markov Gaussian model are
obtained from the mode X̂T0

and the Hessian H .

Recently, variational methods have also incorporated the
dependence between the FM and the XT0

in their approxi-
mations: First Doerr et al. [2018], who have simply used the
prior for q(XT0

|FM ) and then Ialongo et al. [2019], who
employ a parametric non-linear Markov Gaussian model for
the same term. A further subtle difference between these two
approaches is that Doerr et al. [2018] use the FITC approxi-
mation from Snelson and Ghahramani [2005] in prior and
approximate posterior, while Ialongo et al. [2019] do not
use it and criticize its implications. However, it was already
noted by Frigola et al. [2014], that the optimization objec-
tive for their model would not change if they applied the
FITC approximation. We have confirmed in Appx. A, that
this is also the case for the model of Ialongo et al. [2019],
thus making this subtle difference even smaller.

Interestingly, even though the model of Doerr et al. [2018]
is a special case of Ialongo et al. [2019], the latter work re-
ports many cases in which the easier model still outperforms
the more powerful one. This can potentially be attributed
to the harder learning problem obtained through the addi-
tional introduction of the parameters of the Gauss-Markov
model for q(XT0

|FM ) which only allows to learn the pa-
rameters of q(xt|xt−1, FM ) after the preceding state xt−1

has reached a meaningful state due to the sequential nature
of the algorithm. In contrast to these two methods, we do not
employ a variational distribution q(XT0 |FM ) but rather ap-
proximately marginalize XT0 |YT , FM through the Laplace
approximation.
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Figure 2: Sparse GP fits (mean ± 2σ confidence inter-
val) to the kink transition function for our model (top)
and VCDT (bottom) for varying emission noise (σ2

y ∈
{0.008, 0.08, 0.8}, left to right). Each plot shows the kink
function (solid gray) and one sequence of T = 120 noisy
latents xt drawn from that function (tiny gray crosses).

Laplace approximation The other line of related work
consists of approaches using the Laplace approximation for
parameter estimation in latent variable models. One influ-
ential approach is Rue et al. [2009] that uses the Laplace
approximation (twice) to perform approximate Bayesian
inference of the model parameters in latent Gaussian mod-
els and pays close attention to the sparsity of the Hessian
that is induced by different models. The work of Skaug and
Fournier [2006] combines the Laplace approximation with
automatic differentiation methods to arrive at an algorithm
that can be used to approximate the marginal likelihood of
(non-) Gaussian latent state models and therefore for maxi-
mum likelihood parameter estimation. The software package
described in Kristensen et al. [2016] provides a recent im-
plementation of the ideas in Skaug and Fournier [2006] with
an additional focus on efficient automatic differentiation ex-
ploiting the sparsity of the Hessian. While closely connected
to our work, these methods do not cover our approach since
they jointly treat all latent variables, {FM , XT0}, which
would not lead to a Hessian whose structure can be exploited.
Furthermore, a Laplace approximation over all latent vari-
ables would also lead to a less expressive approximation:
This would entail a joint Gaussianity assumption of FM
and XT0

, while our current approach approximates both
sets of variables with Gaussian distributions but allows for
potentially complex and non-Gaussian interactions.

5 EXPERIMENTS

We first test the ability of our inference scheme to deal with
different noise sources on the toy dataset called kink and
then assess the performance of our method on a range of
real-world benchmark datasets. Both experiments confirm
that our new approach results in better calibrated predic-

Table 1: Comparison of our method with VCDT [Ialongo
et al., 2019] on the kink data set. Shown are mean and
standard errors over ten repetitions of the log-density (higher
is better) of the kink function varying the emission noise
variance σ2

y . See Appx. F.1 for more details.

MODEL σ2
y = 0.008 σ2

y = 0.08 σ2
y = 0.8

LAPLACE 1.35(0.04) 0.36(0.08) -1.08(0.15)
VCDT 1.53(0.31) -1.10(0.72) -4.16(1.97)

tions when compared with the Variationally Coupled Dy-
namics and Trajectories (VCDT) method from Ialongo et al.
[2019] and the Probabilistic Recurrent State-Space Model
(PRSSM) method from Doerr et al. [2018]. Comparisons to
other time-series modeling approaches have already been
performed in the latter work in which the PRSSM approach
performed best. Hence, we do not repeat these experiments.

5.1 KINK

The kink function fk(x) = 0.8+(x+0.2)[1−5/(1+e−2x)]
(Ialongo et al. [2019], see also Fig. 2 and Fig. 5 in Appx. G)
can be used as a challenging transition function to probe
state-space models: It tests the ability to model the non-
linear transition function and, by injecting additional noise,
also the ability of the inference scheme to deal with different
levels of emission noise. We generate data according to

xt ∼ N
(
xt|fk(xt−1), σ

2
x

)
, yt ∼ N

(
yt|xt, σ2

y

)
,

for t = 1, . . . , T , where we fix T = 120, x0 = 0.5, σx =
0.05 and vary σ2

y ∈ {0.008, 0.08, 0.8}. Here, σ2
y = 0.8 cor-

responds to the setting of Ialongo et al. [2019] for which
they empirically demonstrated that the inference scheme of
Doerr et al. [2018] is not able to cope with the transition
noise σx and fails to learn the underlying dynamics. We
follow Ialongo et al. [2019] and fix the emission model to
the groundtruth, p(yt|xt) = N

(
yt|xt, σ2

y

)
. In addition, we

choose a zero-mean sparse GP transition model with train-
able Gaussian noise Q [cf. Eq. (11) ], p(xt|xt−1, FM ) =
N (xt|µ(xt−1, FM ), Q+Σ(xt−1)) and a fixed initial dis-
tribution p(x0) = N (x0| − 0.5, 1.5), all with one dimen-
sional latent states xt. We defer further details, the descrip-
tion of the setup of VCDT [Ialongo et al., 2019], and the
initialization and training routines to Appx. F.1.

We present the resulting fits of the sparse GPs to the kink
transition function and the noisy latent transitions in Fig. 2.
We find that the GP in our model is well able to locate the
kink in the kink transition function and finds better approx-
imations with increasing signal to noise ratio (decreasing
σ2
y). The latter is also true for the VCDT method while the

former does not hold for the largest σ2
y = 0.8. The small

confidence intervals of the VCDT method sometimes result
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Figure 3: Timing comparison between a naive Laplace
GPSSM and our proposed efficient implementation. The
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in very good fits (σ2
y = 0.008), while other times leading to

overconfident predictions (slightly for σ2
y = 0.08, evidently

for σ2
y = 0.8), an observation that we have also made for

the benchmark datasets in Sec. 5.2. In contrast, our method
provides higher variance estimates resulting in very few data
points not lying within the confidence intervals.

Next, we repeat the experiment 10 times, each time gen-
erating a new random dataset. Our observations also hold
quantitatively as demonstrated in Tab. 1. In accordance with
Fig. 2, we find that VCDT performs slightly, but not signifi-
cantly, better than our method for σ2

y = 0.008, whereas we
significantly outperform VCDT on the noisier data sets.

The controllable environment of the kink dataset also allows
us to test if the theoretical speed-ups from Sec. 3.3 can be
observed in practice. For this, we use the same setup as
above, changing only σ2

y = 0.01 to provide an easy learning
task and vary T ∈ {24, 25, 26, 27, 28}. We then compare the
average runtime per iteration over the first 1000 iterations of
our efficient implementation with a naive implementation,
where all elements of the Hessian are calculated and the full
Hessian is used to compute its determinant and the required
Hessian solves, i.e., ignoring the improvements proposed
in Sec. 3.3. The results of this comparison are depicted in
Fig. 3 and clearly show that our efficient implementation
scales linearly with the length of the time series T . For the
naive implementation we observe a quadratic scaling with T
even though the theoretical scaling is O(T 3) (see Sec. 3.3).
We attribute this to the huge cost of calculating the elements
of the Hessian with automatic differentiation whose number
scales quadratically for the naive version and linearly for
our implementation. We hypothesize that the cubic scaling
only sets in for very high values of T which might become
important if one wants to study long term effects requiring
minibatches of increased size.

Finally, we also aim to validate our intuition that the
parametric approach of Ialongo et al. [2019] for model-
ing the posterior over the latent states q(xt|·) [see Eq. 51
in Appx. F.1] is problematic from a practical point of
view. Their approach requires the sequential sampling of
xt ∼ q(xt|·) for t = 1, . . . , T during training which theoret-
ically means that samples for xt′ only become meaningful
when the parameters of q(xt|·) for all t < t′ have converged.

Table 2: Iteration number (divided by 100) at which the
mean parameters At and bt of q(xt|·) of the VCDT method
[Ialongo et al., 2019] have converged for different time
points t. Shown are mean and standard errors over ten repe-
titions using the kink dataset with T = 120 and σ2

y = 0.08.

t = 0 t = 40 t = 80 t = 120

At 41(6) 53(5) 62(3) 68(4)
bt 53(5) 55(3) 67(4) 64(4)

Our results in Tab. 2 support this thesis: There we show the
average iteration number (out of 10000 in total) at which the
variational parameters At and bt of the mean of q(xt|·) have
converged when running the VCDT method with the same
settings as for Tab. 1 on the kink data set (see Appx. F.1
for more details). There is a clear trend for At, and slightly
less but still visible for bt, that the variational parameters
describing later time points t also converge later during the
optimization. We believe that this small experiment yields a
possible explanation for why our approach, even though it
uses a theoretically less expressive approximate posterior,
outperforms the method of Ialongo et al. [2019].

5.2 SYSTEM IDENTIFICATION

We compare the performance of our method against PRSSM
[Doerr et al., 2018] and VCDT [Ialongo et al., 2019] on five
time series system identification benchmark datasets. Those
consist of one dimensional time series of various lengths
between 296 and 1024 data points and an equally long time
series of one dimensional control inputs (see the appendix of
Doerr et al. [2018] for more information about the datasets).
For these more complicated tasks we choose a two dimen-
sional latent state xt and a residual transition model with a
sparse GP as in Eq. (11) with (diagonal) trainable Gaussian
noise Q. We furthermore keep the initial distribution unin-
formative, p(x0) = N (x0|0, 1), but choose a slightly more
expressive emission model [following Ialongo et al., 2019]
p(yt|xt) = N (yt|Cxt + b,Ω), where we fix C = [1, 0]⊤

and introduce trainable parameters b and Ω. Note that an
even more expressive emission model does not lead to more
expressivity of the composite model, only to more non-
identifiabilities [Frigola, 2015]. For the PRSSM and VCDT
methods, we use the original models detailed in Doerr et al.
[2018] and Ialongo et al. [2019], respectively. For each
dataset, we create ten different training tasks by varying
the starting index of the training sequence, while keeping
the length of the training sequence fixed to one half of the
whole time series. Whereas Doerr et al. [2018] only com-
pared the long-term predictions and Ialongo et al. [2019]
only the short-term predictions, we evaluate both regimes
by recording the predictive performance for varying time
horizons in T ∈ {30, 60, 90, 120}. For more information
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about data splits, model configurations as well as training
and prediction routines for each method, see Appx. F.2.

We plot the resulting test log-likelihoods in Fig. 4 (for a tab-
ular comparison, see Tab. 3 in Appx. G). Our results clearly
demonstrate that our method is a valuable addition to the set
of inference methods for GPSSMs: For short-term predic-
tions (T = 30, 60), our methods yields excellent results over
all datasets, while VCDT shows deteriorated behavior on
Dryer and Gas Furnace, and PRSSM on Ballbeam, Drive
and Gas Furnace. For long-term predictions (T = 90, 120),
our methods significantly outperforms its competitors on
Ballbeam and Gas Furnace, while it underperforms on Actu-
ator. We further report the root-mean-square errors (RMSE)
in Tab. 4 in Appx. G. It is evident that a deteriorated log-
likelihood value does not necessarily result in a large RMSE-
value or vice versa. Instead, a drop in log-likelihood values
is more likely caused by overconfident predictions which we
can also witness in our exemplary plots in Fig. 6 in Appx. G.

In sum, we observed in our experiments that our method is
able to learn the underlying dynamics for a variety of differ-
ent tasksand outperforms its comparison partners. A direct
attribution of our method’s success is unfortunately not pos-
sible due to the nature of GPSSMs: They simultaneously
learn the outputs of the sparse GP (through the inducing
outputs) along with its inputs (the temporal states) such
that a distinction between learning the two is impossible as
their learning is inherently intertwined. This hinders a better
theoretical understanding but also makes it very difficult to
clearly attribute predictive improvements to certain parts of
the learning process.

However, for a given GP, the Laplace approximation finds
an optimal latent state at every iteration which we believe
helps the GP convergence. In contrast, the fully variational
approximation of Ialongo et al. [2019] performs an incre-
mental update over the latent states in each optimization
step which only leads to an optimal latent state after full
convergence. It is therefore possible that the variational ap-
proximation of q(x) for VCDT might be hindered by the
optimizer getting stuck in a local optimum. Indeed, our
empirical study indicates that VCDT is more suceptible to
local optima than our method since the standard errors for
VCDT are significantly higher in both experiments. While

this provides a plausible explanation, we cannot completely
rule out other causes for this behavior.

Another potential reason for the success of our method is
that the chosen variational family of Ialongo et al. [2019]
is too compact which can result in narrow uncertainty esti-
mates [e.g. Turner and Sahani, 2011]. Our experiments in-
dicate that combining variational inference with the Laplace
approximation favors less compact predictive distributions
that lead to better calibrated predictions.

6 SUMMARY

In this paper, we have developed a new inference method
for Gaussian process state-space models (GPSSMs) that
combines a Laplace approximation over the temporal states
xt with variational inference over the inducing outputs of
the Gaussian process (GP) part of the model. Our approach
learns a joint approximate posterior over the inducing out-
puts and the temporal states, refraining from sequentially
learning the latter. We empirically find that our inference
scheme is rewarded by better calibrated predictions com-
pared to state-of-the-art methods.

While we only focused on the application of our inference
scheme to GPSSMs, it can generally be applied to all models
with two distinct sets of latent variables, e.g., the Bayesian
treatment of model parameters in latent Gaussian models
Rue et al. [2009] or of hyperparameters in (sparse) GP mod-
els [e.g. Hensman et al., 2013]. We further deem exchanging
our variational inference engine with Hamiltonian Monte
Carlo [Margossian et al., 2020] as an interesting avenue of
future work on GPSSMs since recent research has shown
promising results for a fully Bayesian treatment over GP
hyperparameters and inducing locations [Rossi et al., 2021].
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