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ABSTRACT

Conformal prediction has shown impressive capacity in constructing statistically
rigorous prediction sets for machine learning models with exchangeable data sam-
ples. The siloed datasets, coupled with the escalating privacy concerns related to
local data sharing, have inspired recent innovations extending conformal predic-
tion into federated environments with distributed data samples. However, this
framework for distributed uncertainty quantification is susceptible to Byzantine
failures. A minor subset of malicious clients can significantly compromise the
practicality of coverage guarantees. To address this vulnerability, we introduce a
new algorithm Rob-FCP to execute robust federated conformal prediction, effec-
tively countering malicious clients capable of reporting arbitrary statistics with the
conformal calibration process. We theoretically provide the conformal coverage
bound of Rob-FCP in the Byzantine setting and show that the coverage of Rob-
FCP is asymptotically close to the desired coverage level under mild conditions in
both IID and non-IID settings. We also propose a malicious client number estima-
tor to tackle a more challenging setting where the number of malicious clients is
unknown to the defender and theoretically shows its effectiveness. We empirically
demonstrate the robustness of Rob-FCP against diverse proportions of malicious
clients under a variety of Byzantine attacks on five realistic benchmark and real-
world healthcare datasets.

1 INTRODUCTION

As deep neural networks (DNNs) achieved great success across multiple fields (He et al., 2016;
Vaswani et al., 2017; Li et al., 2022b), quantifying the uncertainty of model predictions has become
essential, especially in safety-conscious domains such as healthcare and medicine (Ahmad et al.,
2018; Erickson et al., 2017; Kompa et al., 2021). For example, in sleep medicine, accurately clas-
sifying sleep stages (typically on EEG recordings) is crucial for understanding sleep disorders. Just
like a human specialist who oftentimes offers a set of possible interpretations for one recording, a
DNN should not only provide the point prediction but preferably a prediction set (of possible sleep
stages), whose cardinality conveys the level of uncertainty in a natural way. In constructing such
prediction sets, we often seek frequentist coverage guarantees: The prediction set should contain the
truth with a pre-specified probability (e.g. 90%). Recently, Conformal prediction (Shafer & Vovk,
2008; Balasubramanian et al., 2014; Romano et al., 2020) demonstrates the capacity to provide
statistical guarantees for any black-box DNN with exchangeable data.

Meanwhile, the demand for training machine learning models on large-scale and diverse datasets ne-
cessitates model training across multiple sites and institutions. Federated learning (Konečnỳ et al.,
2016; Smith et al., 2017; McMahan et al., 2017; Bonawitz et al., 2019; Yang et al., 2019; Kairouz
et al., 2021) offers an effective approach to collaboratively train a global model while preserving
data privacy, as it enables training with distributed data samples without the requirement of sharing
the raw data. For example, multiple hospitals (“clients”) could jointly train a global clinical risk
prediction model without sharing raw patient data. However, this introduces several unique chal-
lenges: Heterogeneous clients might not satisfy the exchangeability assumption, and the existence
of malicious or negligent clients could negatively affect the quality of the prediction sets.

Recently, federated conformal prediction (FCP) methods (Lu & Kalpathy-Cramer, 2021; Lu et al.,
2023; Plassier et al., 2023; Humbert et al., 2023) provide rigorous bounds on the coverage rate with
distributed and not globally exchangeable data samples. However, FCP demonstrates vulnerability
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to Byzantine failures (Lamport et al., 2019), which are caused by uncontrollable behaviors of ma-
licious clients. For example, a hospital’s data could be corrupted with incorrect or even fabricated
medical information due to human negligence or deliberate manipulation of data statistics (such as
age, gender, or disease prevalence). In the Byzantine federated setting, the prediction coverage guar-
antees of FCP are broken, and the empirical marginal coverage is downgraded severely with a small
portion of malicious clients as Figure 1.
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Figure 1: Coverage with different
ratios of malicious clients on SHHS
dataset. The desired coverage is 0.9.

In this paper, we aim to restore the coverage rate compro-
mised by malicious clients in Byzantine federated learning set-
tings using a robust federated conformal prediction algorithm,
Rob-FCP. The Rob-FCP algorithm calculates conformity scores,
sketches them with characterization vectors, and identifies mali-
cious clients based on averaged vector distance. Clients with
high maliciousness scores are excluded during calibration. We
propose a method to estimate the number of malicious clients
when unknown, by maximizing the likelihood of characteriza-
tion vectors. The coverage bounds show that the coverage of
Rob-FCP is asymptotically close to the desired coverage level as
long as the number of malicious clients is less than that of be-
nign clients and the sample sizes of benign clients are sufficiently large. We also derive the coverage
bounds in the non-IID setting and show that the coverage of Rob-FCP can be arbitrarily close to the
desired coverage level as long as the heterogeneity among benign clients is bounded.

We empirically evaluate Rob-FCP against multiple Byzantine attackers in both IID and non-IID
settings. Rob-FCP outperforms FCP by a large margin and achieves comparable prediction cov-
erage and efficiency as the benign settings on five realistic datasets covering multiple fields. We
demonstrate the validity and tightness of the bounds of prediction coverage with different ratios of
malicious clients and conduct a set of ablation studies.

Technical Contributions: Our contributions span both theoretical and empirical aspects.

• We provide the first certifiably robust federated conformal prediction framework (Rob-FCP) in the
Byzantine setting where malicious clients can report arbitrary conformity score statistics.

• We propose a maliciousness score to identify Byzantine clients in the space of characterization
vectors and a malicious client number estimator to predict the number of malicious clients.

• We theoretically provide the coverage guarantees of Rob-FCP in both IID and non-IID settings.
We also theoretically analyze the accuracy of malicious client number estimator.

• We empirically demonstrate the robustness of Rob-FCP in federated Byzantine settings across
multiple datasets including two real-world medical datasets and validate the coverage guarantees.

2 PRELIMINARIES

2.1 CONFORMAL PREDICTION

Suppose that we have n data samples {(Xi, Yi)}ni=1 with features Xi ∈ Rd and labels Yi ∈ Y :=
{1, 2, ..., C}. Assume that the data samples are drawn IID (thereby exchangeably) from some un-
known distribution PXY . Given a desired coverage 1 − α ∈ (0, 1), conformal prediction methods
construct a prediction set Ĉn,α ⊆ Y for a new data sample (Xn+1, Yn+1) ∼ PXY with the guarantee
of marginal prediction coverage: P[Yn+1 ∈ Ĉn,α(Xn+1)] ≥ 1− α.

In this work, we focus on the split conformal prediction setting (Papadopoulos et al., 2002), where
the data samples are randomly partitioned into two disjoint sets: a training set Itr and a calibration
(hold-out) set Ical = [n]\Itr. 1 We fit a classifier h(x) : Rd 7→ Y to the training set Itr to estimate
the conditional class probability π : Rd 7→ ∆C with the y-th element denoted as πy(x) = P[Y =
y|X = x]. Using the estimated probabilities that we denote by π̂(x), we then compute a non-
conformity score Sπ̂(Xi, Yi) for each sample in the calibration set Ical. The non-conformity score
measures how much non-conformity each sample has with respect to its ground truth label. A small
non-conformity score Sπ̂(Xi, Yi) indicates that the estimated class probability π̂(Xi) aligns well
with the ground truth label Yi for the data sample (Xi, Yi). A simple and commonly used non-
conformity score (Sadinle et al., 2019) is: Sπ̂(x, y) = 1− π̂y(x).

1In here and what follows, [n] := {1, · · · , n}.
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Given a desired coverage 1− α, the prediction set of a new data point Xn+1 is formulated as:

Ĉn,α(Xn+1) = {y ∈ Y : Sπ̂(Xn+1, y) ≤ Q1−α ({Sπ̂(Xi, Yi)}i∈Ical)} , (1)

where Q1−α({Sπ̂(Xi, Yi)}i∈Ical) is the ⌈(1 − α)(1 + |Ical|)⌉-th largest value of the set
{Sπ̂(Xi, Yi)}i∈Ical . The prediction set Ĉn,α(Xn+1) includes all the labels with a smaller non-
conformity score than the (1 − α)-quantile of scores in the calibration set. Since we assume the
data samples are exchangeable, the marginal coverage of the prediction set Ĉn,α(Xn+1) is no less
than 1− α. We refer to (Vovk et al., 2005) for a more rigorous analysis of the prediction coverage.
2.2 FEDERATED CONFORMAL PREDICTION

In federated learning, multiple clients own their private data and collaboratively develop a global
model. Let K be the number of clients. We denote the data distribution of the k-th client
(k ∈ [K]) by P(k). Let {(X(k)

i , Y
(k)
i )}i∈[nk] ∼ P(k) be nk calibration (held-out) samples of

the k-th client. We denote (Xtest, Ytest) as the future test point sampled from the global distribution
Qtest = Qλ for some probability vector λ ∈ ∆K : (Xtest, Ytest)

IID∼ Qλ, Qλ =
∑K

k=1 λkP(k).
Let N =

∑K
k=1 nk be the total sample size and q̂α be the ⌈(1 − α)(N + K)⌉ largest value in

{(X(k)
i , Y

(k)
i )}i∈[nk],k∈[K]. Suppose that π̂ : Rd 7→ ∆C is the conditional class probability es-

timator trained with federated learning algorithms. FCP (Lu et al., 2023) proves that under the
assumption of partial exchangeability (Carnap & Jeffrey, 1980) and λk ∝ (nk + 1), the prediction
set Ĉα(Xtest) = {y ∈ Y : Sπ̂(Xtest, y) ≤ q̂α} is a valid conformal prediction set with the guarantee:

1− α ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+

K

N +K
. (2)

Due to the concerns of privacy and communication costs, it is not practical for all the agents to upload
the local non-conformity scores to the server for quantile value computation. Therefore, FCP (Lu
et al., 2023) leverages data sketching algorithms such as T-digest (Dunning, 2021) for distributed
quantile estimation. They prove that if the rank of quantile estimate q̂α is between (1−α−ϵ)(N+K)
and (1− α+ ϵ)(N +K), then the guarantee in Equation (2) can be corrected as the following:

1− α− ϵN + 1

N +K
≤ P

[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

K

N +K
. (3)

3 BYZANTINE-ROBUST FEDERATED CONFORMAL PREDICTION

3.1 PROBLEM SETUP

We follow the standard setup of FCP illustrated in Section 2.2 and consider the following Byzantine
threat model. Suppose that among K clients, there exist Kb benign clients and Km (Km = K−Kb)
malicious clients. Without loss of generality, let the clients indexed by [Kb] = {1, ...,Kb} be benign
clients and the clients indexed by [K]\[Kb] = {Kb+1, ...,K} be malicious clients. The k-th benign
clients (k ∈ [Kb]) leverage the collaboratively trained global model π̂ to compute the conformity
scores on its local calibration data set {(X(k)

i , Y
(k)
i )}i∈[nk] and then report the conformity score

statistics to the server. However, Km malicious clients can submit arbitrary score statistics to the
server. For the threat model, we attempt to develop a Byzantine robust FCP framework (Rob-FCP)
with which the coverage and prediction efficiency are not affected by malicious clients. We also
attempt to provide rigorous coverage guarantees of Rob-FCP in the Byzantine setting.

3.2 ROB-FCP ALGORITHM

Rob-FCP first identifies the set of malicious clients, excludes their score statistics, then computes
the empirical quantile of conformity scores, and finally performs conformal prediction.

Characterization of conformity scores. Let {s(k)j }j∈[nk] be the conformity scores computed by
the k-th client (k ∈ [K]). Since it is challenging to detect abnormal behavior from the unstructured
and unnormalized score samples, we first need to characterize the conformity scores {s(k)j }j∈[nk]

with a vector v(k) ∈ RH for client k, where H ∈ Z+ is the dimension of the vector and implicates
the granularity of the characterization. Specifically, we can partition the range of conformity score
values [0, 1] into H subintervals {[ah, ah+1)}0≤h≤H−2 ∪ {[aH−1, aH ]}, where ah denotes the h-
th cut point. For simplicity, we abuse the last interval [aH−1, aH ] as [aH−1, aH) in the future
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discussions. The h-th element of the characterization vector (v(k)
h ) equals the probability that the

conformity score lies in the corresponding subinterval [ah−1, ah) and can be estimated as:

v
(k)
h = P

s∼
{
s
(k)
j

}
j∈[nk]

[ah−1 ≤ s < ah] =
1

nk

nk∑
j=1

I
[
ah−1 ≤ s

(k)
j < ah

]
. (4)

The characterization vector v(k) basically presents the histogram statistics of the score samples and
follows an underlying multinomial distribution. The conformity scores of data samples from the
same distribution have high similarity, and thus the characterization vectors of benign clients with
homogeneous data also have high similarity. Therefore, the characterization vectors of malicious
clients can be distinguishable. Rob-FCP also flexibly allows for alternative approaches to charac-
terizing the empirical conformity score samples with a real-valued vector v. Alternatives include
kernel density estimation (Terrell & Scott, 1992) as a smooth generalization of histogram statistics,
parametric model fitting (e.g., Gaussian model), and exemplar representations by clustering algo-
rithms (e.g., KMeans). We empirically show that the histogram statistic in Equation (4) sufficiently
outperforms parametric models and clustering approaches and mainly adopt it in Rob-FCP.

Benefits of the characterization vector to the federated setting. The characterization vector v(k)

also benefits the federated setting to reduce the privacy leakage of local scores and reduce commu-
nication costs. Concretely, in the federated conformal prediction context, each client k computes the
conformity scores of its nk local data samples {s(k)j }. However, sending all the conformity scores

{s(k)j } to the server is expensive and leaks much information about local data samples. Therefore,

we characterize the scores {s(k)j } with a histogram statistics vector v(k), which computes score fre-
quency in H equally partitioned subintervals. The characterization vector v(k) has a much smaller
dimension than the universal scores {s(k)j } (H << nk) and thus leaks much less private information
during the communication between the server and clients. Thus, the characterization vector distance
computation on the server side also obeys the principle of federated learning for privacy-preserving
and communication efficiency.

Maliciousness score computation. We identify the malicious clients via a maliciousness score in
the space of characterization vectors. First, we compute the pairwise ℓp (p ∈ Z+) vector distance:

dk1,k2 = ∥v(k1) − v(k2)∥p, ∀k1, k2 ∈ [K]. (5)

Denote Near(k, t) as the t-nearest neighbors of client k (excluding itself), with the distance between
two clients k1 and k2 given by Equation (5). We define the maliciousness score M(·) : [K] 7→ R of
client k (k ∈ [K]) as the averaged distance to the clients in the Kb− 1 nearest neighbors, where Kb

is the number of benign clients:

M(k) =
1

Kb − 1

∑
k′∈Near(k,Kb−1)

dk,k′ . (6)

Then, we let the benign set identified by Rob-FCP BRob-FCP be the set of the index of the clients with
the lowest Kb maliciousness scores in {M(k)}Kk=1. Finally, we can perform quantile estimation
q̂α with the statistics of the clients in the benign set BRob-FCP and do conformal prediction with q̂α
on the distributedly trained global model. We provide the overview of Rob-FCP in Figure 4 in Ap-
pendix B and detailed pseudocode of the algorithm of malicious clients identification in Algorithm 1
in Appendix G.

In order to downgrade the global conformal prediction performance, malicious clients tend to report
conformity score statistics deviating from benign statistics. Accordingly, the characterization vectors
of malicious clients are also separable from the cluster of benign characterization vectors. Since
the maliciousness scores compute the averaged vector distance to Kb − 1 nearest neighbors, the
maliciousness scores of malicious clients are larger than those of benign clients when Kb > Km

holds (a general condition in Byzantine analysis (Blanchard et al., 2017)). Therefore, Rob-FCP
can effectively exclude the malicious statistics during conformal calibration and robustly generate
the conformal prediction set. We rigorously analyze Rob-FCP and provide the coverage bound of
Rob-FCP in the existence of a certain ratio of malicious clients in Section 3.3.

3.3 COVERAGE GUARANTEE OF ROB-FCP

In this section, we rigorously analyze the coverage bounds of Rob-FCP in the Byzantine setting
where there exist Km malicious clients among K clients. In Theorem 1, we provide the coverage
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guarantees in the IID federated setting where each client owns data sampled from the same global
distribution. We then adapt to a non-IID federated setting where clients have heterogeneous data
with bounded disparity and provide the coverage guarantees of Rob-FCP in Corollary 1. The the-
oretical results demonstrate that Rob-FCP asymptotically approaches the desirable coverage level
with sufficiently large sample sizes in both IID and non-IID settings. We keep the proof sketches
and defer the complete proofs to Appendix D.
Theorem 1 (Coverage guarantees of Rob-FCP in the IID setting). For K clients including Kb be-
nign clients and Km := K − Kb malicious clients, each client reports a characterization vector
v(k) ∈ ∆H (k ∈ [K]) and a quantity nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the reported
characterization vectors of benign clients are sampled from the same underlying multinomial dis-
tribution D, while those of malicious clients can be arbitrary. We bound the concentration of the
characterization vectors with the binomial proportion confidence interval Wallis (2013). Let ϵ be
the estimation error of the data sketching by characterization vectors as illustrated in Equation (3).
Under the assumption that Km < Kb, the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
,

(7)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the
minimal sample size of benign clients, and Φ−1(·) denotes the inverse of the cumulative distribution
function (CDF) of standard normal distribution.
Proof sketch. We first leverage statistical confidence intervals and union bounds to conduct con-
centration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb). Then
we consider the maliciousness scores of special points and relax the histogram statistics error of
Rob-FCP. We finally translate the error of aggregated statistics to the error of the coverage bounds.
Remark. In Equation (7), the lower bound and upper bound of P[Ytest ∈ Ĉα(Xtest)] are asymptoti-
cally close to the desired coverage level 1 − α as the minimal benign sample size nb is sufficiently
large and estimation error of data sketching ϵ is sufficiently small. This implies the robustness of
Rob-FCP since the guaranteed coverage level is still valid and tight in the Byzantine setting under
these mild conditions. Note that we assume τ < 1 (i.e.,Km < Kb), which requires that the number
of malicious clients is smaller than benign clients. The assumption aligns with the break point of
⌈K/2⌉ in Byzantine analysis (Blanchard et al., 2017; Yin et al., 2018; Guerraoui et al., 2018). From
Equation (7), we can also conclude that a larger ratio of malicious clients τ and a larger sample
size of malicious clients Nm can induce a larger gap between the upper bound and the lower bound,
which implies a larger prediction set and higher quantification uncertainty in practice. ϵ quantifies
the approximation error of the quantile computation induced by the data sketch and can be con-
trolled by adjusting the granularity of the partitions H . Note that the appearance of 1/nb is indeed
due to the artifact of the proof. One can replace nb with the summation of the smallest Kb −Km

benign sample sizes according to the proof. In practice, if a benign client has an extremely small
sample size, then the characterization vector is almost useless for malicious client identification, and
the influence on the conformal calibrated quantile is also negligible as FCP performs a weighted
calibration based on sample sizes of clients. Therefore, for the extreme case of some benign clients
with extremely small sample sizes (e.g., less than 10), it is more meaningful to discard their scores
and apply Rob-FCP to the remaining clients, which is more beneficial to malicious client detection
and only leads to negligible error for conformal calibration. We also provide results with more
advanced concentration bounds DKW inequality (Dvoretzky et al., 1956) in Theorem 5.

Next, we provide the coverage bound of Rob-FCP in the non-IID setting. To achieve it, we need to
assume a bounded disparity of benign clients.
Assumption 3.1 (Bounded distribution disparity of benign clients). Suppose that the characteriza-
tion vector v(k) is sampled from multinomial distribution Dk with the event probability v(k) for the
k-th client (k ∈ [K]). We assume bounded distribution disparity among benign clients:

∥v(k1) − v(k2)∥p ≤ σ, ∀k1, k2 ∈ [Kb]. (8)

Assumption 3.1 requires that the mean characterization vector of benign clients is not far away
from each other with the metric of ℓp norm distance. The assumption is quite standard, typical,
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and not simplified across the literature of non-IID federated learning analysis (Xiang et al., 2020)
and Byzantine analysis (Park et al., 2021; Data & Diggavi, 2021). Concretely, Xiang et al.; Park
et al.; Data & Diggavi quantify the non-iid degree (i.e., disparity) of local loss or gradients of clients
and then provide the convergence guarantee of federated optimization as a function of the disparity
quantity. Similarly, we assume a bounded disparity of score statistics quantified with σ and will
accordingly provide the coverage guarantees of Rob-FCP in the non-IID setting as a function of σ.
The assumption is also essential since, without a quantity to restrict the disparity in local behavior,
the local behavior can vary arbitrarily, and we can not control global performance quantitatively.

Then we can provide the statement of the coverage bound of Rob-FCP in the non-IID setting.
Corollary 1 (Coverage guarantees of Rob-FCP in the non-IID setting). Under the same definitions
and conditions in Theorem 1 and with Assumption 3.1, the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
− Nm

nb

σ

1− τ
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
.

(9)

Proof sketch. The sketch follows the proof of Theorem 1 except that we further consider bounded
distribution disparity of benign clients during concentration analysis of the characterization vectors.
Remark. The lower and upper bound of coverage in Equation (9) also asymptotically approaches the
desired coverage level 1−α as the minimal benign sample size nb is sufficiently large and estimation
error of data sketching ϵ is sufficiently small, which implies the robustness of Rob-FCP in the non-
IID setting. Furthermore, a larger distribution disparity σ can induce a larger gap between the lower
bound and upper bound and thus a larger prediction set with high quantification uncertainty. This
shows that high heterogeneity among clients will pose more difficulty in Byzantine-robust federated
conformal prediction, but as long as the disparity is bounded, the coverage bound is still asymp-
totically valid and tight with Rob-FCP. We also provide results with more advanced concentration
bounds DKW inequality (Dvoretzky et al., 1956) in Corollary 3.

4 ROB-FCP WITH UNKNOWN NUMBERS OF MALICIOUS CLIENTS

4.1 MALICIOUS CLIENT NUMBER ESTIMATOR

The number of malicious clients Km is typically a known quantity for the defender in the standard
Byzantine setting (Blanchard et al., 2017; Park et al., 2021; Liu et al., 2023). The number of ma-
licious clients is a critical quantity for the defense. An overestimation of the quantity will involve
malicious clients that attempt to deteriorate the global performance, while an underestimation of the
quantity will exclude benign clients and induce a global distribution shift with heterogeneous data
in the non-IID setting. However, the number of malicious clients is usually agnostic to the server
in practice. Therefore, we propose a malicious client number estimator for Rob-FCP to unleash its
potential in a more challenging Byzantine setting with unknown numbers of malicious clients.

To estimate the number of malicious clients Km, it is sufficient to estimate the number of benign
clients Kb as we assume the total number of clients K is a known quantity. Towards that, we should
maximize the likelihood of benign characterization vectors while minimizing the likelihood of ma-
licious characterization vectors over the number of benign clients K̂b. The discrete optimization
can be tackled by traversing the finite feasible set, but the challenge lies in the computation of the
likelihood, which requires a specified distribution of benign characterization vectors. Since the be-
nign characterization vector v(k) (k ∈ [Kb]) follows a multinomial distribution and the multinomial
distribution can be approximated with multivariate normal distribution with large sample sizes (Sev-
erini, 2005), we assume the benign characterization vectors are drawn from a multivariate normal
distribution N (µ,Σ) with mean µ ∈ RH and covariance Σ ∈ RH×H . For a given benign client
number K̃b, we can leverage the Rob-FCP algorithm illustrated in Section 3.2 to identify the set
of benign clients, which enables different likelihood computations for benign clients and malicious
clients individually. Let I(·) : [K] 7→ [K] be the mapping from the rank of clients sorted by the
maliciousness scores to the original index. The estimate of the benign client number K̂b is given by:

K̂b = argmax
z∈[K]

[
1

z

z∑
k=1

log p(v(I(k)); µ̂(z), Σ̂(z))− 1

K − z

K∑
k=z+1

log p(v(I(k)); µ̂(z), Σ̂(z))

]
, (10)
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where µ̂(z) =
1

z

∑
k∈[z] v

(I(k)), Σ̂ = Ek∈[z]

[
(v(I(k)) − µ̂(z))T (v(I(k)) − µ̂(z))

]
are the empirical

mean and covariance, and p(v;µ,Σ) computes the likelihood of multivariate normal distribution as
p(v;µ,Σ) = exp

(
−1/2(v − µ)TΣ−1(v − µ)

)
/
√
(2π)H |Σ|. The discrete optimization in Equa-

tion (10) essentially searches for K̂b such that the vectors of K̂b clients with the lowest maliciousness
scores (i.e., more likely to be benign clients) have a high likelihood to conform the normal distri-
bution, while the vectors of remaining clients (i.e., more likely to be malicious clients) have a low
likelihood to conform the normal distribution. Note that we can use the estimated K̂b as the input
parameter K̃b in Rob-FCP in the next step and repeat the optimization iteratively.

4.2 ANALYSIS OF MALICIOUS CLIENT NUMBER ESTIMATOR

In this part, we theoretically show the precision of benign client number estimate in Equation (10).

Theorem 2 (Probability of correct malicious client number estimate). Assume v(k) (k ∈ [Kb]) are
IID sampled from Gaussian N (µ,Σ) with mean µ ∈ RH and positive definite covariance matrix
Σ ∈ RH×H . Let d := mink∈[K]\[Kb] ∥v(k) − µ∥2. Suppose that we use ℓ2 norm to measure vector
distance and leverage the malicious client number estimator with an initial guess of a number of
benign clients K̃b such that Km < K̃b < Kb. Then we have:

P
[
K̂b = Kb

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
− 2(K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
, (11)

where σmax(Σ
−1/2), σmin(Σ

−1/2) denote the maximal and minimal eigenvalue of matrix Σ−1/2, and
Tr(Σ) denotes the trace of matrix Σ.

Proof sketch. We first analyze the tail bound of the multivariate normal distribution as (Vershynin,
2018), and then derive the probabilistic relationships between the maliciousness scores of benign
clients and those of malicious clients using the tail bounds. We finally upper bound the probability
of overestimation and underestimation by opening up the probability formulations.
Remark. The lower bound in Equation (11) positively correlates with the minimal distance between
the malicious characterization vector to the mean µ and is asymptotically close to 1 when the mini-
mal distance d is sufficiently large. It implies that when the malicious characterization vector is far
away from the benign cluster (i.e., a large d), the malicious client number estimator has a high prob-
ability of accurate estimation. The lower bound in Equation (11) also shows that when the initial
guess K̃b is closer to Kb, the lower bound of accurate estimation probability is higher, demonstrating
the effectiveness of iterative optimization using Equation (10). Note that the condition of the initial
guess Km < K̃b < Kb is satisfiable by simply setting K̃b = ⌈K/2⌉.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We evaluate Rob-FCP on computer vision datasets including MNIST (Deng, 2012),
CIFAR-10 (Krizhevsky et al.), and Tiny-ImageNet (T-ImageNet) (Le & Yang, 2015). We addi-
tionally evaluate Rob-FCP on two realistic healthcare datasets, including SHHS (Zhang et al., 2018)
and PathMNIST (Yang et al., 2023).

Non-IID data construction. We follow the standard evaluation setup of non-IID federated learning
by sampling different label ratios for different clients from the Dirichlet distribution as the literature
(Yurochkin et al., 2019; Lin et al., 2020; Wang et al., 2020; Gao et al., 2022). Concretely, we sample
pc,j ∼ Dir(β) and allocate a pc,j proportion of the instances with class c to the client j. Here Dir(·)
denotes the Dirichlet distribution and β is a concentration parameter (β ¿ 0). An advantage of this
approach is that we can flexibly change the imbalance level by varying the concentration parameter
β. If β is set to a smaller value, then the partition is more unbalanced. We fixed the imbalance
level β as 0.5 without specification. We also consider alternative approaches to construct non-IID
data with demographic differences in federated learning. Concretely, we split the SHHS dataset by
sorting five different attributes wake time, N1, N2, N3, REM.

Byzantine attacks. To evaluate the robustness of Rob-FCP in the Byzantine setting, we compare
Rob-FCP with the baseline FCP (Lu et al., 2023) under three types of Byzantine attacks: (1) cov-
erage attack (CovAttack) with which malicious clients report the upper bound th conformity scores
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Table 1: Marginal coverage / average set size under different Byzantine attacks with 40% (Km/K =
40%) malicious clients. The desired marginal coverage is 0.9. The results whose coverage rates
closer to the all-benign-client scenario (shown in Table 6) are in bold. Note that here, it is not
always the case that a smaller prediction set is better, as our goal is to identify the prediction set that
would have been issued, when no client is malicious.

Attack Coverage Attack Efficiency Attack Gaussian Attack
Method FCP Rob-FCP FCP Rob-FCP FCP Rob-FCP

II
D

MNIST 0.832 / 0.834 0.899 / 0.903 1.000 / 10.00 0.901 / 0.907 0.979 / 1.025 0.908 / 0.913
CIFAR-10 0.831 / 1.189 0.906 / 1.641 1.000 / 10.00 0.902 / 1.617 0.916 / 1.733 0.899 / 1.609

T-ImageNet 0.830 / 12.97 0.898 / 21.65 1.000 / 200.0 0.903 / 22.63 0.918 / 25.69 0.906 / 24.15
SHHS 0.834 / 1.093 0.899 / 1.354 1.000 / 6.000 0.900 / 1.359 0.937 / 1.611 0.901 / 1.366

PathMNIST 0.840 / 0.997 0.907 / 1.259 1.000 / 9.000 0.901 / 1.228 1.000 / 6.632 0.909 / 1.275

no
n-

II
D

MNIST 0.805 / 1.284 0.899 / 1.783 1.000 / 10.00 0.902 / 1.804 0.941 / 2.227 0.923 / 2.182
CIFAR-10 0.829 / 1.758 0.897 / 2.319 1.000 / 10.00 0.892 / 2.351 0.970 / 3.863 0.921 / 2.623

T-ImageNet 0.825 / 27.84 0.903 / 43.47 1.000 / 200.0 0.904 / 43.68 0.942 / 61.50 0.928 / 54.91
SHHS 0.835 / 1.095 0.901 / 1.365 1.000 / 6.000 0.901 / 1.366 0.937 / 1.609 0.900 / 1.359

PathMNIST 0.837 / 1.055 0.900 / 1.355 1.000 / 9.000 0.900 / 1.344 1.000 / 6.935 0.926 / 1.585
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Figure 2: Results of malicious client number estimation and conformal prediction performance
in the setting with unknown numbers of malicious clients. The green horizontal line denotes the
benign conformal performance. Rob-FCP estimates the number of malicious clients faithfully, and
generally provides an empirical coverage rate matching the target.

(e.g., 1 for the mostly used LAC score) to induce a larger conformity score at the desired quantile
and a lower coverage accordingly, (2) efficiency attack (EffAttack) with which malicious clients re-
port the lower bound of the conformity scores (e.g., 0 for the mostly used LAC score) to induce a
lower conformity score at the quantile and a larger prediction set, and (3) Gaussian Attack (GauAt-
tack) with which malicious clients inject random Gaussian noises with standard deviation 0.5 to the
scores to perturb the conformal calibration.

Evaluation metric. Consider the global test data setDtest = {(Xi, Yi)}Ntest
i=1 . Let Cα(Xi) be the con-

formal prediction set given test sample Xi and desired coverage level 1−α. We consider the metrics
of marginal coverage

∑Ntest
i=1 I [Yi ∈ Cα(Xi)] /Ntest and the average set size

∑Ntest
i=1 |Cα(Xi)| /Ntest.

Without specification, the desired coverage level 1 − α is set 0.9 across evaluations. We provide
more details of experiment setups in Appendix H.1.

5.2 EVALUATION RESULTS

Byzantine robustness of Rob-FCP in the IID and non-IID settings. We evaluate the marginal
coverage and average set size of Rob-FCP under coverage, efficiency, and Gaussian Attack and
compare the results with the baseline FCP. We present results of FCP and Rob-FCP in existence
of 40% (Km/K = 40%) malicious clients on MNIST, CIFAR-10, Tiny-ImageNet (T-ImageNet),
SHHS, and PathMNIST in Table 1. The coverage of FCP deviates drastically from the desired
coverage level 0.9 under Byzantine attacks, along with a deviation from the benign set size. In
contrast, Rob-FCP achieves comparable marginal coverage and average set size in both IID and
non-IID settings. Note that while in general a smaller prediction set is preferred, here the underlying
global model is the same, so the same coverage always corresponds to the same set size. The goal
here is, however, to identify the correct threshold that achieves our original coverage target (90%).
We demonstrate the Byzantine robustness of Rob-FCP with different ratios of malicious clients
(30%, 20%, 10%) in Table 7 in Appendix H.2.

Rob-FCP with unknown numbers of malicious clients. In Section 4, we consider a more chal-
lenging Byzantine setting where the number of malicious clients is unknown to the defender and
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propose the malicious client number estimator to predict the size. Now we directly evaluate the pre-
cision of the malicious client number estimator and conformal prediction performance of Rob-FCP
in this setting. The results in Figure 2 demonstrate that the malicious client number estimate (K̂m)
matches the true number of malicious clients (Km) very well, inducing a more desirable marginal
coverage and average set size (i.e., closer to the benign performance) than FCP in the IID setting
under coverage attack. We also demonstrate the conclusion in both IID and non-IID settings on all
five datasets with various Byzantine attacks in Table 8 in Appendix H.2.

Figure 3: Coverage bounds of Rob-FCP
(Theorem 1) in the IID settings on Tiny-
ImageNet.

Validation of coverage bounds of Rob-FCP. In Theo-
rem 1, we provide the lower bound and upper bound of
the coverage rate of Rob-FCP as a function regarding the
malicious client number ratio τ = Km/Kb and sample
sizes of clients. In Figure 3, we validate the coverage
bounds in the IID settings on Tiny-ImageNet by compar-
ing the theoretical bound and empirical marginal cover-
age under Gaussian attacks with different variances. The
results show that the coverage bound is valid and tight,
especially for a small maliciousness ratio τ . By Equa-
tion (7), a large ratio τ amplifies the finite-sample er-
ror and induces inflation of the bounds, but the bounds
asymptotically approach the desired coverage 0.9 with
sufficiently large sample sizes.

Robustness of Rob-FCP with different conformity scores. Besides applying LAC nonconformity
scores, we also evaluate Rob-FCP with APS scores (Romano et al., 2020). The results in Figures 5
to 10 in Appendix H.2 demonstrate the Byzantine robustness of Rob-FCP with APS scores.

Ablation study of different conformity score distribution characterization. One key step in
Rob-FCP is to characterize the conformity score distribution based on empirical observations. We
adopt the histogram statistics approach as Equation (4). One can also sketch the score samples with
cluster centers by clustering algorithms such as KMeans. Another alternative is to use a parametric
approach such as fitting a Gaussian distribution to the score samples and characterizing them with
the Gaussian mean and variances. We empirically compare different approaches in Figures 11 and 12
in Appendix H.2 and show that the histogram statistics approach achieves the best performance. We
also provide ablation studies of different distance measurements in Figure 13 in Appendix H.2.

We included more evaluations of Rob-FCP on results with different non-IID construction, runtime
of quantile computation, and results with incorrect numbers of malicious clients in Appendix H.2.

6 RELATED WORK

Conformal prediction is a statistical tool to construct the prediction set with guaranteed prediction
coverage (Jin et al., 2023; Solari & Djordjilović, 2022; Yang & Kuchibhotla, 2021; Romano et al.,
2020; Barber et al., 2021), assuming exchangeable data. Recently, federated conformal predic-
tion (FCP) (Lu & Kalpathy-Cramer, 2021; Lu et al., 2023) adapts the conformal prediction to the
federated learning and provides a rigorous guarantee of the distributed uncertainty quantification
framework. DP-FCP (Plassier et al., 2023) proposes federated CP with differential privacy guaran-
tees and provides valid coverage bounds under label shifting among clients. Humbert et al. propose
a quantile-of-quantiles estimator for federated conformal prediction with a one-round communica-
tion and provide a locally differentially private version. WFCP (Zhu et al., 2023) applies FCP to
wireless communication. However, no prior works explore the robustness of FCP against Byzantine
agents which can report malicious statistics to downgrade the conformal prediction performance.
We are the first to propose a robust FCP method with valid and tight coverage guarantees.

7 CONCLUSION

In this paper, we propose Rob-FCP, a certifiably Byzantine-robust federated conformal prediction
algorithm with rigorous coverage guarantees in both IID and non-IID settings. Rob-FCP sketches
the local samples of conformity scores with characterization vectors and detects the malicious clients
with distance measurements in the vector space. We empirically show the robustness of Rob-FCP
against Byzantine failures on five datasets and validate the theoretical coverage bounds in practice.
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Ethics statement. We do not see potential ethical issues about Rob-FCP. In contrast, Rob-FCP
is a robust framework against malicious clients in the federated conformal prediction settings and
can safeguard the applications of FCP in safety-critical scenarios such as healthcare and medical
diagnosis.

Reproducibility statement. The reproducibility of Rob-FCP span theoretical and experimental
perspectives. We provide complete proofs of all the theoretical results in Appendix D and include
insightful proof sketches in the main texts. We include implementation details in Appendix H.1
and upload the source codes for implementing Rob-FCP and reproducing experiment results as
supplementary materials.
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Figure 4: Overview of Rob-FCP. In this example, we have a non-REM stage 1 (N1) EEG recording,
which is a hard and rare class often confused with non-REM stage 2 (N2).

A LIMITATIONS AND FUTURE WORKS

One possible limitation of Rob-FCP may lie in the restriction of the targeted Byzantine threat model.
We mainly consider the Byzantine setting where a certain ratio of malicious clients reports arbitrary
conformity score statistics. In such a Byzantine case, the break point is ⌈K/2⌉, indicating that any
algorithm cannot tolerate ⌈K/2⌉ or more malicious clients. However, in practice, malicious clients
have the flexibility of only manipulating partial conformity scores. In this case, the potential break
point is a function of the maximal ratio of manipulated scores for each client and can be larger than
⌈K/2⌉. Therefore, it is interesting for future work to analyze the break point of robust FCP algo-
rithms with respect to the total manipulation sizes and budgets of manipulation sizes for each client.
Another threat model worthy of exploration in future work is the adversarial setting in FCP. In the
adversarial setting, malicious clients can only manipulate the data samples instead of the conformity
scores to downgrade the FCP performance. Therefore, potential defenses can consider adversarial
conformal training procedures to collaboratively train a robust FCP model against perturbations in
the data space.

To provide differential privacy guarantees of Rob-FCP, one practical approach is to add privacy-
preserving noises to the characterization vectors before uploading them to the server. Essentially,
we can view the characterization vector as the gradient in the setting of FL with differential privacy
(DP) and add Gaussian noises to the characterization vector with differential privacy guarantees
as a function of the scale of noises, which can be achieved by drawing analogy from the FL with
DP setting (Zheng et al., 2021; Andrew et al., 2021; Zhang et al., 2022). Therefore, practically
implementing the differential-private version of Rob-FCP is possible and straightforward.

B OVERVIEW OF ROB-FCP

We provide an overview of Rob-FCP in Figure 4.

C MORE RELATED WORK

Byzantine learning (Driscoll et al., 2003; Awerbuch et al., 2002; Lamport et al., 2019) refers to
methods that can robustly aggregate updates from potentially malicious or faulty worker nodes in the
distributed setting. Specifically, a line of works (Guerraoui et al., 2018; Pillutla et al., 2022; Data &
Diggavi, 2021; Karimireddy et al., 2020; Yi et al., 2022) studies the resilience to Byzantine failures
of distributed implementations of Stochastic Gradient Descent (SGD) and proposes different metrics
to identify malicious gradients such as gradient norm (Blanchard et al., 2017) and coordinate-wise
trimmed mean (Yin et al., 2018). However, the metrics are designed for the stability and convergence
of distributed optimization and cannot be applied to the Byzantine FCP setting to provide rigorous
coverage guarantees. In contrast, we propose Rob-FCP to perform Byzantine-robust distributed
uncertainty quantification and provide valid and tight coverage bounds theoretically.
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D OMITTED PROOFS

D.1 PROOF OF THEOREM 1

Theorem 3 (Restatement of Theorem 1). For K clients including Kb benign clients and Km :=
K − Kb malicious clients, each client reports a characterization vector v(k) ∈ ∆H (k ∈ [K])
and a quantity nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the reported characterization
vectors of benign clients are sampled from the same underlying multinomial distribution D, while
those of malicious clients can be arbitrary. Let ϵ be the estimation error of the data sketching by
characterization vectors as illustrated in Equation (3). Under the assumption that Km < Kb, the
following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
.

(12)
where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the
minimal sample size of benign clients, and Φ−1(·) denotes the inverse of the cumulative distribution
function (CDF) of standard normal distribution.

Proof. The proof consists of 3 parts: (a) concentration analysis of the characterization vectors v(k)

for benign clients (1 ≤ k ≤ Kb), (b) analysis of the algorithm of the identification of malicious
clients, and (c) analysis of the error of the coverage bound.

Part (a): concentration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤
Kb).

Let v(k)
h be the h-th element of vector v(k). By definition, since v(k) is sampled from a multinomial

distribution, v(k)
h denotes the success rate estimate of a Bernoulli distribution. We denote the event

probabilities of the multinomial distributionD as v. Therefore, the true success rate of the Bernoulli
distribution at the h-th position is vh. According to the binomial proportion confidence interval
Wallis (2013), we have:

P
[∣∣∣v(k)

h − vh

∣∣∣ > Φ−1(1− β/2HKb)

√
nksnkf

nk
√
nk

]
≤ β/HKb, (13)

where β/HKb is the probability confidence, Φ−1(·) denotes the inverse of the CDF of the stan-
dard normal distribution, and nks and nkf := nk − nks are the number of success and failures
in nk Bernoulli trials, respectively. Applying the inequality nksnkf ≤ n2

k/4 in Equation (13), the
following holds:

P
[∣∣∣v(k)

h − vh

∣∣∣ > Φ−1(1− β/2HKb)

2
√
nk

]
≤ β/HKb. (14)

Applying the union bound for H elements in vector v(k) and Kb characterization vectors of benign
clients, the following holds with probability 1− β:∣∣∣v(k)

h − vh

∣∣∣ ≤ Φ−1(1− β/2HKb)

2
√
mink′∈[Kb] nk′

, ∀k ∈ [Kb], ∀h ∈ [H], (15)

from which we can derive the bound of difference for ℓ1 norm distance as:∥∥∥v(k) − v
∥∥∥
1
≤ r(β) :=

HΦ−1(1− β/2HKb)

2
√
mink′∈[Kb] nk′

, ∀k ∈ [Kb], (16)

where r(β) is the perturbation radius of random vector v given confidence level 1 − β. ∀k1, k2 ∈
[Kb], the following holds with probability 1− β due to the triangular inequality:∥∥∥v(k1) − v(k2)

∥∥∥
1
≤
∥∥∥v(k1) − v

∥∥∥
1
+
∥∥∥v(k2) − v

∥∥∥
1
≤ 2r(β). (17)
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Furthermore, due to the fact that ∥v∥p ≤ ∥v∥1 for any integer p ≥ 1, the following holds with
probability 1− β: ∥∥∥v(k) − v

∥∥∥
p
≤
∥∥∥v(k) − v

∥∥∥
1
≤ r(β), (18)∥∥∥v(k1) − v(k2)

∥∥∥
p
≤
∥∥∥v(k1) − v(k2)

∥∥∥
1
≤ 2r(β). (19)

Part (b): analysis of the algorithm of the identification of malicious clients.

Let N(k, n) be the set of the index of n nearest clients to the k-th client based on the metrics of ℓp
norm distance in the space of characterization vectors. Then the maliciousness scores M(k) for the
k-th client (k ∈ [K]) can be defined as:

M(k) :=
1

Kb − 1

∑
k′∈N(k,Kb−1)

∥∥∥v(k) − v(k′)
∥∥∥
p
. (20)

Let B be the set of the index of benign clients identified by Algorithm 1 by selecting the clients
associated with the lowest Kb maliciousness scores. We will consider the following cases separately:
(1) B contains exactly Kb benign clients, and (2) B contains at least one malicious client indexed by
m.

Case (1): B (|B| = Kb) contains exactly Kb benign clients. We can derive as follows:∥∥∥∥∥
Kb∑
k=1

nk

Nb
v(k) − v

∥∥∥∥∥
p

≤
Kb∑
k=1

nk

Nb

∥∥∥v(k) − v
∥∥∥
p

[triangular inequality] (21)

≤
Kb∑
k=1

nk

Nb
r(β) [by Equation (18)] (22)

= r(β), (23)

where Nb :=
∑

k∈[Kb]
nk is the total sample size of benign clients.

Case (2): B (|B| = Kb) contains at least one malicious client indexed by m. Since we assume
Km < Kb, there are at most Kb − 1 malicious clients in B. Therefore, there is at least 1 benign
client in [K]\B indexed by b. We can derive the lower bound of the maliciousness score for the m-th
client M(m) as:

M(m) =
1

Kb − 1

∑
k′∈N(m,Kb−1)

∥∥∥v(m) − v(k′)
∥∥∥
p

(24)

≥ 1

Kb − 1

∑
k′∈N(m,Kb−1),k′∈[Kb]

∥∥∥v(m) − v(k′)
∥∥∥
p
. (25)

Since there are at least Kb −Km benign clients in B (there are at most Km malicious clients in B),
there exists one client indexed by bb (bb ∈ B) such that:∥∥∥v(m) − v(bb)

∥∥∥
p
≤ (Kb − 1)M(m)

Kb −Km
(26)

We can derive the upper bound of the maliciousness score for the b-th benign client M(b) as:

M(b) =
1

Kb − 1

∑
k′∈N(b,Kb−1)

∥∥∥v(b) − v(k′)
∥∥∥
p

(27)

≤ 2r(β) [by Equation (19)] (28)

Since the m-th client is included in B and identified as a benign client, while the b-th client is not in
B, the following holds according to the procedure in Algorithm 1:

M(b) ≥M(m), (29)
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from which we can derive the following by combining Equation (26) and Equation (28):∥∥∥v(m) − v(bb)
∥∥∥
p
≤ (Kb − 1)2r(β)

Kb −Km
(30)

Then, we can derive the upper bound of
∥∥v(m) − v

∥∥
p
, ∀m ∈ B and Kb < m ≤ K as follows:∥∥∥v(m) − v

∥∥∥
p
≤
∥∥∥v(m) − v(bb)

∥∥∥
p
+
∥∥∥v(bb) − v

∥∥∥
p

(31)

≤ 2(Kb − 1)r(β)

Kb −Km
+ r(β) (32)

Finally, we can derive as follows:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤
∑
k∈B

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(33)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p
+

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(34)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

[
2(Kb − 1)r(β)

Kb −Km
+ r(β)

]
(35)

≤ r(β) +
∑

k∈B,k∈[K]\[Kb]

nk

NB

2(Kb − 1)r(β)

Kb −Km
(36)

≤ r(β)

(
1 +

Nm

mink′∈[Kb] nk′

2

1− τ

)
, (37)

where Nm :=
∑

k∈[K]\[Kb]
nk is the total sample size of malicious clients, NB is the total sample

size of clients in B, and τ :=
Km

Kb
is the ratio of the number of malicious clients to the number of

benign clients.

Combining case (1) and case (2), we can conclude that:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤ max

{
1, 1 +

Nm

mink′∈[Kb] nk′

2

1− τ

}
r(β) (38)

=

(
1 +

Nm

mink′∈[Kb] nk′

2

1− τ

)
r(β) (39)

Part (c): analysis of the error of the coverage bound. In this part, we attempt to translate the error of
aggregated vectors induced by malicious clients to the error of the bound of marginal coverage. Let
F1(q,v) :=

∑H
j=1 I [aj < q]vj , where q ∈ [0, 1] and aj is the j-th partition point used to construct

the characterization vector v ∈ ∆H . Let F2(q,v) :=
∑H

j=1 I [aj−1 < q]vj . Then by definition, we

know that F1(qα,v) ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
≤ F2(qα,v), where qα is the true (1 − α) quantile

value of the non-conformity scores, v is the event probability of the multinormial distributionD, and
Ĉα(Xtest) is the conformal prediction set of input Xtest using the true benign calibrated conformity
score qα and statistics of score distribution v.

Let q̂α be the quantile estimate during calibration. FCP (Lu et al., 2023) proves that if the rank of
quantile estimate q̂α is between (1− α− ϵ)(N +K) and (1− α+ ϵ)(N +K), then we have:

F1(q̂α,v) ≥ 1− α− ϵNB + 1

NB +Kb
, F2(q̂α,v) ≤ 1− α+ ϵ+

Kb

NB +Kb
. (40)

Now we start deriving the error of F1(·, ·) induced by the malicious clients. Let v̂ :=
∑

k∈B
nk

N
v(k)

be the estimated mean of characterization vector. Based on the results in part (b), we can derive as
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follows:

|F1(q̂α,v)− F1(q̂α, v̂)| =

∣∣∣∣∣∣
H∑
j=1

I [aj < q̂α]vj −
H∑
j=1

I [aj < q̂α] v̂j

∣∣∣∣∣∣ (41)

≤
H∑
j=1

I [aj < q̂α] |vj − v̂j | (42)

≤ ∥v − v̂∥1 (43)

≤
(
1 +

Nm

mink′∈[Kb]nk′

2

1− τ

)
r(β) (44)

From triangular inequalities, we have:

F1(q̂α,v)− |F1(q̂α,v)− F1(q̂α, v̂)| ≤ F1(q̂α, v̂) ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
. (45)

Similarly, we can derive that |F2(q̂α,v)− F2(q̂α, v̂)| ≤
(
1 +

Nm

mink′∈[Kb]nk′

2

1− τ

)
r(β) and

have:

F2(q̂α,v) + |F2(q̂α,v)− F2(q̂α, v̂)| ≥ F2(q̂α, v̂) ≥ P
[
Ytest ∈ Ĉα(Xtest)

]
. (46)

Plugging in the terms in Equations (40) and (44) and leveraging the fact NB ≥ nb, we finally
conclude that the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
.

(47)
where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the
minimal sample size of benign clients, and Φ−1(·) denotes the inverse of the cumulative distribution
function (CDF) of standard normal distribution.

D.2 PROOF OF COROLLARY 1

Corollary 2 (Restatement of Corollary 1). For K clients including Kb benign clients and Km :=
K −Kb malicious clients, each client reports a characterization vector v(k) ∈ ∆H (k ∈ [K]) and
a quantity nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the reported characterization vectors
of benign client k (k ∈ [Kb]) are sampled from a multinomial distribution Dk, while those of
malicious clients are arbitrary. Under the assumption that the disparity of multinomial distribution
Dk (k ∈ [Kb]) is bounded as in Assumption 3.1. Let ϵ be the estimation error of the data sketching
by characterization vectors as illustrated in Equation (3). Then with probability 1−β, the following
holds:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
− Nm

nb

σ

1− τ
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
.

(48)
where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the
minimal sample size of benign clients, and Φ−1(·) denotes the inverse of CDF of the standard normal
distribution.

19



Under review as a conference paper at ICLR 2024

Proof. The general structure of the proof follows the proof of Theorem 1. We will omit similar
derivation and refer to the proof of Theorem 1 for details. The proof consists of 3 parts: (a) concen-
tration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb), (b) analysis of
the algorithm of the identification of malicious clients, and (c) analysis of the error of the coverage
bound.

Part (a): concentration analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤
Kb).

Let v(k) be the event probability of the multinormial distribution D(k) for k ∈ [Kb]. By applying
binomial proportion approximate normal confidence interval and union bound as in Part (a) in the
proof of Theorem 1, with confidence 1− β, we have:∥∥∥v(k) − v(k)

∥∥∥
1
≤ r(β) :=

HΦ−1(1− β/2HKb)

2
√

mink′∈[Kb] nk′
, ∀k ∈ [Kb], (49)

where r(β) is the perturbation radius of random vector v(k) given confidence level 1−β. ∀k1, k2 ∈
[Kb], we can upper bound the ℓp norm distance between v(k1) and v(k2) as:∥∥∥v(k1) − v(k2)

∥∥∥
p
≤
∥∥∥v(k1) − v(k1)

∥∥∥
p
+
∥∥∥v(k1) − v(k2)

∥∥∥
p
+
∥∥∥v(k2) − v(k1)

∥∥∥
p

(50)

≤
∥∥∥v(k1) − v(k1)

∥∥∥
1
+
∥∥∥v(k1) − v(k2)

∥∥∥
p
+
∥∥∥v(k2) − v(k1)

∥∥∥
1

(51)

≤ 2r(β) + σ, (52)

where Equation (52) holds by Equation (49) and Assumption 3.1.

Part (b): analysis of the algorithm of the identification of malicious clients.

Let N(k, n) be the set of the index of n nearest clients to the k-th client based on the metrics of ℓp
norm distance in the space of characterization vectors. Then the maliciousness scores M(k) for the
k-th client (k ∈ [K]) can be defined as:

M(k) :=
1

Kb − 1

∑
k′∈N(k,Kb−1)

∥∥∥v(k) − v(k′)
∥∥∥
p
. (53)

Let B be the set of the index of benign clients identified by Algorithm 1 by selecting the clients
associated with the lowest Kb maliciousness scores. We will consider the following cases separately:
(1) B contains exactly Kb benign clients, and (2) B contains at least one malicious client indexed by
m.

Case (1): B (|B| = Kb) contains exactly Kb benign clients. We can derive as follows:∥∥∥∥∥
Kb∑
k=1

nk

Nb
v(k) −

Kb∑
k=1

nk

Nb
v(k)

∥∥∥∥∥
p

≤
Kb∑
k=1

nk

Nb

∥∥∥v(k) − v(k)
∥∥∥
p

(54)

≤
Kb∑
k=1

nk

Nb
r(β) (55)

= r(β), (56)

where Nb :=
∑

k∈[Kb]
nk is the total sample size of benign clients.

Case (2): B (|B| = Kb) contains at least one malicious client indexed by m. Since we assume
Km < Kb, there are at most Kb − 1 malicious clients in B. Therefore, there is at least 1 benign
client in [K]\B indexed by b. From the fact that M(m) ≤ M(b) and expanding the definitions the
maliciousness score as Part (b) in the proof of Theorem 1, we get that ∃bb ∈ B, bb ∈ [Kb]:∥∥∥v(m) − v(bb)

∥∥∥
p
≤ (Kb − 1)(2r(β) + σ)

Kb −Km
(57)

Therefore, we can upper bound the distance between the estimated global event probability vector∑
k∈B

nk

NB
v(k) and the benign global event probability vector

∑
k∈[Kb]

nk

Nb
v(k).
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We first show that ∀k ∈ [Kb], we have:∥∥∥∥∥∥v(k) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

≤
∑

k∈[Kb]

nk

Nb

∥∥∥v(k) − v(k)
∥∥∥
p
≤ r(β). (58)

Then, we can derive as follows:∥∥∥∥∥∥
∑
k∈B

nk

NB
v(k) −

∑
k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

(59)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥∥∥∥v(k) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

+
∑

k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥∥∥∥v(k) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p

(60)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v(bb)
∥∥∥
p
+

∥∥∥∥∥∥v(bb) −
∑

k∈[Kb]

nk

Nb
v(k)

∥∥∥∥∥∥
p


(61)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

[
(Kb − 1)(2r(β) + σ)

Kb −Km
+ r(β)

]
(62)

≤r(β) +
∑

k∈B,k∈[K]\[Kb]

nk

NB

(Kb − 1)(2r(β) + σ)

Kb −Km
(63)

≤r(β)
(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
. (64)

Part (c): analysis of the error of the coverage bound.

Let F1(q,v) :=
∑H

j=1 I [aj < q]vj , where q ∈ [0, 1] and aj is the j-th partition point used to

construct the characterization vector v ∈ ∆H . Let F2(q,v) :=
∑H

j=1 I [aj−1 < q]vj . This part
follows the same procedure to translate the error of aggregated vectors induced by malicious clients
to the error of the bound of marginal coverage. The only difference is that in the non-iid setting, the
error of aggregated vectors formulated in Equation (64) is different than the iid setting. Therefore,
by analyzing the connection between characterization vector and coverage similarly in Part (3) in
the proof of Theorem 1, we have:

|F1(q̂α,v)− F1(q̂α, v̂)| ≤ r(β)

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
, (65)

|F2(q̂α,v)− F2(q̂α, v̂)| ≤ r(β)

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
, (66)

where v :=
∑

k∈[Kb]

nk

Nb
v(k) and v̂ :=

∑
k∈B

nk

NB
v(k). On the other hand, from triangular inequal-

ities, we have:

F1(q̂α,v)− |F1(q̂α,v)− F1(q̂α, v̂)| ≤ F1(q̂α, v̂) ≤ P
[
Ytest ∈ Ĉα(Xtest)

]
, (67)

F2(q̂α,v) + |F2(q̂α,v)− F2(q̂α, v̂)| ≥ F2(q̂α, v̂) ≥ P
[
Ytest ∈ Ĉα(Xtest)

]
. (68)

Plugging in the terms, we finally conclude that the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
− HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
− Nm

nb

σ

1− τ
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

HΦ−1(1− β/2HKb)

2
√
nb

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
.

(69)
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where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the
minimal sample size of benign clients, and Φ−1(·) denotes the inverse of CDF of the standard normal
distribution.

D.3 PROOF OF THEOREM 2

Theorem 4 (Restatement of Theorem 2). Assume v(k) (k ∈ [Kb]) are IID sampled from Gaus-
sian N (µ,Σ) with mean µ ∈ RH and positive definite covariance matrix Σ ∈ RH×H . Let
d := mink∈[K]\[Kb] ∥v(k) − µ∥2. Suppose that we use ℓ2 norm to measure vector distance and
leverage the malicious client number estimator with an initial guess of a number of benign clients
K̃b such that Km < K̃b < Kb. Then we have:

P
[
K̂b = Kb

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
− 2(K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
, (70)

where σmax(Σ
−1/2), σmin(Σ

−1/2) denote the maximal and minimal eigenvalue of matrix Σ−1/2, and
Tr(Σ) denotes the trace of matrix Σ.

Proof. From the concentration inequality of multivariate Gaussian distribution (Vershynin, 2018),
the following holds for v(k) ∼ N (µ,Σ):

P

[
∥v(k) − µ∥2 ≤

√
1

δ
Tr(Σ)

]
≥ 1− δ. (71)

Applying union bound for all benign clients k ∈ [Kb], the following concentration bound holds:

P

[
∥v(k) − µ∥2 ≤

√
Kb

δ
Tr(Σ), ∀k ∈ [Kb]

]
≥ 1− δ, (72)

Let the perturbation radius r :=
K̃b −Km

3K̃b −Km − 2
d. Then we can derive that:

P

[
∥v(k) − µ∥2 ≤ r :=

K̃b −Km

3K̃b −Km − 2
d, ∀k ∈ [Kb]

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
:= 1− δ.

(73)

The following discussion is based on the fact that ∥v(k)−µ∥2 ≤ r :=
K̃b −Km

3K̃b −Km − 2
d, ∀k ∈ [Kb],

and the confidence 1 − δ will be incorporated in the final statement. Let N(k, n) be the index set
of n nearest neighbors of client k in the characterization vector space with the metric of ℓ2 norm
distance. We consider the maliciousness score M(b) of any benign client b ∈ [Kb]:

M(b) =
1

K̃b − 1

∑
k′∈N(b,K̃b−1)

∥∥∥v(b) − v(k′)
∥∥∥
2

(74)

≤ max
k′∈[Kb]

∥∥∥v(b) − v(k′)
∥∥∥
2

(75)

≤ max
k′∈[Kb]

{∥∥∥v(b) − µ
∥∥∥
2
+
∥∥∥µ− v(k′)

∥∥∥
2

}
(76)

≤ 2(K̃b −Km)

3K̃b −Km − 2
d. (77)

Equation (75) holds since the average of distances to K̃b − 1 nearest vectors is upper bounded by
the average of distances to arbitrary K̃b − 1 benign clients, which is upper bounded by the maximal
distance to benign clients. Equation (77) holds by plugging in the results in Equation (73).
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We consider the maliciousness score M(m) of any malicious client m ∈ [K]\[Kb]:

M(m) =
1

K̃b − 1

∑
k′∈N(m,K̃b−1)

∥∥∥v(m) − v(k′)
∥∥∥
2

(78)

≥ 1

K̃b − 1

∑
k′∈N(m,K̃b−1),k′∈[Kb]

∥∥∥v(m) − v(k′)
∥∥∥
2

(79)

≥ 1

K̃b − 1

∑
k′∈N(m,K̃b−1),k′∈[Kb]

[∥∥∥v(m) − µ
∥∥∥
2
−
∥∥∥µ− v(k′)

∥∥∥
2

]
(80)

≥ 1

K̃b − 1
(K̃b −Km)

(
d− K̃b −Km

3K̃b −Km − 2
d

)
(81)

≥ 2(K̃b −Km)

3K̃b −Km − 2
d. (82)

Equation (81) holds since d := mink∈[K]\[Kb] ∥v(k) − µ∥2 by definition. Therefore, from Equa-
tion (77) and Equation (82), we can conclude that with probability 1 − δ, M(m) ≥ M(b), ∀b ∈
[Kb],m ∈ [K]\[Kb], which implies that ∀k ∈ [Kb], I(k) ∈ [Kb] and ∀k ∈ [K] − [Kb], I(k) ∈
[K]\[Kb].

Recall that the estimate of the number of benign clients K̂b is given by:

K̂b = argmax
z∈[K]

[
1

z

z∑
k=1

log p(v(I(k));µ,Σ)− 1

K − z

K∑
k=z+1

log p(v(I(k));µ,Σ)

]
. (83)

For ease of notation, let T (z) :=
1

z

∑z
k=1 log p(v

(I(k));µ,Σ)− 1

K − z

∑K
k=z+1 log p(v

(I(k));µ,Σ)

for z ∈ [K] and dk := v(I(k)) − µ for k ∈ [K]. Then we can upper bound the probability of an
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underestimate of the number of malicious clients P
[
K̂b < Kb

]
as follows:

P
[
K̂b < Kb

]
(84)

=P
[
T (K̂b) > T (Kb)

]
(85)

≤P

−(Kb − K̂b)

KbK̂b

K̂b∑
k=1

log p(v(I(k))) +
K − K̂b +Kb

Kb(K − K̂b)

Kb∑
k=K̂b+1

log p(v(I(k)))

<
Kb − K̂b

(K −Kb)(K − K̂b)

K∑
k=Kb+1

log p(v(I(k)))

]
(86)

≤P

K − K̂b +Kb

Kb(K − K̂b)

Kb∑
k=K̂b+1

−dTkΣ−1dk <
Kb − K̂b

(K −Kb)(K − K̂b)

K∑
k=Kb+1

−dTkΣ−1dk

 (87)

≤P

 Kb − K̂b

(K −Kb)

K∑
k=Kb+1

∥dTkΣ−1/2∥22 <
K − K̂b +Kb

Kb

Kb∑
k=K̂b+1

∥dTkΣ−1/2∥22

 (88)

≤P

 Kb − K̂b

(K −Kb)

K∑
k=Kb+1

σ2
min(Σ

−1/2)∥dTk ∥22 <
K − K̂b +Kb

Kb

Kb∑
k=K̂b+1

σ2
max(Σ

−1/2)∥dTk ∥22


(89)

≤P

[
σ2

min(Σ
−1/2)d2 <

K − K̂b +Kb

Kb
σ2

max(Σ
−1/2) max

k∈[Kb]
∥dTk ∥22

]
(90)

≤P

[
max
k∈[Kb]

∥dTk ∥2 >

√
Kb

K +Kb

σmin(Σ
−1/2)d

σmax(Σ−1/2)

]
(91)

≤ (K +Kb)Tr(Σ)σ2
max(Σ

−1/2)

σ2
min(Σ

−1/2)d2
(92)

Equation (86) holds by plugging in the definitions in Equation (83) and rearranging the terms. Equa-

tion (87) holds by dropping the positive term
−(Kb − K̂b)

KbK̂b

∑K̂b

k=1 log p(v
(I(k))) and rearranging

log-likelihood terms of multivariate Gaussian with dk. Equation (89) holds by leveraging the fact
that σmin(Σ

−1/2)∥dTk ∥2 ≤ ∥dTkΣ−1/2∥2 ≤ σmax(Σ
−1/2)∥dTk ∥2.

Similarly, we can upper bound the probability of overestimation of the number of malicious clients
P
[
K̂b > Kb

]
as:

P
[
K̂b > Kb

]
≤ (K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
. (93)

We can finally conclude that:

P
[
K̂b = Kb

]
≥ 1− (3K̃b −Km − 2)2Tr(Σ)

(K̃b −Km)2d2
− 2(K +Kb)Tr(Σ)σ2

max(Σ
−1/2)

σ2
min(Σ

−1/2)d2
. (94)
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E IMPROVEMENTS WITH DKW INEQUALITY

E.1 IMPROVEMENT OF THEOREM 1 WITH DKW INEQUALITY

Theorem 5 (Improvement of Theorem 1). For K clients including Kb benign clients and Km :=
K − Kb malicious clients, each client reports a characterization vector v(k) ∈ ∆H (k ∈ [K])
and a quantity nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the reported characterization
vectors of benign clients are sampled from the same underlying multinomial distribution D, while
those of malicious clients can be arbitrary. Let ϵ be the estimation error of the data sketching by
characterization vectors as illustrated in Equation (3). Under the assumption that Km < Kb, the
following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

(95)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, and nb := mink′∈[Kb] nk′ is
the minimal sample size of benign clients.

Proof. The proof structure follows the proof of Theorem 1 and consists of 3 parts: (a) concentration
analysis of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb), (b) analysis of the
algorithm of the identification of malicious clients, and (c) analysis of the error of the coverage
bound. Part (b) and (c) are exactly the same as the proof Theorem 1 and the only difference lies in
the use of a more advanced concentration bound in part (a), which provides concentration analysis
of the characterization vectors v(k) for benign clients (1 ≤ k ≤ Kb). Let v(k)

h be the h-th element
of vector v(k). According to the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality, we have:

P
[∣∣∣v(k)

h − vh

∣∣∣ > β
]
≤ 2 exp

{
−2Hβ2

}
, ∀h ∈ {1, 2, ..,H}. (96)

Applying the union bound for Kb characterization vectors of benign clients, the following holds
with probability 1− β:∣∣∣v(k)

h − vh

∣∣∣ ≤
√

ln(2Kb/β)

2nb
, ∀k ∈ [Kb], ∀h ∈ [H], (97)

from which we can derive the bound of difference for ℓ1 norm distance as:∥∥∥v(k) − v
∥∥∥
1
≤ r(β) := H

√
ln(2Kb/β)

2nb
, ∀k ∈ [Kb], (98)

where r(β) is the perturbation radius of random vector v given confidence level 1 − β. ∀k1, k2 ∈
[Kb], the following holds with probability 1− β due to the triangular inequality:∥∥∥v(k1) − v(k2)

∥∥∥
1
≤
∥∥∥v(k1) − v

∥∥∥
1
+
∥∥∥v(k2) − v

∥∥∥
1
≤ 2r(β). (99)

Furthermore, due to the fact that ∥v∥p ≤ ∥v∥1 for any integer p ≥ 1, the following holds with
probability 1− β: ∥∥∥v(k) − v

∥∥∥
p
≤
∥∥∥v(k) − v

∥∥∥
1
≤ r(β), (100)∥∥∥v(k1) − v(k2)

∥∥∥
p
≤
∥∥∥v(k1) − v(k2)

∥∥∥
1
≤ 2r(β). (101)

Then following the part (b) and (c) in the proof of Theorem 1, we can finally conclude that:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
,

(102)
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E.2 IMPROVEMENT OF COROLLARY 1 WITH DKW INEQUALITY

Corollary 3 (Improvement of Corollary 1 with DKW inequality). Under the same definitions and
conditions in Theorem 1 and with Assumption 3.1, the following holds with probability 1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
− Nm

nb

σ

1− τ
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+H

√
ln(2Kb/β)

2nb

(
1 +

Nm

nb

2

1− τ

)
+

Nm

nb

σ

1− τ
.

(103)

Proof. We conclude the proof by leveraging the concentration analysis in the proof of Theorem 5
and part (b) and part (c) in the proof of Corollary 1.

F ANALYSIS OF ROB-FCP WITH AN OVERESTIMATED NUMBER OF BENIGN
CLIENTS K ′

b

Theorem 6 (Theorem 1 with an overestimated number of benign clients). For K clients including
Kb benign clients and Km := K − Kb malicious clients, each client reports a characterization
vector v(k) ∈ ∆H (k ∈ [K]) and a quantity nk ∈ Z+ (k ∈ [K]) to the server. Suppose that the
reported characterization vectors of benign clients are sampled from the same underlying multino-
mial distribution D, while those of malicious clients can be arbitrary. Let ϵ be the estimation error
of the data sketching by characterization vectors as illustrated in Equation (3). Let K ′

b > Kb be the
overestimated number of benign clients. We also assume benign clients and malicious clients have
the same sample sizes. Under the assumption that Km < Kb, the following holds with probability
1− β:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

(104)

where τ = Km/Kb is the ratio of the number of malicious clients and the number of benign clients,
Nm :=

∑
k∈[K]\[Kb]

nk is the total sample size of malicious clients, nb := mink′∈[Kb] nk′ is the
minimal sample size of benign clients, and Φ−1(·) denotes the inverse of the cumulative distribution
function (CDF) of standard normal distribution.

Proof. The proof consists of 3 parts: (a) concentration analysis of the characterization vectors v(k)

for benign clients (1 ≤ k ≤ Kb), (b) analysis of the algorithm of the identification of malicious
clients, and (c) analysis of the error of the coverage bound. Part (a) and (c) follow that of Theorem 1,
and thus, we provide the details of part (b) here. Let N(k, n) be the set of the index of n nearest
clients to the k-th client based on the metrics of ℓp norm distance in the space of characterization
vectors. Then the maliciousness scores M(k) for the k-th client (k ∈ [K]) can be defined as:

M(k) :=
1

Kb − 1

∑
k′∈N(k,Kb−1)

∥∥∥v(k) − v(k′)
∥∥∥
p
. (105)

Let B be the set of the index of benign clients identified by Algorithm 1 by selecting the clients
associated with the lowest K ′

b maliciousness scores. We will consider the following cases separately:
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(1) B contains exactly Kb benign clients, and (2) B contains at least one malicious client indexed by
m. Case (1): B (|B| = K ′

b) contains all Kb benign clients. We can derive as follows:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤
∑
k∈B

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(106)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p
+

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(107)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB
× 1 (108)

=
Kb

K ′
b

r(β) +

(
1− Kb

K ′
b

)
(109)

= 1− Kb

K ′
b

(1− r(β)) (110)

Case (2): B (|B| = K ′
b) does not contain all benign clients, which implicates that for any malicious

client m ∈ B, we can derive the lower bound of the maliciousness score for the m-th client M(m)
as:

M(m) =
1

K ′
b − 1

∑
k′∈N(m,K′

b−1)

∥∥∥v(m) − v(k′)
∥∥∥
p

(111)

≥ 1

K ′
b − 1

∑
k′∈N(m,K′

b−1),k′∈[Kb]

∥∥∥v(m) − v(k′)
∥∥∥
p
. (112)

Since there are at least K ′
b −Km benign clients in B (there are at most Km malicious clients in B),

there exists one client indexed by bb (bb ∈ B) such that:

∥∥∥v(m) − v(bb)
∥∥∥
p
≤ (K ′

b − 1)M(m)

K ′
b −Km

(113)

We can derive the upper bound of the maliciousness score for the b-th benign client (one benign
client not in B) M(b) as:

M(b) =
1

K ′
b − 1

∑
k′∈N(b,K′

b−1)

∥∥∥v(b) − v(k′)
∥∥∥
p

(114)

≤ Kb − 1

K ′
b − 1

2r(β) +
Kb −K ′

b

K ′
b − 1

(115)

Since the m-th client is included in B and identified as a benign client, while the b-th client is not in
B, the following holds according to the procedure in Algorithm 1:

M(b) ≥M(m), (116)

Then, we can derive the upper bound of
∥∥v(m) − v

∥∥
p
, ∀m ∈ B and Kb < m ≤ K as follows:

∥∥∥v(m) − v
∥∥∥
p
≤
∥∥∥v(m) − v(bb)

∥∥∥
p
+
∥∥∥v(bb) − v

∥∥∥
p

(117)

≤ (Kb − 1)2r(β) +Kb −K ′
b

K ′
b −Km

(118)
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Finally, we can derive as follows:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤
∑
k∈B

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(119)

≤
∑

k∈B,k∈[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p
+

∑
k∈B,k∈[K]\[Kb]

nk

NB

∥∥∥v(k) − v
∥∥∥
p

(120)

≤
∑

k∈B,k∈[Kb]

nk

NB
r(β) +

∑
k∈B,k∈[K]\[Kb]

nk

NB

(Kb − 1)2r(β) +Kb −K ′
b

K ′
b −Km

(121)

≤ Kb

K ′
b

r(β) +
K ′

b −Kb

K ′
b

(Kb − 1)2r(β) +Kb −K ′
b

K ′
b −Km

(122)

Combining case (1) and case (2), we can conclude that:∥∥∥∥∥∑
k∈B

nk

NB
v(k) − v

∥∥∥∥∥
p

≤ max

{
1− Kb

K′
b

(1− r(β)) ,
Kb

K′
b

r(β) +
K′

b −Kb

K′
b

(Kb − 1)2r(β) +Kb −K′
b

K′
b −Km

}

= 1− Kb

K′
b

(1− r(β))

(123)
Finally, by applying the analysis of part (a) and (c) in the proof of Theorem 1, we can conclude that:

P
[
Ytest ∈ Ĉα(Xtest)

]
≥ 1− α− ϵnb + 1

nb +Kb
−

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

P
[
Ytest ∈ Ĉα(Xtest)

]
≤ 1− α+ ϵ+

Kb

nb +Kb
+

[
1− Kb

K′
b

(
1− HΦ−1(1− β/2HKb)

2
√
nb

)]
,

(124)

G ALGORITHM OF ROB-FCP

We provide the complete pseudocodes of malicious client identification in Rob-FCP in Algorithm 1.
First, we characterize the conformity scores {s(k)j }j∈[nk] with a vector v(k) ∈ RH for client k
(k ∈ [K]) via histogram statistics as Equation (4). Then, we compute the pairwise ℓp-norm (p ∈ Z+)
vector distance and the maliciousness scores for clients, which are the averaged vector distance to
the clients in the Kb − 1 nearest neighbors, where Kb is the number of benign clients. Finally, the
benign set identified by Rob-FCP BRob-FCP is the set of the index of the clients with the lowest Kb

maliciousness scores in {M(k)}Kk=1.

H EXPERIMENTS

H.1 EXPERIMENT SETUP

Datasets. We evaluate Rob-FCP on computer vision datasets including MNIST (Deng, 2012),
CIFAR-10 (Krizhevsky et al.), and Tiny-ImageNet (T-ImageNet) (Le & Yang, 2015). We addi-
tionally evaluate Rob-FCP on two realistic healthcare datasets, including SHHS (Zhang et al., 2018)
and PathMNIST (Yang et al., 2023). The MNIST dataset consists of a collection of 70,000 hand-
written digit images, each of which is labeled with the corresponding digit (0 through 9) that the
image represents. CIFAR-10 consists of 60,000 32x32 color images, each belonging to one of the
following 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Tiny-
ImageNet consists of 200 different classes, each represented by 500 training images, making a total
of 100,000 training images. Additionally, it has 10,000 validation images and 10,000 test images,
with 50 images per class for both validation and test sets. Each image in Tiny-ImageNet is a 64x64
colored image. SHHS (the Sleep Heart Health Study) is a large-scale multi-center study to determine
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Algorithm 1 Malicious client identification

1: Input: number of clients K, number of benign clients Kb, sets of scores for K clients{
s
(k)
j

}
j∈[nk],k∈[K]

, parameter p in ℓp norm distance.

2: Output: set of benign clients BRob-FCP.
3: for k = 1 to K do
4: Characterize the conformity score observations

{
s
(k)
j

}
j∈[nk]

with a vector v(k) for client k

as Equation (4).
5: end for
6: for k1 = 1 to K do
7: for k2 = 1 to K do
8: Compute the vector distance dk1,k2

← ∥v(k1) − v(k2)∥p.
9: end for

10: end for
11: for k = 1 to K do
12: Compute the set of index of Kb − 1 nearest neighbors for client k: Near(k,Kb − 1).

13: Compute maliciousness scores of client k as M(k)← 1

Kb − 1

∑
k′∈Near(k,Kb−1) dk,k′ .

14: end for
15: Compute the index set of benign clients BRob-FCP as the associated index of the lowest Kb mali-

ciousness scores in {M(k))}Kk=1.

consequences of sleep-disordered breathing. We use the EEG recordings from SHHS for the sleep-
staging task, where every 30-second-epoch is classified into Wake, N1, N2, N3 and REM stages.
2,514 patients (2,545,869 samples) were used for training the DNN, and 2,514 patients (2,543,550
samples) were used for calibration and testing. PathMNIST is a 9-class classification dataset con-
sisting of 107,180 hematoxylin and eosin stained histological images. 89,996 images were used to
train the DNN and 7,180 were used for calibration and testing.

Training and evaluation strategy. In the IID setting, we randomly partitioned the datasets into
local datasets of multiple clients and further split them into a local training set and a conformal
calibration set. In the non-IID setting, except for SHHS, we partition the datasets by sampling
the proportion of each label from Dirichlet distribution for every agent, following the literature (Li
et al., 2022a). For SHHS, we assign the patients to different clients according to the proportion
of their time being awake. The parameter of the Dirichlet distribution is fixed as 0.5 across the
evaluations. We pretrain the models with standard FedAvg algorithm (McMahan et al., 2016). We
use the same collaboratively pretrained model for conformal prediction for different methods for
fair comparisons. We perform conformal prediction with nonconformity scores LAC (Sadinle et al.,
2019) and APS (Romano et al., 2020). Without specification, we use the LAC score by default
across evaluations. Given a pretrained estimator π̂ : Rd 7→ ∆C with d-dimensional input and C
classes, the LAC non-conformity score is formulated as:

SLAC
π̂y

(x, y) = 1− π̂y(x). (125)

The APS non-conformity score is formulated as:

SAPS
π̂y

(x, y) =
∑

j∈Y
π̂j(x)I[π̂j(x) > π̂y(x)] + π̂y(x)u, (126)

where I[·] is the indicator function and u is uniformly sampled over the interval [0, 1].

Byzantine attacks. To evaluate the robustness of Rob-FCP in the Byzantine setting, we compare
Rob-FCP with the baseline FCP (Lu et al., 2023) under three types of Byzantine attacks: (1) cov-
erage attack (CovAttack) which reports the largest conformity scores to induce a larger conformity
score at the desired quantile and a lower coverage accordingly, (2) efficiency attack (EffAttack)
which reports the smallest conformity scores to induce a lower conformity score at the quantile and
a larger prediction set, and (3) Gaussian Attack (GauAttack) which injects random Gaussian noises
to the scores to perturb the conformal calibration. The gaussian noises are sampled from a univariate
Gaussian N (0, 0.5) with zero mean and 0.5 variance.
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H.2 ADDITIONAL EVALUATION RESULTS

Table 2: Marginal coverage / average set size with different non-IID imbalance levels β, the param-
eter of Dirichlet distribution where the label ratios of clients are sampled from. The evaluation is
done under different Coverage attack with 40% (Km/K = 40%) malicious clients. The desired
marginal coverage is 0.9.

β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

FCP (MNIST) 0.780 / 1.173 0.817 / 1.318 0.833 / 1.384 0.805 / 1.265 0.828 / 1.363
Rob-FCP (MNIST) 0.899 / 1.806 0.905 / 1.809 0.903 / 1.827 0.898 / 1.781 0.893 / 1.768
FCP (CIFAR-10) 0.806 / 1.641 0.821 / 1.717 0.836 / 1.791 0.823 / 1.744 0.824 / 1.723

Rob-FCP (CIFAR-10) 0.899 / 2.260 0.907 / 2.405 0.892 / 2.243 0.904 / 2.396 0.910 / 2.416
FCP (T-ImageNet) 0.840 / 28.625 0.830 / 28.192 0.833 / 28.340 0.821 / 27.140 0.8308 / 28.7507

Rob-FCP (T-ImageNet) 0.913 / 45.872 0.910 / 44.972 0.898 / 42.571 0.887 / 41.219 0.898 / 43.298
FCP (PathMNIST) 0.850 / 1.106 0.839 / 1.065 0.837 / 1.055 0.839 / 1.065 0.832 / 1.043

Rob-FCP (PathMNIST) 0.895 / 1.311 0.900 / 1.355 0.900 / 1.355 0.899 / 1.354 0.901 / 1.363

Table 3: Marginal coverage / average set size on SHHS with non-IID data partition based on different
attributes: wake time, N1, N2, N3, REM. The evaluation is done under different Coverage attack
with 40% (Km/K = 40%) malicious clients. The desired marginal coverage is 0.9.

wake time N1 N2 N3 REM

FCP (SHHS) 0.835 / 1.098 0.841 / 1.104 0.841 / 1.104 0.837 / 1.105 0.840 / 1.107
Rob-FCP (SHHS) 0.901 / 1.367 0.902 / 1.358 0.902 / 1.355 0.902 / 1.375 0.900 / 1.356

Table 4: Runtime of RobFCP quantile computation with 40% malicious clients.

MNIST CIFAR-10 Tiny-ImageNet SHHS PathMNIST

Runtime (seconds) 0.5284 0.5169 0.5563 0.2227 0.3032

Results with different non-IID data construction. We evaluate Rob-FCP with different imbalance
levels β to show the effectiveness of Rob-FCP under different non-IID settings. The results in
Table 2 demonstrate that under multiple degrees of data imbalance in non-IID federated conformal
prediction, Rob-FCP consistently outperforms FCP in achieving a nominal marginal coverage level
in the existence of Byzantine clients. We also consider alternative approaches to construct non-IID
data with demographic differences in federated learning. The results in Table 3 show that in this type
of non-IID partition, Rob-FCP still demonstrates robustness and effectiveness compared to FCP.

Runtime of Rob-FCP. We evaluate the runtime of quantile computation in Rob-FCP in Table 4,
which indicates the efficiency of federated conformal prediction with our method.

Results with an overestimate or underestimate of the number of malicious clients. In Table 5,
we provided evaluations of Rob-FCP with incorrect numbers of malicious clients. The results show
that either underestimated numbers or overestimated numbers would harm the performance to dif-
ferent extents. Specifically, an underestimate of the number of malicious clients will definitely lead
to the inclusion of malicious clients in the identified set B and downgrade the quality of conformal
prediction. On the other hand, an overestimated number will lead to the exclusion of some benign
clients. The neglect of non-conformity scores of those clients will lead to a distribution shift from
the true data distribution in the calibration process, breaking the data exchangeability assumption
of conformal prediction, and a downgraded performance. Therefore, correctly estimating the num-
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Table 5: Marginal coverage / average set size under different Coverage attack with underestimated
and overestimated numbers of malicious clients on TinyImageNet. The true ratio of malicious clients
is 40% (Km/K = 25%), while we evaluate Rob-FCP with different ratios of malicious clients
K ′

m/K ranging from 5% to 45%. The desired marginal coverage is 0.9.

K′
m/K 5% 10% 15% 20% 25% 30% 35% 40% 45%

Coverage 0.8682 0.8756 0.8812 0.8884 0.9078 0.8936 0.8921/ 0.8834 0.8803
Set Size 35.875 37.130 38.372 40.643 44.578 42.173 42.023 38.346 38.023

ber of malicious clients is of significance, and this is why we propose the malicious client number
estimator, which is sound both theoretically and empirically to achieve the goal.

The benign setting. The benign conformal prediction performance (marginal coverage / average
set size) without any malicious clients is provided in Table 6. As expected, the coverage of the
prediction sets is very close to the target (0.9). In the non-IID setting, the predictive performance of
the base global model is typically worse, leading to a larger average size of the prediction sets.

Byzantine robustness of Rob-FCP in the IID and non-IID settings with known Km. We evaluate
the marginal coverage and average set size of Rob-FCP under coverage, efficiency, and Gaussian
attack and compare the results with the baseline FCP. We present results of FCP and Rob-FCP in
existence of 10%, 20%, 30% (Km/K = 10%, 20%, 30%) malicious clients on MNIST, CIFAR-10,
Tiny-ImageNet (T-ImageNet), SHHS, and PathMNIST in Table 7. The coverage of FCP deviates
drastically from the desired coverage level 0.9 under Byzantine attacks, along with a deviation from
the benign set size. In contrast, Rob-FCP achieves comparable marginal coverage and average set
size in both IID and non-IID settings.

Byzantine robustness of Rob-FCP in the IID and non-IID settings with unknown Km.
Similar to above, we evaluate the marginal coverage and average set size of Rob-FCP un-
der verious attacks and compare the results with the FCP. We present results in existence of
10%, 20%, 30%, 40% (Km/K = 10%, 20%, 30%, 40%) malicious clients in Table 8, where the
number of the malicious clients is unknown to the algorithm. Again, the coverage of FCP as well as
the size of the prediction set deviates drastically from the benign set setting, but Rob-FCP achieves
comparable marginal coverage and average set size in both IID and non-IID settings.

Robustness of Rob-FCP with different conformity scores. Besides applying LAC nonconformity
scores, we also evaluate Rob-FCP with APS scores (Romano et al., 2020). The results in Figures 5
to 10 demonstrate the Byzantine robustness of Rob-FCP with APS scores.

Ablation study of different conformity score distribution characterization. One key step in
Rob-FCP is to characterize the conformity score distribution based on empirical observations. We
adopt the histogram statistics approach as Equation (4). Rob-FCP also flexibly allows for alternative
approaches to characterizing the empirical conformity score samples with a real-valued vector v.
We can fit a parametric model (e.g., Gaussian model) to the empirical scores and concatenate the
parameters as the characterization vector v. Another alternative is to characterize the score samples
with exemplars approximated by clustering algorithms such as KMeans. We empirically compare
different approaches in Figures 11 and 12 and show that the histogram statistics approach achieves
the best performance.

Ablation study of the distance measurement. In Rob-FCP, we need to compute the distance
between characterization vectors with measurement d(·, ·). We evaluate Rob-FCP with ℓ1, ℓ2, ℓ∞-
norm based vector distance as Equation (5) and an alternative Cosine similarity in Figure 13. The
results show that the effectiveness of Rob-FCP is agnostic to these commonly used distance mea-
surements. We adopt ℓ2-norm vector distance for consistency across evaluations.
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Table 6: Benign conformal prediction results (marginal coverage / average set size) without any
malicious clients.

Dataset IID setting non-IID setting

MNIST 0.898 / 0.900 0.902 / 1.828
CIFAR-10 0.901 / 1.597 0.898 / 2.308

Tiny-ImageNet 0.901 / 21.92 0.899 / 42.35
SHHS 0.898 / 1.352 0.897 / 1.351

PathMNIST 0.904 / 1.242 0.901 / 1.361

Table 7: Marginal coverage / average set size under different Byzantine attacks with 10%, 20%, and
30% malicious clients. Rob-FCP consistently recovers the coverage (and average size of prediction
set) of benign conformal prediction (Table 6), while the performance of FCP generally deteriorates
as the percentage of malicious clients increases.

Attack Coverage Attack Efficiency Attack Gaussian Attack
Method FCP Rob-FCP FCP Rob-FCP FCP Rob-FCP

Km/K = 10%

II
D

MNIST 0.896 / 0.898 0.899 / 0.900 0.999 / 4.034 0.904 / 0.909 0.947 / 0.960 0.905 / 0.910
CIFAR-10 0.887 / 1.499 0.900 / 1.588 1.000 / 7.991 0.892 / 1.556 0.906 / 1.633 0.892 / 1.565

T-ImageNet 0.873 / 18.44 0.901 / 22.36 0.999 / 148.7 0.895 / 21.28 0.916 / 23.98 0.909 / 23.80
SHHS 0.889 / 1.303 0.900 / 1.359 0.999 / 5.338 0.900 / 1.359 0.909 / 1.409 0.900 / 1.360

PathMNIST 0.892 / 1.184 0.905 / 1.249 1.000 / 6.271 0.902 / 1.235 0.941 / 1.504 0.903 / 1.240

no
n-

II
D

MNIST 0.892 / 1.747 0.897 / 1.813 1.000 / 9.319 0.896 / 1.813 0.892 / 1.798 0.902 / 1.794
CIFAR-10 0.887 / 1.209 0.894 / 2.287 1.000 / 8.808 0.908 / 2.347 0.918 / 2.515 0.911 / 2.378

T-ImageNet 0.892 / 41.03 0.905 / 44.81 0.997 / 146.7 0.902 / 44.29 0.917 / 47.47 0.900 / 44.74
SHHS 0.889 / 1.304 0.900 / 1.358 1.000 / 5.981 0.900 / 1.359 0.909 / 1.412 0.901 / 1.361

PathMNIST 0.892 / 1.290 0.902 / 1.361 0.996 / 5.149 0.900 / 1.348 0.938 / 1.739 0.904 / 1.374

Km/K = 20%

II
D

MNIST 0.873 / 0.876 0.893 / 0.897 1.000 / 10.00 0.895 / 0.899 0.967 / 0.988 0.900 / 0.905
CIFAR-10 0.869 / 1.398 0.888 / 1.532 1.000 / 10.00 0.913 / 1.659 0.916 / 1.725 0.903 / 1.633

T-ImageNet 0.874 / 17.787 0.900 / 22.23 1.000 / 200.0 0.903 / 22.50 0.908 / 23.12 0.904 / 22.94
SHHS 0.876 / 1.243 0.900 / 1.359 1.000 / 5.984 0.900 / 1.356 0.918 / 1.467 0.900 / 1.360

PathMNIST 0.880 / 1.134 0.905 / 1.251 1.000 / 8.335 0.904 / 1.244 0.983 / 2.434 0.903 / 1.236

no
n-

II
D

MNIST 0.857 / 1.534 0.896 / 1.765 1.000 / 9.089 0.902 / 1.836 0.915 / 1.945 0.912 / 1.904
CIFAR-10 0.866 / 2.038 0.896 / 2.314 1.000 / 10.00 0.908 / 2.366 0.938 / 2.895 0.892 / 2.256

T-ImageNet 0.860 / 33.99 0.902 / 44.69 1.000 / 199.0 0.904 / 44.72 0.922 / 49.44 0.912 / 48.27
SHHS 0.874 / 1.236 0.901 / 1.363 1.000 / 5.985 0.901 / 1.363 0.917 / 1.463 0.900 / 1.358

PathMNIST 0.876 / 1.210 0.901 / 1.355 1.000 / 7.395 0.902 / 1.366 0.980 / 2.905 0.900 / 1.348

Km/K = 30%

II
D

MNIST 0.851 / 0.854 0.908 / 0.914 1.000 / 10.00 0.911 / 0.917 0.977 / 1.009 0.900 / 0.905
CIFAR-10 0.852 / 1.307 0.895 / 1.583 1.000 / 10.00 0.894 / 1.563 0.909 / 1.672 0.903 / 1.602

T-ImageNet 0.862 / 15.66 0.904 / 22.61 1.000 / 200.0 0.907 / 22.85 0.907 / 23.89 0.906 / 24.15
SHHS 0.859 / 1.176 0.901 / 1.364 1.000 / 6.000 0.900 / 1.356 0.926 / 1.526 0.900 / 1.359

PathMNIST 0.863 / 1.064 0.906 / 1.252 1.000 / 9.000 0.903 / 1.241 1.000 / 6.531 0.906 / 1.255

no
n-

II
D

MNIST 0.849 / 1.451 0.913 / 1.890 1.000 / 10.00 0.875 / 1.650 0.925 / 2.010 0.919 / 1.958
CIFAR-10 0.844 / 1.870 0.900 / 2.294 1.000 / 10.00 0.912 / 2.408 0.950 / 3.152 0.901 / 2.327

T-ImageNet 0.864 / 33.41 0.895 / 43.12 1.000 / 200.0 0.906 / 43.46 0.923 / 52.23 0.932 / 55.78
SHHS 0.857 / 1.169 0.900 / 1.358 1.000 / 6.000 0.900 / 1.358 0.927 / 1.530 0.898 / 1.350

PathMNIST 0.860 / 1.141 0.900 / 1.344 1.000 / 9.000 0.903 / 1.368 1.000 / 6.287 0.903 / 1.373
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Table 8: Marginal coverage / average set size under different Byzantine attacks with 10%, 20%,
30% and 40% malicious clients with unknown numbers of malicious clients. Rob-FCP consistently
recovers the coverage (and average size of prediction set) of benign conformal prediction (Table 6),
while the performance of FCP generally deteriorates as the percentage of malicious clients increases.

Attack Coverage Attack Efficiency Attack Gaussian Attack
Method FCP Rob-FCP FCP Rob-FCP FCP Rob-FCP

Km/K = 10%

II
D

MNIST 0.896 / 0.898 0.901 / 0.905 0.999 / 4.034 0.890 / 0.895 0.947 / 0.960 0.895 / 0.900
CIFAR-10 0.887 / 1.499 0.903 / 1.612 1.000 / 7.991 0.920 / 1.689 0.906 / 1.633 0.890 / 1.543

T-ImageNet 0.873 / 18.44 0.908 / 22.52 0.999 / 148.7 0.890 / 20.93 0.916 / 23.98 0.897 / 21.64
SHHS 0.889 / 1.303 0.902 / 1.365 0.999 / 5.338 0.903 / 1.368 0.909 / 1.409 0.902 / 1.367

PathMNIST 0.892 / 1.184 0.899 / 1.237 1.000 / 6.271 0.905 / 1.253 0.905 / 1.253 0.901 / 1.239

no
n-

II
D

MNIST 0.892 / 1.747 0.895 / 1.798 1.000 / 9.319 0.900 / 1.780 0.892 / 1.798 0.896 / 1.800
CIFAR-10 0.887 / 1.209 0.890 / 2.221 1.000 / 8.808 0.900 / 2.304 0.918 / 2.515 0.905 / 2.418

T-ImageNet 0.892 / 41.03 0.903 / 43.94 0.997 / 146.7 0.898 / 43.01 0.917 / 47.47 0.915 / 47.35
SHHS 0.889 / 1.304 0.902 / 1.367 1.000 / 5.981 0.902 / 1.364 0.909 / 1.412 0.900 / 1.357

PathMNIST 0.892 / 1.290 0.909 / 1.394 0.996 / 5.149 0.901 / 1.376 0.905 / 1.387 0.907 / 1.375

Km/K = 20%

II
D

MNIST 0.873 / 0.876 0.898 / 0.903 1.000 / 10.00 0.906 / 0.912 0.967 / 0.988 0.904 / 0.908
CIFAR-10 0.869 / 1.398 0.888 / 1.512 1.000 / 10.00 0.902 / 1.603 0.916 / 1.725 0.905 / 1.623

T-ImageNet 0.874 / 17.787 0.904 / 22.47 1.000 / 200.0 0.907 / 22.76 0.908 / 23.12 0.904 / 22.88
SHHS 0.876 / 1.243 0.902 / 1.365 1.000 / 5.984 0.902 / 1.366 0.918 / 1.467 0.902 / 1.363

PathMNIST 0.880 / 1.134 0.900 / 1.229 1.000 / 8.335 0.902 / 1.241 0.909 / 1.273 0.898 / 1.229

no
n-

II
D

MNIST 0.857 / 1.534 0.901 / 1.832 1.000 / 9.089 0.881 / 1.713 0.915 / 1.945 0.908 / 1.889
CIFAR-10 0.866 / 2.038 0.900 / 2.344 1.000 / 10.00 0.897 / 2.312 0.938 / 2.895 0.929 / 2.702

T-ImageNet 0.860 / 33.99 0.905 / 44.38 1.000 / 199.0 0.894 / 42.30 0.922 / 49.44 0.906 / 46.38
SHHS 0.874 / 1.236 0.901 / 1.362 1.000 / 5.985 0.903 / 1.369 0.917 / 1.463 0.902 / 1.365

PathMNIST 0.876 / 1.210 0.907 / 1.388 1.000 / 7.395 0.903 / 1.362 0.905 / 1.382 0.902 / 1.362

Km/K = 30%

II
D

MNIST 0.851 / 0.854 0.905 / 0.912 1.000 / 10.00 0.907 / 0.913 0.977 / 1.009 0.903 / 0.908
CIFAR-10 0.852 / 1.307 0.904 / 1.612 1.000 / 10.00 0.891 / 1.544 0.909 / 1.672 0.903 / 1.578

T-ImageNet 0.862 / 15.66 0.902 / 21.92 1.000 / 200.0 0.903 / 22.19 0.907 / 23.89 0.906 / 23.77
SHHS 0.859 / 1.176 0.903 / 1.372 1.000 / 6.000 0.902 / 1.366 0.926 / 1.526 0.903 / 1.368

PathMNIST 0.863 / 1.064 0.902 / 1.239 1.000 / 9.000 0.898 / 1.221 0.907 / 1.263 0.905 / 1.246

no
n-

II
D

MNIST 0.849 / 1.451 0.920 / 1.947 1.000 / 10.00 0.900 / 1.779 0.925 / 2.010 0.911 / 1.943
CIFAR-10 0.844 / 1.870 0.899 / 2.360 1.000 / 10.00 0.891 / 2.264 0.950 / 3.152 0.896 / 2.300

T-ImageNet 0.864 / 33.41 0.895 / 42.79 1.000 / 200.0 0.908 / 44.74 0.923 / 52.23 0.920 / 50.70
SHHS 0.857 / 1.169 0.902 / 1.368 1.000 / 6.000 0.904 / 1.374 0.927 / 1.530 0.903 / 1.370

PathMNIST 0.860 / 1.141 0.895 / 1.337 1.000 / 9.000 0.902 / 1.376 0.910 / 1.418 0.899 / 1.352

Km/K = 40%

II
D

MNIST 0.832 / 0.834 0.891 / 0.892 1.000 / 10.00 0.895 / 0.901 0.979 / 1.025 0.899 / 0.904
CIFAR-10 0.831 / 1.189 0.913 / 1.666 1.000 / 10.00 0.902 / 1.608 0.916 / 1.733 0.905 / 1.612

T-ImageNet 0.830 / 12.97 0.888 / 21.45 1.000 / 200.0 0.905 / 22.99 0.918 / 25.69 0.903 / 23.42
SHHS 0.834 / 1.093 0.902 / 1.363 1.000 / 6.000 0.903 / 1.369 0.937 / 1.611 0.902 / 1.368

PathMNIST 0.840 / 0.997 0.901 / 1.246 1.000 / 9.000 0.898 / 1.237 0.914 / 1.302 0.899 / 1.250

no
n-

II
D

MNIST 0.805 / 1.284 0.911 / 1.929 1.000 / 10.00 0.910 / 1.906 0.941 / 2.227 0.929 / 2.084
CIFAR-10 0.829 / 1.758 0.893 / 2.270 1.000 / 10.00 0.888 / 2.203 0.970 / 3.863 0.923 / 2.635

T-ImageNet 0.825 / 27.84 0.906 / 45.18 1.000 / 200.0 0.903 / 42.62 0.942 / 61.50 0.937 / 59.61
SHHS 0.835 / 1.095 0.902 / 1.364 1.000 / 6.000 0.904 / 1.375 0.937 / 1.609 0.903 / 1.371

PathMNIST 0.837 / 1.055 0.903 / 1.378 1.000 / 9.000 0.909 / 1.398 0.915 / 1.464 0.914 / 1.488
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Figure 5: Marginal coverage / average set size under coverage attack with 40% malicious clients in
the IID Byzantine setting on CIFAR-10. The green horizontal line represents the benign marginal
coverage and average set size without any malicious clients.
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Figure 6: Marginal coverage / average set size under coverage attack with 40% malicious clients
in the non-IID Byzantine setting on CIFAR-10. The green horizontal line represents the benign
marginal coverage and average set size without any malicious clients.
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Figure 7: Marginal coverage / average set size under efficiency attack with 40% malicious clients in
the IID Byzantine setting on CIFAR-10. The green horizontal line represents the benign marginal
coverage and average set size without any malicious clients.
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Figure 8: Marginal coverage / average set size under efficiency attack with 40% malicious clients
in the non-IID Byzantine setting on CIFAR-10. The green horizontal line represents the benign
marginal coverage and average set size without any malicious clients.
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Figure 9: Marginal coverage / average set size under Gaussian attack with 40% malicious clients in
the IID Byzantine setting on CIFAR-10. The green horizontal line represents the benign marginal
coverage and average set size without any malicious clients.

0.85

0.9

0.95

1

FCP Rob-FCP

Marginal Coverage

1

1.5

2

2.5

3

FCP Rob-FCP

Average Set Size

Figure 10: Marginal coverage / average set size under Gaussian attack with 40% malicious clients
in the non-IID Byzantine setting on CIFAR-10. The green horizontal line represents the benign
marginal coverage and average set size without any malicious clients.
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Figure 11: Marginal coverage / average set size under coverage attack with 40% malicious clients
in the IID Byzantine setting on Tiny-ImageNet. The green horizontal line represents the benign
marginal coverage and average set size without any malicious clients.
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Figure 12: Marginal coverage / average set size under coverage attack with 40% malicious clients
in the non-IID Byzantine setting on Tiny-ImageNet. The green horizontal line represents the benign
marginal coverage and average set size without any malicious clients.
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Figure 13: Marginal coverage / average set size under coverage attack with 40% malicious clients
in the IID Byzantine setting on Tiny-ImageNet. The green horizontal line represents the benign
marginal coverage and average set size without any malicious clients.
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