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Abstract

Most work on supervised learning research has
focused on marginal predictions. In decision prob-
lems, joint predictive distributions are essential for
good performance. Previous work has developed
methods for assessing low-order predictive distri-
butions with inputs sampled i.i.d. from the testing
distribution. With low-dimensional inputs, these
methods distinguish agents that effectively esti-
mate uncertainty from those that do not. We estab-
lish that the predictive distribution order required
for such differentiation increases greatly with input
dimension, rendering these methods impractical.
To accommodate high-dimensional inputs, we in-
troduce dyadic sampling, which focuses on pre-
dictive distributions associated with random pairs
of inputs. We demonstrate that this approach effi-
ciently distinguishes agents in high-dimensional
examples involving simple logistic regression as
well as complex synthetic and empirical data.

1 INTRODUCTION
We consider learning agents that are trained on data pairs
((Xt,Yt+1) : t=0,1,...,T −1). At a new input XT , such an
agent can generate a predictive distribution of the outcome
YT+1 that is yet to be observed. This distribution character-
izes the agent’s uncertainty about YT+1. We refer to such a
prediction as marginal to distinguish it from a joint predic-
tive distribution over a sequence of prospective outcomes
(YT+1,...,YT+τ ) with inputs (XT ,...,XT+τ−1).

Predictive distributions express uncertainty about future ob-
servations. The importance of such uncertainty estimation
has motivated a great deal of research over recent years,
much of which in the Bayesian deep learning community
[Neal, 2012]. With the proliferation of agents that gener-
ate predictive distributions, it is increasingly important to
systematically study and improve their performance.

Recent theoretical work has highlighted the importance of
joint predictive distributions in driving effective decisions
[Wen et al., 2022]. This theory is supported by experiments
that assess and compare agents using synthetic data gener-
ated by a random neural network and 2D inputs [Osband
et al., 2022]. That work evaluates the quality of joint pre-
dictive distributions over ten inputs sampled i.i.d. from the
training distribution. The results clearly distinguish agents
that effectively estimate uncertainty from those that do not.
This evaluation predicts agent performance when used to
guide decisions in high-dimensional ‘neural bandits’.

However, as the input dimension increases, the aforemen-
tioned approach to evaluating agents becomes uninforma-
tive. As we will later discuss, the reason lies in the order
of the predictive distributions being evaluated. With a two-
dimensional input, the tenth order distribution suffices, but
the predictive distribution order required to produce mean-
ingful assessments increases rapidly with the input dimen-
sion. We could consider scaling the predictive distribution
order as needed, but the evaluation algorithms of Osband
et al. [2022] become computationally intractable.

To accommodate high-dimensional inputs, we introduce
dyadic sampling, which focuses on predictive distributions
associated with random pairs of inputs rather than those scat-
tered according to the training input distribution. We demon-
strate that this approach efficiently distinguishes agents in
high-dimensional examples involving simple logistic regres-
sion as well as complex synthetic and empirical data. For
example, agent assessments based on dyadic sampling are
predictive of performance in high-dimensional neural ban-
dits presented in results of Osband et al. [2022].

1.1 RELATED WORK

We are motivated by the importance of joint predictions
in driving effective decisions [Wen et al., 2022]. Empirical
analysis of joint predictions for deep learning in 2D supports
this theory [Osband et al., 2022]. We provide a practical
heuristic to scale these insights to high dimensions.
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Our research is closely related to topics in Bayesian deep
learning [MacKay, 1992, Wilson and Izmailov, 2020],
and robustness [Hendrycks and Dietterich, 2019]. For the
most part, these communities have focused on the problem
of marginal prediction [Nado et al., 2021, Wilson et al.,
2021]. Recent work has also highlighted a notion of cross-
correlation in regression and related decision problems
[Wang et al., 2021]. Our paper provides a related perspective
that scales to classification and high dimensional data.

1.2 KEY CONTRIBUTIONS

We propose dyadic sampling, which evaluates high-order
joint predictions at random pairs of inputs. Section 2 mo-
tivates the approach, and shows that it can mitigate some
challenges in evaluating high-order predictive distributions.

Section 3 shows that dyadic sampling provides useful as-
sessments in logistic regression. As input dimension scales,
i.i.d. sampling from the training distribution does not offer
a feasible approach. Dyadic sampling offers a viable path
where the evaluation of Osband et al. [2022] is inadequate.

Section 4 extends these insights to The Neural Testbed –
an opensource package for the evaluation of joint predic-
tions in deep learning. As in logistic regression, the neu-
ral network generative process is not amenable to eval-
uation via i.i.d. sampling when the input dimension ex-
ceeds three. In contrast, dyadic sampling scales grace-
fully as the input dimension grows large. As part of
this project, we submit all agent and evaluation code to
github.com/deepmind/neural_testbed.

Section 5 shows that our methodology can extend beyond
synthetic data. Dyadic sampling can feasibly evaluate joint
predictions on high-dimensional real datasets. We evaluate
benchmark approaches to Bayesian deep learning and show
that the insights from the Testbed carry over to real data. We
see that, after tuning, all agents perform similarly in terms of
marginal predictions. However, there are significant differ-
ences in the quality of joint predictions per agent, evaluated
via dyadic sampling. Further, Testbed performance is highly
predictive of performance on empirical data.

2 EVALUATING PREDICTIVES
This section introduces notation for the standard supervised
learning framework we will consider as well as our evalu-
ation metric: KL-loss. We show that estimating KL diver-
gence in high dimensional distributions can be challenging,
and present dyadic sampling as an effective heuristic.

2.1 ENVIRONMENT AND PREDICTIONS

Consider a sequence of pairs ((Xt, Yt+1) : t = 0, 1, 2, . . .),
where each Xt is a feature vector and each Yt+1 is its target
label. Each target label Yt+1 is produced by an environ-
ment E , which we formally take to be a conditional distri-

bution E(·|Xt). The environment E is a random variable;
this reflects the agent’s uncertainty about how labels are
generated. Note that P(Yt+1 ∈ ·|E , Xt) = E(·|Xt) and
P(Yt+1 ∈ ·|Xt) = E[E(·|Xt)|Xt].

We consider an agent that learns about the environment from
training data DT ≡ ((Xt, Yt+1) : t = 0, 1, . . . , T − 1). Af-
ter training, the agent predicts testing class labels
YT+1:T+τ ≡ (YT+1, . . . , YT+τ ) from unlabeled feature
vectors XT :T+τ−1 ≡ (XT , . . . , XT+τ−1).

We describe the agent’s predictions in terms of a genera-
tive model, parameterized by a vector θT that the agent
learns from the training data DT . Specifically, θT parame-
terizes a distribution P(Ê ∈ ·|θT ) over imagined environ-
ment Ê , which is also a conditional distribution. For any in-
puts XT :T+τ−1, to generate the imagined labels ŶT+1:T+τ ,
the agent first samples an imagined environment Ê from
P(Ê ∈ ·|θT ), then generates Ŷt+1 ∼ Ê(·|Xt) conditionally
i.i.d. for each t = T, . . . , T + τ − 1.

The agents τ th-order predictive distribution is given by

P̂T+1:T+τ ≡ P(ŶT+1:T+τ ∈ ·|θT , XT :T+τ−1),

which represents an approximation to what would be ob-
tained by conditioning on the environment:

P ∗T+1:T+τ ≡ P (YT+1:T+τ ∈ ·|E , XT :T+τ−1) .

If τ = 1, this represents a marginal prediction of a single
label for a single feature vector. For τ > 1, this is a joint
prediction over τ labels for τ different feature vectors.

2.2 EVALUATING JOINT PREDICTIONS

A learning agent can be assessed through the quality of its
predictive distribution P̂T+1:T+τ . A canonical approach is
to evaluate the KL-divergence [Wen et al., 2022],

∆τ ≡ dKL

(
P ∗T+1:T+τ

∥∥P̂T+1:T+τ

)
(1)

dτKL ≡ E
[
∆τ

]
. (2)

Recall that the expectation represents an integral over all
random variables. The minimum of dτKL over all agents that
depend on the environment only through DT is attained by
the posterior agent, whose predictive distribution is

PT+1:T+τ ≡ P(YT+1:T+τ ∈ ·|DT , XT :T+τ−1). (3)

Let d
τ

KL denote the minimum achievable KL-divergence.

Algorithm 1 provides a simple Monte-Carlo approach to
evaluate dτKL. As the order of the predictive distribution τ
grows, this provides a more nuanced evaluation of agent
beliefs than just marginals. However, even for simple prob-
lems, the magnitude of τ required to provide additional
insight beyond marginals can become intractably large. To
anchor our thinking on this matter we consider a simple
coin tossing example.
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Algorithm 1 KL-Loss Estimation [Osband et al., 2022].

for j = 1, 2, . . . , J do
sample environment and training data
train agent on training data
for n = 1, 2, . . . , N do

sample τ test data pairs
compute environment likelihood pj,n
compute agent likelihood p̂j,n

end for
end for

return 1
JN

∑J
j=1

∑N
n=1 log (pj,n/p̂j,n)

Example 1 (Bag of coins). Let each Xt be a sample
from coins {1, . . . ,M}. Let the probability of heads px ∼
Unif(0, 1) i.i.d. for each coin x. Each observation Yt+1 is
the outcome from tossing coin Xt, so that E(1|Xt) = pXt .

Let us consider a predictive distribution for which
P(Ŷ1:τ |X0:τ−1)=

∏τ−1
t=0 P(Ŷt+1|Xt)=1/2τ . Suppose an

agent uses this to select coins sequentially with the aim
of maximizing the expected number of heads. While Ŷ1:τ
accurately minimizes d1

KL, the agent assumes that toss out-
comes are independent and therefore does not learn from
history to improve successive choices. Accounting for de-
pendencies arising in the joint distribution, as would be
captured by dτKL, is essential to maximizing performance.

Proposition 1 (Small τ approximately marginal). If the
agent defined above is applied to Example 1 with τ �M ,

dτKL = d
τ

KL +O
(
τ3/M

)
.

Proof. Note that under the event that there are no repeated
inputs in X0:τ−1, the posterior agent is equivalent to the
agent defined above. For τ � M , this event occurs with
high probability. The detailed proof is in Appendix A.1.

Proposition 1 shows that if τ �M , then dτKL is unable to
distinguish agents that only match marginals from those that
are useful for decision making. When the cardinality of the
input space M is much larger than the test distribution order
τ it is unlikely that any correlated inputs will be sampled.
The metric dτKL punishes agents that impose an erroneous
correlation, but is unlikely to reward agents that correctly
capture this dependence until τ is sufficiently large.

In Example 1, it may suffice to use a value of τ that grows
cubicly in M . However, due to the curse of dimensional-
ity, the required magnitude of τ can grow exponentially in
problem dimension. To handle such cases, we introduce
a practical evaluation metric that correctly identifies high
quality predictive distributions with modest values of τ .

For this result, we introduce notation for assignment: for
random variables A,B,C and a function f(c) ≡ E[A|B =
c], let E[A|B ← C] = f(C). Note that, in general, if C is a
random variable then E[A|B ← C] 6= E[A|B = C].

Definition 1 (Polyadic test sampling (of order κ)). For
any κ ∈ N, let ‘anchor points’ X1:κ be drawn i.i.d. from
P(Xt ∈ ·), and let X̃κ

T :T+τ−1 ∼ Unif{X1:κ}. We define,

dτ,κKL ≡ E
[
E
[
∆τ | XT :T+τ−1 ← X̃κ

T :T+τ−1

]]
.(4)

Polyadic sampling is motivated by a desire to investigate an
agent’s predictions in situations where correlation between
predictions is more likely to play an important role. Under
reasonable regularity assumptions limκ→∞ dτ,κKL = dτKL for
all τ . In the case of κ < τ , we can ensure that at least one
input will be sampled multiple times. In the special case of
κ = 1, we call this monadic sampling.

Proposition 2 (Monadic sampling cannot spot bad agents).
Consider an agent that ignores the inputs and predicts

P(Ŷ1:τ |X0:τ−1) = P(Ŷ1:τ ),

where Ŷ1, . . . , Ŷτ are sampled independently from Ber(p̂)
with a shared parameter p̂ ∼ Unif(0, 1). Then, for any
τ ∈ N in Example 1 this agent achieves the minimum dτ,1KL

over all agents.

Proof. This agent is constructed so that for any repeated
inputsX0:τ−1 = X̃1

0:τ−1, this agent’s predictive distribution
matches that of the posterior agent.

Monadic sampling can examine whether an agent under-
stands the correlation structure at a single input. However,
Proposition 2 shows that it does not punish agents that er-
roneously ascribe correlation to independent input-output
pairs. This agent achieves the best possible score in dτ,1KL but
is useless for driving decisions. In order to weed out these
agents it is crucial to sample more than one input point.

2.3 DYADIC SAMPLING (κ = 2)

This paper introduces dyadic test input sampling (κ = 2)
as a practical heuristic for assessing the quality of joint
predictions in high dimensions. This sampling scheme sam-
ples two random anchor points from the input space, and
then randomly resamples the τ inputs from these anchor
points. Even with moderate τ = 10, we can be sure that
most batches will contain a mix of points that are highly
correlated to each other, as well as some others which may
be quite different.

Dyadic sampling is a heuristic approach designed to work
well in practical problems. The choice of κ = 2 addresses
the extreme shortcomings of dτ,κKL by Propositions 1 and 2
in the settings κ → ∞ and κ = 1 respectively. However,
it is certainly not a perfect substitute for evaluating dτKL

with very large τ . Depending on the setting, it is certainly
possible to design agents that fare very well according to
dτ,2KL, but very poorly according to dτKL.



One might ask, ‘Does some other 1 < κ < ∞ provide a
better candidate for practical evaluation of posterior predic-
tives?’. Could there be an analagous result to Proposition 2
when considering κ = 2, but evaluating posterior predic-
tions at three anchor points? Note that, since dτ,2KL already
evaluates the quality of the joint predictions at any pair of
inputs, then for most problems the distribution over any
three inputs will also be estimated well. In particular, for
any Gaussian process, the first two moments are enough to
determine the entire distribution of E . We push details to
Appendix A.2.

2.4 JOINT PREDICTIONS AND INFORMATION

So far, we have motivated dyadic sampling mostly through
appeal to Example 1, together with some heuristic argu-
ments. In this subsection we expand on this intuition through
the lens of information theory.

To illustrate this, let’s consider the posterior agent, which
is optimal for generating predictive distributions. Note that
under the posterior agent,

dτKL = I
(
YT+1:T+τ ; E

∣∣DT , XT :T+τ−1
)

=
∑T+τ−1
t=T I

(
Yt+1; E

∣∣DT ,DT :t, Xt

)
, (5)

where I(·) denote the (conditional) mutual information
[Cover, 1999] and DT :t ≡ (XT :t−1, YT+1:t). Note that the
second equality follows from the chain rule of mutual infor-
mation. On the other hand,

τd1
KL = τI

(
YT+1; E

∣∣DT , XT

)
=
∑T+τ−1
t=T I

(
Yt+1; E

∣∣DT , Xt

)
, (6)

where the second equality follows from XT :T+τ−1 are i.i.d.

For dτKL to be significantly different from τd1
KL, we need

for at least one t, the dataset DT :t is informative about the
target label Yt+1 at Xt. For practical problems with τ small
relative to the input space, the DT :t is not informative about
Yt+1. In such cases, we have dτKL ≈ τd1

KL. One way to
think about dyadic sampling is a heuristic approach to sam-
pleXT :T+τ−1 so thatDT :t is particularly informative about
Yt+1 and so evaluate the quality of the posterior approxi-
mation. Depending on the problem settings, other input
sampling schemes may also be appropriate to accomplish
this goal.

3 LOGISTIC REGRESSION

The results of Section 2 provide a motivation for dyadic
sampling where it can sidestep the curse of dimensionality
in higher-order predictive distributions. In this section, we
show that this effect can occur in practical settings, not just
obtuse problems cooked up for theory. In fact, even for the
canonical problem of logistic regression, the benefits of
dyadic sampling can be significant.

3.1 PROBLEM FORMULATION

We consider the familiar problem of D-dimensional logistic
regression. Inputs are sampled i.i.d. Xt ∼ N(0, ID) and the
environment E is determined by parameter φ ∼ N(0, ID).
Outputs Yt+1 ∈ {0, 1} are then sampled according to

P(Yt+1 = 1|E , Xt) =
exp(ρφTXt)

exp(ρφTXt) + 1
.

Here ρ > 0 is the temperature controlling signal to noise
ratio (SNR). We set ρ=0.01 for a high SNR setting.

In this simple setting, we can compare three agents that
make predictions Ŷ1:τ given inputs X0:τ−1.

1. uniform: P(Ŷt+1 =1|Xt)= 1
2 for t=0,1,...

2. marginal: Samples λ∼N(0,1), and then predicts
P(Ŷt+1 =1|λ,Xt)= exp(ρλ‖Xt‖2)

exp(ρλ‖Xt‖2)+1 for t=0,1,...

3. prior: Samples φ̂∼N(0,ID), and then predicts
P(Ŷt+1 =1|φ̂,Xt)= exp(ρφ̂TXt)

exp(ρφ̂TXt)+1
for t=0,1,...

The agents are chosen to highlight specific properties of the
logistic regression problem. The uniform agent makes
the correct marginal predictions at any input, but does not
capture any correlation among Y1:τ . The marginal agent
makes the correct marginal predictions, and it also gets the
correct joint distribution if inputs X0:τ−1 are all sampled at
a single point (monadic sampling). However, it introduces
spurious correlation among the predicted outputs if the in-
puts are not all equal. The prior agent samples from the
true prior, and so is optimal for all dτ,κKL. We would like
to have a practical evaluation metric that can separate this
optimal agent from these sub-optimal approximations.

We consider metrics dτKL and dτ,κKL for κ = 1, 2, all of which
are estimated through Monte Carlo sampling according to
Algorithm 1. Despite the simplicity of this problem, only
dyadic sampling (dτ,κ=2

KL ) can correctly separate the agents
once the input dimension grows.

3.2 RESULTS

As the prior agent makes optimal predictions in this prob-
lem, in principle, this agent will outperform all others ac-
cording to dτKL as the order of the predictive distribution τ
grows. However, to separate the agents, the required τ can
quickly become intractable in the input dimension.

Figure 1 shows that, in logistic regression, for dimension
D ≥ 5, even τ = 10, 000 is insufficient to give a factor
of 2 separation between the optimal prior agent and the
uninformed uniform agent. The computational cost of
evaluating dτKL grows with τ , so that this can quickly be-
comes impractical even for relatively small-scale problems.
By contrast, evaluation with dτ,κ=2

KL is able to identify this
separation with only τ = 10 even as the input dimension
grows.
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Figure 1: dτKL can separate prior agent from uniform,
but the required τ is intractable in the input dimension.
Dyadic sampling dτ,κ=2
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Figure 2: Comparing KL estimates under different input
sampling schemes. Sampling test inputs i.i.d. cannot distin-
guish uniform agent from the prior agent in high di-
mensions. Monadic sampling cannot distinguish the prior
agent from marginal. Dyadic sampling correctly identi-
fies prior agent from uniform and marginal.

Figure 2 shows that this scaling carries over to high di-
mensions, fixing τ = 10. Sampling test inputs i.i.d. cannot
distinguish the uniform agent from the prior agent in
dimensions greater than 100. At a high level, this result
matches the spirit of Proposition 1. Figure 2 also shows that
monadic sampling dτ,κ=1

KL cannot distinguish the prior
agent from the marginal agent. This mirrors Proposi-
tion 2, but in a setting with generalization. Dyadic sampling
dτ,κ=2
KL correctly identifies that prior agent is a superior

agent across all input dimensions.

These results clearly demonstrate that the theoretical con-
cerns raised in Section 2 actually occur in practical prob-
lems. Further, these concerns can occur even in the most
simple settings of logistic regression, rather than contrived
scenarios. We push the details on the robustness/sensitivity
of these results to Appendix B.

4 THE NEURAL TESTBED

In this section we show that the insights observed in the
linear setting of Section 3 extend to nonlinear function ap-
proximation and neural networks. Osband et al. [2022] in-
troduce the Neural Testbed as a simple synthetic 2D prob-
lem to evaluate posterior predictives in deep learning. We
show that, using the exisitng dτKL evaluation, this approach
does not scale to higher dimensions. However, using dyadic
sampling we are able to extend these insights to practical
scales. As part of our work we contribute these changes to
github.com/deepmind/neural_testbed.

4.1 PROBLEM FORMULATION

The Neural Testbed works with a synthetic data generating
process around random 2-layer MLPs [Osband et al., 2022].
For each random seed, a random neural network is sam-
pled according to standard Xavier initialization [Glorot and
Bengio, 2010]. Then, random train/test inputs are sampled
X1:T+T ′ ∼ N(0, I) and labels assigned randomly accord-
ing to the probabilities of the generative MLP. We follow
the exact settings in the existing opensource package except
for two key changes.

First, we supplement the existing evaluation by d1
KL,d

10
KL

to also evaluate according to d10,κ=2
KL . Then, we vary the

input dimension of the problem (which is fixed at D = 2 in
the original Neural Testbed release). To account for the dif-
ferent data requirements in higher dimensions we similarly
increase the number of training pairs in low, medium, high
data regimes to scale with the input dimension.

The full testbed sweep is defined over input dimensions
D ∈ {2, 10, 100}, number of training pairs T = λD for
λ ∈ {1, 10, 100, 1000}, temperature ρ ∈ {0.01, 0.1, 0.5}
with 5 random seeds in each setting. We push full details,
together with opensource implementation, to Appendix C.

https://github.com/deepmind/neural_testbed


Table 1: Summary of benchmark agents, full details in Appendix C.2.

agent description hyperparameters
mlp Vanilla MLP L2 decay
ensemble ‘Deep Ensemble’ [Lakshminarayanan et al., 2017] L2 decay, ensemble size
dropout Dropout [Gal and Ghahramani, 2016] L2 decay, network, dropout rate
bbb Bayes by Backprop [Blundell et al., 2015] prior mixture, network, early stopping
hypermodel Hypermodel [Dwaracherla et al., 2020] L2 decay, prior, bootstrap, index dimension
ensemble+ Ensemble + prior functions [Osband et al., 2018] L2 decay, ensemble size, prior scale, bootstrap
sgmcmc Stochastic Langevin MCMC [Welling and Teh, 2011] learning rate, prior, momentum

mlp ensemble dropout bbb hypermodel ensemble+ sgmcmc
agent
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Figure 3: Comparing different agents on the testbed problems with input dimension D = 100. We see that the results for
marginal d1

KL and joint d10
KL with i.i.d. test sampling do not show any significant difference in performance. By contrast,

dyadic sampling d10,2
KL clearly separates agent performance in joint versus marginals.

4.2 BENCHMARK AGENTS

To compare the performance of benchmark agents we
make use of the opensource agents developed by Osband
et al. [2022]. Table 1 lists agents that we study and com-
pare as well as hyperparameters that we tune. In our ex-
periments, we optimize these hyperparameters via grid
search. The choices start from the defaults released in
github.com/deepmind/neural_testbed, but ex-
tend and tweak some hyperparmeter choices for high dimen-
sional problems. Further detail on these agents is provided
in Appendix C.2.

4.3 OVERALL RESULTS

Figure 4 shows the KL estimates for these agents, normal-
ized so that the baseline MLP has a score of 1. In each
case, these agents are tuned for performance on the Neural
Testbed for input dimension 100. We can see that in this set-
ting evaluation in d10

KL is statistically indistinguishable from
that of marginal predictions. We also see that, for the most
part, the quality of these marginal predictions is not mas-
sively improved versus the MLP. However, unlike the 2D
testbed results, we do see that some of these more advanced
approaches can improve marginal predictions.

However, we see that evaluating agents according to dyadic
sampling leads to massive distinctions in their evaluations.

Interestingly, these qualitative results match the d10
KL with

i.i.d. test sampling ordering in the 2D setting. Osband et al.
[2022] showed that this order was highly correlated with
performance in sequential decision problems, even for high
input dimension. Our results provide a significant new find-
ing; in high dimensional problems dyadic sampling sam-
pling can provide a more targeted signal for the suitability
in downstream tasks.

4.4 PRIORS IN HIGH DIMENSIONS

One of the most clear and interesting pairs of agents to
compare is ensemble and ensemble+. These agents
are identical except for the addition of randomized, fixed
prior networks. Prior work has shown that this difference
can be crucial in high-dimensional decision problems [Os-
band et al., 2018, Burda et al., 2019]. Comparison of joint
predictions d10

KL in 2D problems also showed a signficant
difference, but only for very small training sets T ≤ 30.
The question remained, do these randomized priors provide
value in large scale supervised learning?

Figure 4 shows that, according to d10
KL the benefits of

ensemble+ appear to evaporate for input dimensions ≥ 2.
However, using dyadic sampling and κ = 2 we can see
there are huge differences in the quality of their posterior
approximation that extend to high dimensional problems.
Figure 5 shows that, as we increase the dimensionality of

https://github.com/deepmind/neural_testbed


the problem, so too we increase the size of the largest train-
ing sets where prior functions afford signficant advantages.
Rather than becoming irrelevant in large problems, the im-
portance of good inductive bias actually increases with input
dimension.
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1 3 10 30 100
input dimension

1e1

1e2

1e3

1e4

1e5

m
ax

im
um

 tr
ai

ni
ng

 p
oi

nt
s w

ith
d10

,2
KL

(e
ns

em
bl

e+
) <

 1 2d
10

,2
KL

(e
ns

em
bl

e) correlation=0.93 (0.84, 1.0)

Figure 5: The benefits of ensemble+ over ensemble
occur in the ‘low data regime’. However, the amount of data
that constitutes as ‘low data’ grows with input dimension.

5 REAL DATA

In this section we show that the key insights gained from the
synthetic neural testbed can carry over to real datasets. We

replace the neural network generative process of Section 4
with small challenge datasets drawn from the deep learning
literature. We then tune the agents of Table 1 for each of
these settings and analyse the results. We find that all agents
can be tuned to perform roughly equivalently in terms of
marginal predictions. However, their performance difference
greatly in terms of their joint performance as measured by
dyadic sampling. Further, agent performance on the testbed
is highly correlated with performance on real datasets.

5.1 PROBLEM FORMULATION

Progress in the field of deep learning has been driven
in large part through evaluation on shared, fixed datasets
[Krizhevsky et al., 2012]. We repeat the analysis of Sec-
tion 4 but replace the synthetic data generating process with
a collection of datasets drawn from the literature [TFD].

Table 2 outlines the ten datasets we include in our analy-
sis. We wanted to choose datasets that might provide an
analagous challenge to the Neural Testbed and so selected
them based on their popularity in the literature, and suitabil-
ity for training with a 2-layer MLP. For this reason, large
scale challenges such as ImageNet or language modelling,
which typically require different classes of models were not
included in our selection [Deng et al., 2009].

To mirror our evaluation in the Neural Testbed we begin
with datasets Dn

Tn
= ((Xt, Yt+1) : t = 0, .., Tn − 1) for

n = 1, .., 10. To evaluate different data regimes we cre-
ate subsampled datasets D̃n

T for T = 10, 100, 1000, Tn to
evaluate different data regimes. We then evaluate dτ,κKL in
the ‘low temperature’ limit, taking the labels in the sup-
plied test set as probability 1 or, equivalently, the negative
log-likelihood [Wen et al., 2022].

As in Section 4.2, we evaluate the agents outlined in Table 1
across each of these datasets in each data regime. We then
tune the hyperparameters per dataset, per data regime and
aggregate the performance by taking the average over all
evaluations. This mirrors the procedure that we applied in
Section 4. We push full details to Appendix D.

5.2 RESULTS

We begin by assessing the quality of the agents’ performance
in marginal predictions, when averaged over all datasets, for
all data regimes. Figure 6 shows that, once agents are opti-
mized for each setting, the differences between agents is not
statistically significant. This finding mirrors our observation
in the case of synthetic data and Figure 3. These agents
perform similarly at marginal prediction in the testbed, and
overall they perform similarly in the real datasets as well.

Once you consider the quality of joint predictions however,
there is a significant difference in the quality of predictive
distributions evaluated on real data. Further, Figure 7 shows



Table 2: Summary of benchmark datasets studied, full details in Appendix D.

dataset name type # classes input dimension # training pairs
iris structured 3 4 120
wine quality structured 11 11 3,918
german credit numeric structured 2 24 800
mnist image 10 784 60,000
fashion-mnist image 10 784 60,000
mnist-corrupted/shot-noise image 10 784 60,000
emnist/letters image 37 784 88,800
emnist/digits image 10 784 240,000
cmaterdb image 10 3,072 5,000
cifar10 image 10 3,072 50,000
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Figure 6: None of the agents perform significantly better than
MLP baseline in marginal likelihood.
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Figure 7: The quality of joint predictions on the testbed is
highly correlated with performance in real data.

that this difference is highly correlated with performance
on the Neural Testbed. Agents that perform better in the
setting with synthetic data also tend to perform better when
evaluated on real data. This finding is particularly signifi-
cant since the differences in d10,2

KL are quite large even for
these state of the art agents. These results provide strong
indications that the issues observed in sequential decision
problems [Osband and Van Roy, 2015] and synthetic data
[Osband et al., 2022] can extend to real data.

Now, in some sense the results we have presented are ‘non-
standard’ in that our evaluation includes averages over
restricted-data versions of the canonical datasets in Table 2.
We believe that this is a sensible approach if you are in-
terested in designing learning agents that work in online
decision making and are robust to different data regimes.
However, in some supervised learning settings it is more
common from practitioners to care only about the ‘full’
datasets with T = Tn. In fact, the findings of Figure 6 and
Figure 7 are essentially unchanged when restricting only to
the ‘full data’ regime. That is, the differences in marginal
predictions τ = 1 are quite minor, but the differences in
τ = 10, κ = 2 are extreme. Further, that these differences
in joint performance are highly correlated with agent perfor-
mance in the testbed. We push full details to Appendix D.

6 CONCLUSION
Good predictions are essential for good decisions. Crucially,
the quality of these decisions depends on the quality of
joint predictions and not just the marginals [Wen et al.,
2022]. In this paper, we highlight the difficulties in evalu-
ating high-order predictive distributions that are essential
for decision making. We introduce dyadic sampling as an
practical heuristic to sidestep the curse of dimensionality.

We motivate dyadic sampling through a simple discrete ex-
ample, and show that the key insights extend to linear and
then nonlinear systems. We show that the Neural Testbed
cannot effectively scale to high dimensions with i.i.d. sam-
pling, but that it can with dyadic sampling. Importantly, this
approach also scales to challenge datasets, and we show that
testbed performance is highly correlated with real data.

A major contribution of our work is the opensource effort
at github.com/deepmind/neural_testbed. This
includes all the code used to generate the paper, and helps to
provide clear and reproducible benchmarks for the commu-
nity. We believe that this paper can provide an stimulating
base for future research into agents that make predictions in
high-dimensional problems, and drive effective AI systems.

https://github.com/deepmind/neural_testbed
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A EVALUATING PREDICTIVE DISTRIBUTIONS

This section contains supplementary material for Section 2. Importantly, we provide the proof for Proposition 1and discuss
why dyadic sampling is sufficient for Gaussian process.

A.1 PROOF FOR PROPOSITION 1

Proposition 1 (Small τ approximately marginal). If the agent defined above is applied to Example 1 with τ �M ,

dτKL = d
τ

KL +O
(
τ3/M

)
.

Proof. Note that by definition, dτKL ≥ d
τ

KL. We now prove that dτKL ≤ d
τ

KL +O
(
τ3/M

)
. Note that

dτKL = E [log (P(Y1:τ |E , X0:τ−1))]− τ log

(
1

2

)
,

where τ log
(
1
2

)
is the log-likelihood under the uniform agent, and

d
τ

KL = E [log (P(Y1:τ |E , X0:τ−1))]− E [log (P(Y1:τ |X0:τ−1))] .

Consequently, we have

dτKL − d
τ

KL = τ log(2) + E [log (P(Y1:τ |X0:τ−1))] .

We define the event G as

G = {there are no repeated inputs in X0:τ−1}.

One key observation is that conditioning on G, the posterior predictive distribution is i.i.d. across inputs, and

log (P(Y1:τ |X0:τ−1)) = −τ log(2)

conditioning on G. Hence

E [log (P(Y1:τ |X0:τ−1))] = −P(G)τ log(2) + P(Ḡ)E
[
log (P(Y1:τ |X0:τ−1))

∣∣Ḡ]
≤ −P(G)τ log(2)

where Ḡ is the complement of G, and the inequality follows from log (P(Y1:τ |X0:τ−1)) ≤ 0. Hence we have

dτKL − d
τ

KL ≤ (1− P(G))τ log(2) = P(Ḡ)τ log(2).

Finally, note that

P(G) =

τ−1∏
k=1

(
1− k

M

)
= 1− 1

M

τ−1∑
k=1

k +O

(
1

M2

)
= 1− τ(τ − 1)

2M
+O

(
1

M2

)
.

Hence P(Ḡ) = O
(
τ2/M

)
and we have

dτKL − d
τ

KL ≤ O
(
τ3/M

)
.

The conclusion follows from

d
τ

KL ≤ dτKL ≤ d
τ

KL +O
(
τ3/M

)
.



A.2 DYADIC SAMPLING AND GAUSSIAN PROCESSES

In this section, we discuss why dyadic sampling is sufficient for Gaussian processes (GPs). In particular, we show that when
both the environment E and the imagined environment Ê of an agent follow GP, then with sufficiently large τ and under
suitable regularity conditions, performing well under dτ,κ=2

KL is sufficient to ensure that the posterior distribution of E and
the agent’s belief over Ê are close.

Assume that both E and Ê are GPs with the same finite domain X and that the training input distribution is uniform over X .
Specifically, under the environment E ,

Yt+1 = f(Xt) +Wt+1,

and under the imagined environment Ê ,
Ŷt+1 = f̂(Xt) + Ŵt+1,

where Wt+1’s and Ŵt+1’s are i.i.d. observation noises according to N(0, σ2), and f and f̂ are functions over X . We assume
that P(f ∈ ·|DT ) = N(µ,Σ) and P(f̂ ∈ ·|θT ) = N(µ̂, Σ̂). Note that by definition

dτ,κ=2
KL =E

[
E
[
dKL

(
P ∗
T+1:T+τ

∥∥∥P̂T+1:T+τ

)∣∣∣XT :T+τ−1 = X̃κ=2
T :T+τ−1

]]
=E

[
I
(
E ;YT+1:T+τ

∣∣∣DT , XT :T+τ−1 = X̃κ=2
T :T+τ−1

)]
︸ ︷︷ ︸

irreducible

+E
[
E
[
dKL

(
PT+1:T+τ

∥∥∥P̂T+1:T+τ

)∣∣∣XT :T+τ−1 = X̃κ=2
T :T+τ−1

]]
︸ ︷︷ ︸

d̃
τ,κ=2
KL

.

Note that the first term in the above equation is irreducible and independent of the agent, hence, performing well under
dτ,κ=2
KL is equivalent to performing well under d̃τ,κ=2

KL . Under suitable regularity conditions, for sufficiently large τ , we have

d̃τ,κ=2
KL ≈ E

[
dKL

(
P
(
f(X̃1:2) ∈ ·|DT , X̃1:2

) ∥∥∥P(f̂(X̃1:2) ∈ ·|θT , X̃1:2

))]
,

where X̃1:2 =
(
X̃1, X̃2

)
and X̃1 and X̃2 are i.i.d. sampled from PX . Thus, if the RHS of the above equation is small, then

it implies that

dKL

(
P
(
f(X̃1:2) ∈ ·|DT , X̃1:2

) ∥∥∥P(f̂(X̃1:2) ∈ ·|θT , X̃1:2

))
(7)

is small for all X̃1:2. Let µ(X̃1:2) ∈ <2 and Σ(X̃1:2) ∈ <2×2 respectively denote µ and Σ restricted to X̃1:2, and µ̂(X̃1:2)
and Σ̂(X̃1:2) are defined similarly, then we have

f(X̃1:2) ∼ N
(
µ(X̃1:2),Σ(X̃1:2)

)
and f̂(X̃1:2) ∼ N

(
µ̂(X̃1:2), Σ̂(X̃1:2)

)
.

Consequently, if equation 7 is small, then µ(X̃1:2) is close to µ̂(X̃1:2) and Σ(X̃1:2) is close to Σ̂(X̃1:2). Since this holds for
all X̃1:2, this further implies that µ is close to µ̂ and Σ is close to Σ̂. In other words, the posterior distribution of E and the
agent’s belief over Ê are close.

B LOGISTIC REGRESSION

This appendix provides supplementary details for Section 3. We include all of the code necessary to generate Figures 1 and
2 as part of our opensource submission github.com/deepmind/neural_testbed. Results are averaged over 10
random seeds per problem setting.

Figure 8 provides another kind of insight to the scaling observed in Figure 1. In these plots we show the KL ratio of a perfect
prior agent when compared to uniform. We can see that, for any input dimension, the empirical KL ratio decreases
with τ . However, as the input dimension grows reasonably large (D = 10), that even large τ = 10, 000 are not enough to
observe this ratio under 0.5. We know that, as τ →∞ this ratio will tend to zero for these two agents. By contrast, dyadic
sampling is able to clearly distinguish these agents even for moderate values of τ .

Figure 9 provides some insight to the robustness of Algorithm 1 under varying number of agent samples. We make use
of the epistemic neural network notation introduced by Osband et al. [2021]. We can see that these monte carlo estimates
converge empirically as we increase the number of samples. Therefore, for the purposes of our experiments in this section
our choice of 10, 000 ENN samples is sufficient.

https://github.com/deepmind/neural_testbed
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dimensions.

C NEURAL TESTBED

This appendix provides supplementary details for Section 4

C.1 PROBLEM FORMULATION

We build on the opensource code of the Neural Testbed github.com/deepmind/neural_testbed. Our testbed
sweep is defined over input dimensions D ∈ {2, 10, 100}, number of training pairs T = λD for λ ∈ {1, 10, 100, 1000},
temperature ρ ∈ {0.01, 0.1, 0.5} with 5 random seeds in each setting. We replace the d10

KL evaluation with dyadic sampling
d10,κ=2
KL . We release all of our code and implementation at github.com/deepmind/neural_testbed.

C.2 BENCHMARK AGENTS

We make use of the benchmark agents introduced in Osband et al. [2022] and opensourced at
github.com/deepmind/neural_testbed. Since our testbed includes settings with number of training
pairs as small as 2 (when D = 2, λ = 1) and as large as 100,000 (when D = 100, λ = 1000), in order to improve agent
performance over all settings, we allow agents to adjust their number of training steps based on the problem setting. Agents
implementation can be found in our open source code under the path /agents/factories.

We make small alterations to the tuning sweeps proposed in Osband et al. [2022] in an effort to improve agent performance
in high dimension problems. This change strictly improved the agent performance as we only added hyperparameter choices

https://github.com/deepmind/neural_testbed
https://github.com/deepmind/neural_testbed
https://github.com/deepmind/neural_testbed
/agents/factories


and did not restrict them. Our sweeps can be found in our open source code under the path /agents/factories/
sweeps/testbed, but we highlight the differences that helped to improve agent performance. For mlp, ensemble,
dropout, bbb, hypermodel, ensemble+ agents, we found out that their performance improves by allowing them to
adjust their default number of training steps based on the problem setting: increase it by 5x when λ = 1000 and decrease it
by 5x when λ = 1. For sgmcmc agent, we found out that we can improve the performance of this agent by allowing it to
increase prior variance parameter by 2x when D = 100.

C.3 OVERALL RESULTS

Figure 3 provides an overview of the agent performance on the testbed in terms of dKL. These numbers are normalized so
that the baseline MLP has a value of 1. In classification problems it is common to also consider the classification accuracy,
or the percentage of inputs for which the agent correctly labels the input. Figure 10 confirms that, after tuning, none of the
agents perform significantly differently from baseline MLP.
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Figure 10: After tuning, none of the agents perform signficantly differently from the baseline MLP in terms of classification
accuracy.

D REAL DATA

This section provides supplementary details regarding the experiments in Section 5. As before, we include full implementation
and source code in our open source code under the path /real_data.

D.1 PROBLEM FORMULATION

Table 2 outlines the datasets included in our experiments. For each dataset, we perform a standard preprocessing on inputs to
be mean zero and unit variance. Full details are available in our open source code under the path /real_data/utils.py.

In the testbed we are able to evaluate a wide range of SNR regimes by varying temperature. This means that we can query a
given input Xt multiple times and potentially obtain different class labels Yt. For these fixed dataset there is only one testing
dataset, with deterministic labels given for each input. We map this setting to the low temperature limit (and high SNR)
setting of our testbed. As such, we evaluate the negative log-likelihood in place of dτKL. This is equivalent to assuming the
underlying world model was deterministic at these testing points, and is standard practice in deep learning.

We note that this ‘high SNR’ assumption appears to be reasonable in practice, since for all of the datasets considered in
Table 2 the benchmark mlp agent is able to obtain high classification accuracy on held out data. This would not be possible
if the underlying system was fundamentally stochastic, due to the irreducible error due to chance.

D.2 RESULTS

In this section we provide some supplementary results that analyze the performance of our benchmark agents on real data.
To allow for hyperparameter tuning separately on the testbed and real datasets, we included different sweeps for the testbed
and real datasets. Our sweeps for real data can be found in our open source code under the path /agents/factories/
sweeps/real_data.

/agents/factories/sweeps/testbed
/agents/factories/sweeps/testbed
/real_data
/real_data/utils.py
/agents/factories/sweeps/real_data
/agents/factories/sweeps/real_data


One of the headline results in our paper is Figure 7, which shows that the quality of joint predictions on the testbed is highly
correlated with performance in real data. Figure 11 shows that this result is still true when you restrict the evaluation to the
‘full training data’ setting in each dataset. Further, this aggregate correlation is not driven by just one outlier dataset, but
actually occurs in each dataset individually. In fact, after bootstrapping only the results on Iris were not significant at the
95% confidence levels. This gives some additional reassurance that the relationship between joint performance on testbed
and real data is robust.
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Figure 11: The quality of joint predictions on the testbed is highly correlated with performance in real data.

Our results in this paper allow for hyperparameter tuning separately on the testbed and real datasets. We believe that this is
reasonable practice, and reflects the way machine learning algorithms are usually used in practice. However, one natural
question might be if tuning an agent’s performance on the testbed leads to good hyperparameter settings on real data.
Figure 12 shows the results of this analysis across a wide range of agent-hyperparameter pairs. Agent-hyperparameter pairs
that perform better on the testbed generally also perform better on real data. This result is statistically significant in both
τ = 1 and τ = 10 dyadic sampling. However, we do see a stronger correlation in joint predictions rather than marginals. So
while we do not necessarily recommend tuning your agent for real datasets using the Neural Testbed, these results say that it
will provide a better answer on average than random chance.
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