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Abstract

Federated learning (FL) is a promising technology via which some edge devices/clients
collaboratively train a machine learning model orchestrated by a server. Learning an unfair
model is known as a critical problem in federated learning, where the trained model may
unfairly advantage or disadvantage some of the devices. To tackle this problem, in this work,
we propose AdaFed. The goal of AdaFed is to find an updating direction for the server along
which (i) all the clients’ loss functions are decreasing; and (ii) more importantly, the loss
functions for the clients with larger values decrease with a higher rate. AdaFed adaptively
tunes this common direction based on the values of local gradients and loss functions. We
validate the effectiveness of AdaFed on a suite of federated datasets, and demonstrate that
AdaFed outperforms state-of-the-art fair FL methods.

1 Introduction

Conventionally, a machine learning (ML) model is trained in a centralized approach where the training data
is available at a data center or a cloud server. However, in many new applications, devices often do not want
to share their private data with a remote server. As a remedy, federated learning (FL) was proposed in
McMahan et al. (2017) where each device participates in training using only locally available dataset with
the help of a server. Specifically, in FL, devices share only their local updates with the server, and not their
raw dataset A well-known setup to carry out such decentralized training is FedAvg McMahan et al. (2017)
which combines local stochastic gradient descent (SGD) on each client with iterative model averaging. The
server sends the most recent global model to some selected clients (Eichner et al., 2019; Wang et al., 2021a),
and then these clients perform a number of epochs of local SGD on their local training data and send the
local gradients back to the central server. The server then finds the (weighted) average of the gradients to
update the global model, and the process repeats.

In FedAvg, the vector of averaged gradients computed by the server is in fact a common direction along
which the global model is updated. However, finding the common direction in this manner may result in a
direction which is not descent for some clients. Consequently, the learnt model could perform quite poorly
once applied to the private dataset of the clients, yielding an unfair global model (Li et al., 2019a; Bonawitz
et al., 2019; Kairouz et al., 2021); that is, although the average accuracy might be high, some clients whose
data distributions differ from the majority of the clients are prone to perform poorly on the learnt model.

One possible method to find a direction that is descent for all the clients is to treat the FL task as a
multi-objective minimization (MoM) problem Hu et al. (2022). In this setup, a Pareto-stationary solution of
the MoM yields a descent direction for all the clients. However, having a common descent direction is not
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enough per se to train a fair model with uniform test accuracies across the clients1. This is because data
heterogeneity across different clients makes the local loss functions vary significantly in values, and therefore
those loss functions with larger values should decrease with a higher rate to learn a fair model.

To address the above-mentioned issues and to train a fair global model, in this work, we propose AdaFed.
The aim of AdaFed is to help the sever to find a common direction dt (i) that is descent for all the clients,
which is a necessary condition to decrease the clients’ loss functions in the SGD algorithm; and (ii) along
which the loss functions with larger values decrease with higher rates. The latter is to enforce obtaining a
global model with uniform test accuracies across the clients.

We note that if the directional derivatives of clients’ loss functions along the normalized common direction
dt are all positive, then −d is a common descent direction for all the clients. As such, AdaFed adaptively
tunes dt such that these directional derivatives (i) remain positive over the course of FL process, and (ii) are
larger for loss functions with higher values enforcing them to decrease more during the global updation by
the server.

The contributions of the paper are summarized as follows:

• We introduce AdaFed, a method to realize fair FL via adaptive common descent direction.

• We provide a closed-form solution for the common direction found by AdaFed. This is in contrast with
many existing fair FL methods which deploy iterative or generic quadratic programming methods.

• Under some common assumptions in FL literature, we prove the convergence of AdaFed under
different FL setups to a Pareto-stationary solution.

• By conducting thorough experiments over seven different datasets (six vision datasets, and a language
one), we show that AdaFed can yield a higher level of fairness among the clients while achieving
similar prediction accuracy compared to the state-of-the-art fair FL algorithms.

• The experiments conducted in this paper evaluate many existing fair FL algorithms over different
datasets under different FL setups, and therefore can pave the way for future researches.

2 Related Works

There are many different perspectives in the literature to combat the problem of fairness in FL. These
methods include client selection (Nishio & Yonetani, 2019; Huang et al., 2020a; 2022; Yang et al., 2021),
contribution Evaluation (Zhang et al., 2020; Lyu et al., 2020; Song et al., 2021; Le et al., 2021), incentive
mechanisms (Zhang et al., 2021; Kang et al., 2019; Ye et al., 2020; Zhang et al., 2020), and the methods
based on the loss function. Specifically, our work falls into the latter category. In this approach, the goal is
to attain uniform performance across the clients in terms of test accuracy. To this end, the works using this
approach target to reduce the variance of test accuracy across the participating clients. In the following, we
briefly review some of these works.

One of the pioneering methods in this realm is agnostic federated learning (AFL) (Mohri et al., 2019). AFL
optimizes the global model for the worse-case realization of weighted combination of the user distributions.
Their approach boils down to solving a saddle-point optimization problem for which they used a fast stochastic
optimization algorithm. Yet, AFL performs well only for a small number of clients, and when the size of
participating clients becomes large, the generalization guarantees of the model may not be satisfied. Du et al.
(2021) deployed the notation of AFL and proposed the AgnosticFair algorithm. Specifically, they linearly
parametrized model weights by kernel functions and showed that AFL can be viewed as a special case of
AgnosticFair. To overcome the generalization problem in AFL, q-fair federated learning (q-FFL) (Li et al.,
2019a) was proposed to achieve more uniform test accuracy across users. The main idea of q-FFL stemmed

1Similarly to other fields like ML (Barocas et al., 2017), communications (Huaizhou et al., 2013), and justice (Rawls, 2020),
the notion of fairness does not have a unique definition in FL. However, following (Li et al., 2019a; 2021), we use standard
deviation of the clients’ test accuracies—and some other metrics discussed in Section 7—to measure how uniform the global
model performs across the clients. Please refer to Appendix C for more in-depth discussions.
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from fair resource allocation methods in wireless communication networks. Afterward, Li et al. (2020a)
developed TERM, a tilted empirical risk minimization algorithm which handles outliers and class imbalance
in statistical estimation procedures. Compared to q-FFL, TERM has demonstrated better performance in
many FL applications. Deploying a similar notion, Huang et al. (2020b) proposed using training accuracy and
frequency to adjust weights of devices to promote fairness. Furthermore, FCFC Cui et al. (2021) minimizes
the loss of the worst-performing client, leading to a version of AFL. Later, Li et al. (2021) devised Ditto, a
multitask personalized FL algorithm. After optimizing a global objective function, Ditto allows local devices
to run more steps of SGD, subject to some constraints, to minimize their own losses. Ditto can significantly
improve testing accuracy among local devices and encourage fairness.

Our approach is more similar to FedMGDA+ (Hu et al., 2022), which treats the FL task as a multi-objective
optimization problem. In this scenario, the goal is to minimize the loss function of each FL client simultaneously.
To avoid sacrificing the performance of any client, FedMGDA+ uses Pareto-stationary solutions to find a
common descent direction for all selected clients.

3 Notation and Preliminaries

3.1 Notation

We denote by [K] the set of integers {1, 2, · · · , K}. In addition, we define {fk}k∈[K] = {f1, f2, . . . , fK} for a
scalar/function f . We use bold-symbol small letters to represent vectors. Denote by ui the i-th element of
vector u. For two vectors u,v ∈ Rd, we say u ≤ v iff ui ≤ vi for ∀i ∈ [d], i.e., two vectors are compared w.r.t.
partial ordering. In addition, denote by v · u their inner product, and by proju(v) = v·u

u·uu the projection of v
onto the line spanned by u.

3.2 Preliminaries and Definitions

In Hu et al. (2022), authors demonstrated that FL can be regarded as multi-objective minimization (MoM)
problem. In particular, denote by f(θ) = {fk(θ)}k∈[K] the set of local clients’ objective functions. Then, the
aim of MoM is to solve

θ∗ = arg min
θ

f(θ), (1)

where the minimization is performed w.r.t. the partial ordering. Finding θ∗ could enforce fairness among
the users since by setting setting θ = θ∗, it is not possible to reduce any of the local objective functions fk

without increasing at least another one. Here, θ∗ is called a Pareto-optimal solution of Equation (1). In
addition, the collection of function values {fk(θ∗)}k∈[K] of all the Pareto points θ∗ is called the Pareto front.

Although finding Pareto-optimal solutions can be challenging, there are several methods to identify the
Pareto-stationary solutions instead, which are defined as follows:

Definition 3.1. Pareto-stationary (Mukai, 1980): The vector θ∗ is said to be Pareto-stationary iff there exists
a convex combination of the gradient-vectors {gk(θ∗)}k∈[K] which is equal to zero; that is,

∑K
k=1 λkgk(θ∗) = 0,

where λ ≥ 0, and
∑K

k=1 λk = 1.

Lemma 3.2. (Mukai, 1980) Any Pareto-optimal solution is Pareto-stationary. On the other hand, if all
{fk(θ)}k∈[K]’s are convex, then any Pareto-stationary solution is weakly Pareto optimal 2.

There are many methods in the literature to find Pareto-stationary solutions among which we elaborate on
two well-known ones, namely linear scalarization and Multiple gradient descent algorithm (MGDA) (Mukai,
1980; Fliege & Svaiter, 2000; Désidéri, 2012).

2θ∗ is called a weakly Pareto-optimal solution of Equation (1) if there does not exist any θ such that f(θ) < f(θ∗); meaning
that, it is not possible to improve all of the objective functions in f(θ∗). Obviously, any Pareto optimal solution is also weakly
Pareto-optimal but the converse may not hold.
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• Linear scalarization: this approach is essentially the core principle behind the FedAvg algorithm. To
elucidate, in FedAvg, the server updates θ by minimizing the weighted average of clients’ loss functions:

min
θ

f(θ) =
K∑

k=1
λkfk(θ), (2)

where the weights {λk}k∈[K] are assigned by the server and satisfy
∑K

k=1 λk = 1. These fixed {λk}k∈[K] are
assigned based on some priori information about the clients such as the size of their datasets. We note that
different values for {λk}k∈[K] yield different Pareto-stationary solutions.

Referring to Definition 3.1, any solutions of Equation (2) is a Pareto-stationary solution of Equation (1). To
perform FedAvg, at iteration t, client k, k ∈ [K] sends its gradient vector gk(θt) to the server, and server
updates the global model as

θt+1 = θt − ηtdt, where dt =
K∑

k=1
λkgk(θt). (3)

However, linear scalarization can only converge to Pareto points that lie on the convex envelop of the Pareto
front (Boyd & Vandenberghe, 2004). Furthermore, the weighted average of the gradients with pre-defined
weights yields a vector dt whose direction might not be descent for all the clients; because some clients may
have conflicting gradients with opposing directions due to the heterogeneity of their local datasets (Wang
et al., 2021b). As a result, FedAvg may result in an unfair accuracy distribution among the clients (Li et al.,
2019a; Mohri et al., 2019).

• MGDA: To mitigate the above issue, (Hu et al., 2022) proposed to exploit MGDA algorithm in FL to
converge to a fair solution on the Pareto front. Unlike linear scalarization, MGDA adaptively tunes {λk}k∈[K]
by finding the minimal-norm element of the convex hull of the gradient vectors defined as follows (we drop
the dependence of gk to θt for ease of notation hereafter)

G = {g ∈ Rd|g =
K∑

k=1
λkgk; λk ≥ 0;

K∑
k=1

λk = 1}. (4)

Denote the minimal-norm element of G by d(G). Then, either (i) d(G) = 0, and therefore based on Lemma 3.2
d(G) is a Pareto-stationary point; or (ii) d(G) ̸= 0 and the direction of −d(G) is a common descent direction
for all the objective functions {fk(θ)}k∈[K] (Désidéri, 2009), meaning that all the directional derivatives
{gk · d(G)}k∈[K] are positive. Having positive directional derivatives is a necessary condition to ensure that
the common direction is descent for all the objective functions.

4 Motivation and Methodology

We first discuss our motivation in Section 4.1, and then elaborate on the methodology in Section 4.2.

4.1 Motivation

Although any solutions on the Pareto front is fair in the sense that decreasing one of the loss functions is not
possible without sacrificing some others, not all of such solutions impose uniformity among the loss functions
(see Figure 1a). As such, we aim to find solutions on the Pareto front which enjoy such uniformity.

First we note that having a common descent direction is a necessary condition to find such uniform solutions;
but not enough. Additionally, we stipulate that the rate of decrease in the loss function should be greater for
clients whose loss functions are larger. In fact, the purpose of this paper is to find an updation direction for
the server that satisfies both of the following conditions at the same time:

• Condition (I): It is a descent direction for all {fk(θ)}k∈[K], which is a necessary condition for the
loss functions to decrease when the server updates the global model along that direction.
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Figure 1: (a) The Pareto front for two objective functions f1(θ) and f2(θ) is depicted. MGDA may converge
to any points on the Pareto front. (b)-(c) Illustration of convex hull G and minimal-norm vector d(G) for two
gradient vectors g1 and g2. In (b), ∥g1∥2

2 < ∥g2∥2
2, where the direction of d(G) is more inclined toward g1. In

(c), ∥g1∥2
2 = ∥g2∥2

2 = 1, where the direction of d(G) is the same as that of the bisection of g1 and g2.

• Condition (II): It is more inclined toward the clients with larger losses, and therefore the directional
derivatives of loss functions over the common direction are larger for those with larger loss functions.

To satisfy Condition (I), it is enough to find d(G) using MGDA algorithm (as Hu et al. (2022) uses MGDA
to enforce fairness in FL setup). Nevertheless, we aim to further satisfy Condition (II) on top of Condition
(I). To this end, we investigate the direction of d(G), and note that it is more inclined toward that of
min{∥gk∥2

2}k∈[K]. For instance, consider the simple example depicted in Figure 1b, where ∥g1∥2
2 < ∥g2∥2

2.
The Convex hull G and the d(G) are depicted for g1 and g2. As seen, the direction of d(G) is mostly influenced
by that of g1.

However, this phenomenon is not favourable for satisfying Condition (II) since after some rounds of commu-
nication between the server and clients, the value of g becomes small for those objective functions which are
close to their minimum points. Consequently, the direction of d(G) is mostly controlled by these small g’s,
which is undesirable. Note that gk · d(G) represents how fast fk(θ) changes if θ changes in the direction of
d(G). In fact, the direction of d(G) should be more inclined toward the gradients of those clients with larger
loss functions.

One possible solution could be to naively normalize {gk}k∈[K] by their norm to obtain { gk

∥gk∥2
2
}k∈[K] whose

convex hull is denoted by Gnorm, and then use this normalized set of gradients to find d(Gnorm). Yet, the
normalization makes all the {gk · d(Gnorm)}k∈[K] equal (see Figure 1c) which is still undesirable as the rate of
decrease becomes equal for all {fk(θ)}k∈[K].

Based on these observations, the gradient vectors should be somehow scaled if one aims to also satisfy
Condition (II). Finding such scaling factor is not straight-forward in general. To tackle this issue, and to be
able to find a closed-form formula, we find the minimal-norm vector in the convex hull of mutually-orthogonal
scaled gradients instead, and prove that this yields a common direction for which both Conditions (I) and
(II) are satisfied.

4.2 Methodology

To devise an appropriate scaling as explained above, we carry out the following two phases.

4.2.1 Phase 1, orthogonalization

In order to be able to find a closed-form formula for the common descent direction, in the first phase, we
orthogonalize the gradients.

Once the gradient updates {gk}k∈[K] are transmitted by the clients, the server first generates a mutually
orthogonal 3 set {g̃k}k∈[K] that spans the same K-dimensional subspace in Rd as that spanned by {gk}k∈[K].

3Here, orthogonality is in the sense of standard inner product in Euclidean space.
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To this aim, the server exploits a modified Gram–Schmidt orthogonalization process over {gk}k∈[K] in the
following manner 4

g̃1 = g1/|fk|γ (5)

g̃k =
gk −

∑k−1
i=1 projg̃i

(gk)
|fk|γ −

∑k−1
i=1

gk·g̃i

g̃i·g̃i

, for k = 2, 3, . . . , K, (6)

where γ > 0 is a scalar.

• Why such orthogonalization is possible?

First, note that the orthogonalization approach in phase 1 is feasible if we assume that the K gradient vectors
{gk}k∈[K] are linearly independent. Indeed, this assumption is reasonable considering that (i) the gradient
vectors {gk}k∈[K] are K vectors in d-dimensional space, and d >> K for the current deep neural networks
(DNNs)5; and (ii) the random nature of the gradient vectors due to the non-iid distributions of the local
datasets. The validity of this assumption is further confirmed in our thorough experiments over different
datasets and models.

4.2.2 Phase 2, finding optimal λ∗

In this phase, we aim to find the minimum-norm vector in the convex hull of the mutually-orthogonal gradients
found in Phase (I).

First, denote by G̃ the convex hull of gradient vectors {g̃k}k∈[K] obtained in Phase 1; that is,

G̃ = {g ∈ Rd|g =
K∑

k=1
λkg̃k; λk ≥ 0;

K∑
k=1

λk = 1}. (7)

In the following, we find the minimal-norm element in G̃, and then we show that this element is a descent
direction for all the objective functions.

Denote by λ∗ the weights corresponding to the minimal-norm vector in G̃. To find the weight vector λ∗, we
solve

g∗ = arg min
g∈G
∥g∥2

2, (8)

which accordingly finds λ∗. For an element g ∈ G, we have

∥g∥2
2 = ∥

K∑
k=1

λkg̃k∥2
2 =

K∑
k=1

λ2
k∥g̃k∥2

2, (9)

where we used the fact that {g̃k}k∈[K] are orthogonal.

To solve Equation (8), we first ignore the inequality λk ≥ 0, for k ∈ [K], and then we observe that
this constraint will be automatically satisfied. Therefore, we make the following Lagrangian to solve the
minimization problem in Equation (8):

L(g̃, λ) = ∥g∥2
2 − α

(
K∑

k=1
λk − 1

)
=

K∑
k=1

λ2
k∥g̃k∥2

2 − α

(
K∑

k=1
λk − 1

)
. (10)

Hence,

∂L

∂λk
= 2λk∥g̃k∥2

2 − α, (11)

4The reason for such normalization is to satisfy Conditions I and II. This will be proven later in this section.
5Also, note that to tackle non-iid distribution of user-specific data, it is a common practice that server selects a different

subset of clients in each round (McMahan et al., 2017).
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and by setting Equation (11) to zero, we obtain:

λ∗
k = α

2∥g̃k∥2
2

. (12)

On the other hand, since
∑K

k=1 λk = 1, from Equation (12) we obtain

α = 2∑K
k=1

1
∥g̃k∥2

2

, (13)

from which the optimal λ∗ is obtained as follows

λ∗
k = 1
∥g̃k∥2

2
∑K

k=1
1

∥g̃k∥2
2

, for k ∈ [K]. (14)

Note that λ∗
k > 0, and therefore the minimum norm vector we found belongs to G.

Using the λ∗ found in (14), we can calculate dt =
∑K

k=1 λ∗
kg̃k as the minimum norm element in the convex

hull G̃. In the following (Theorem 4.1), we show that the negate of dt satisfies both Conditions (I) and (II).
Theorem 4.1. The negate of dt =

∑K
k=1 λ∗

kg̃k satisfies both Conditions (I) and (II).

Proof. We find the directional derivatives of loss functions {fk}k∈[K] over dt. For ∀k ∈ [K] we have

gk · dt =
(
g̃k(|fk|γ −

k−1∑
i=1

gk · g̃i

g̃i · g̃i
) +

k−1∑
i=1

projg̃i
(gk)

)
· (

K∑
i=1

λ∗
i g̃i) (15)

= λ∗
k∥g̃k∥2

2

(
|fk|γ −

k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+

k−1∑
i=1

gk · g̃i

g̃i · g̃i
λ∗

i ∥g̃i∥2
2 (16)

= α

2

(
|fk|γ −

k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+ α

2

k−1∑
i=1

gk · g̃i

g̃i · g̃i
(17)

= α

2 |fk|γ = |fk|γ∑K
k=1

1
∥g̃k∥2

2

> 0, (18)

where (i) Equation (15) is obtained by using definition of g̃k in Equation (6), (ii) Equation (16) follows from
the orthogonality of {g̃k}K

k=1 vectors, and (iii) Equation (17) is obtained by using Equation (12).

As seen in Equation (18), the directional derivatives over dt are positive, meaning that the direction of −dt

is descent for all {fk}k∈[K]. In addition, the value of these directional derivatives are proportional to |fk|γ .
This implies that if the server changes the global model in the direction of dt, the rate of decrease is higher
for those functions with larger loss function values. Thus, −dt satisfies both Conditions (I) and (II).

Remark 4.2. As seen, Equation (14) yields a closed-form formula to find the optimal weights for the
orthogonal scaled gradients {g̃k}k∈[K], based on which the common direction is obtained. On the contrary,
FedMGDA+ (Hu et al., 2022) solves an iterative algorithm to find the updating directions. The complexity of
such algorithms is greatly controlled by the size of the model (and the number of participating devices). As the
recent DNNs are large in size, deploying such iterative algorithms slows down the FL process. Furthermore,
we note that the computational cost of proposed algorithm is negligible (see Appendix F for details).

5 The AdaFed algorithm

At iteration t, the server computes dt using the methodology described in Section 4.2, and then updates the
global model as

θt+1 = θt − ηtdt. (19)

Similarly to the conventional GD, we note that updating the global model as (19) is a necessary condition to
have f(θt+1) ≤ f(θt). In Theorem 5.1, we state the sufficient condition to satisfy f(θt+1) ≤ f(θt).
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Theorem 5.1. Assume that f = {fk}k∈[K] are L-Lipschitz smooth. If the step-size ηt ∈ [0, 2
L min{|fk|γ}k∈[K]],

then f(θt+1) ≤ f(θt), and equality is achieved iff dt = 0.

Proof. If all the {fk}k∈[K] are L-smooth, then

f(θt+1) ≤ f(θt) + gT (θt+1 − θt) + L

2 ∥θt+1 − θt∥2
2. (20)

Now, for client k ∈ [K], by using the update rule Equation (19) in Equation (20) we obtain

fk(θt+1) ≤ fk(θt)− ηtgk · dt + η2
t

L

2 ∥dt∥2
2. (21)

To impose fk(θt+1) ≤ fk(θt), we should have

ηtgk · dt ≥ η2
t

L

2 ∥dt∥2
2 ⇔ gk · dt ≥

ηtL

2

K∑
k=1

∥g̃k∥2
2

∥g̃k∥4
2

(∑K
i=1

1
∥g̃i∥2

2

)2 (22)

⇔ |fk|γ∑K
k=1

1
∥g̃k∥2

2

≥ ηtL

2
1(∑K

k=1
1

∥g̃k∥2
2

)2

K∑
k=1

1
∥g̃k∥2

2
(23)

⇔ ηt ≤
2
L
|fk|γ . (24)

Therefore, if the step-size ηt ∈ [0, 2
L min{|fk|γ}k∈[K]], then f(θt+1) ≤ f(θt).

Lastly, similar to many recent FL algorithms McMahan et al. (2017); Li et al. (2019a); Hu et al. (2022), we
allow each client to perform a couple of local epochs e before sending its gradient update to the server. In
this case, the pseudo-gradients (the opposite of the local updates) will be abusively used as the gradient
vectors. It is important to note that we provide a convergence guarantee for this scenario in Section 5.1. We
summarize AdaFed in Algorithm 1.
Remark 5.2. When e > 1, an alternative approach is to use the accumulated loss rather than the loss from
the last iteration in line (9) of Algorithm 1. However, based on our experiments, we observed that using the
accumulated loss does not affect the overall performance of the algorithm, including its convergence speed,
accuracy and fairness. This stands in contrast to the use of pseudo-gradients, which serves clear purposes of
accelerating convergence and reducing communication costs.

5.1 Convergence results

In the following, we prove the convergence guarantee of AdaFed based on how the clients update the local
models: (i) using SGD with e = 1, (ii) using GD with e > 1, and (iii) using GD with e = 1. Of course the
strongest convergence guarantee is provided for the latter case.
Theorem 5.3 (e = 1 & local SGD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz
smooth, and that the global step-size ηt satisfies the following three conditions: (i) ηt ∈ (0, 1

2L ], (ii)
limT →∞

∑T
t=0 ηt → ∞, and (iii) limT →∞

∑T
t=0 ηtσt < ∞; where σ2

t = E[∥g̃λ∗ − g̃sλ∗
s∥]2 is the variance of

stochastic common descent direction. Then

lim
T →∞

min
t=0,...,T

E[∥dt∥]→ 0. (25)

Theorem 5.4 (e > 1 & local GD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz
smooth. Denote by ηt and η the global and local learning rates, respectively. Also, define ζt = ∥λ∗ − λ∗

e∥,
where λ∗

e is the optimum weights obtained from pseudo-gradients after e local epochs. We have

lim
T →∞

min
t=0,...,T

∥dt∥ → 0, (26)
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Algorithm 1 AdaFed
1: Input: Number of global epochs T , number of local epochs e, global learning rate ηt, local learning rate

η, initial global model θ0, local datasets {Dk}k∈K .
2: for t = 0, 1, . . . , T − 1 do
3: Server randomly selects a subset of devices St and sends θt to them.
4: for device k ∈ St in parallel do [local training]
5: Store the value θt in θinit; that is θinit ← θt.
6: for e epochs do
7: Perform (stochastic) gradient descent over local dataset Dk to update: θt ← θt− η∇fk(θt,Dk).
8: end for
9: Send the pseudo-gradient gk := θinit − θt and local loss value fk(θt) to the server.

10: end for
11: for k = 1, 2, . . . , |St| do
12: Find g̃k form Equations (5) and (6).
13: end for
14: Find λ∗ from Equation (14).
15: Calculate dt :=

∑K
k=1 λ∗

kg̃k.
16: θt+1 ← θt − ηtdt.
17: end for
18: Output: Global model θT .

if the following conditions are satisfied: (i) ηt ∈ (0, 1
2L ], (ii) limT →∞

∑T
t=0 ηt →∞, (iii) limt→∞ ηt → 0, (iv)

limt→∞ η → 0, and (v) limt→∞ ζt → 0.

Before introducing Theorem 5.5, we first introduce some notations. Denote by ϑ the Pareto-stationary
solution set6 of minimization problem arg minθ f(θ). Then, denote by θ∗

t the projection of θt onto the set ϑ;
that is, θ∗

t = arg minθ∈ϑ ∥θt − θ∥2
2.

Theorem 5.5 (e = 1 & local GD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and σ-convex,
and that the global step-size ηt satisfies the following two conditions: (i) limt→∞

∑t
j=0 ηj → ∞, and (ii)

limt→∞
∑t

j=0 η2
j <∞. Then almost surely θt → θ∗

t ; that is,

P
(

lim
t→∞

(θt − θ∗
t ) = 0

)
= 1, (27)

where P(E) denotes the probability of event E.

The proofs for Theorems 5.3 to 5.5 are provided in Appendices A.1 to A.3, respectively, and we further
discuss that the assumptions we made in the theorems are common in the FL literature.

Note that all the Theorems 5.3 to 5.5 provide some types of convergence to a Pareto-optimal solution of
optimization problem in Equation (1). Specifically, diminishing dt in Theorems 5.3 and 5.4 implies that we
are reaching to a Pareto-optimal point (Désidéri, 2009). On the other hand, Theorem 5.5 explicitly provides
this convergence guarantee in an almost surely fashion.

6 AdaFed features and a comparative analysis with FedAdam

6.1 AdaFed features

Aside from satisfying fairness among the users, we mention some notable features of AdaFed in this section.

The inequality f(θt+1) ≤ f(θt) gives motivation to the clients to participate in the FL task as their loss
functions would decrease upon participating. In addition, since the common direction is more inclined toward

6In general, the Pareto-stationary solution of multi-objective minimization problem forms a set with cardinality of infinity
(Mukai, 1980).
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that of the gradients of loss functions with bigger values, a new client could possibly join the FL task in the
middle of FL process. In this case, for some consecutive rounds, the loss function for the newly-joined client
decreases more compared to those for the other clients.

The parameter γ is a hyper-parameter of AdaFed. In fact, different γ values yield variable levels of fairness.
Thus, γ should be tuned to achieve the desired fairness level7. In general, a moderate γ value enforces a
larger respective directional derivative for the devices with the worst performance (larger loss functions),
imposing more uniformity to the training accuracy distribution.

Lastly, we note that AdaFed is orthogonal to the popular FL methods such as Fedprox (Li et al., 2020b) and
q-FFL (Li et al., 2019a). Therefore, it could be combined with the existing FL algorithms to achieve a better
performance, especially with those using personalization (Li et al., 2021).

6.2 Comparison with FedAdam and its variants

Similarly to AdaFed, there are some FL algorithms in the literature in which the server adaptively updates
the global model. Despite this similarity, we note that the purpose of AdaFed is rather different from these
algorithms. For instance, let us consider FedAdam (Reddi et al., 2020); this algorithm changes the global
update rule of FedAvg from one-step SGD to one-step adaptive gradient optimization by adopting an Adam
optimizer on the server side. Specifically, after gathering local pseudo-gradients and finding their average as
gt = 1

|St|
∑

k∈St
gk

t , the server updates the global model by Adam optimizer:

mt = β1mt−1 + (1− β1)gt, (28)
vt = β2vt−1 + (1− β2)g2

t , (29)

θt+1 = θt + η
mt√
vt + ϵ

, (30)

where β1 and β2 are two hyper-parameters of the algorithm, and ϵ is used for numerical stabilization purpose.
We note that other variants of this algorithm, such as FedAdagrad and FedYogi (Reddi et al., 2020) and
FedAMSGrad (Tong et al., 2020), involve slight changes in the variance term vt.

The primary objective of FedAdam (as well as its variants) is to enhance convergence behavior (Reddi
et al., 2020); this is achieved by retaining information from previous epochs, which helps prevent significant
fluctuations in the server update. In contrast, AdaFed is designed to promote fairness among clients. Such
differences could be confirmed by comparing Algorithm 1 with Equations (28) to (30).

7 Experiments

In this section, we conclude the paper with several experiments to demonstrate the performance of AdaFed,
and compare its effectiveness with state-of-the-art alternatives under some performance metrics.

• Datasets: We conduct a thorough set of experiments over seven datasets. The results for four datasets,
namely CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), FEMNIST (Caldas et al., 2018) and Shakespear
(McMahan et al., 2017) are reported in this section; and those for Fashion MNIST (Xiao et al., 2017),
TinyImageNet (Le & Yang, 2015), CINIC-10 (Darlow et al., 2018) are reported in Appendix D. Particularly,
in order to demonstrate the effectiveness of AdaFed in different FL scenarios, for each of the datasets reported
in this section, we consider two different FL setups. In addition, we tested the effectiveness of AdaFed over a
real-world noisy dataset, namely Clothing1M (Xiao et al., 2015), in Appendix I.

• Benchmarks: We compare the performance of AdaFed against various fair FL algorithms in the literature
including: q-FFL (Li et al., 2019a), TERM (Li et al., 2020a), FedMGDA+ (Hu et al., 2022), AFL (Mohri
et al., 2019), Ditto (Li et al., 2021), FedFA (Huang et al., 2020b), and lastly FedAvg (McMahan et al., 2017).
In our experiments, we conduct a grid-search to find the best hyper-parameters for each of the benchmark

7Most (if not all) of the fair FL methods introduce an extra hyper-parameter to tune in order to establish a trade-off between
fairness and accuracy, for instance: (i) ϵ in FEDMGDA+ (Hu et al., 2022), (ii) q in Q-FFL & q-FFL (Li et al., 2019a), and (iii)
t in TERM (Li et al., 2020a). Similarly, AdaFed introduces a new parameter to make this trade-off.
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Table 1: Test accuracy on CIFAR-10. The reported results are averaged over 5 different random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 5% Best 5% ā σa Worst 10% Best 10%

FedAvg 46.85 3.54 19.84 69.28 63.55 5.44 53.40 72.24
q-FFL 46.30 3.27 23.39 68.02 57.27 5.60 47.29 66.92
FedMGDA+ 45.34 3.37 24.00 68.51 62.05 4.88 52.69 70.77
FedFA 46.40 3.61 19.33 69.30 63.05 4.95 48.69 70.88
TERM 47.11 3.66 28.21 69.51 64.15 5.90 56.21 72.20
Ditto 46.31 3.44 27.14 68.44 63.49 5.70 55.99 71.34
AdaFed 46.42 3.01 31.12 69.41 64.80 4.50 58.24 72.45

Table 2: Test accuracy on CIFAR-100. The reported results are averaged over 5 different random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 10% Best 10% ā σa Worst 10% Best 10%

FedAvg 30.05 4.03 25.20 40.31 20.15 6.40 11.20 33.80
q-FFL 28.86 4.44 25.38 39.77 20.20 6.24 11.09 34.02
FedMGDA+ 29.12 4.17 25.67 39.71 20.15 5.41 11.12 33.92
AFL 30.28 3.68 25.33 39.45 18.92 4.90 11.29 28.60
TERM 30.34 3.51 27.03 39.35 17.88 5.98 10.09 31.68
Ditto 29.81 3.79 26.90 39.39 17.52 5.65 10.21 31.25
AdaFed 31.42 3.03 28.91 40.41 20.02 4.45 11.81 34.11

methods including AdaFed. The details are reported in Appendix E, and here we only report the results
obtained from the best hyper-parameters.

• Performance metrics: Denote by ak the prediction accuracy on device k. We use ā = 1
K

∑K
k=1 ak as

the average test accuracy of the underlying FL algorithm, and use σa =
√

1
K

∑K
k=1(ak − ā)2 as the standard

deviation of the accuracy across the clients (similarly to (Li et al., 2019a; 2021)). Furthermore, we report
worst 10% (5%) and best 10% (5%) accuracies as a common metric in fair FL algorithms (Li et al., 2020a).

• Notations: We use bold and underlined numbers to denote the best and second best performance,
respectively. We use e and K to represent the number of local epochs and that of clients, respectively.

7.1 CIFAR-10

CIFAR-10 dataset (Krizhevsky et al., 2009) contains 40K training and 10K test colour images of size 32× 32,
which are labeled for 10 classes. The batch size is equal to 64 for both of the following setups.

• Setup 1: Following (Wang et al., 2021b), we sort the dataset based on their classes, and then split them
into 200 shards. Each client randomly selects two shards without replacement so that each has the same
local dataset size. We use a feedforward neural network with 2 hidden layers. We fix e = 1 and K = 100. We
carry out 2000 rounds of communication, and sample 10% of the clients in each round. We run SGD on local
datasets with stepsize η = 0.1.

• Setup 2: We distribute the dataset among the clients deploying Dirichlet allocation (Wang et al., 2020)
with β = 0.5. We use ResNet-18 (He et al., 2016) with Group Normalization (Wu & He, 2018). We perform
100 communication rounds in each of which all clients participate. We set e = 1, K = 10 and η = 0.01.

Results for both setups are reported in Table 1. Additionally, we depict the average accuracy over the course
of training for setup 1 in Appendix G.1.
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Table 3: Test accuracy on FEMNIST. The reported results are averaged over 5 different random seeds.

FEMNIST-original FEMNIST-skewed

Algorithm ā σa Angle (◦) KL (a∥u) ā σa Angle (◦) KL (a∥u)

FedAvg 80.42 11.16 10.18 0.017 79.24 22.30 12.29 0.054
q-FFL 80.91 10.62 9.71 0.016 84.65 18.56 12.01 0.038
FedMGDA+ 81.00 10.41 10.04 0.016 85.41 17.36 11.63 0.032
TERM 81.08 10.32 9.15 0.015 84.29 13.88 11.27 0.025
AFL 82.45 9.85 9.01 0.012 85.21 14.92 11.44 0.027
Ditto 83.77 10.13 9.34 0.014 92.51 14.32 11.45 0.022
AdaFed 82.26 6.58 8.12 0.009 92.21 7.56 9.44 0.011

7.2 CIFAR-100

CIFAR-100 (Krizhevsky et al., 2009) contains the same number of samples as those in CIFAR-10, yet it
contains 100 classes instead.

The model for both setups is ResNet-18 (He et al., 2016) with Group Normalization (Wu & He, 2018), where
all clients participate in each round. We also set e = 1 and η = 0.01. The batch size is equal to 64. The
results are reported in Table 2 for both of the following setups:

• Setup 1: We set K = 10 and β = 0.5 for Dirichlet allocation, and use 400 communication rounds.

• Setup 2: We set K = 50 and β = 0.05 for Dirichlet allocation, and use 200 communication rounds.

Additionally, we perform the same experiments with more local epochs, specifically e = 10, 20 as presented in
Appendix H.

7.3 FEMNIST

FEMNIST (Federated Extended MNIST) Caldas et al. (2018) is a federated image classification dataset
distributed over 3,550 devices by the dataset creators. This dataset has 62 classes containing 28× 28-pixel
images of digits (0-9) and English characters (A-Z, a-z) written by different people.

For implementation, we use a CNN model with 2 convolutional layers followed by 2 fully-connected layers.
The batch size is 32, and e = 2 for both of the following setups:

• FEMNIST-original: We use the setting in Li et al. (2021), and randomly sample K = 500 devices (from
the 3550 ones) and train models using the default data stored in each device.

• FEMNIST-skewed: Here K = 100. We first sample 10 lower case characters (‘a’-‘j’) from Extended
MNIST (EMNIST), and then randomly assign 5 classes to each of the 100 devices.

Similarly to (Li et al., 2019a), we use two new fairness metrics for this dataset: (i) the angle between the
accuracy distribution and the all-ones vector 1 denoted by Angle (◦), and (ii) the KL divergence between the
normalized accuracy a and uniform distribution u denoted by KL (a∥u). Results for both setups are reported
in Table 3. In addition, we report the distribution of accuracies across clients in Appendix G.2.

7.4 Text Data

We use The Complete Works of William Shakespeare (McMahan et al., 2017) as the dataset, and train an
RNN whose input is 80-character sequence to predict the next character. In this dataset, there are about
1,129 speaking roles. Naturally, each speaking role in the play is treated as a device. Each device stored
several text data and those information will be used to train a RNN on each device. The dataset is available
on the LEAF website (Caldas et al., 2018). We use e = 1, and let all the devices participate in each round.
The results are reported in Table 4 for the following two setups:
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Table 4: Test accuracy on Shakespeare. The reported results are averaged over 5 different random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 10% Best 10% ā σa Worst 10% Best 10%

FedAvg 53.21 9.25 51.01 54.41 50.48 1.24 48.20 52.10
q-FFL 53.90 7.52 51.52 54.47 50.72 1.07 48.90 52.29
FedMGDA+ 53.08 8.14 52.84 54.51 50.41 1.09 48.18 51.99
AFL 54.58 8.44 52.87 55.84 52.45 1.23 50.02 54.17
TERM 54.16 8.21 52.09 55.15 52.17 1.11 49.14 53.62
Ditto 60.74 8.32 53.57 55.92 53.12 1.20 50.94 55.23
AdaFed 55.65 6.55 53.79 55.86 52.89 0.98 51.02 54.48

• Setup 1: Following McMahan et al. (2017), we subsample 31 speaking roles, and assign each role to a
client (K = 31) to complete 500 communication rounds. We use a model with two LSTM layers (Hochreiter
& Schmidhuber, 1997) and one densely-connected layer. The initial η = 0.8 with decay rate of 0.95.

• Setup 2: Among the 31 speaking roles, the 20 ones with more than 10000 samples are selected, and
assigned to 20 clients (K = 20). We use one LSTM followed by a fully-connected layer. η = 2, and the
number of communication rounds is 100.

7.5 Analysis of Results

Based on Tables 1 to 4, we can attain some notable insights. Compared to other benchmark models, AdaFed
leads to significantly more fair solutions. In addition, the average accuracy is not scarified, yet interestingly,
for some cases it is improved. We also note that the performance of AdaFed becomes more superior when
the level of non-iidness is high. For instance, by referring to FEMNIST-skewed in Table 3, we observe a
considerable superiority of AdaFed. Note that the average accuracy of Ditto over FEMNIST is greater than
that of AdaFed. This is comprehensible, since Ditto provides a personalized solution to each device, while
AdaFed only returns a global parameter θ.

We also observe a similar trend in three other datasets reported in Appendix D. We further analyse the effect
of hyper-parameter γ in AdaFed in Appendix E.

7.5.1 Percentage of improved clients

We measure the training loss before and after each communication round for all participating clients and
report the percentage of clients whose loss function decreased or remained unchanged, as defined below

ρt =
∑

k∈St
I{fk(θt+1) ≤ fk(θt)}

|St|
, (31)

where St is the participating clients in round t, and I(·) is the indicator function. Then, we plot ρt versus
communication rounds for different fair FL benchmarks, including AdaFed. The curves for CIFAR-10 and
CIFAR-100 datasets are reported in Figure 2a and Figure 2b, respectively. As seen, both AdaFed and
FedMGDA+ consistently outperform other benchmark methods in that fewer clients’ performances get worse
after participation. This is a unique feature of these two methods. We further note that after enough
number of communication rounds, curves for both AdaFed and FedMGDA+ converge to 100% (with a bit of
fluctuation).

7.5.2 Rate of decrease in loss function

In this part, we observe the loss function values for two clients over the course of training to verify Theorem 4.1.
This theorem asserts that the rate of decrease in the loss function is higher for clients with larger initial loss
function values. To this end, we select two clients—one with a low initial loss function and one with a high
initial loss function—and depict their respective training loss as a function of communication rounds.
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Figure 2: The percentage of improved clients as a function of communication rounds for (a) CIFAR-10 setup
one in Section 7.1; and (b) CIFAR-100 setup one in Section 7.2.
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Figure 3: The training loss function for two clients trained in AdaFed framework Vs. the communication
rounds for (a) CIFAR-10 setup one in Section 7.1; and (b) CIFAR-100 setup one in Section 7.2.

The curves are illustrated in Figure 3a and Figure 3b for CIFAR-10 and CIFAR-100 datasets, respectively.
As observed in both curves, the rate of decrease in the loss function of the client with a larger initial loss
function is higher. Additionally, close to the end of the training task, the values for the loss function of the
clients converge to almost the same value, indicating fairness among the clients.

7.5.3 Convergence of ∥dt∥

In this part, we aim to observe the behaviour of ∥dt∥ over the course of training. Particularly, we consider
three cases following Theorems 5.3 to 5.5, namely (i) e = 1 & local SGD, (ii) e > 1 & local GD, and (iii)
e = 1 & local GD.

For training, we follow the setup in Section 7.1; however, we change e and the local training method—either
GD or SGD—to generated the three cases mentioned above. Then, for these three cases, we normalize ∥dt∥,
and depict it versus the communication rounds.

As observed in Figures 4a to 4c, in all the three cases, ∥dt∥ tends to zero. Nonetheless, the curve for e = 1 &
local GD is more smooth.
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Figure 4: The convergence of ∥dt∥ as a function of communication rounds for (a) e = 1 and local SGD, (b)
e > 1 and local GD, and (c) e = 1 and local GD. The dataset is CIFAR-10.

8 Conclusion

In this paper, we proposed a method to enforce fairness in FL task dubbed AdaFed. In AdaFed, the aim
is to adaptively tune a common direction along which the server updates the global model. The common
direction found by AdaFed enjoys two properties: (i) it is descent for all the local loss functions, and (ii) the
loss functions for the clients with worst performance decrease with a higher rate along this direction. These
properties were satisfied by using the notion of directional derivative in the multi-objective optimization task.
We then derived a closed-form formula for such common direction, and proved that AdaFed converges to a
Pareto-stationary point. The effectiveness of AdaFed was demonstrated via thorough experimental results.
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A Convergence of AdaFed

In the following, we provide three theorems to analyse the convergence of AdaFed under different scenarios.
Specifically, we consider three cases: (i) Theorem A.1 considers e = 1 and using SGD for local updates,
(ii) Theorem A.2 considers an arbitrary value for e and using GD for local updates, and (iii) Theorem A.4
considers e = 1 and using GD for local updates.

A.1 Case 1: e = 1 & local SGD

Notations: We use subscript (·)s to indicate a stochastic value. Using this notation for the values we
introduced in the paper, our notations used in the proof of Theorem A.1 are summarized in Table 5.

Table 5: Notations used in Theorem A.1 for e = 1 & local SGD.

Notation Description

gk,s Stochastic gradient vector of client k.

gs Matrix of Stochastic gradient vectors [g1,s, . . . , gK,s].

g̃k,s Stochastic gradient vector of client k after orthogonalization process.

g̃s Matrix of orthogonalized Stochastic gradient vectors [g̃1,s, . . . , g̃K,s].

λ∗
k,s Optimum weights obtained from Equation (14) using Stochastic gradients g̃s.

ds Optimum direction obtained using Stochastic g̃s; that is, ds =
∑K

k=1 λ∗
k,sg̃k,s.

Theorem A.1. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz smooth, and that
the step-size ηt satisfies the following three conditions: (i) ηt ∈ (0, 1

2L ], (ii) limT →∞
∑T

t=0 ηt → ∞ and
(iii) limT →∞

∑T
t=0 ηtσt < ∞; where σ2

t = E[∥g̃λ∗ − g̃sλ∗
s∥]2 is the variance of stochastic common descent

direction. Then

lim
T →∞

min
t=0,...,T

E[∥dt∥]→ 0. (32)

Proof. Since orthogonal vectors {g̃k}k∈[K] span the same K-dimensional space as that spanned by gradient
vectors {gk}k∈[K], then

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk = gλ′. (33)

Similarly, for the stochastic gradients we have

∃{λ′
k,s}k∈[K] s.t. ds =

K∑
k=1

λ∗
k,sg̃k,s =

K∑
k=1

λ′
k,sgk,s = gsλ′

s. (34)

Define ∆t = gλ′ − gsλ′
s = g̃λ∗ − g̃sλ∗

s, where the last equality is due to the definitions in Equations (33)
and (34).
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We can find an upper bound for f(θt+1) as follows

f(θt+1) = f(θt − ηtdt) (35)

= f(θt − ηt

K∑
k=1

λ∗
k,sg̃k,s) (36)

= f(θt − ηtgsλ′
s) (37)

≤ f(θt)− ηtg
TgT

s λ′
s + Lη2

t

2 ∥g
T
s λ′

s∥2 (38)

≤ f(θt)− ηtg
TgT λ′ + Lη2

t ∥gT λ′∥2 + ηtg
T ∆t + Lη2

t ∥∆t∥2 (39)
≤ f(θt)− ηt(1− Lηt)∥gT λ′∥2 + lηt∥∆t∥+ Lη2

t ∥∆t∥2, (40)

where (36) uses stochastic gradients in the updating rule of AdaFed, (37) is obtained from the definition in
(34), (38) holds following the quadratic bound for smooth functions f = {fk}k∈[K], and lastly (40) holds
considering the Lipschits continuity of f = {fk}k∈[K].

Assuming ηt ∈ (0, 1
2L ] and taking expectation from both sides, we obtain:

min
t=0,...,T

E[∥dt∥] ≤
f(θ0)−E[f(θT +1)] +

∑T
t=0 ηt(lσt + Lηtσ

2
t )

1
2
∑T

t=0 ηt

. (41)

Using the assumptions (i) limT →∞
∑T

j=0 ηt → ∞, and (ii) limT →∞
∑T

t=0 ηtσt < ∞, the theorem will be
concluded. Note that vanishing dt implies reaching to a Pareto-stationary point of original MoM problem.
Yet, the convergence rate is different in different scenarios as we see in the following theorems.

A.1.1 Discussing the assumptions

• The assumptions over the local loss functions: The two assumptions l-Lipschitz continuous and
L-Lipschitz smooth over the local loss functions are two standard assumptions in FL papers providing some
sorts of convergence guarantee (Li et al., 2019b).

• The assumptions over the step-size: The three assumptions we enforced over the step-size could be
easily satisfied as explained in the sequel. For instance, one can pick ηt = κ1

1
t for some constant κ1 such that

ηt ∈ (0, 1
2L ] is satisfied. Then even if σt has a extremely loose upper-bound, let’s say σt < κ2

tϵ for a small
ϵ ∈ R+ and a constant number κ2, then all the three assumptions over the step-size in the theorem will be
satisfied. Note that the convergence rate of AdaFed depends on how fast σt diminishes which depends on
how heterogeneous the users are.

A.2 Case 2: e > 1 & local GD

The notations used in this subsection are elaborated in Table 6.

Theorem A.2. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz smooth. Denote
by ηt and η the global and local learning rate, respectively. Also, define ζt = ∥λ∗ − λ∗

e∥, where λ∗
e is the

optimum weights obtained from pseudo-gradients after e local epochs. Then,

lim
T →∞

min
t=0,...,T

∥dt∥ → 0, (42)

if the following conditions are satisfied: (i) ηt ∈ (0, 1
2L ], (ii) limT →∞

∑T
t=0 ηt →∞ and (iii) limt→∞ ηt → 0,

(iv) limt→∞ η → 0, and (v) limt→∞ ζt → 0.
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Table 6: Notations used in the Theorem A.2 for e > 1 and local GD.

Notation Description

θ(k,e)t Updated weight for client k after e local epochs at the t-th round of FL.

gk,e gk,e = θt − θ(k,e)t ; that is, the update vector of client k after e local epochs.

ge Matrix of update vectors [g1,e, . . . , gK,e].

g̃k,e Update vector of client k after orthogonalization process.

g̃e Matrix of orthogonalized update vectors [g̃1,e, . . . , g̃K,e].

λ∗
k,e Optimum weights obtained from Equation (14) using g̃e.

de Optimum direction obtained using g̃e; that is, de =
∑K

k=1 λ∗
k,eg̃k,e.

Proof. As discussed in the proof of Theorem A.1, we can write

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk = gλ′, (43)

∃{λ′
k,e}k∈[K] s.t. de =

K∑
k=1

λ∗
k,eg̃k,e =

K∑
k=1

λ′
k,egk,e = geλ′

e. (44)

To prove Theorem A.2, we first introduce a lemma whose proof is provided in Appendix B.

Lemma A.3. Using the notations used in Theorem A.2, and assumming that f = {fk}k∈[K] are L-Lipschitz
smooth, we have ∥gk,e − gk∥ ≤ ηel.

Using Lemma A.3, we have

∥d− de∥ = ∥g̃λ∗ − g̃eλ∗
e∥ ≤ ∥g̃λ∗ − g̃λ∗

e∥+ ∥g̃λ∗
e − g̃eλ∗

e∥ (45)
≤ ∥g̃∥∥λ∗ − λ∗

e∥+ ∥gλ′
e − geλ′

e∥ (46)
≤ ∥g̃∥∥λ∗ − λ∗

e∥+ ηel (47)

≤ ζtl
√

K + ηel, (48)

where Equation (45) follows triangular inequality, Equation (46) is obtained from Equations (43) and (44),
and Equation (47) uses Lemma A.3.

As seen, if limt→∞ η → 0, and limt→∞ ζt → 0, then ∥d − de∥ → 0. Now, by writing the quadratic upper
bound we obtain:

f(θt+1) ≤ f(θt)− ηtg
TgT

e λ′
e + Lη2

t

2 ∥g
T
e λ′

e∥2 (49)

≤ f(θt)− ηtg
TgT λ′ + Lη2

t ∥gT λ′∥2 + ηtg
T (d− de) + Lη2

t ∥d− de∥2 (50)
≤ f(θt)− ηt(1− Lηt)∥gT λ′∥2 + lηt∥d− de∥+ Lη2

t ∥d− de∥2. (51)

Noting that ηt ∈ (0, 1
2L ], and utilizing telescoping yields

min
t=0,...,T

∥dt∥ ≤
f(θ0)− f(θT +1) +

∑T
t=0 ηt(l∥d− de∥+ Lηt∥d− de∥2)
1
2
∑T

t=0 ηt

. (52)

Using ∥d− de∥ → 0, the Theorem A.2 is concluded.
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A.3 Case 3: e = 1 & local GD

Denote by ϑ the Pareto-stationary solution set of minimization problem arg minθ f(θ). Then, define
θ∗

t = arg minθ∈ϑ ∥θt − θ∥2
2.

Theorem A.4. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and σ-convex, and that the step-size
ηt satisfies the following two conditions: (i) limt→∞

∑t
j=0 ηj → ∞ and (ii) limt→∞

∑t
j=0 η2

j < ∞. Then
almost surely θt → θ∗

t ; that is,

P
(

lim
t→∞

(θt − θ∗
t ) = 0

)
= 1, (53)

where P(E) denotes the probability of event E.

Proof. The proof is inspired from Mercier et al. (2018). Without loss of generality, we assume that all users
participate in all rounds.

Based on the definition of θ∗
t we can say

∥θt+1 − θ∗
t+1∥2

2 ≤ ∥θt+1 − θ∗
t ∥2

2 = ∥θt − ηtdt − θ∗
t ∥2

2 (54)
= ∥θt − θ∗

t ∥2
2 − 2ηt(θt − θ∗

t ) · dt + η2
t ∥dt∥2

2. (55)

To bound the third term in Equation (55), we note that from Equation (23), we have:

η2
t ∥dt∥2

2 = η2
t∑K

k=1
1

∥g̃k∥2
2

≤ η2
t l2

K
. (56)

To bound the second term, first note that since orthogonal vectors {g̃k}k∈[K] span the same K-dimensional
space as that spanned by gradient vectors {gk}k∈[K], then

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk. (57)

Using Equation (57) and the σ-convexity of {fk}k∈[K] we obtain

(θt − θ∗
t ) · dt = (θt − θ∗

t ) ·
K∑

k=1
λ∗

kg̃k (58)

= (θt − θ∗
t ) ·

K∑
k=1

λ′
kgk (59)

≥
K∑

k=1
λ′

k (fk(θt)− fk(θ∗
t )) + σ

∥θt − θ∗
t ∥2

2
2 (60)

≥ λ′
αM

2 ∥θt − θ∗
t ∥2

2 + σ
∥θt − θ∗

t ∥2
2

2 (61)

= λ′
αM + σ

2 ∥θt − θ∗
t ∥2

2. (62)

Now, we return back to Equation (55) and find the conditional expectation w.r.t. θt as follows

E[∥θt+1 − θ∗
t+1∥2

2 | θt] ≤ (1− ηtE[λ′
αM + σ|θt])∥θt − θ∗

t ∥2
2 + η2

t l2

K
. (63)

Assume that E[λ′
αM + σ|θt] ≥ c, taking another expectation we obtain:

E[∥θt+1 − θ∗
t+1∥2

2] ≤ (1− ηtc)E[∥θt − θ∗
t ∥2

2] + η2
t l2

K
, (64)
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which is a recursive expression. By solving Equation (64) we obtain

E[∥θt+1 − θ∗
t+1∥2

2] ≤
t∏

j=0
(1− ηjc)E[∥θ0 − θ∗

0∥2
2]︸ ︷︷ ︸

First term

+
t∑

m=1

∏t
j=1(1− ηjc)η2

ml2

K
∏m

j=1(1− ηjc)︸ ︷︷ ︸
Second term

. (65)

It is observed that if the limit of both First term and Second term in Equation (65) go to zero, then
E[∥θt+1 − θ∗

t+1∥2
2]→ 0. For the First term, from the arithmetic-geometric mean inequality we have

lim
t→∞

t∏
j=0

(1− ηjc) ≤ lim
t→∞

(∑t
j=0(1− ηjc)

t

)t

= lim
t→∞

(
1− c

∑t
j=0 ηj

t

)t

(66)

= lim
t→∞

e
−c
∑t

j=0
ηj . (67)

From Equation (67) it is seen that if limt→∞
∑t

j=0 ηj →∞, then the First term is also converges to zero as
t→∞.

On the other hand, consider the Second term in Equation (65). Obviously, if limt→∞
∑t

j=0 η2
j <∞, then the

Second term converges to zero as t→∞.

Hence, if (i) limt→∞
∑t

j=0 ηj →∞ and (ii) limt→∞
∑t

j=0 η2
j <∞, then E[∥θt+1−θ∗

t+1∥2
2]→ 0. Consequently,

based on standard supermartingale (Mercier et al., 2018), we have

P
(

lim
t→∞

(θt − θ∗
t ) = 0

)
= 1. (68)

B Proof of Lemma A.3

Proof.

gk,e = θt − θ(k,e)t = (θt − θ(k,1)t) + (θ(k,1)t − θ(k,2)t) + · · ·+ (θ(k,e−1)t − θ(k,e)t) (69)
= gk(θt) + ηgk,1 + · · ·+ ηgk,e−1. (70)

Hence,

∥gk,e − gk∥ = ∥η
e∑

j=1
gk,j∥ ≤ η

e∑
j=1
∥gk,j∥ ≤ ηel. (71)

C More about fairness in FL

C.1 Sources of unfairness in federated learning

Unfairness in FL can arise from various sources and is a concern that needs to be addressed in FL systems.
Here are some of the key reasons for unfairness in FL:

1. Non-Representative Data Distribution: Unfairness can occur when the distribution of data across
participating devices or clients is non-representative of the overall population. Some devices may have more
or less relevant data, leading to biased model updates.

2. Data Bias: If the data collected or used by different clients is inherently biased due to the data collection
process, it can lead to unfairness. For example, if certain demographic groups are underrepresented in the
training data of some clients, the federated model may not perform well for those groups.
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3. Heterogeneous Data Sources: Federated learning often involves data from a diverse set of sources,
including different device types, locations, or user demographics. Variability in data sources can introduce
unfairness as the models may not generalize equally well across all sources.

4. Varying Data Quality: Data quality can vary among clients, leading to unfairness. Some clients may
have noisy or less reliable data, while others may have high-quality data, affecting the model’s performance.

5. Data Sampling: The way data is sampled and used for local updates can introduce unfairness. If some
clients have imbalanced or non-representative data sampling strategies, it can lead to biased model updates.

6. Aggregation Bias: The learned model may exhibit a bias towards devices with larger amounts of data
or, if devices are weighted equally, it may favor more commonly occurring devices.

C.2 Fairness in conventional ML Vs. FL

The concept of fairness is often used to address social biases or performance disparities among different
individuals or groups in the machine learning (ML) literature (Barocas et al., 2017). However, in the context
of FL, the notion of fairness differs slightly from traditional ML. In FL, fairness primarily pertains to the
consistency of performance across various clients. In fact, the difference in the notion of fairness between
traditional ML and FL arises from the distinct contexts and challenges of these two settings:

1. Centralized vs. decentralized data distribution:

• In traditional ML, data is typically centralized, and fairness is often defined in terms of mitigating
biases or disparities within a single, homogeneous dataset. Fairness is evaluated based on how the
model treats different individuals or groups within that dataset.

• In FL, data is distributed across multiple decentralized clients or devices. Each client may have its
own unique data distribution, and fairness considerations extend to addressing disparities across
these clients, ensuring that the federated model provides uniform and equitable performance for all
clients.

2. Client autonomy and data heterogeneity:

• In FL, clients are autonomous and may have different data sources, labeling processes, and data
collection practices. Fairness in this context involves adapting to the heterogeneity and diversity
among clients while still achieving equitable outcomes.

• Traditional ML operates under a centralized, unified data schema and is not inherently designed to
handle data heterogeneity across sources.

We should note that in certain cases where devices can be naturally clustered into groups with specific
attributes, the definition of fairness in FL can be seen as a relaxed version of that in ML, i.e., we optimize for
similar but not necessarily identical performance across devices (Li et al., 2019a).

Nevertheless, despite the differences mentioned above, to maintain consistency with the terminology used in
the FL literature and the papers we have cited in the main body of this work, we will continue to use the
term “fairness" to denote the uniformity of performance across different devices.

D Additional three datasets

In this section, we evaluate the performance of AdaFed against some benchmarks over some other datasets,
namely Fashion MNIST, CINIC-10, and TinyImageNet whose respective results are reported in Appendices D.1
to D.3.
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D.1 Fashion MNIST

Fashion MNIST (Xiao et al., 2017) is an extension of MNIST dataset (LeCun et al., 1998) with images resized
to 32× 32 pixels.

We use a fully-connected neural network with 2 hidden layers, and use the same setting as that used in Li
et al. (2019a) for our experiments. We set e = 1 and use full batchsize, and use η = 0.1. Then, we conduct 300
rounds of communications. For the benchmarks, we use the same as those we used for CIFAR-10 experiments.
The results are reported in Table 7.

By observing the three different classes reported in Table 7, we observe that the fairness level attained in
AdaFed is not limited to a dominate class.

Table 7: Test accuracy on Fashion MNIST. The reported results are averaged over 5 different random seeds.

Algorithm ā σa shirt pullover T-shirt

FedAvg 80.42 3.39 64.26 87.00 89.90
q-FFL 78.53 2.27 71.29 81.46 82.86
FedMGDA+ 79.29 2.53 72.46 79.74 85.66
FedFA 80.22 3.41 63.71 86.87 89.94
AdaFed 79.14 2.12 72.49 79.81 86.99

D.2 CINIC-10

CINIC-10 (Darlow et al., 2018) has 4.5 times as many images as those in CIFAR-10 dataset (270,000 sample
images in total). In fact, it is obtained from ImageNet and CIFAR-10 datasets. As a result, this dataset fits FL
scenarios since the constituent elements of CINIC-10 are not drawn from the same distribution. Furthermore,
we add more non-iidness to the dataset by distributing the data among the clients using Dirichlet allocation
with β = 0.5.

For the model, we use ResNet-18 with group normalization, and set η = 0.01. There are 200 communication
rounds in which all the clients participate with e = 1. Also, K = 50. Results are reported in Table 8.

Table 8: Test accuracy on CINIC-10. The reported results are averaged over 5 different random seeds.

Algorithm ā σa Worst 10% Best 10%

q-FFL 86.57 14.91 57.70 100.00
Ditto 86.31 15.14 56.91 100.00
AFL 86.49 15.12 57.62 100.00
TERM 86.40 15.10 57.30 100.00
AdaFed 86.34 14.85 57.88 99.99

D.3 TinyImageNet

Tiny-ImageNet (Le & Yang, 2015) is a subset of ImageNet with 100k samples of 200 classes. We distribute
the dataset among K = 20 clients using Dirichlet allocation with β = 0.05

We use ResNet-18 with group normalization, and set η = 0.02. There are 400 communication rounds in which
all the clients participate with e = 1. The results are reported in Table 9.
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Table 9: Test accuracy on TinyImageNet. The reported results are averaged over 5 different random seeds.

Algorithm ā σa Worst 10% Best 10%

q-FFL 18.90 3.20 13.12 23.72
AFL 16.55 2.38 12.40 20.25
TERM 16.41 2.77 11.52 21.02
FedMGDA+ 14.00 2.71 9.88 19.21
AdaFed 18.05 2.35 13.24 23.08

E Experiments details, tuning hyper-parameters

For the benchmark methods and also AdaFed, we used grid-search to find the best hyper-parameters for the
underlying algorithms. The parameters we tested for each method are as follows:

• AdaFed: γ ∈ {0, 0.01, 0.1, 1, 5, 10}.

• q-FFL: q ∈ {0, 0.001, 0.01, 0.1, 1, 2, 5, 10}.

• TERM: t ∈ {0.1, 0.5, 1, 2, 5}.

• AFL: ηt ∈ {0.01, 0.05, 0.1, 0.5, 1}.

• Ditto: λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}.

• FedMGDA+: ϵ ∈ {0.01, 0.05, 0.1, 0.5, 1}.

• FedFA: (α, β) = {(0.5, 0.5)}, (γs, γc) = {(0.5, 0.9)}.

To have a better understanding about how the parameter γ in AdaFed affects the performance of the FL
task, we report the results for different values of γ in AdaFed in this section.

E.1 CIFAR-10

The best hyper-parameters for the benchmark methods are: q = 10 for q-FFL, ϵ = 0.5 for FedMGDA+,
and (α, β) = {(0.5, 0.5)}, (γs, γc) = {(0.5, 0.9)} for FedFA. The detailed results for different γ in AdaFed are
reported in Table 10. We used γ = 5 as the best point for Table 1.

Table 10: Tuning γ in AdaFed over CIFAR-10. Reported results are averaged over 5 different random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 5% Best 5% ā σa Worst 10% Best 10%

AdaFedγ=0 45.44 3.43 20.18 68.04 59.88 4.89 48.12 70.62
AdaFedγ=0.01 45.77 3.36 23.55 68.07 60.39 4.81 49.43 70.63
AdaFedγ=0.1 46.01 3.18 27.12 68.12 60.98 4.70 50.91 70.70
AdaFedγ=1 46.55 3.18 27.75 68.20 63.24 4.54 54.55 71.12
AdaFedγ=5 46.42 3.01 31.12 67.73 64.80 4.50 58.24 72.45
AdaFedγ=10 46.00 2.88 35.21 67.35 63.25 4.66 51.74 71.25

E.2 CIFAR-100

The best hyper-parameters for the benchmark methods are: q = 0.1 for q-FFL, t = 0.5 in TERM, and
ηt = 0.5 in AFL. In addition, the detailed results for different γ in AdaFed are reported in Table 11. We used
γ = 1 as the best point for Table 2.
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Table 11: Tuning γ in AdaFed over CIFAR-100. Reported results are averaged over 5 different random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 10% Best 10% ā σa Worst 10% Best 10%

AdaFedγ=0 29.41 4.45 24.41 39.21 17.05 6.71 10.04 27.41
AdaFedγ=0.01 30.12 4.05 25.23 39.41 17.77 6.09 10.43 28.42
AdaFedγ=0.1 31.05 3.52 26.13 40.12 19.51 4.95 10.89 32.10
AdaFedγ=1 31.42 3.03 28.91 40.41 20.02 4.45 11.81 34.11
AdaFedγ=5 31.23 2.95 28.12 40.20 19.79 4.31 11.86 33.67
AdaFedγ=10 31.34 2.91 28.52 40.15 19.61 4.56 11.42 32.91

E.3 Fashion MNIST

The best hyper-parameters for the benchmark methods are: ϵ = 0.5 for FedMGDA+, q = 0.1 for q-FFL,
(α, β) = {(0.5, 0.5)}, (γs, γc) = {(0.5, 0.9)} for FedFA. The detailed results for different γ in AdaFed are
reported in Table 12. We used γ = 1 as the best point for Table 7.

Table 12: Tuning γ in AdaFed over Fashion MNIST. Reported results are averaged over 5 different seeds.

Algorithm ā σa shirt pullover T-shirt

AdaFedγ=0 78.84 2.55 71.77 78.34 84.12
AdaFedγ=0.01 78.88 2.41 71.73 78.66 85.62
AdaFedγ=0.1 79.24 2.30 72.46 79.14 85.66
AdaFedγ=1 79.14 2.12 72.33 79.81 83.99
AdaFedγ=5 79.04 2.09 71.55 78.37 85.41
AdaFedγ=10 78.91 1.96 71.43 78.04 85.82

E.4 FEMNIST

The best hyper-parameters for the benchmark methods are: λ = 0.1 for Ditto, q = 0.1 for q-FFL, t = 0.5 for
TERM, ηt = 0.5 for AFL. Also, the detailed results for different γ in AdaFed are reported in Table 3. We
used γ = 1 as the best point for Table 13.

Table 13: Tuning γ in AdaFed over FEMNIST. Reported results are averaged over 5 different seeds.

FEMNIST-original FEMNIST-skewed

Algorithm ā σa Angle (◦) KL (a∥u) ā σa Angle (◦) KL (a∥u)

AdaFedγ=0 81.32 13.59 10.85 0.019 84.39 13.54 11.32 0.024
AdaFedγ=0.01 82.67 12.03 10.68 0.018 87.66 12.02 10.91 0.019
AdaFedγ=0.1 81.60 8.72 9.23 0.011 88.62 10.59 10.75 0.017
AdaFedγ=1 82.26 6.58 8.12 0.009 92.21 7.56 9.44 0.011
AdaFedγ=5 80.10 5.16 7.29 0.007 90.12 5.82 7.31 0.009
AdaFedγ=10 80.05 3.03 6.44 0.007 84.38 4.49 6.99 0.008
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E.5 Shakespeare

The best hyper-parameters for the benchmark methods are: q = 0.1 for q-FFL, λ = 0.1 for Ditto, and ηt = 0.5
for AFL. Furthermore, the results obtained for different γ values in AdaFed are reported in Table 14. We
used γ = 0.1 as the best point for Table 4.

Table 14: Tuning γ in AdaFed over Shakespeare. Reported results are averaged over 5 different seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 10% Best 10% ā σa Worst 10% Best 10%

AdaFedγ=0 48.40 13.5 44.12 51.29 48.80 1.58 46.23 51.12
AdaFedγ=0.01 53.55 8.01 50.96 54.46 51.67 1.10 48.71 53.16
AdaFedγ=0.1 55.65 6.55 53.79 55.86 52.89 0.98 51.02 54.48
AdaFedγ=1 53.91 5.10 51.94 54.06 51.44 1.06 50.88 54.52
AdaFedγ=5 54.40 4.15 52.17 54.77 51.20 1.05 50.72 54.61
AdaFedγ=10 54.56 4.22 52.20 54.73 51.19 1.07 50.70 54.01

E.6 CINIC-10

The best hyper-parameters for the benchmark methods are: t = 0.5 for TERM, q = 0.1 for q-FFL, λ = 0.1 for
Ditto, and ηt = 0.5 for AFL. Furthermore, the results obtained for different γ values in AdaFed are reported
in Table 15. We used γ = 1 as the best point for Table 8.

Table 15: Tuning γ in AdaFed over CINIC-10. Reported results are averaged over 5 different seeds.

Algorithm ā σa Worst 10% Best 10%

AdaFedγ=0 85.17 15.71 54.67 99.92
AdaFedγ=0.01 85.87 15.54 56.12 99.95
AdaFedγ=0.1 86.13 15.32 57.01 99.98
AdaFedγ=1 86.34 14.85 57.88 99.99
AdaFedγ=5 86.03 15.01 57.72 99.98
AdaFedγ=10 85.49 15.08 57.23 99.99

E.7 TinyImageNet

The best hyper-parameters for the benchmark methods are: ϵ = 0.05 for FedMGDA+, t = 0.5 for TERM,
q = 0.1 for q-FFL, and ηt = 0.5 for AFL. Furthermore, the results obtained for different γ values in AdaFed
are reported in Table 16. We used γ = 1 as the best point for Table 9.

E.8 The effect of parameter γ

In this section, we reported the results for AdaFed over different datasets when γ takes different values. Based
on the tables reported in this section, we observe almost a similar trend over all the dataset. As a rule of
thumb, a higher (lower) γ yields a higher (lower) fairness and slightly lower (higher) accuracy. Nevertheless,
the best performance of AdaFed (in terms of establishing an appropriate trade-off between average accuracy
and fairness) is achieved for a moderate value of γ. This is also consistent with the other fairness methods in
the literature, where in most cases, the best hyper-parameter is a moderate one.
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Table 16: Tuning γ in AdaFed over TinyImageNet. Reported results are averaged over 5 different seeds.

Algorithm ā σa Worst 10% Best 10%

AdaFedγ=0 13.25 3.14 9.82 19.24
AdaFedγ=0.01 14.38 2.72 10.12 19.97
AdaFedγ=0.1 16.20 2.65 11.65 21.12
AdaFedγ=1 18.05 2.35 13.24 23.08
AdaFedγ=5 17.76 2.31 12.44 22.84
AdaFedγ=10 17.05 2.38 12.58 23.67

F Computation cost of Adafed

F.1 Comparing to FedMGDA+

First, note that AdaFed concept is built upon that of FedMGDA+ (Hu et al., 2022) (and FairWire in
Hamidi & Damen (2024)), in that both use Pareto-optimal notion to enforce fairness in FL task. Note
that the optimal solutions in MoM usually forms a set (in general of infinite cardinality). As discussed,
what distinguishes FedMGDA+ and AdaFed is that to which point of this set these algorithms converge.
Particularly, AdaFed converges to more uniform solutions Figure 1a. This is because FedMGDA+ algorithm
only satisfies Condition (I), yet in AdaFed, both Conditions (I) and (II) are held.

Interestingly, the cost of performing AdaFed is less than that of performing FedMGDA+. To elucidate,
FedMGDA+ also finds the minimum-norm vector in the convex hull of the gradients’ space in order to find a
common descent direction. To this end, they used generic quadratic programming which entails iteratively
finding the minimum-norm vector in the convex hull of the local gradients. One of the pros of AdaFed is that
it finds the common descent direction without performing any iterations over the gradient vectors. Thus,
AdaFed not only yields a higher level of fairness compared to FedMGDA+, but also solves its complexity
issue.

F.2 Running time for AdaFed

Assume that the number of clients is K, and the dimension of the gradient vectors is d. Then, the
orthogonalization for k-th client, k ∈ [K], needs O(2dk) operations (by operations we meant multiplications
and additions). Hence, the total number of operations needed for orthogonalization process in equal to
O(2dK2) (Also note that Gram-Schmidt is the most efficient algorithm for orthogonalization).

In our experimental setup, we realized that the overhead of AdaFed is negligible, resulting almost the same
overall running time for FedAvg and AdaFed. To justify this fact, please refer to FedMGDA+ paper where
they discussed the overhead of their proposed method; as they claimed, the overhead is negligible yielding the
same running time as FedAVG. On the other hand, as explained in Appendix F.1, the complexity of AdaFed
is lower than that of FedMGDA+.

G Curves and histograms

G.1 Training curves for CIFAR-10 and CIFAR-100

In this subsection, we depict the average test accuracy over the course of training for CIFAR-10 dataset using
setup one (see Section 7.1). In particular, we depict the average test accuracy across all the clients Vs. the
number of communication rounds. Additionally, to demonstrate the convergence of the FL algorithms after
2000 communication rounds, we have depicted the training curve for 4000 rounds.
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The curve for each method is obtained by using the best hyper-parameter of the respective method (we
discussed the details of hyper-parameter tuning in Appendix E). Furthermore, the curves are averaged over
five different seeds.

The results are shown in Figure 5 and Figure 6 for CIFAR-10 and CIFAR-100, respectively. Particularly
in Figure 5, AdaFed converges faster than the benchmark methods. Specifically, AdaFed reaches average
test accuracy of 40% after around 400 communication rounds; however, the benchmark methods reach this
accuracy after around 900 rounds. Indeed, this is another advantage of AdaFed in addition to imposing
fairness across the clients.
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Figure 5: Average test accuracy across clients for different FL methods on CIFAR-10. The setup for the
experiments is elaborated in Section 7.1, setup 1.
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Figure 6: Average test accuracy across clients for different FL methods on CIFAR-100. The setup for the
experiments is elaborated in Section 7.2, setup 1.

G.2 Histogram of accuracies

To better observe the spread of clients accuracy, we depict the histogram of accuracy across 500 clients for
the Original FEMNIST dataset (the setup for the experiment is discussed in Appendix D.1). To this end, we
depict the histogram of the clients’ accuracies for three different methods: (i) FedAvg, (ii) Q-FFL, and (iii)
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AdaFed(γ = 5); all using their well-tuned hyper-parameters. The result is depicted in Appendix G.2. As
seen, the distribution of the accuracy is more concentrated (fair) for AdaFed.

Figure 7: The distribution of clients accuracy for Original FEMNIST dataset using three different methods,
namely: (i) FedAvg, (ii) Q-FFL, and (iii) AdaFed.

H CIFAR-100 results with more local epochs

In this section, we want to test the performance of AdaFed using a larger number of local epochs e. To
this end, we use the same setups as those used in the main body of the paper to produce the results for
CIFAR-100, but we change the number of local epochs e to 10 and 20. 8. The results for e = 10 and e = 20
are reported in Table 17 and Table 18, respectively. We highlight two key observations from the tables:

• AdaFed can still provide a higher level of fairness compared to the benchmark methods;

• While increasing the number of local epochs from 1 to 10 results in higher average accuracy, this
trend is not observed when further increasing e to 20.

Table 17: Test accuracy on CIFAR-100 with e = 10. The reported results are averaged over 5 different
random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 10% Best 10% ā σa Worst 10% Best 10%

FedAvg 31.14 4.09 25.30 40.54 20.54 6.42 11.12 33.47
q-FFL 29.45 4.66 25.35 39.91 20.77 6.20 11.05 33.52
AFL 31.17 3.69 25.12 39.52 19.32 4.85 11.23 28.93
TERM 30.56 3.63 27.19 39.46 17.91 5.87 10.11 32.00
AdaFed 31.19 3.14 28.81 40.42 20.41 4.71 11.39 34.08

I Integration with a Label Noise Correction method

I.1 What is label noise in FL?

Label noise in FL refers to inaccuracies or errors in the ground truth labels associated with the data used
for training. It occurs when the labels assigned to data points are incorrect or noisy due to various reasons.

8We selected e = {10, 20} because these values have been commonly utilized in the literature for the CIFAR-100 dataset.
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Table 18: Test accuracy on CIFAR-100 with e = 20. The reported results are averaged over 5 different
random seeds.

Setup 1 Setup 2

Algorithm ā σa Worst 10% Best 10% ā σa Worst 10% Best 10%

FedAvg 29.11 4.31 24.61 39.45 18.05 6.12 9.15 30.12
q-FFL 29.15 4.23 25.12 39.67 19.02 6.15 8.41 31.66
AFL 30.38 3.78 25.00 39.12 17.74 4.96 10.01 27.08
TERM 31.15 3.62 27.02 40.41 15.81 5.68 8.17 29.26
AdaFed 30.41 3.19 27.35 40.18 18.37 4.21 10.55 31.78

Label noise can be introduced at different stages of data collection, annotation, or transmission, and it can
have a significant impact on the performance and reliability of FL models.

Label noise in FL is particularly challenging to address because FL relies on decentralized data sources, and
participants may have limited control over label quality in remote environments. Dealing with label noise
often involves developing robust models and FL algorithms that can adapt to the presence of inaccuracies in
the labels.

I.2 Are the fair FL algorithms robust against label noise?

The primary intention of the fair FL algorithms including AdaFed is to ensure fairness among the clients
while maintaining the average accuracy across them. Yet, these algorithms are not robust against label noise
(mislabeled instances).

Nonetheless, AdaFed could be integrated with label-noise resistant methods in the literature yielding an FL
method which (i) satisfies fairness among the clients, and (ii) is robust against the label noise. In particular,
among the label-noise resistant FL algorithms in the literature, we select FedCorr (Xu et al., 2022) to be
integrated with AdaFed.

FedCorr introduces a dimensionality-based filter to identify noisy clients, which is accomplished by measuring
the local intrinsic dimensionality (LID) of local model prediction subspaces. They demonstrate that it is
possible to distinguish clean datasets from noisy ones by observing the behavior of LID scores during the
training process (we omit further discussions about FedCorr, and refer interested readers to their paper for
more details).

Similarly to FedCorr, we use a real-world noisy dataset, namely Clothing1M9 (Xiao et al., 2015), and we use
exactly the same setting as they used for this dataset10. In particular, we use local SGD with a momentum
of 0.5, with a batch size of 16, and five local epochs, and set the hyper-parameter T1 = 2 in their algorithm.
In addition, when integrated with AdaFed, we set γ = 5 for AdaFed.

The results are summarized in Table 19. As observed, the average accuracy obtained by AdaFed is around
2.2% lower than that obtained from FedCorr which shows that AdaFed is not robust against label-noise.
Moreover, as expected AdaFed results in a more fair client accuracy. On the other hand, when AdaFed is
combined with FedCorr, the average accuracy improves while maintaining satisfactory fairness among the
clients.

9Clothing1M contains 1M clothing images in 14 classes. It is a dataset with noisy labels, since the data is collected from
several online shopping websites and include many mislabelled samples.

10https://github.com/Xu-Jingyi/FedCorr
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Table 19: Test accuracy on Clothing1M dataset. The reported results are averaged over 5 different random
seeds.

Algorithm ā σa Worst 10% Best 10%

FedAvg 70.49 13.25 43.09 91.05
FedCorr 72.55 13.27 43.12 91.15
AdaFed 70.35 5.17 49.91 90.77
FedCorr + AdaFed 72.29 8.12 46.52 91.02
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