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From Covert Hiding To Visual Editing: Robust Generative Video
Steganography
Anonymous Author(s)

ABSTRACT
Traditional video steganography methods are based on modifying
the covert space for embedding, whereas we propose an innovative
approach that embeds secret message within semantic feature for
steganography during the video editing process. Although exist-
ing traditional video steganography methods excel in balancing
security and capacity, they lack adequate robustness against com-
mon distortions in online social networks (OSNs). In this paper,
we propose an end-to-end robust generative video steganography
network (RoGVSN), which achieves visual editing by modifying
semantic feature of videos to embed secret message. We exemplify
the face-swapping scenario as an illustration to demonstrate the
visual editing effects. Specifically, we devise an adaptive scheme
to seamlessly embed secret messages into the semantic features of
videos through fusion blocks. Extensive experiments demonstrate
the superiority of our method in terms of robustness, extraction
accuracy, visual quality, and capacity.

CCS CONCEPTS
• Security and privacy→ Security services.

KEYWORDS
steganography, Video steganography, Robust video steganography

1 INTRODUCTION
Steganography is the science and technology of embedding secret
messages into natural digital carriers, such as image [6, 41, 45],
audio [11, 27], video [13, 24, 30], text [1, 9, 30], etc., which is a crux
of covert communication system. Different from the message con-
cealment of cryptography, steganography focuses on concealing
the existence of secret messages. Generally, the natural digital car-
riers are called “cover” and the digital media with secret message
are called “stego”. Conventional image steganography methods
[41, 43, 45] primarily modify high-frequency components to embed
secret message. They commonly utilize methodologies such as pixel
value manipulation or integrating secret message into the cover
image before inputting it into an encoder for Steganography.

In the past few years, as the rise of short video software appli-
cations like TikTok, YouTube, Snapchat, etc., video has become a
suitable carrier for steganography. Traditional video steganographic
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Figure 1: Methodology of RoGVSN. We modulate semantic
feature with secret message to edit videos, such as the iden-
tity feature in facial videos. Our RoGVSN can generate high-
quality stego videos even in the presence of various distor-
tions.

methods, utilizing direct pixel value manipulation [5], coding map-
ping [24], or adaptive distortion function [17], exploit video data
redundancy for information hiding. While exhibiting commendable
security and embedding capabilities, these methods on modifying
covert space can be erased by common post-processing operations
easily. So they are vulnerable to mitigate diverse distortions that
may occur in lossy channel transmission. These shortcomings em-
phasize the urgent need for further research to enhance the re-
silience of these methods, ensuring the reliable concealment and
transmission of sensitive information in practical settings.

Visual editing on videos can be seen as the process of modi-
fying the semantic information of objects within them. Instead
of hiding secret message in covert space, we embed secret mes-
sage within semantic feature of videos for visual editing. The high-
level semantic feature is less susceptible to distortions, making this
method inherently robust. In order to improve the robustness of
video steganography, we propose an end-to-end robust generative
video steganography network (RoGVSN), which consists of four
modules, containing information encoding module, secret message
embedding model, attacking layer, and secret message extraction
module. For evaluation purpose, we employ face-swapping technol-
ogy as a representative example to demonstrate the effectiveness
of the proposed method. Fig. 1 illustrates the application scenario
of RoGVSN. By leveraging secret messages to modulate seman-
tic feature, such as facial identity information in videos, RoGVSN
can achieve steganography during the process of visual editing.
The applicability of our RoGVSN can be readily extended to vari-
ous other applications. Comprehensive experiments demonstrates
that our method outperforms existing state-of-the-art techniques.
Notably, our approach exhibits commendable robustness against
various forms of distortions and possesses strong generalization ca-
pabilities across diverse scenarios and datasets. These experiments
underscore the efficacy and versatility of our method in addressing
challenges in the field of visual editing and steganography.
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The main contributions of our proposed method are as follows,

• Weare the first to explore a novel generative video steganog-
raphy method, which modifies semantic feature to embed
secret message during visual editing instead of modify the
covert space. This framework exhibits strong extensibility,
serving as a new topic for the future development of the
steganography field.

• The proposed method is robust against common distortions
in social network platforms and the secret message can be
extracted accurately.

• Our method achieves better security than other state-of-
the-art methods, which can effectively evade the detection
of steganalysis system.

2 RELATEDWORK
2.1 Image Steganography
Traditional image steganography techniques predominantly in-
volve making alterations to embed secret message on the pixel
domain. The Least Significant Bits substitution method [6] operates
under the assumption that human eyes cannot perceive changes
in the least significant bit of pixel values. HUGO [18] is a highly
secure steganography system designed to minimize distortion to
high-dimensional multivariate statistics. Syndrome-Trellis Coding
(STC) [14] utilizes predefined embedding costs for all pixels or
discrete cosine transform (DCT) coefficients. A pioneering advance-
ment, HiDDeN [45] introduces an end-to end trainable framework
through an encoder-decoder architecture based on deep networks.
SteganoGAN [43] employs dense encoders to enhance payload
capacity. Volkhonskiy et al. [33] demonstrates promising perfor-
mance in both the authenticity of generated images and resistance
to steganalysis systems. With the development of generative ad-
versarial networks, a wave of work on generative steganography
has emerged. For instance, Wei et al [37] propose an advanced gen-
erative steganography network that can generate realistic stego
images without using cover images. IDEAS [26] disentangles im-
ages into structural and texture vectors, subsequently embedding
secret message into the structural vector. However, these image
steganography methodologies can be obliterated by common post-
processing operations, such as JPEG compression or Gaussian Blur.

2.2 Video Steganography
Early video steganography approaches frequently involved direct
modification of the RGB or YUV color space to embed secret mes-
sage. For instance, Cetin et al. [5] compute frame-specific histogram
features and established a threshold for secret information embed-
ding within RGB pixels. Subsequently, Dong Y et al. [13] discover
that within the HEVC codingmodel, altering the intra-frame mode
primarily affects video coding efficiency, while modifying the mul-
tilevel recursive coding unit does not significantly amplify this
distortion’s impact. Liu et al. [24] utilize diamond-shaped coding
to enhance the expressive capability of the PU division pattern for
concealed information, effectively boosting the payload. They also
replace the loop filter of the I frame with a CNN to enhance the
reconstruction quality of compressed images. PWRN [22] refine

this approach by employing a super-resolution convolutional neu-
ral network with a wide residual-net filter to replace the loop filter
in HEVC. More recently, He et al. [17] devise an adaptive distor-
tion function based on improved Rate Distortion Optimization and
adopted Syndrome-Trellis Code [35] steganography coding to min-
imize embedding distortion. They also propose a super-resolution
CNN with Non-Local Sparse Attention-net Filter to replace the
loop filter in HEVC, thereby reconstructing the reference frame and
enhancing visual quality. However, these methodologies exhibit
limited robustness, rendering the concealed secret message suscep-
tible to inadvertent loss during subsequent compression coding.
Moreover, they grapple with the challenge of mitigating the impact
of diverse distortions that may arise during lossy channel trans-
mission. Inspired by semantic-based image steganography [26, 44]
schemes, we propose RoGVSN, a novel approach that robustly trans-
mits secret message through the modification of identity feature
within facial videos.

2.3 Visual Editing
Visual editing encompasses a diverse array of manipulations, rang-
ing from basic adjustments to complex transformations. Such ma-
nipulations can include color correction to enhance or modify the
appearance of individual elements within the images [29], as well as
the deletion, addition [40], or alteration of objects to either enhance
the composition or convey a different narrative [38]. Additionally,
techniques like image blending or compositing enable the seamless
integration of multiple photographs to generate composite images
with enhanced aesthetic or communicative value. In the realm of
videos, visual editing extends to a broader range of manipulations,
including the application of effects to specific frames to enhance
visual impact or convey specific emotions. Furthermore, it involves
the removal or addition of elements within the video to alter the
narrative or aesthetic presentation. Notably, face-swapping tech-
niques have gained prominence, allowing for the replacement of
one person’s face with another’s, thereby enabling novel creative
possibilities or facilitating various applications such as identity
protection or entertainment [7].

3 METHODOLOGY
3.1 Overview
In this section, we will describe the framework of our proposed
RoGVSN. Our method aims to embed secret message 𝑴 using se-
mantic feature extracted from the reference image 𝑰𝑅 into the cover
video 𝑽𝐶 , generating the stego video 𝑽

′
𝐶
. Subsequently, various

distortions such as video compression, noise addition, etc., can be
applied to the stego video 𝑽𝐶 . The stego video 𝑽𝐶 is then transmitted
to the receiver. A trained secret message extractor is capable of map-
ping each frame of the stego video 𝑽𝐶 back to the secret message
𝑴′. As illustrated in Fig. 2, our approach comprises four modules:
Information Encoding Module, Secret Message Embedding Module,
Attacking Layer, Secret Message Extraction Module.

3.2 Information Encoding Module
The information encoding module consists of three parts: The first
is identity extractor (𝑬𝑖𝑑 ) which is responsible for extracting the
specific feature representation tailored for the reference image (𝑰𝑅).
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Figure 2: The Framework of the Proposed RoGVSN. 𝑬𝑚 is secret message encoder. 𝑬𝑖𝑑 is identity feature extractor. 𝑬𝜙 is video
feature extractor. 𝑫𝜑 represents a video decoder. 𝑬𝑒𝑥𝑡 represents secret message extractor. The discriminator is omitted for
simplicity.

In the proposed method, we leverage the facial recognition network
[10] as the identity extractor. The second is video feature extractor(
𝑬𝜙

)
. It acquires the latent representation of cover video 𝑽𝐶 with

𝑣 frames, employing an encoder [7] for video feature extraction.
The third is secret message encoder (𝑬𝑚) which is a multilayer
perceptron (MLP) with one dense layer. The above three parts are
formulated as follows,

𝑭𝑖𝑑 = 𝑬𝑖𝑑 (𝑰𝑅) (1)

𝑭 𝑖𝐶 = 𝑬𝜙 (𝑰 𝑖𝐶 ) (2)

𝑭𝑚 =𝑾𝒎𝑴 + 𝒃𝑚, (3)

where 𝑰 𝑖
𝐶
denotes the 𝑖-th frame image of the cover video. 𝑭 𝑖

𝐶
∈

R𝐶×𝐻×𝑊 represents the latent feature representation of 𝑖-th frame
image. 𝑭𝑖𝑑 ∈ R1×512 denotes the identity feature matrix of the
reference image. 𝑴 ∈ R1×𝑚 is the secret messages.𝑾𝒎 ∈ R𝑚×512

and 𝒃𝑚 ∈ R1×512 denotes the learnable weights and biases.

3.3 Secret Message Embedding and Extraction
Module

The purpose of the secret message embedding module is to embed
the secret message during the face swapping scenario. The key
problem is how to implement face swapping under the guidance of
secret messages. To the best of our knowledge, the latent features
of cover video contain the identity feature and attribute feature.
The essence of face swapping is that the identity of cover video is
replaced with that of reference image. As a result, we embed the
secret messages into the identity feature of reference image, which

is formulated as follows,

𝑭 ′
𝑖𝑑

= 𝑭𝑖𝑑 + 𝜆 · 𝑭𝑚, (4)

where 𝜆 is a hyper-parameter adjusting the influence of secret
message on identity feature.

Since the identity and attribute features are highly coupled so
we cannot directly extract attribute feature from the latent feature
representation 𝑭 𝑖𝑐 extracted by 𝑬𝜙 . To better preserve the attributes,
we design a Secret-ID block that consists of the modified version of
the residual block [16] and the adaptive instance normalization [20]
to inject 𝑭

′

𝑖𝑑
into 𝑭 𝑖𝑐 . The Secret-ID block is formulated as follows,

𝑨𝒅𝒂𝑰𝑵 (𝑭 𝑖𝐶 , 𝑭
′
𝑖𝑑
) = 𝜎𝑭 ′

𝑖𝑑

𝑭 𝑖
𝐶
− 𝜇 (𝑭 𝑖

𝐶
)

𝜎 (𝑭 𝑖
𝐶
)

+ 𝜇𝑭 ′
𝑖𝑑
, (5)

where 𝜇 (𝑭 𝑖
𝐶
) and 𝜎 (𝑭 𝑖

𝐶
) represent the channel-wise mean and stan-

dard deviation of the input feature 𝑭 𝑖
𝐶
, respectively. Meanwhile,

𝜎𝑭 ′
𝑖𝑑

and 𝜇𝑭 ′
𝑖𝑑

correspond to two variables derived from the secret-
identity feature 𝑭 ′

𝑖𝑑
.

After N Secret-ID blocks, the identity feature in 𝑭 𝑖𝑐 is replaced by
𝑭 ′
𝑖𝑑

and then we get 𝑭 𝑖
𝑆
. Subsequently, we use an video decoder 𝑫𝜙

to recover the 𝑖-th frame 𝑰 𝑖
𝑆
of the stego video from 𝑭 𝑖

𝑆
. The decoder

𝑫𝜙 contains four upsample blocks, a ReflectionPad layer and a
convolutional layer. Each upsample block consists of a upsample
layer, a convolutional layer and a BatchNorm layer. The process to
get 𝑰 𝑖

𝑆
can be expressed as 𝑰 𝑖

𝑆
= 𝑫𝜙 (𝑭 𝑖𝑆 ).

We design an extraction module to extract secret messages from
the generated stego videos. The module contains seven convo-
lutional layers with ReLU activation function. Finally, a sigmoid
activation function and a binarization are added then the embedded

3
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Figure 3: Exampled Generated Stego Video Frames. Left: Vggface2. Right: FFHQ.

secret messages is extracted. The secret message extraction module
can be formulated as follows,

𝑴 ′ = 𝑬𝑒𝑥𝑡 (𝑽𝑆 ) , (6)

where 𝑴 ′ is the extracted secret messages. 𝑬𝑒𝑥𝑡 (·) denotes the
secret message extraction module. 𝑽𝑆 is the stego video.

3.4 Attacking Layer
To bolster the robustness of our method for the stego videos in
real-world scenarios, we design an attacking layer. This module
simulates prevalent distortions encountered across social network
platforms, including but not limited to compression artifacts, noise
interference. By subjecting the stego videos to these common dis-
tortions, our approach are more resilient to the challenges posed by
real-world transmission environments. This proactive approach en-
sures the embedded secret message remains intact and retrievable
even in the presence of various forms of degradation.
JPEG compression. JPEG compression is a common image com-
pression method used in the process of photo storage. However, the
quantization step is a non-differentiable because of the rounding
process. To address this issue, we adopt the approach introduced by
Shin et al. [32] for approximating the quantization step near zero
with the function Eq. (7):

𝒒(𝒙) =

{
𝒙3, |𝒙 | < 0.5
𝒙, |𝒙 | ≥ 0.5 , (7)

where 𝑥 denotes a specific pixel of the input image. We uniformly
sample the JPEG quality from within the range of [50, 100].
Color distortions. We consider two general color distortions:
brightness and contrast distortions that are generally brought by
transmission on the Internet and the artificial processing on videos.

For the two distortions, we can perform a linear transformation on
the pixels of each channel as the formula Eq. (8).

𝒑(𝒙) = 𝑎 × 𝒇 (𝒙) + 𝑐, (8)

where 𝒑(𝒙) refers to the distorted and 𝒇 (𝒙) refers to the origi-
nal image. 𝒂 and 𝒄 are hyper-parameters to control contrast and
brightness, respectively.
Blur. Blur is a common distortion yielded by the video processing
software and the transmission on social network platforms. To
simulate blur, we randomly select an angle and generate a linear
blur kernel with a width ranging from 3 to 7 pixels.
Saturation.We perform random linear interpolation between RGB
image and its grayscale equivalent to simulate the distortion.
Noise.We use Gaussian noise to simulate any other distortions that
are not considered in the distortion module. We employ a Gaussian
noise model (sampling the standard deviation 𝛿 ∼ 𝑈 [0, 0.2]) to
simulate imaging noise.

3.5 Loss Function
The proposed method not only ensures the quality of generated
stego videos, but also guarantees the accurate extraction of secret
messages. Therefore, we leverage four loss functions and a penalty
to train the proposed modules, containing identity loss, attribute
loss, adversarial loss, secret loss, and gradient penalty.
Identity Loss. The Identity Loss aims to constrain the difference
between the identity feature (𝑭𝑖𝑑 ) of reference image and the iden-
tity feature (𝑭 𝑖

𝑖𝑑
) of the 𝑖-th frame image in generated stego video.

This constraint minimizes the identity modification introduced by
the secret messages, consequently enhancing the quality of the
generated stego video. In this part, we leverage cosine similarity to

4
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calculate the difference, which is expressed by the formula Eq. (9).

Lid = 1 −
𝑭𝑖𝑑 × 𝑭 𝑖

𝑖𝑑

| |𝑭𝑖𝑑 | |2 | |𝑭 𝑖𝑖𝑑 | |2
, (9)

Attribute Loss. We use the weak feature matching loss [7] to
constrain attribute difference before and after embedding secret
messages. This loss utilizes the Discriminator [34] to extract multi-
ple layers of features from the ground truth image and the generated
result. The loss function is defined as Eq. (10).

L𝑎𝑡𝑡 =

𝐻∑︁
𝑗=ℎ

1
𝑁 𝑗

| |𝐷 𝑗 (𝑰 𝑖𝑆 ) − 𝐷 𝑗 (𝑰 𝑖𝐶 ) | |1, (10)

where 𝑫 𝑗 represents the feature extractor of Discriminator D for
the j-th layer, 𝑁 𝑗 signifies the number of elements within the j-
th layer, and 𝐻 denotes the total number of layers. 𝑰 𝑖

𝑆
stands for

the 𝑖-th frame of the generated stgeo video 𝑽𝑆 , while 𝑰 𝑖𝐶 refers to
the corresponding ground truth image. Additionally, ℎ denotes the
layer from which we initiate the computation of the weak feature
matching loss.
Adversarial Loss and Gradient Penalty. In the proposed method,
to enhance the quality of the generated stego videos, we utilize a
discriminator [34] during the training process. We adopt the Hinge
version [3, 25, 28] of the adversarial loss defined as Eq. (11):

L𝑎𝑑𝑣 = 𝑬𝑥 [−𝑙𝑜𝑔𝑫 (𝑥)] + 𝑬𝑧 [𝑙𝑜𝑔(1 − 𝑫 (𝑧)], (11)
where 𝑫 denotes the Discriminator, 𝑥 and 𝑧 in our method is re-
spectively 𝑰𝑅 and 𝑰 𝑖

𝑆
Furthermore, we incorporate the Gradient Penalty term [2, 15]

to effectively counteract the risk of gradient explosion within the
Discriminator. The Gradient Penalty is in Eq. (12).

L𝐺𝑃 = 𝑬𝑧 [( | | ▽𝑧 𝑫 (𝑧) | |2 − 1)2], (12)
where 𝑧 is the 𝑖-th frame 𝑰 𝑖

𝑆
of the stego video.

Secret Loss.The process of secretmessage extraction can be framed
as a binary classification problem. To address this, we employ the
Binary Cross-Entropy loss (BCE), which is articulated in Eq. (13). In
this equation, 𝑥 represents the ground truth secret, while 𝑥 denotes
the extracted secret.

Lbce (𝑥, 𝑥) = 𝑥 log (𝑥) + (1 − 𝑥) log (1 − 𝑥) , (13)

Lastly, we employ the secret loss to effectively regulate the pro-
cess of secret message extraction. This loss function is defined by
Eq. (14).

Lsec = Lbce (𝑴,𝑴
′

) (14)
Total loss. The total loss of our method is defined as follows,

L = 𝛼1Lid + 𝛼2Latt + 𝛼3Lsec + Ladv + 𝛼4LGP (15)

where 𝛼1 = 10, 𝛼2 = 10, 𝛼3 = 15, and 𝛼4 = 10−5.

4 EXPERIMENTS AND DISCUSSIONS
4.1 Experimental Setups
Datasets. We use Vggface2 [4] for training and FFHQ [21] for
validation. We crop and resize facial areas to a fixed 224 × 224
resolution for input images. To analyze quality and performance,

we randomly select 100 videos from DeepFake MNIST+ [19] to
evaluate the performance.
Implementation Details. We train the model to encode a binary
message of length𝑚 = 9 or 18 bits in a frame. During training, we
employ Adam optimizer with a learning rate of 4×10−4 and a batch
size of 4. The parameters𝐶 ,𝑊 ,𝐻 in 𝑭 𝑖

𝐶
are𝐶 = 512,𝑊 = 28, 𝐻 = 28.

The networks train for 1 million steps. After 800k steps, we intro-
duce all attack types proposed by the Attacking Layer. The purpose
of this approach is to ensure both the visual quality and robustness
of the generated stego videos. We use an NVIDIA GeForce RTX
3090 GPU for our experiments. To mitigate such phenomena, we
incorporate the concept of adversarial training [8, 21, 25], employ-
ing the Discriminator to discern outcomes with noticeable errors.
We adopt the patchGAN [39] version of the Discriminator.
Evaluation Metrics.We employ Bits Per Frame (BPF), quantifying
the bits number of secret message per frame in the stego video. To
assess robustness, we evaluate secret message extraction accuracy
under various scenarios. For security assessment, we use three
steganalysis methods [23, 31, 42] to demonstrate our method’s anti-
detection capability.
Baselines. To ensure fair comparison, we align HiDDeN and LSB
to this capacity. For the HiDDeN method, we use its own noise
layer, in which we employ two types of noise: JPEG compression
and resize (0.7-0.8). During the training phase, we embed 18 bits
secret messages into per image to train the final model. This method
allows each pixel to conceal up to 3 bits of data. For the LSB method,
we exclusively modifies the least significant bits of the initial six
pixels across the three channels. Consequently, our capacity equates
to 18 bits for each frame within each test video. In addition, we
embed secret message according to PWRN’s paper [22]. Due to its
PU based design, the capacity of PWRN is limited to 15BPF when
adjusting the size of the input image to 224 × 224.

4.2 Performance Analysis
We compare the performance of our RoGVSN with image-level
steganography including HiDDeN [45] and LSB [6] and video-level
steganography including PWRN [22].
Video Quality Assessment. Fig. 3 shows qualitative results on the
integrity of generated stego video frames. We perform tests within
and across datasets, each containing 16 test samples. The left set of
16 samples are test images from the within VGGFace2 dataset, while
the right set of 16 samples are cross-dataset test images from the
FFHQ dataset. The generated faces effectively change individual
identities while retaining attributes like expressions and poses.
Fig. 4 illustrates the visual effects of certain intermittent frames
within the stego videos. Fig. 4 shows that our method achieves
visual editing by embedding secret message while injecting the
identity information of the reference images into the cover videos.
Furthermore, the results of the stego video frames on the right three
columns exhibit excellent visual quality.

We also employ ID Similarity and VMAF two metrics to quanti-
tatively assess the quality of stego videos produced by our model.
Qualitative and quantitative analysis results in Table 3. The ID
Similarity gauges the resemblance of identity feature between the
generated stego video and the reference facial image. This entails
calculating the cosine value between the two identity features. A
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Table 1: Comparison Results on Extraction Accuracy. “-" means “Without Distortion". (·) represents Bits Per Frame (BPF). Under
different distortion scenarios, our method demonstrates superior performance in comparison.

Method - PNG Resize (0.5) Bit Error Brightness Contrast H.264 ABR H.264 CRF Motion Blur Rain Saturate Shot Noise
HiDDeN [45] 0.9633 0.8342 0.6516 0.7543 0.7939 0.7813 0.7901 0.7813 0.7635 0.7624 0.7927 0.6310

LSB [6] 1.0000 0.4988 0.4932 0.4533 0.4685 0.4985 0.4921 0.4932 0.4935 0.5085 0.4885 0.5012
PWRN [22] 1.0000 0.8473 0.6392 0.8082 0.7959 0.4470 0.7430 0.7907 0.6004 0.7255 0.7743 0.8291
Ours (9) 0.9737 0.9650 0.8510 0.9393 0.9409 0.8959 0.8792 0.9566 0.9414 0.9374 0.9521 0.9059
Ours (18) 0.9942 0.9665 0.9486 0.9565 0.9605 0.9544 0.9634 0.9642 0.9587 0.9623 0.9612 0.9588

Table 2: Comparison Results on Extraction Accuracy at Severity Level 2. The symbol “-" means “Without Distortion". Under
different distortion scenarios, ours method demonstrates superior performance.

Method - PNG Resize (0.5) Bit Error Brightness Contrast H.264 ABR H.264 CRF Motion Blur Rain Saturate Shot Noise
Hidden [45] 0.9633 0.8342 0.6516 0.7768 0.7945 0.7224 0.7662 0.7885 0.7662 0.7652 0.7661 0.6298
LSB [6] 1.0000 0.4988 0.4932 0.4976 0.4892 0.5011 0.5001 0.4897 0.4971 0.5014 0.4978 0.5010

PWRN [22] 1.0000 0.8473 0.6392 0.8113 0.8246 0.3619 0.7528 0.7395 0.5877 0.7980 0.7733 0.8678
Ours (9) 0.9737 0.9650 0.8510 0.9100 0.9283 0.8507 0.7884 0.8823 0.8992 0.9380 0.9582 0.8607
Ours (18) 0.9908 0.9648 0.9175 0.9038 0.8426 0.8845 0.8595 0.9207 0.8783 0.9410 0.9450 0.8805

Table 3: Quantitative Stego Video Quality Analysis. Evalu-
ation Metrics: ID Similarity and VMAF. The higher value
indicates higher performance. (·) represents Bits Per Frame.

Our method ID Similarity VMAF
RoGVSN(9) 0.8030 90.13
RoGVSN(18) 0.8015 90.11

higher cosine value indicates greater identity similarity and im-
proved face-swapping effects. The VMAF primarily utilizes three
indicators: visual quality fidelity (VIF), detail loss measure (DLM),
and temporal information (TI). VIF and DLM pertain to spatial
features within a single frame, while TI deals with temporal corre-
lations across multiple frames. VMAF values range from 0 to 100,
with higher values denoting superior quality of the stego video.
The reference videos are pure face-swapping videos without secret.
Comparisons on Extraction Accuracy & Robustness. We con-
duct comprehensive experiments involving various types of lossy
operations. The distortions employed in our evaluation, depicted
in Fig. 5, encompass shot noise, motion blur, contrast adjustments,
brightness modifications, saturation alterations, and the application
of weather filters. Besides, in practical scenarios, video compression
techniques are widely utilized in mobile applications to achieve
seamless real-time playback. Hence, we also test the performance
under two video compression operations: ABR (Average Bit Rate)
compression and CRF (Constant Rate Factor) compression for the
H.264 format. Each distortion except Resize has two severity levels,
with each level corresponding to distinct parameters within the
actual function. Higher severity level indicates more pronounced
distortion effect. Table 6 presents the parameter details of the im-
plementation. The parameter in the second column provides ex-
planations for distortion types and operations. The quantitative
comparison results in terms of accuracy are reported in Table 1

Frame1 of 
cover video 

Reference 
image

Frame1 Frame5 Frame10 
Visual-editing video 

Figure 4: Qualitative Analysis of Stego Videos. Reference
image provides identity feature as semantic feature. Column
2 represents frames within the cover videos. Frames on the
right side are from the generated visual-editing stego videos.

on severity level 1. Table 2 presents the experimental results of
extraction accuracy whe the severity level is 2. The results show
that our method can successfully extract secret message with high
accuracy even after severe distortions. LSB [6] struggles even with
PNG (quantization) and HiDDeN [45], though trained with a dis-
tortion module, can not generalize well to video-level distortions.
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Table 4: Ablation Study on Different Embedding Positions of Secret Message. Evaluation Metric: Accuracy

Method - PNG Resize (0.5) Bit Error Brightness Contrast H.264 ABR H.264 CRF Motion Blur Rain Saturate Shot Noise

Ours (a) 0.9908 0.9648 0.9175 0.9425 0.9393 0.9437 0.9436 0.9514 0.9407 0.9405 0.9556 0.9241

Ours (b) 0.9479 0.8750 0.7224 0.8405 0.8452 0.7902 0.7671 0.8584 0.8480 0.8380 0.8495 0.8202

Ours (c) 0.9430 0.9388 0.8563 0.8918 0.8968 0.8624 0.8448 0.8942 0.8615 0.8763 0.8848 0.8932

Ours (d) 0.9942 0.9665 0.9486 0.9565 0.9605 0.9544 0.9634 0.9642 0.9587 0.9623 0.9612 0.9588

Figure 5: Illustrative Instances of Different Distortion Oper-
ations. For each example, we extract three frames from the
corrupted video using uniform sampling, with a sampling
interval of three frames.

Table 5: Quantitative Security Analysis. Evaluation metric:
AUC. Closer to 0.5 indicates higher performance.

Detection method HiDDeN LSB PWRN ours
Zhai et al. [42] 0.5312 0.5423 0.5456 0.5245
Li et al. [23] 0.5416 0.5467 0.5411 0.5178

Sheng et al. [31] 0.5309 0.5189 0.5167 0.5146

PWRN [22] demonstrates robustness across numerous distortions,
yet its performance remains constrained under operations such as
motion blur or contrast adjustment. Our RoGVSN shows superior
robustness to these distortions while maintaining high extraction
accuracy.

Table 6: Implementation Details of Distortions. The values
under 1 and 2 respectively represents the parameters corre-
sponding to each distortion of Level 1 and Level 2.

Distortions Parameter Severity
1 2

Shot Noise Photons number 60 25
Rain (Density, Length) (65,10) (65,30)

Contrast Difference portion 0.5 0.4
Brightness Addition in HSV space 0.1 0.2
Saturate Manipulation in HSV space (0.3,0) (0.1,0)

Motion Blur Number of correlated frames 3 5
ABR Rate of bit rate 2 4
CRF Sane value 27 33

Bit Error Bit error ratio 1 / 100000 1 / 50000

Table 7: Deepfake Detection. Evaluation Metric: AUC.

Detection method No-embedding RoGVSN
CADDM [12] 0.8514 0.8403

AltFreezing [36] 0.9958 0.9923

Security Analysis. We use three video steganalysis tools to evalu-
ate the security of our method. Li et al. [23] utilize the recompressed
quantity change ratio of 25 kinds of Prediction Units (PUs) in the
P slices as the 25-dimensional feature. Sheng et al. [31] extract 6-
dimensional features from the rate of change in the number and
ratio of 4 × 4, 8 × 8, and 16 × 16 PUs following I-slice recompression.
Zhai et al. [42] propose to leverage low motion vector (MV) consis-
tency within overlay videos, which exhibits high detection accuracy
across multiple steganographic videos based on PU mode and MV.
After constructing the above features for video steganalysis, we
choose the support vector machines (SVMs) as the classifier. For
each steganalysis test, the detection accuracies are averaged over
20 iterations. The detection performance of these three steganalysis
schemes is presented in Table 5. It demonstrates that our method
exhibits the best security compared to the three counterparts.

We also employ two state-of-the-art deepfake detection methods
to assess the impact. The experimental evaluation is conducted
on a dataset consisting of 300 videos, comprising 100 real videos
and 100 fake videos with and without steganography embedding.
Specifically, “No-embedding" and “RoGVSN" separately denote the
cover videos and the stego videos. The results from the evaluation
are summarized in Table 7. The findings suggest that our proposed
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Figure 6: Visual quality. Ablation study for 𝜆 and discrimina-
tor. 𝜆 = 0.01 when without discriminator.

method has minimal impact on the performance of deepfake detec-
tion. This implies that even with the embedding of secret messages
using our method, the ability of deepfake detection algorithms to
distinguish between real and fake videos remains largely unaffected.

4.3 Ablation Study
Embedding Position of Secret Message. Within our genera-
tion network, consisting of 9 Secret-ID blocks, we aim to examine
varying positions for embedding the secret message. We partition
the secret message into two 9-bit segments and determine their
respective positions, as follows,

• Setting (a): 1st-4th blocks and 5th-9th blocks.
• Setting (b): 1st-2nd blocks and 3rd-4th blocks.
• Setting (c): 5th-6th blocks and 7th-8th blocks.
• Setting (RoGVSN): 1st-3rd blocks and 4th-6th blocks.

The detection performance across these four configurations is
presented in Table 4. Setting (b) and (c) exhibit a substantial reduc-
tion when compared to those of Setting (a) and Setting (RoGVSN),
implying that augmenting the quantity of injected secret informa-
tion blocks enhances performance. Moreover, Setting (c) surpasses
the performance of Setting (b), potentially due to the greater impact
of subsequent blocks on the final generated image.
Ablation on Attacking Layer. Fig. 7 compares the results under
two training scenarios: with and without distortion module. We
can observe that even without distortion module, our method still
possesses a certain degree of robustness, achieving extraction accu-
racies surpassing 0.86, which already exceeds the performance of
the three comparative methods. Upon the application of distortion,
the accuracy is on average improved by 6%.
Ablation Results on 𝜆 and the Discriminator. The balance be-
tween visual quality and extraction accuracy is controlled by the
hyperparameter 𝜆. Selecting an appropriate value for 𝜆 is crucial.We
conduct ablation experiments on 𝜆. Fig. 6 shows the visual quality
of stego videos and Table 8 shows the extraction accuracy of secret
message when 𝜆 is different. These results indicate that setting 𝜆
to 0.01 can achieve a satisfactory balance between visual quality
and extraction accuracy. We also conduct ablation experiments
on discriminator. Fig. 6 indicates the introduction of discriminator
significantly enhances visual quality of stego videos.

Table 8: The quantitative ablation study for 𝜆 on secret mes-
sage extraction accuracy.

𝜆 = 1.00 𝜆 = 0.1 𝜆 = 0.01 𝜆 = 0.005
Accuracy 0.8414 0.5885 0.8607 0.5160

0 1 2 3 4 5 6 7 8 9 10 11
Distortion Type

0.86
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Ablation on Distortion Module
With Distortion Module
Without Distortion Module

Figure 7: AblationResults onAttacking Layer. The horizontal
axis represents distortion types, corresponding to the order
listed in Table 1.

5 CONCLUSION AND DISCUSSION
In this paper, we propose a method for covert transmission in
online social network. Experimental results demonstrates our ap-
proach can generate high-quality stego videos and ensure accu-
rate extraction of secret message even when subjected to various
forms of distortions. The flexibility of model training makes it diffi-
cult for attackers to detect our secret message. Traditional video
steganography methods leverage redundancy in video data for hid-
ing. Although these methods have certain security and embedding
capabilities, they notably lack robustness. This deficiency makes
the hidden secret message susceptible to loss during compression
encoding and channel transmission. Our method based on visual
editing of videos can be seen as a process of modifying the seman-
tic feature of objects within the videos. Instead of hiding secret
messages in covert space, we embed them into the semantic feature
of the video during visual editing. Advanced semantic feature is
less susceptible to distortion, rendering this method inherently ro-
bust. Additionally, we introduce an attacking layer, which further
enhances the robustness of our method.

The RoGVSN is jointly trained with four modules, containing
information encoding module, secret message embedding model, at-
tacking layer, and secret message extraction module. Experimental
results of RoGVSN method applied to facial video datasets demon-
strate its superiority over existing video and image steganography
techniques in terms of both robustness and generalization capacity.
Ourwork is a preliminary exploration of the robust generative video
steganography. In the future, we will comprehensively investigate
the robustness of generative video steganography.
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