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ABSTRACT

Vision Language Models (VLMs) like CLIP have attracted substantial attention in
pathology, serving as backbones for applications such as zero-shot image classifi-
cation and Whole Slide Image (WSI) analysis. Additionally, they can function as
vision encoders when combined with large language models (LLMs) to support
broader capabilities. Current efforts to train pathology VLMs rely on pathology
image-text pairs from platforms like PubMed, YouTube, and Twitter, which provide
limited, unscalable data with generally suboptimal image quality. In this work,
we leverage large-scale WSI datasets like TCGA to extract numerous high-quality
image patches. We then train a large multimodal model (LMM) to generate cap-
tions for extracted images, creating PathGen-1.6M, a dataset containing 1.6 million
high-quality image-caption pairs. Our approach involves multiple agent models col-
laborating to extract representative WSI patches, generating and refining captions
to obtain high-quality image-text pairs. Extensive experiments show that integrat-
ing these generated pairs with existing datasets to train a pathology-specific CLIP
model, PathGen-CLIP, significantly enhances its ability to analyze pathological im-
ages, with substantial improvements across nine pathology-related zero-shot image
classification tasks and three whole-slide image tasks. Furthermore, we construct
200K instruction-tuning data based on PathGen-1.6M and integrate PathGen-CLIP
with the Vicuna LLM to create more powerful multimodal models through in-
struction tuning. Overall, we provide a scalable pathway for high-quality data
generation in pathology, paving the way for next-generation general pathology
models. Our dataset, code, and model are open-access at PathGen-1.6M.
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Figure 1: Illustration of the scale of the PathGen dataset (left), the performance of the proposed
PathGen-CLIP (middle), and the PathGen-LLaVA (right), both derived from training on PathGen.
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1 INTRODUCTION

Pathology plays a crucial role in modern medicine as it is the gold standard for disease diagnosis
and the selection of treatment methods (Kumar et al., 2014). With the rapid growth of artificial
intelligence, there is an increasing interest in developing robust general-purpose models to assist
physicians, particularly in pathology. Pathology-specific CLIP models have demonstrated exceptional
performance in zero-shot image classification (Radford et al., 2021; Jia et al., 2021), multimodal
understanding (Liu et al., 2024; 2023; Bai et al., 2023; Li et al., 2022; 2023b; Dai et al., 2024),
robustness to various perturbations (Radford et al., 2021; Shu et al., 2023; Zhou et al., 2022), and
scalability across diverse tasks (Rombach et al., 2022; Lin et al., 2023b; Esmaeilpour et al., 2022).

However, training such models typically requires vast amounts of data. For instance, general CLIP
models are trained using massive amount of data from sources like WIT (Radford et al., 2021) and
LAION (Schuhmann et al., 2022a), at scales of millions or even billions. In pathology, researchers are
similarly focused on amassing large collections of pathology image-text pairs from various sources,
including academic articles from PubMed (Lin et al., 2023a; Ikezogwo et al., 2024; Sun et al., 2024b),
social media (Huang et al., 2023; Ikezogwo et al., 2024), and books (Gamper & Rajpoot, 2021).

Despite these efforts, the largest datasets do not exceed one million samples, which is significantly
smaller compared to the scale of natural image datasets. This underscores the challenges in the
availability and scalability of pathology-related datasets. Key limitations include: (1) The available
pool of image-text pairs from the internet and books are quickly exhausted, hindering scalability.
(2) Many collected images suffer from significant quality loss during the acquisition process. For
example, images from PubMed articles often undergo compression, while educational content from
platforms like YouTube typically consists of screenshots at 1080p resolution, further degraded by
video compression, making them incomparable to the high-resolution images used in practical
scenarios. (3) Unpaired image-text pairs frequently appear on social media, where users may post
pathological images with comments focusing on non-pathological features like aesthetic appeal.

Fortunately, The Cancer Genome Atlas (TCGA) is a comprehensive, publicly funded project that pro-
vides clinical data across various cancer types. This dataset includes numerous WSIs, high-resolution
scans from patient tissue samples. These WSIs inherently contain an immense amount of detailed
information—such as cellular structures, tissue organization, and morphological patterns—crucial for
cancer diagnosis and research. However, these datasets typically only provide labels at the slide level,
leaving patches within WSIs without detailed textual annotations. This lack of specific annotations
hinders models from learning rich semantic information from such high-quality image data.

In this study, we aim to harness high-quality images from WSIs to construct a large-scale image-text
dataset. We develop a cascaded approach involving multiple agent models that collaborate to extract
the most representative patches from WSIs and generate captions describing the visual details within
each patch. This process enables us to compile a dataset of 1.6 million image-caption pairs, designed
to train and enhance pathology-specific multimodal models. Our main contributions are as follows:
(1) We propose PathGen-1.6M, which is currently the largest and highest-quality pathology image-
text dataset, as depicted in Figure 1. (2) The construction approach of PathGen-1.6M offers a scalable
solution to expand the currently limited pool of pathology image-text pairs, addressing a critical need
in the field. (3) Experiments confirm that PathGen-1.6M can significantly boost the performance
of existing multimodal models like CLIP and LLaVA in the pathology domain, while scaling up
PathGen presents a promising potential as a future pretraining strategy for pathology models.

2 RELATED WORK

Existing Vision-language Datasets. Training vision-language models like CLIP (Radford et al.,
2021) requires large and high-quality image-text pairs to capture the richness of visual and semantic in-
formation. In the general domain, notable datasets have been constructed such as LAION-5B (Schuh-
mann et al., 2022a)and WIT-400M (Radford et al., 2021). In pathology, ARCH (Gamper & Rajpoot,
2021) and PathCap (Sun et al., 2024b) datasets are collected from PubMed and medical textbooks,
containing 11,816 and 207,000 pathology image-caption pairs, respectively. The OpenPath (Huang
et al., 2023) dataset includes 208,414 pairs from Twitter posts, while the Quilt-1M (Ikezogwo et al.,
2024) dataset gather 768,826 histopathology image-text pairs from video frames and corresponding
subtitles on YouTube. These datasets are primarily gathered from social media platforms and text-

2



Published as a conference paper at ICLR 2025

books. Although fine-tuning CLIP on these specialized pathology datasets significantly enhances its
adaptation to pathology tasks, challenges such as low image quality, image-text misalignment, and
poor data scalability continue to hinder the further development of pathology-specific CLIP models.

Pathology-specific CLIP Models. CLIP (Radford et al., 2021) is a powerful model that learns visual
concepts through natural language supervision. In general domains, it demonstrates remarkable
capabilities in zero-shot classification, image retrieval, and multimodal understanding by training
vast image-caption datasets. This approach leverages language’s semantic richness to enhance
visual recognition, making it adaptable across various applications without task-specific training.
In pathology domain, CLIP’s potential is being increasingly recognized as a solution to major
challenges, such as the scarcity of labeled data and the requirement for domain-specific expertise.
By leveraging natural language descriptions, CLIP facilitates the identification and classification of
intricate features that traditionally pose significant challenges for manual annotation. Recently, there
has been a notable increase in pathology CLIP variants, including PubMedCLIP (Eslami et al., 2023),
BiomedCLIP (Zhang et al., 2023a), PMC-CLIP (Lin et al., 2023a), Quilt-Net (Ikezogwo et al., 2024),
PathCLIP (Sun et al., 2024b), PLIP (Huang et al., 2023), and CONCH (Lu et al., 2024).

Large Multimodal Model (LMM). The integration of large language models (LLMs) like GPT-
3 (Brown et al., 2020), T5 (Raffel et al., 2020), and GPT-4 (OpenAI, 2023a) with vision capabilities
has spurred the development of sophisticated multimodal models (LMMs). These LMMs, such as
Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al., 2023b), and Fuyu (Bavishi et al., 2023), excel
in multimodal understanding by utilizing pretraining techniques. Additionally, instruction-tuning,
derived from NLP, has been adapted for LMMs, enabling them to generate more controllable and
task-specific outputs through datasets like those used in GPT-4V (OpenAI, 2023b), Gemini Pro
Vision (Team et al., 2023), Qwen-VL (Bai et al., 2023), and InstructBLIP (Dai et al., 2023). The
application of LMMs in pathology is particularly promising. Models such as PathAsst (Sun et al.,
2024b), LLaVA-Med (Li et al., 2023a), Quilt-LLaVA (Seyfioglu et al., 2023) have been developed
using curated pathology-specific instruction-tuning datasets sourced from resources like PubMed
and educational YouTube videos. These advancements facilitate effective analysis and the generation
of descriptive texts for pathological images. Consequently, we leverage this capability to generate
corresponding descriptions for image patches within WSIs. By creating high-quality image-text pairs,
we aim to enhance the foundational vision-language models in pathology.

Multi-Agent Collaboration. With the advancement of large models (LMs) and the development of
specialized models for various tasks, recent research has explored the use of multi-agent collaboration.
This approach allows these models to work together, achieving tasks that are beyond the capabilities
of any single model alone. For instance, leveraging LLMs for role-playing can be used to accomplish
tasks such as software development (Hong et al., 2023; Qian et al., 2023), societal simulation (Park
et al., 2023; 2022), policy simulation (Xiao et al., 2023; Hua et al., 2023), game simulation (Xu et al.,
2023; Wang et al., 2023b) and video generation (Yuan et al., 2024).

3 PATHGEN DATASET CONSTRUCTION

The entire data construction pipeline is illustrated in Figure 2. We employ multiple agents working
collaboratively to generate high-quality pathology image-text pairs. This process involves extracting
representative WSI image patches through CLIP-based image retrieval and clustering. These patches
are then described by a trained pathology LMM agent, followed by another LMM agent and an LLM
agent that revises and summarizes the descriptions. In this section, we detail the construction of the
agent model and explain their collaborative workflow in the data generation process.

3.1 AGENT MODEL PREPARATION

PathGen-CLIP-Linit: General models like OpenAI’s CLIP underperform in the pathology domain,
necessitating a specialized model for tasks such as cross-modal retrieval we employ in section 3.2.
For this purpose, we combine portions of existing datasets, including PathCap (200K), as well as
cleaned versions of Quilt-1M (400K) and OpenPath (100K), where misaligned image-caption pairs
are removed from the latter two datasets, resulting in a total of 700K samples. We refer to this dataset
as PathGeninit. Utilizing the OpenCLIP framework (Ilharco et al., 2021), we train a CLIP-L version
of the pathology-specific CLIP model with a 336 input image size, designated as PathGen-CLIP-Linit.
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Figure 2: Illustration of the multi-agent collaboration pipeline for generating pathology image-text
pairs. This process comprises two main components: (1) Representative Patches Extraction, which
utilizes prompt-based cross-modal retrieval and clustering; and (2) Description Generation, where
multiple LMM and LLM agents are employed to generate, revise, and summarize descriptions.

Description LMM Agent: To generate high-quality pathology image-text pairs, we require a
pathology-specific LMM capable of producing accurate and detailed image captions. Existing image-
caption pairs are often too simplistic to comprehensively describe these details, hindering the training
of more effective description generation models. Inspired by the PathMMU benchmark (Sun et al.,
2024a), we sample 30,000 image-caption pairs, with 10,000 pairs each from PathCap, OpenPath,
and Quilt-1M. We provide each image along with its corresponding caption to GPT-4V, allowing the
model to enhance and refine the original captions by incorporating details observed in the images.
This approach enables us to generate 30,000 detailed image descriptions. We build upon LLaVA-v1.5-
13B (Liu et al., 2024) by replacing its OpenAI-CLIP vision encoder with our PathGen-CLIP-Linit.
We then trained this modified architecture on our curated pathology image-descriptions pairs to create
PathGen-LLaVAdesp, our pathology-specific description LMM agent. We compare the pathology
image description generation capabilities of PathGen-LLaVAdesp with those of LLaVA-Med (Li et al.,
2023a) and Quilt-LLaVA (Seyfioglu et al., 2023) in Appendix B.1.

Revise LMM Agent: The Revise Agent is a pathology LMM built on the LLaVA-v1.5-13B frame-
work (Liu et al., 2024), designed with error-correction capabilities. While existing pathology LMMs
are trained only for limited tasks, such as multiple-choice questions, dialogue, and description, they
lack the capabilities to perform self-correction. To achieve this, we leverage descriptions generated
by the description LMM Agent and prompt GPT-4 to systematically introduce controlled inaccuracies
through three defined operations: add, delete, or edit. By reversing these operations—adding becomes
deleting, deleting becomes adding, and edits are inverted—enables us to create a multimodal caption
editing dataset of (image, caption, editing operation) triplets. These derived operations, pre- and
post-modification descriptions, and corresponding images are then employed to train the Revise
LMM Agent, thus equipping it with robust multimodal error-correction capabilities.

Summarize Agent: Due to the CLIP model’s limitation of accepting only 77 tokens as input, the
data generated by PathGen-LLaVAdesp often exceeds this length. To address this, we prompt GPT-4
to generate instruction-tuning data for summarizing these descriptions. We then fine-tune Llama-2 as
a summary agent to produce concise summaries for each generated description of WSI patches.

3.2 DETAILS OF DATA CONSTRUCTION PIPELINES

Source Data: We source approximately 7,500 WSIs with paired reports from TCGA. Since these
reports often contain information unrelated to WSIs, such as gross findings and measurements.
Inspired by HistGen (Guo et al., 2024), we prompt GPT-4 to extract only observable morphological
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Table 1: Human evaluation of image captions from PathGen-1.6M and OpenPath. The accuracy
represents the proportion of correct findings in each caption on average.

PathGen-1.6M OpenPath

Pathologist ID Number of
Captions

Total
Findings

Findings per
Caption

Correct
Findings

Incorrect
Findings Accuracy Number of

Captions
Total

Findings
Findings per

Caption
Correct

Findings
Incorrect
Findings Accuracy

Pathologist A 200 1,059 5.30 956 103 90.3% 200 412 2.06 319 93 77.4%
Pathologist B 200 1,059 5.30 937 122 88.5% 200 412 2.06 312 100 75.7%

and diagnostic features in reports. As some reports contain substantial information and may exceed
the 77-token input limit for models like CLIP, we design GPT-4 prompts (Figure 18) to split longer
reports into 2-3 concise sentences, while preserving critical information. With these WSIs and
cleaned reports, we develop a five-step meticulous pipeline, as shown in Figure 2, spanning from
representative patch extraction to description generation, to produce high-quality image-text pairs.

Step 1: Representative Patch Extraction: This step identifies representative patches from WSIs
using prompt-based retrieval and k-means clustering. Prompt-based retrieval focuses on diagnostically
relevant patches using WSI reports and predefined prompts, while k-means clustering ensures feature
diversity by capturing distinct morphological patterns. Prompt-based retrieval uses PathGen-CLIPinit-
L to identify relevant patches through two prompt types: (1) previously cleaned WSI reports, formatted
as 1-3 concise paragraphs, as prompts. (2) GPT-4 generated prompts based on the WSI’s tissue origin
(e.g., lung, colon), describing potential attributes like enlarged nuclei or lymphocyte infiltration. For
both report-based and attribute-based prompts, we identify the top 64 relevant patches in each WSI,
resulting in 128 patches in total. Detailed GPT-4 prompts are provided in Appendix C.2. (2) K-means
clustering: Since the prompt-based retrieval primarily focuses on patches with a higher degree of
pathological changes, it may overlook patches with other morphological variations. To address this,
we use PathGen-CLIP-Linit to extract features from WSI patches and apply k-means clustering
on these features. Each cluster represents patches with distinct morphological characteristics. The
number of clusters is determined by the square root of the total number of patches, as larger WSI
typically contains more distinct morphological features. We sample 256 patches from each WSI
using clustering, ensuring uniform sampling within each cluster across the WSI to guarantee a more
diverse selection of samples. Finally, we combine the extracted patches from prompt-based retrieval
and clustering, resulting in a total of 384 representative patches sampled from each WSI.

Step2: Similar Patch Filtering: Since the representative samples may still contain highly similar
patches, which may impede the subsequent training in CLIP contrastive learning. We utilize PathGen-
CLIPinit to compute patch similarities and exclude redundant patches within each WSI. Using a
similarity threshold of 0.88, we employ a probabilistic filtering approach where patches exceeding
this threshold are removed with a probability proportional to their similarity score.

Step3: Description Generation: We utilize the trained PathGen-LLaVAdesp model with the prompt:
“This is a histopathology image from source, describe this image in detail,” where source indicates
the origin of the WSI (e.g., lung, colon). This approach generates detailed descriptions for all
representative patches extracted from the WSIs, thereby creating initial image-description pairs.

Step4: Description Revision: To mitigate potential errors and hallucinations in LMM-generated
descriptions, we implement a trained revision agent that reviews image-description pairs and refines
the description through additions, modifications, or removals, while preserving descriptions that are
already accurate. This step ensures the overall quality of descriptions.

Step5: Description Summarization: Since the descriptions generated by PathGen-LLaVAdesp are
usually lengthy and often exceed the CLIP 77-token limit, we use a summarization agent to extract
the key information from these descriptions, ensuring that no essential details are lost.

Through these steps, we generate a total of 1.6 million high-quality image-text pairs from 7,500
WSIs, sourced from 27 different tissue types. These diverse pathology image-text pairs are utilized
for the contrastive learning pre-training of the CLIP model. This effort aims to develop a more robust
pathology-specific CLIP model, which enhances support for downstream pathology tasks.

3.3 EXPERT EVALUATION OF CAPTION QUALITY IN PATHGEN-1.6M

To validate the accuracy of our model’s captions, we conduct evaluations by randomly selecting
200 generated captions and breaking them down into individual pathological findings. Two expert
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Table 2: Comparison of different CLIP models on zero-shot pathology image classification datasets
with accuracy (%). The top performance is highlighted in bold, with the second-best underlined.

Model LC-Lung LC-Colon CRC100K SkinCancer Pcam BACH Osteo WSSSLUAD SICAPv2 Average
OpenAI-CLIP 33.1 75.7 26.2 9.6 53.9 21.7 46.9 64.6 32.8 40.6

OpenAI-CLIP-L 70.4 81.1 40.3 19.4 55.5 34.3 53.9 81.2 25.4 51.3
PLIP 87.9 90.2 52.8 42.5 51.8 34.3 52.9 73.1 42.5 58.6

PubmedCLIP 33.3 80.5 31.5 11.3 65.4 34.8 30.0 65.4 7.0 39.8
PMC-CLIP 33.3 51.9 8.7 11.4 53.8 21.3 29.2 65.2 31.5 34.0

QuiltNet 80.0 91.0 49.5 46.4 58.7 43.8 53.8 70.5 37.3 58.9
PathCLIP 88.9 94.3 55.3 35.1 72.5 46.8 69.2 85.1 48.3 66.2
CONCH 74.7 97.9 59.4 63.2 78.7 58.3 73.5 79.8 33.0 68.7

BiomedCLIP 48.8 94.3 29.9 31.7 84.0 39.8 36.7 73.7 32.2 52.9
PathGen-CLIP 90.0 97.5 63.3 65.6 89.2 59.5 73.5 82.9 50.3 74.3

PathGen-CLIP-L 89.8 99.3 78.0 70.6 88.2 71.5 74.6 82.2 63.5 79.7

physicians assess each finding, with Pathologist A and Pathologist B assigning average accuracy
ratings of 90.3% and 88.5% per caption, respectively. For comparison, we evaluate image-caption
pairs from online platforms like Twitter, which demonstrate less than 80% accuracy in human
assessments. Moreover, the number of findings per caption is significantly lower, as Twitter captions
tend to be brief, less detailed, and often include irrelevant features such as aesthetic aspects rather
than directly corresponding to the image. Consequently, the overall quality of PathGen-1.6M is
substantially higher than that of existing datasets.

4 EXPERIMENTS

In this section, we describe the training process of PathGen-LLaVAdesp and PathGen-CLIP utilizing
our generated dataset. We then evaluate PathGen-CLIP’s effectiveness through various downstream
pathology tasks, comparing its performance against state-of-the-art baseline models. These evalua-
tions encompass zero-shot image classification, few-shot image classification, and whole slide image
classification. Finally, we demonstrate that by integrating the PathGen-CLIP vision encoder with
LLMs and leveraging our dataset, we achieve superior performance in pathology-specific LMMs.

4.1 IMPLEMENT DETAILS OF MODEL TRAINING PROCESS

PathGen-LLaVAdesp: PathGen-LLaVAdesp adopts LLaVA’s model structure and training ap-
proaches, divided into two stages. Initially, we align PathGen-CLIP-Linit with Vicuna LLM using
image-text pairs from PathGeninit, facilitated by a fully connected (FC) layer. Subsequently, we fine-
tune both the FC layer and the Vicuna component using pre-generated detailed image descriptions.
This process equips PathGen-LLaVAdesp with the capability to generate image descriptions.

PathGen-CLIP: The data generated using PathGen-LLaVAdesp predominantly features extensive
morphological descriptions. Additionally, the pretrained LLM component (Vicuna) has undergone
human value alignment, often avoiding direct diagnostic outputs and frequently recommending
consultation with a professional pathologist for definitive diagnoses. Therefore, we utilize PathGen-
1.6M for first-stage training to help the model learn key morphological and tissue structural features.
Subsequently, PathGeninit is employed in the second stage of training, which enhances the model’s
diagnostic comprehension capabilities while building upon the strong morphological understanding
established in first stage training. In the Appendix B.3, we conduct ablation studies to compare the
effects of merging PathGeninit and PathGen-1.6M for simultaneous training versus using PathGen-
1.6M for the first stage of training followed by PathGeninit in the second stage.

4.2 ZERO-SHOT IMAGE CLASSIFICATION

Due to the training of CLIP-based models on image-text pairs through contrastive learning, these
models achieve an intrinsic alignment between textual descriptions and visual content. This align-
ment facilitates zero-shot image classification, which is particularly effective in scenarios with no
annotations. To underscore the capabilities of the PathGen-CLIP series, we evaluate its zero-shot
image classification performance on nine pathology classification datasets, including PatchCamelyon
(Pcam) (Veeling et al., 2018), CRC-100K (Kather et al., 2018), SICAPv2 (Silva-Rodrı́guez et al.,
2020), BACH (Aresta et al., 2019), Osteo (Arunachalam et al., 2019), SkinCancer (Kriegsmann
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Figure 3: Comparison of few-shot classification accuracy (%) across different CLIP models on
various pathology image classification datasets, visualized with box plots.

et al., 2022), WSSSLUAD (Han et al., 2022), LC-Lung, and LC-Colon (Borkowski et al., 2019).
For each dataset, we design class-specific prompts, such as “an H&E image of class”, and calculate
the similarity between each class’s text prompt and the image. The class prompt with the highest
similarity score is assigned as the predicted label. We compare the performance of PathGen-CLIP
with eight previous CLIP models, including OpenAI-CLIP, OpenAI-CLIP-L, PLIP, PMC-CLIP,
PubMedCLIP, QuiltNet, PathCLIP, BiomedCLIP and CONCH.

Results: The PathGen-CLIP series significantly outperforms previous SOTA models in zero-
shot classification tasks, with PathGen-CLIP-L emerging as a particularly advanced model. As
demonstrated in Table 2, PathGen-CLIP exceeds QuiltNet by 30.5% on the Pcam dataset and by
19.2% on the SkinCancer dataset. On average performance across all datasets, PathGen-CLIP
also far surpasses the previously SOTA model, CONCH, by 6.4%. Moreover, our stronger variant,
the PathGen-CLIP-L model, exhibits exceptionally consistent performance across various datasets,
achieving remarkable results even in datasets where all other models perform poorly. For instance, on
the BACH dataset, PathGen-CLIP-L already surpasses previous models by a large margin (13.2%).
Similarly, it exceeds the average performance of PathGen-CLIP by 5.4%. The high performance
of both PathGen and PathGen-CLIP-L underscores the effectiveness of our PathGen-1.6M dataset,
offering potential for clinical utility in scenarios where no annotated data is available.

4.3 FEW-SHOT IMAGE CLASSIFICATION WITH LINEAR PROBING

Traditional image classification tasks generally require extensive labeled data to achieve high accuracy,
which is impractical in many real-world applications due to resource constraints, particularly in
the pathology domain. In this study, we explore the effectiveness of PathGen-CLIP in a few-shot
setting, where the model undergoes fine-tuning through linear probing on its pre-extracted feature
representations. We assess the model on four representative datasets: LC-Colon, Camelyon17,
LC-Lung, and WSSSLUAD, with fine-tuning performed using various training sizes (2, 8, 16, 32, 64
and 128 shots). Each training size is randomly sampled 10 times and conducts 10 runs. The results
are displayed in box plots to illustrate the model’s performance across different conditions.

Results: The PathGen-CLIP series achieves notable performance with minimal samples, making
the model viable in clinical settings with scarce annotations. As illustrated in Figure 3, with only
2 shots, PathGen-CLIP-L reaches close to 92% accuracy on the WSSSLUAD dataset, significantly
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Table 3: Performance of various CLIP models across three datasets, two MIL methods, and two
evaluation metrics. The top performance is highlighted in bold, with the second-best underlined.
Additionally, the last row in gray indicates the performance of current state-of-the-art vision-only
pre-trained pathology model.

Method
Performance CAMELYON-17 CAMELYON-16 BRACS Average

F1-score AUC F1-score AUC F1-score AUC F1-score AUC

A
B

M
IL

OpenAI-CLIP 23.5±4.6 60.7±3.3 62.8±3.5 61.4±2.7 46.8±0.5 78.5±0.7 44.4 66.9
OpenAI-CLIP-L 37.7±2.9 76.7±2.1 75.8±0.8 69.7±1.6 51.6±3.9 78.9±0.9 55.0 75.1
PLIP 45.6±5.0 82.8±1.1 86.6±1.4 90.0±2.7 51.7±2.0 78.5±0.4 61.3 83.8
Quilt-Net 44.3±2.0 84.2±1.0 82.9±1.6 87.1±2.2 54.7±3.0 82.3±1.6 60.6 84.5
BiomedCLIP 55.5±2.5 84.1±1.2 82.6±1.4 83.6±3.4 57.4±4.8 80.6±1.4 65.2 82.8
PathCLIP 45.2±3.3 82.6±1.9 80.2±1.5 85.0±1.5 56.4±3.2 83.8±0.8 60.6 83.8
CONCH 55.0±2.0 86.4±0.7 93.9±1.1 95.2±0.7 62.0±1.4 90.0±0.6 70.3 90.5
PathGen-CLIP (ours) 58.2±3.3 87.5±1.1 93.5±2.2 96.9±1.5 62.6±1.9 85.8±0.8 71.4 90.1
PathGen-CLIP-L (ours) 58.6±6.7 87.9±1.2 94.3±1.8 95.8±1.4 66.6±6.4 87.2±2.9 73.2 90.3
GigaPath-G 54.4±3.9 88.3±1.2 98.0±0.4 98.3±0.2 62.3±4.9 84.2±1.1 71.6 90.2

A
C

M
IL

OpenAI-CLIP 25.4±4.1 59.4±3.7 63.7±4.3 67.3±4.3 52.2±4.5 76.7±1.6 47.1 67.8
OpenAI-CLIP-L 34.9±4.5 78.5±3.0 78.7±3.7 73.4±3.4 55.5±3.6 78.8±2.0 56.4 76.9
PLIP 46.0±1.5 86.1±1.0 90.4±2.2 94.8±1.3 57.0±3.3 80.8±0.7 64.5 87.2
Quilt-Net 44.4±1.0 86.0±0.9 84.8±3.5 90.5±3.4 60.8±3.5 82.0±1.9 63.3 86.2
BiomedCLIP 53.6±4.0 83.6±1.3 82.9±2.0 84.8±3.3 63.2±2.0 81.9±0.8 66.6 83.4
PathCLIP 44.2±0.6 82.9±1.3 84.4±1.6 87.3±1.6 58.0±7.6 83.0±2.4 62.2 84.4
CONCH 56.3±3.6 87.5±0.9 94.4±1.0 97.2±0.5 66.1±1.6 88.7±0.8 72.7 91.1
PathGen-CLIP (ours) 53.3±4.6 89.4±1.2 92.6±1.6 97.2±0.9 66.9±3.0 87.0±0.4 71.0 91.2
PathGen-CLIP-L (ours) 58.4±5.2 92.0±0.7 94.5±1.0 97.4±1.9 66.9±5.0 88.4±1.4 73.3 92.6
GigaPath-G 55.9±3.4 89.8±1.4 95.7±1.2 99.2±0.4 61.0±4.5 83.6±1.1 70.9 90.9

outperforming competitors like PLIP, Quilt-NET, BiomedCLIP and CONCH which record accuracies
below 90%. Furthermore, as the number of shots increases, PathGen demonstrates faster performance
improvements and convergence compared to other models. Additionally, the narrower box plot widths
of the PathGen-CLIP model highlight its superior task adaptation capabilities and robustness.

4.4 WHOLE SLIDE IMAGE CLASSIFICATION

Whole slide image classification is essential for automating disease identification and classification
from high-resolution pathological slides by analyzing high-resolution pathological slide images,
which are typically larger than 100,000 × 100,000 pixels. This task is particularly valuable for
clinical practitioners as it boosts clinical accuracy and efficiency significantly. The standard approach
for WSI classification involves segmenting WSIs into image patches, extracting instance embeddings
using a frozen image encoder, and employing Multiple Instance Learning (MIL) to convert these
embeddings into slide-level predictions. Superior patch representations provided by the image
encoder are crucial, as they significantly influence WSI prediction performance. Therefore, we
assess the efficacy of the PathGen-CLIP series in comparison with other prominent models, including
OpenAI-CLIP, OpenAI-CLIP-L, PLIP, BiomedCLIP, PathCLIP, QuiltNet and CONCH. For the MIL
method, we utilize the widely adopted ABMIL (Ilse et al., 2018) and the current SOTA method,
ACMIL (Zhang et al., 2023b). Additionally, we involve the state-of-art vision-only encoder, GigaPath-
G (Xu et al., 2024), which is four times larger and trained on 800 times the amount of vision-only
private data for comparison. Our evaluations span three datasets: CAMELYON16 (Litjens et al.,
2018), CAMELYON17 (Litjens et al., 2018), and BRACS (Brancati et al., 2022), excluding any
TCGA-related datasets. For detailed experimental setup, please refer to the Appendix C.3.

Results: PathGen-CLIP series consistently outperform existing pathology-specific CLIP models
Across three key datasets leveraging both MIL methods. For instance, as shown in Table 3, the
PathGen-CLIP model, employing the ABMIL architecture, achieves a remarkable average AUC of
96.9 on the CAMELYON16 dataset. This substantially exceeds PLIP (90.01), BiomedCLIP (83.6),
Quilt-Net (87.1) and CONCH (95.2). Overall, PathGen-CLIP-L models demonstrate significant
improvements with an average AUC of 92.6% across datasets using ACMIL—outperforming PLIP at
87.2%, BiomedCLIP at 83.4%, Quilt-Net at 86.2%, and CONCH at 91.1%. Despite CONCH being a
powerful model trained on proprietary datasets, our PathGen-CLIP series—trained on PathGen-1.6M,
an open-source variant—significantly outperforms these established models.
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Table 4: Overall results of models on the PathMMU test set. The best-performing LMM in each subset
for general and pathology domain LMMs is in-bold, and the top-performing LMM is underlined.

Test Overall PubMed SocialPath EduContent Atlas PathCLS
Tiny ALL Tiny ALL Tiny All Tiny All Tiny ALL Tiny ALL

(1156) (9677) (281) (3068) (235) (1855) (255) (1938) (208) (1007) (177) (1809)

Expert performance 71.8 - 72.9 - 71.5 - 69.0 - 68.3 - 78.9 -

General Large Multimodal Models
BLIP-2 FLAN-T5-XXL 33.3 33.5 37.0 37.4 35.7 34.6 30.2 34.5 39.4 40.7 19.8 20.6
InstructBLIP-FLAN-T5-XXL 34.3 33.9 39.1 37.2 33.6 34.3 34.5 36.0 38.5 39.3 22.6 22.7
LLaVA-1.5-13B 38.8 37.6 44.5 41.0 40.4 40.4 34.1 39.4 47.1 44.3 24.9 23.5
Qwen-VL-MAX 49.2 45.9 53.0 50.9 53.6 49.3 52.2 47.9 51.4 49.8 30.5 29.6
Gemini Pro Vision 42.8 42.7 43.8 44.9 42.4 42.0 43.5 43.7 49.5 49.4 32.8 34.7
GPT-4V-1106 53.9 49.8 59.4 53.5 58.7 53.9 60.4 53.6 48.1 52.8 36.2 33.8

Pathology-specific Large Multimodal Models
LLaVA-Med 25.3 26.2 28.5 27.7 28.9 27.3 22.7 27.2 22.6 30.7 22.6 20.3
Quilt-LLaVA 45.6 41.5 47.3 42.6 46.4 46.6 51.8 45.3 46.2 42.7 32.2 29.2
PathGen-LLaVA 60.1 58.4 60.1 60.1 60.9 58.8 60.8 60.7 63.5 64.9 54.2 48.9

Stronger models have the potential to be trained with fewer data through a vision-language
approach, compared to traditional vision-only pretraining. Notably, PathGen-CLIP-L outperforms
GigaPath-G on WSI classification tasks, achieving a 2.4% higher F1-score and 1.7 AUC improvement
with ACMIL, despite GigaPath-G having significantly more model parameters and training data. This
underscores the substantial advancements of PathGen-1.6M contributes to the analysis of WSIs.

4.5 INTEGRATING WITH LARGE LANGUAGE MODELS

LLMs possess extensive knowledge and common sense due to their larger model sizes and diverse
training datasets. Models like CLIP, which are already aligned with language models, are often used
for integration with LLMs to develop powerful LMMs. In this work, to train such LMMs, we construct
200K instruction-tuning samples based on PathGen data by prompting GPT-4 using the prompt shown
in Figure 16 and Figure 17 in the appendix to generate instruction-tuning data, including 95K multi-
choice QAs and 105K multi-round of dialogues. We follow the training methodology of LLaVA to
train our LMM, which we refer to as PathGen-LLaVA. We evaluate the performance of PathGen-
LLaVA on the PathMMU dataset, which includes expert annotations from multiple sources and
diseases. Additionally, we compare PathGen-LLaVA with the most advanced general-domain models,
such as GPT-4V, Gemini-Pro Vision, Qwen-VL-Max, as well as previous domain-specific LMMs,
including LLaVA-Med and Quilt-LLaVA, to validate the capabilities of our model. For detailed
information regarding training data and model training details, please refer to the Appendix C.5.

Results: PathGen-LLaVA significantly outperforms previous SOTA pathology LMMs, even surpass-
ing the leading general model, GPT-4V. As shown in Table 4, PathGen-LLaVA consistently exceeded
Quilt-LLaVA by 17.5%, 12.2%, 15.4%, and 22.2% across the PathMMU’s PubMed, SocialPath, Atlas,
and PathCLS subsets respectively, and also outperformed the top general-domain model GPT-4V
by a significant margin. Specifically, in overall test performance, PathGen-LLaVA achieved 58.4%,
surpassing GPT-4V’s 49.8%. These results demonstrate the superiority of the PathGen dataset and
the effectiveness of PathGen-CLIP as a backbone. It marks a step closer to the potential application
of pathology LMMs in assisting medical professionals in practice.

4.6 EXPLORATION OF SCALABILITY AND VERSATILITY OF PATHGEN-1.6M

Scaling up with Non-WSI Report Paired Data: In our approach, we require WSIs paired with
corresponding reports. However, many WSIs in datasets like TCGA lack associated reports. To
explore whether expanding our dataset without paired reports can enhance performance. We conduct
experiments by adding 6,800 additional WSIs from TCGA that lack associated reports and extract
a total of 1,238,750 patches using source prompts (247,750) and k-means clustering (991,000).
These newly collected samples, derived from source prompts and k-means clustering, were then
incorporated into the PathGen-1.6M dataset to train the CLIP model, referred to as PathGen-CLIP-L*.

Results: Scaling up with non-WSI report paired data using PathGen’s generation approach and
incorporating it into PathGen-1.6M still improves zero-shot performance on 7 out of 9 tasks (as
shown in Table 5), confirming the scalability of our method regardless of WSI report availability.
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Table 5: Results of scaling up data (PathGen-CLIP-L*), scaling up the model (PathGen-CLIP-H), and
utilizing PathGen-1.6M to adapt vision-only model to vision-language model (PathGen-GigaPath-G).

Method LC-Lung LC-Colon CRC-100K SkinCancer Pcam BACH Osteo WSSSLUAD SICAPv2
PathGen-CLIP-L 90.0 99.3 78.0 70.6 88.2 71.5 74.6 82.9 63.5
PathGen-CLIP-L* 92.5 99.6 78.1 72.1 89.9 67.9 77.5 84.4 59.5
PathGen-CLIP-H 94.4 98.5 78.1 76.4 89.4 66.5 81.4 85.3 56.5
PathGen-GigaPath-G 94.6 98.1 75.0 74.2 89.0 58.5 80.2 84.5 46.6

Table 6: Comparison of GigaPath-G and PathGen-GigaPath-G for the few-shot classification task
using the Camelyon17 and WSSSLUAD datasets. The top accuracy is highlighted in bold.

Datasets Models Number of Shots
1 4 16 64

Camelyon17 GigaPath-G 60.30% ± 13.55% 82.93% ± 15.10% 94.24% ± 4.15% 95.83% ± 3.30%
PathGen-GigaPath-G 72.71% ± 23.35% 84.11% ± 13.95% 94.02% ± 6.25% 97.40% ± 0.75%

WSSSLUAD GigaPath-G 67.76% ± 12.55% 76.55% ± 9.55% 87.76% ± 5.10% 93.33% ± 1.15%
PathGen-GigaPath-G 77.96% ± 23.30% 91.06% ± 3.35% 93.79% ± 1.20% 94.82% ± 0.50%

Scaling up with Larger Model: In an era where researchers continually scale up models to achieve
greater capabilities, the adaptability of data for larger models is crucial. Therefore, we conduct further
experiments by scaling up PathGen-CLIP-L to PathGen-CLIP-H to validate that our data remains
effective for larger models.

Results: PathGen-CLIP-H achieves better results than PathGen-CLIP-L on 6 out of 9 zero-shot
classification datasets, as shown in Table 5. This clearly demonstrates that PathGen-1.6M effectively
supports larger models in achieving enhanced performance.

Incorporation with Advanced Vision-only Model: To demonstrate the versatility of PathGen-1.6M,
we transition from vision-language pretrained models to the state-of-the-art vision-only pathology
pretrained encoder, GigaPath-G (Xu et al., 2024), trained on over 1 billion private patch images. We
combine it with the language encoder BioClinical-BERT (Alsentzer et al., 2019) to create a new
CLIP model, PathGen-GigaPath-G.

Results: PathGen-GigaPath-G not only acquires vision-language capabilities but also enhances its
vision-only performance. As shown in Table 5, PathGen-GigaPath-G achieves comparable overall
performance on zero-shot tasks, despite not being pre-trained on billion-scale datasets like OpenAI-
CLIP. Furthermore, our linear probing evaluations on two datasets, presented in Table 6, reveal
substantial performance improvements, particularly with a very limited number of samples. These
results indicate that PathGen-1.6M is not only effective for training CLIP-based models but also
suitable for vision-only models, underscoring its substantial potential impact.

5 CONCLUSION

In this work, we propose a novel multi-agent collaboration approach that generates 1.6 million
high-quality pathology image-text pairs from whole slide images. Utilizing these generated data
alongside existing datasets, we train two advanced models: PathGen-CLIP and PathGen-CLIP-L.
These models achieve significant advancements in zero-shot image classification, few-shot image
classification, and whole slide image classification, even attaining comparable or better results to
much larger vision-only models in terms of parameters and training data. Additionally, We integrate
PathGen-CLIP-L with an LLM to create a powerful pathology-specific LMM, PathGen-LLaVA.
By leveraging the PathGen-1.6M dataset, we generate 200,000 instruction-tuning samples to train
PathGen-LLaVA. Our experiments demonstrate that PathGen-LLaVA exhibits strong pathology image
understanding capabilities, significantly outperforming previous pathology LMMs on the large-scale
PathMMU dataset by a large margin and surpassing the performance of powerful closed-source
GPT-4V. Furthermore, we investigate the scalability of PathGen-1.6M by scaling up the training data,
scaling up the model size, and combining it with advanced vision-only pre-trained pathology models,
showcasing the extensibility of the PathGen approach. Extensive evaluations confirm the superiority
and promising potential of the PathGen-1.6M dataset.
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Guilherme Aresta, Teresa Araújo, Scotty Kwok, Sai Saketh Chennamsetty, Mohammed Safwan,
Varghese Alex, Bahram Marami, Marcel Prastawa, Monica Chan, Michael Donovan, et al. Bach:
Grand challenge on breast cancer histology images. Medical image analysis, 56:122–139, 2019.

Harish Babu Arunachalam, Rashika Mishra, Ovidiu Daescu, Kevin Cederberg, Dinesh Rakheja, Anita
Sengupta, David Leonard, Rami Hallac, and Patrick Leavey. Viable and necrotic tumor assessment
from whole slide images of osteosarcoma using machine-learning and deep-learning models. PloS
one, 14(4):e0210706, 2019.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
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A OVERVIEW OF PATHGEN-1.6M

In this section, we present details of the PathGen-1.6M dataset, including quality assessment and
statistical information, to illustrate its high quality and significant contribution to the open-source
pathology dataset community. Additionally, we provide further details about the derivative dataset,
PathGen-Instruct-200K, introduced in Section 4.5 and specifically designed for training large multi-
modal models. Finally, we outline the procedure for accessing our datasets.

A.1 IMAGE QUALITY

As mentioned in the main paper, the quality of previous pathology datasets is significantly degraded
due to screenshots and various compression issues. We conduct a comparative image quality analysis
between PathGen and previous datasets—PathCap (Sun et al., 2024b), Quilt (Ikezogwo et al., 2024),
and OpenPath (Huang et al., 2023). We randomly sample 500 images from each dataset. These
images are assessed using the existing image clarity model1 and through human evaluations conducted
by pathologists.

In evaluating image clarity with clarity assessment models, the field of view and size significantly
affect scores. To standardize assessments, we implement two approaches: (1) cropping the original
images to a uniform size of 672×672, and (2) resizing the original images to 336×336, which is
the input image size for PathGen-CLIP-L. For the pathologists’ human evaluation, we present the
original images without resizing or cropping. The pathologists are tasked with categorizing the image
quality into five levels: low, moderately low, medium, moderately high, and high, corresponding to
scores of 1-5.
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a) Clarity model score with crop b) Clarity model score with resize c) Distribution of human evaluation score
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Figure 4: Comparison of image quality with the previous model using the clarity assessment model
and human evaluation.

Results: The image quality of PathGen is notably superior to other datasets, significantly higher
than those from PathCap, Quilt, and OpenPath. As illustrated in the left and middle sections of
Figure 4, we display the clarity scores of each dataset’s images in a boxplot format. The overall image
quality from PathGen is significantly higher than those from earlier datasets, especially after resizing
to 336×336. Additionally, the shorter length of the box for PathGen images indicates more consistent
image quality. This consistency is likely due to the images being directly cropped from WSIs with
minimal compression and distortion. Similarly, as shown in the right part of Figure 4, the human
evaluation experiments further confirm that PathGen consistently delivers higher image quality scores.
This demonstrates that our image quality more closely approximates the images used by clinicians
during diagnostic readings. This is highly significant in reducing the domain gap between training
images and those used in clinical scenarios.

1https://help.aliyun.com/zh/viapi/use-cases/image-clarity-grade-1
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The image shows a section of prostate tissue with glandular structures. The
glands are lined by a single layer of epithelial cells with round to oval nuclei,
which are fairly uniform in size and shape. The cytoplasm of these cells appears
eosinophilic. The stroma between the glands is composed of connective tissue,
which is pink and fibrous in appearance. There is no evidence of significant
cellular atypia, mitotic figures, or architectural distortion that would suggest
malignancy. The overall morphology is consistent with benign prostatic tissue.

Pt in 30s w/ lung 
mass, pl eff, nite swts, 
wt loss, hx MM 15 yrs 
ago #pathologists 
#hemepath #sarcoma

A testis from a HIR patient 
displaying weak PRDM9 
cytoplasmic staining of the 
germ cells (arrow). 
Horizontal bar; 30 μ.

PathGen

OpenPath PathCap

It seemed that the prominent pathology besides membranous nephropathy,
in this case, was segmental sclerosis. So putting everything together, we favor
that. This is not a crescent, and this is collapsing FSGS. But it is not common.
In primary FSGS, as you saw in the other group coming from the other paper
that author showed, coming from Vancouver, although they had not at that
time tested for PLA2R, but at least they looked for other causes, such as

Summarized caption: Diagnosis is collapsing FSGS which is not common.Quilt

Figure 5: Comparison of caption quality with previous datasets, with different pathological descrip-
tions from various aspects of PathGen marked in different background colors.

A.2 CAPTION QUALITY

There are several issues with captions from existing datasets: (1) Brevity: Captions are often too
brief to comprehensively outline the details within an image. This lack of detail can cause models to
overlook important features in the image. This issue is prevalent in datasets like OpenPath, PathCap,
and Quilt. (2) Mismatch between text and image: On social media platforms like Twitter, the text
accompanying an image may not necessarily describe the pathological features of the image but
might focus on aesthetic qualities instead. On YouTube, a current frame might describe content from
previous frames, leading to mismatches. (3) Colloquial language: Captions are often informal and
random on social platforms. In contrast, the PathGen-1.6M dataset employs captions generated by a
pathology-specific LMM, which are further refined by various agents to ensure relevance between the
text and the image and detailed descriptions. As illustrated in Figure 5, it is evident that the captions
in PathGen are significantly more detailed and precise. It recognizes cell morphology (“round to oval
nuclei, fairly uniform in size and shape”), tissue structure (“The glands are lined by a single layer of
epithelial cells”), and diagnosis (“overall morphology is consistent with benign prostatic tissue”). In
contrast, OpenPath’s caption contains many abbreviations, which are not in the vocabulary of models
like BERT (Devlin et al., 2019) and thus are identified as ‘[UNK]’ tokens, leading to the loss of
important information. PathCap only includes a single piece of staining information, while Quilt,
despite containing a lengthy text, mostly discusses irrelevant details. The effective description related
to the image boils down to only one sentence.

A.3 DATASET STATISTICS

Image Sources: PathGen sources its image data from TCGA (The Cancer Genome Atlas), which
provides a comprehensive collection of pathology whole-slide images from various participating
institutions, encompassing a diverse range of tissue and cancer types. We illustrate the data distribution
of different image sources in the left panel of Figure 6. Our dataset originates from 27 different
institutions, with the highest number of images obtained from breast tissue, totaling 217,025 images,
and the fewest from lymphoid tissue, containing 4,543 images.
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Figure 6: Visualization of the distribution of sample quantities from different tissue sources (top
right) and the distribution of caption lengths (bottom right).

Word Count: We conduct a distribution analysis of the caption lengths for all samples, as shown
in the lower right corner of Figure 6. The distribution of caption lengths is relatively symmetrical.
Captions shorter than 30 are extremely rare, indicating that our captions tend to describe the details
of pathological images. The largest proportion of captions is around 50 words, accounting for 9.8%,
while captions exceeding 70 words are similarly uncommon. This is because we employ a summary
agent to control the length, ensuring compatibility with CLIP’s maximum input length of 77 tokens.

Word Frequency: We also analyze the word frequency distribution within our dataset using word
clouds, as shown in the upper left corner of Figure 7. Overall, the captions in PathGen heavily focus
on morphological features such as “disorganized,” “disrupted,” “fibrous,” “prominent,” and diagnostic
characteristics like “inflammatory,” “neoplastic,” and “atypia.” The other three panels in Figure 7
display word frequency analyses for samples drawn from three distinct tissue types. Each tissue type
exhibits a distinct word frequency distribution, closely related to the morphological and diagnostic
features typical of that tissue, such as “alveolar” in lung tissue and ”colloid” in thyroid tissue. This
diversity in samples and captions enables our model to learn a broader range of feature knowledge.

A.4 STATISTICS OF DERIVATIVE DATASET PATHGEN-INSTRUCT-200K

As mentioned in the main text, to integrate with large language models and construct a large
multimodal model, we extract samples from PathGen-1.6M to build PathGen-Instruct-200K. This
dataset includes data for multi-choice QA-based instruction-tuning and dialogue-based open-ended
instruction-tuning. We present the average question length, option length, answer length, and the
number of questions with a single image for these two types of data, as shown in Table 7.

Table 7: Statistical Information for PathGen-Instruct-200K.
Source Avg. question length Avg. option length Avg. answer length # Questions / # Images

Multi-choice QA 14.9 3.7 - 1.2
Open-ended QA 17.1 - 33.2 5.0

B ADDITIONAL EXPERIMENTS AND DISCUSSION ABOUT THE PATHGEN-1.6M

B.1 COMPARISON BETWEEN PATHGEN-LLAVAdesp , LLAVA-MED-V1.5, AND QUILT-LLAVA

Since the quality of description generation largely determines the effectiveness of PathGen, we
compare PathGen-LLaVAdesp with previous pathology LMMs, including Quilt-LLaVA (Ikezogwo
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Overall Breast

Thyroid Lung

Figure 7: Visualization of word clouds derived from the overall dataset captions, along with separate
word clouds for three distinct tissue sources.

et al., 2024) and LLaVA-Med-v1.5 (Li et al., 2023a), in terms of description generation. Our
evaluation includes extensive testing with the state-of-the-art LMM GPT-4o (OpenAI, 2024), as well
as a smaller-scale human evaluation.

For the GPT-4o testing, we randomly select 1000 images from our complete set of images, using
GPT-4o as the evaluator to judge the quality of descriptions generated by both models. Previous
research (Wang et al., 2023a) reveals that earlier versions of GPT-4 (OpenAI, 2023a) and Chat-
GPT (OpenAI, 2022) exhibit position bias, where the model presented first is often judged more
favorably. Since we are unsure if the latest versions of GPT-4 and GPT-4o still exhibit this behavior,
we conduct two rounds of testing to ensure fairness. In one round, the description generated by
PathGen-LLaVAdesp is presented first, and in the other round, the compared model’s description is
presented first.

For the human evaluation, due to the high cost and difficulty of involving professional pathologists,
we randomly select 100 images from our dataset and invite a professional pathologist to evaluate
which model performs better.

Results: The quality of descriptions generated by PathGen-LLaVAdesp significantly surpasses that
of LLaVA-Med-v1.5 and Quilt-LLaVA in both GPT-4o and human evaluations. As depicted in
Figure 8, in the GPT-4o evaluation, PathGen-LLaVAdesp outperforms Quilt-LLaVA in over 85% of
cases and exceeds LLaVA-Med-v1.5 in more than 94% of cases. In the human evaluation, PathGen-
LLaVAdesp outperforms Quilt-LLaVA and LLaVA-Med-v1.5 in 85% and 98% of cases, respectively.
Note that this comparison uses PathGen-LLaVAinit, an initial version of PathGen-LLaVA, to validate
the quality of the dataset’s descriptions. The performance gap might be more substantial if the more
advanced PathGen-LLaVA is used.

Interestingly, in the GPT-4o evaluation, there appears to be a slight preference for the model whose re-
sponse is positioned second. This bias is observed in both comparisons, whether PathGen-LLaVAdesp

is compared to Quilt-LLaVA or LLaVA-Med-v1.5. When the position is reversed (i.e., the comparison
model’s response is presented first and our model’s response second), the winning rate of our model
is slightly higher, although the difference is not substantial. We hypothesize that OpenAI may have
optimized this position bias issue.
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Figure 8: Comparison of performance in generating pathology image descriptions among PathGen-
LLaVAdesp, Quilt-LLaVA, and LLaVA-Med-v1.5, evaluated through GPT-4o and human assessments.

B.2 PERFORMANCE COMPARISON ACROSS DIFFERENT ZERO-SHOT CLASSIFICATION
PROMPTS

Existing medical or pathology-specific CLIP models usually design prompts that are particularly
suited to their models to enhance zero-shot image classification capabilities. However, this specificity
can skew direct comparisons between models due to prompt variability. To address this, we collect a
substantial variety of prompts from existing literature on pathology-specific CLIP models and conduct
a comparative test across eight mainstream datasets: LC-Lung, LC-Colon, Pcam, WSSSLUAD, CRC-
100K, SkinCancer, BACH, and Osteo. We visualize performance variations using box plots to
highlight the fluctuations in model responses to different prompts.

Results: PathGen-CLIP and PathGen-CLIP-L consistently outperform previous models across
all datasets and various prompts. As illustrated in Figure 9, the box plots for both models are
significantly higher than those of other models. Additionally, the shorter box lengths indicate greater
robustness of PathGen-CLIP and PathGen-CLIP-L to prompt variations. This superior performance
and robustness make our models more suitable for practical clinical applications.

B.3 WHY PATHGEN-1.6M IS RECOMMEND FOR FIRST-STAGE TRAINING?

As we mentioned in the main paper, the captions generated by PathGen-LLaVAdesp tend to describe
morphological content, such as cellular and tissue structures, rather than direct diagnoses. This
is due to the value alignment in the LLM, which avoids making definitive pathological diagnoses.
Additionally, the training dataset for multimodal description generation contains relatively few
diagnostic data entries. Therefore, using PathGen alone is insufficient for equipping PathGen-CLIP
with diagnostic capabilities. In our study, we conducted experiments comparing the training of
models using various scales of data solely from PathGen, as well as combining data from different
scales of PathGen with PathGeninit.

Results: We observe a notable decline in the performance of PathGen-CLIP across four datasets
when the data scale exceeds 0.7 million. As depicted in Figure 10, this trend is consistent on most
datasets whether the training utilizes data exclusively from PathGen or a combination of PathGen
and PathGeninit datasets. We hypothesize that when the scale of PathGen data surpasses that of
PathGeninit, the model’s excessive focus on morphological features of cells and tissues detracts
from its ability to make direct pathological assessments. This shift in focus adversely affects the
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Figure 9: Boxplot visualization of performance variation between PathGen-CLIP and previous related
CLIP models across various zero-shot classification prompts.

model’s capability for zero-shot image classification, as it becomes overly specialized in recognizing
structural details at the expense of broader diagnostic accuracy.
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Figure 10: Illustration of different data construction strategies and comparisons of data scales.
“wo/ PathGeninit one stage” represents training solely with various scales of PathGen data using
a single-stage training approach. “w/ PathGeninit one stage” denotes the combination of different
scales of PathGen and PathGeninit data for single-stage training, a scale of 0 means all the training
data is from PathGeninit. “w/ PathGeninit two-stage” serves as a reference constant line, representing
the final result of our current method, which employs PathGen-1.6M data for the first stage of training
and then utilizes PathGeninit for the second stage. The horizontal axis represents the data scale in
millions.
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B.4 PERFORMANCE COMPARISON BETWEEN ZERO-SHOT AND FULLY SUPERVISED
APPROACHES

To demonstrate the extent of the gap between zero-shot classification and full fine-tuning in the field
of pathology, we conduct a comparative analysis of their results. As shown in Table 8, there remains
a notable gap between zero-shot performance and full fine-tuning. However, the advancements of
PathGen-CLIP-L significantly narrow this gap, showcasing its capability to adapt pathology-specific
knowledge effectively. Notably, PathGen-CLIP-L achieves impressive performance in the fully
supervised setting, outperforming OpenAI-CLIP-L and approaching the results of GigaPath-G. This
is remarkable given that GigaPath-G leverages much larger training datasets and model sizes.

Table 8: Performance comparison between zero-shot classification and fully supervised approaches.
Model WSSSLUAD Lung Colon PatchCamelyon
Previous SOTA (Zero-shot) 85.1 88.9 94.3 72.5
PathGen-CLIP-L (Zero-shot) 82.2 89.8 99.3 88.2
OpenAI-CLIP-L (Full Fine-tuning) 95.9 99.7 100.0 93.5
GigaPath-G (Full Fine-tuning) 97.1 100.0 100.0 96.9
PathGen-CLIP-L (Full Fine-tuning) 97.7 100.0 100.0 97.0

B.5 ADDITIONAL ABLATIONS

B.5.1 ABLATIONS ON THE DATA CURATION PROCESS

We conduct an ablation study to evaluate the contribution of each step in our data curation process.
As shown in the following table, removing either the clustering-based retrieval method or the prompt-
based retrieval leads to a performance decline. The removal of clustering-based retrieval results
in a more substantial average performance drop of 4.3%, likely because this method enhances
dataset quality by sampling patches with diverse features. Eliminating the revise agent causes an
average performance decrease of 2.3%, indicating its importance in correcting errors or hallucinations
generated by large multimodal models. These findings underscore the critical role of each component
in our data curation pipeline. Furthermore, by combining these approaches, PathGen-CLIP-L
achieves an average performance improvement of 6.8% over PathGen-CLIP-Linit, demonstrating the
effectiveness of the PathGen-1.6M dataset.

Table 9: Impact of each step in the PathGen-1.6M data curation process on the final performance
of PathGen-CLIP, where RA represents the Revise Agent, PBR denotes prompt-based retrieval and
CBR represents the clustering-based retrieval.

Model LC-Lung LC-Colon CRC100K SkinCancer Pcam BACH Osteo WSSSLUAD SICAPv2 Average
PathGen-CLIP-Linit 89.1 96.9 60.3 55.7 83.2 65.3 71.9 85.1 48.3 72.9
PathGen-CLIP-L w/o RA 91.2 98.9 76.2 67.2 87.3 68.8 70.8 81.5 54.9 77.4
PathGen-CLIP-L w/o PBR 91.0 99.1 77.0 68.0 86.8 65.0 72.8 83.2 59.5 78.0
PathGen-CLIP-L w/o CBR 90.5 97.5 72.7 64.9 84.6 61.3 71.2 82.7 53.5 75.4
PathGen-CLIP-L 89.8 99.3 78.0 70.6 88.2 71.5 74.6 82.2 63.5 79.7

B.5.2 ABLATIONS ON APPLYING PATHGEN-1.6M TO DIFFERENT CLIP MODELS

To further demonstrate the broad applicability of PathGen-1.6M, we adapt it to other CLIP-like
models, including the ConvNext-base-w320 (Liu et al., 2022), a convolution-based CLIP model
trained by LAION (Schuhmann et al., 2022b), and a CLIPA-L (Li et al., 2023c), a more efficient
architecture for training ViT-based CLIP models. As shown in Table 10, incorporating the PathGen-
1.6M dataset significantly enhances the performance of both models, with improvements of 6.8% and
7.1%, respectively. These results further validate the quality and effectiveness of the PathGen-1.6M
dataset.

B.5.3 ABLATIONS ON THE SOURCE OF PATHGEN-1.6M’S EFFECTIVENESS

To explore whether the effectiveness of PathGen-1.6M arises from its high-quality image-text pairs,
the images themselves, or the WSI reports used during its creation, we conduct two complementary
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Table 10: Performance improvement of different CLIP models after continued training with PathGen-
1.6M. Here, Modelinit represents models trained without PathGen-1.6M, while other models incor-
porate the PathGen-1.6M dataset during training.

Model LC-Lung LC-Colon CRC100K SkinCancer Pcam BACH Osteo WSSSLUAD SICAPv2 Average
PathGen-CLIPA-Linit 79.3 98.4 61.5 50.5 86.1 56.5 59.8 78.5 48.0 68.7
PathGen-CLIPA-L 94.3 99.4 68.4 64.9 88.8 62.0 63.7 80.9 57.0 75.5 (+6.8)
PathGen-ConvNext-baseinit 82.8 94.6 59.9 48.0 74.9 53.0 62.2 84.1 56.1 68.4
PathGen-ConvNext-base 89.1 95.9 67.9 60.2 80.7 66.2 77.9 87.2 54.3 75.5 (+7.1)
PathGen-CLIP-Linit 89.1 96.9 60.3 55.7 83.2 65.3 71.9 85.1 48.3 72.9
PathGen-CLIP-L 89.8 99.3 78.0 70.6 88.2 71.5 74.6 82.2 63.5 79.7 (+6.8)
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Training labels per class

A
cc

u
ra

cy

Figure 11: Few-shot classification performance comparison between PathGen-CLIP-L trained with
PathGen-1.6M and DINO-V2-L trained using only the images from PathGen-1.6M.

experiments. In one approach, we replace all image captions in PathGen-1.6M with their correspond-
ing WSI reports, creating “image-report” pairs to train PathGen-CLIP-L. Meanwhile, we also further
fine-tune the pre-trained DINO-v2 (Oquab et al., 2023) by continuing pre-training on the images
from PathGen-1.6M for 20 epochs as a comparison.

As shown in Table 11, the model trained with “image-report” pairs performs worse than PathGen-
CLIP-Linit. This occurs because WSI reports provide a global summary that fails to accurately
capture the localized features of individual patches. The mismatch between patch-level features and
the shared global captions introduces significant challenges for CLIP’s contrastive learning, as the
model struggles to establish meaningful connections between image and text embeddings. In addition,
Figure 11 reveals that DINO-v2 pretrained on PathGen-1.6M images significantly underperforms
PathGen-CLIP-L in few-shot experiments. This is likely because DINO-v2 requires substantially
larger datasets—on the scale of tens or even hundreds of millions of images—to achieve optimal
performance. The 1.6 million images in PathGen-1.6M are insufficient for this method.

These experiments demonstrate that the superior performance of PathGen-CLIP-L primarily arises
from the high-quality image-text pairs in PathGen-1.6M, underscoring the dataset’s effectiveness.

Table 11: Zero-shot classification performance comparison by replacing PathGen-1.6M original
captions with WSI reports.

Model LC-Lung LC-Colon CRC100K SkinCancer Pcam BACH Osteo WSSSLUAD SICAPv2 Average
PathGen-CLIP-L (Image-report pairs) 88.9 97.2 57.2 58.6 70.1 48.8 63.4 82.0 56.3 69.1
PathGen-CLIP-Linit 89.1 96.9 60.3 55.7 83.2 65.3 71.9 85.1 48.3 72.9
PathGen-CLIP-L 89.8 99.3 78.0 70.6 88.2 71.5 74.6 82.2 63.5 79.7
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C EXPERIMENTAL DETAILS

C.1 MORE DETAILS OF DATA CONSTRUCTION PROCESS

C.1.1 PATCH EXTRACTION DETAILS

When extracting image patches from the WSI of the TCGA, since many WSIs contain multiple layers
with different magnifications, we always opt for the highest magnification layer to ensure the finest
details and resolution are captured. The patches are consistently cropped to a size of 672×672 pixels.

C.1.2 DETAILS OF THE TRAINING DATA CONSTRUCTION PROCESS FOR THE REVISION AGENT

As we initially lack multimodal training samples for description revision (from incorrect to correct),
we need to first construct such samples. As illustrated in Figure 12, we begin with a caption sentence
presumed to be correct. We then employ a prompt with an LLM to generate a revision operation
that intentionally introduces errors into the caption, creating an incorrect version. Next, we reverse
this revision operation: additions are converted to deletions, deletions become additions, and for
modifications, the sentences before and after the change are swapped. This process not only yields
an incorrect caption but also the reverse operation that corrects the caption back to its original form,
along with the corresponding image. These elements constitute our triplet revise agent training data.

There is a prominent presence of cells with darkly stained nuclei, indicative of 
leukocytes, which are consistent with an inflammatory infiltrate.

lightly stained nuclei

lymphocytes normal tissue
Reverse

Edit

{ 
"before": "There is a prominent presence of cells with darkly stained nuclei, indicative of leukocytes, which 

are consistent with an inflammatory infiltrate", 
"after": "There is a prominent presence of cells with lightly stained nuclei, indicative of lymphocytes, which 

are consistent with normal tissue", 
"mode": "edit", 
"edit_content": "Changed 'darkly stained nuclei' to 'lightly stained nuclei' and 'leukocytes' to 'lymphocytes' 

and 'inflammatory infiltrate' to 'normal tissue' to introduce a discrepancy."
}

Edit

There is a prominent presence of cells with 
lightly stained nuclei, indicative of lymphocytes, 
which are consistent with normal tissue

Correct caption

Incorrect caption

{ 
"before": "There is a prominent presence of cells with lightly stained nuclei, indicative of lymphocytes, which 

are consistent with normal tissue", 
"after": " There is a prominent presence of cells with darkly stained nuclei, indicative of leukocytes, which 

are consistent with an inflammatory infiltrate", 
"mode": "edit", 
“edit_content”: “Changed 'lightly stained nuclei' to 'darkly stained nuclei' and 'lymphocytes' to 'leukocytes'

and 'normal tissue to 'inflammatory infiltrate'."
}

After
editing

Generated triplet training data consisting of 
(Image, Incorrect Caption, Edit Operation)

Figure 12: Illustration of the process for generating data on revision operations, using ‘edit’ as an
example.
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C.2 PROMPTS

This section presents all the prompts used in our dataset and experimental process, including: (1) The
prompt in Figure 13 is used with GPT-4V to add details and enhance existing image captions. (2)
The prompt in Figure 14 is employed with GPT-4o to evaluate the quality of descriptions generated
by two comparative multimodal models. (3) The prompt in Figure 15 is used to transform generated
captions into erroneous versions and to specify the corresponding operations (add, delete, edit). By
reversing this process, it generates a sequence of corrections that transition from erroneous to correct
captions, serving as training data for the Revise Agent. For specific examples, please refer to Section
C.1.2. (4) The prompt in Figure 16 generates open-ended QA instruction-tuning data based on
existing descriptions. Additionally, Figure 17 is used to create multiple-choice QA instruction-tuning
data. (5) The prompt in the left part of Figure 18 is used with GPT-4 to generate attribute-based
prompts for PathGen-CLIPinit (e.g., nuclear atypia, pleomorphism, stroma in lung WSI), and the
right part of Figure 18 prompts GPT-4 to extract information related to pathological features from
WSI reports, aiding in the generation of finding-based retrieval prompts for PathGen-CLIPinit. (6)
We use the prompt “This is a histology image from the {source of tissue}. Describe this image in
detail.” to prompt PathGen-LLaVAdesp in generating detailed descriptions of the images. In this
prompt, “{source of tissue}” specifies the origin of the tissue sample.

C.3 DOWNSTREAM TASKS AND DATASETS

C.3.1 DATASETS FOR ZERO-SHOT AND FEW-SHOT IMAGE CLASSIFICATION

We employ nine datasets for tasks related to zero-shot and few-shot image classification, which
include: CRC100K (Kather et al., 2018): This dataset comprises image patches taken from H&E
stained histological samples and spans both colorectal cancer tissues and normal tissues. It is di-
vided into nine distinct categories: Adipose, Background, Debris, Lymphocytes, Mucus, Smooth
Muscle, Normal Colon Mucosa, Cancer-Associated Stroma, and Colorectal Adenocarcinoma Ep-
ithelium. WSSS4LUAD (Han et al., 2022): Featuring patch-level annotations from 87 whole
slide images, this collection is focused on distinguishing between tumor and normal tissue classes.
LC25000 (Borkowski et al., 2019): This dataset includes samples of lung and colon adenocarcino-
mas, organized into two subsets: LC-lung, which encompasses lung adenocarcinomas, lung squamous
cell carcinomas, and benign lung tissues; and LC-colon, which contains colon adenocarcinomas and
benign colonic tissues. PatchCamelyon (Veeling et al., 2018): Originating from histopathological
scans of lymph node sections, each image in this dataset carries a binary label indicating the presence
or absence of metastatic tissue. SICAPv2 (Silva-Rodrı́guez et al., 2020): This dataset features images
of prostate pathology magnified 10 times, classified as non-cancerous, and Grades 3-5 according
to the Gleason grading system. BACH (Aresta et al., 2019): Incorporating H&E stained breast
histology images, this dataset categorizes images into four groups based on the dominant cancer type:
normal, benign, in situ carcinoma, or invasive carcinoma. Osteo (Arunachalam et al., 2019): Sourced
from whole slide images, this dataset aims to classify different tissue regions as viable tumors,
necrotic tumors, or non-tumors, capturing the diverse responses of osteosarcoma to chemotherapy.
SkinCancer (Kriegsmann et al., 2022): Consisting of tissue patches from skin biopsies across 12
anatomical compartments and 4 types of neoplasms, this dataset provides a comprehensive view of
skin cancer variations.

C.3.2 EXPERIMENT DETAILS OF LINEAR PROBING

The linear probe experiment is designed to evaluate the feature representation of a pre-trained model
by adding a linear layer to its output. This linear layer maps the model’s output vector to the number
of classes for classification. We conduct the experiment using a batch size of 32 and run it for 20
epochs. The optimizer used is AdamW with a learning rate of 1 × 10−2. To ensure robustness
and reproducibility, we utilize 10 different seeds. The procedure involves randomly selecting 256
samples from each class to form the training set. If an official test set is unavailable or lacks
labels, the remainder of the dataset serves as the test set. Throughout the 20 epochs, we select the
best-performing model based on its accuracy on the test set.
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C.3.3 DATASETS FOR WSI CLASSIFICATION

This paper provides three commonly-used WSI classification datasets, CAMELYON16 (Litjens et al.,
2018), CAMELYON17 (Litjens et al., 2018), and BRACS (Brancati et al., 2022), for evaluating
PathGen-CLIP’s representation quality for WSI classification, with rigorous and standardized splits
to ensure robust model training and validation.

To be specific: CAMELYON16 consists of 400 WSIs, with 270 assigned for training and 130 for
testing. To enhance model validation, the training set is further divided into training and validation
subsets in a 9:1 ratio, following the methodology in recent studies. CAMELYON17 comprises 1,000
WSIs sourced from five different hospitals. These slides are categorized based on labels such as
Normal, isolated tumor cells, Micro-metastases, and Macro-metastases. Due to the lack of labels in
the official test set, the dataset’s training set of 500 WSIs is reallocated to assess out-of-distribution
(OOD) performance. Specifically, 200 WSIs from the fourth and fifth hospitals are designated as
the test set, while the remaining 300 WSIs are split into training and validation sets in a 9:1 ratio.
BRACS (BReAst Carcinoma Subtyping) includes 547 WSIs stained with Hematoxylin and Eosin
(H&E), representing three lesion types: benign, malignant, and atypical. These are further divided
into seven subcategories. Due to the limited number of WSIs, only three-class subtyping (benign,
atypical, and malignant) is performed. The WSIs are segmented into non-overlapping patches of
224 × 224 at 20× magnification. The dataset is officially split into 395 training images, 65 validation
images, and 87 test images, and this split is adhered to in subsequent analyses.

C.3.4 ADDITIONAL EXPERIMENTAL DETAILS FOR WSI CLASSIFICATION

Data Pre-processing. For the data pre-processing, we employ the method described in CLAM (Lu
et al., 2021), which involves threshold segmentation and filtering to identify tissue regions within
each whole-slide image (WSI). From these identified regions, we extract non-overlapping patches at
a magnification of ×20. Specifically, the crop size for the ViT-Base model is 224× 224, whereas for
the ViT-Large model, the crop size is 336× 336.

Feature Extraction. This paper selects OpenAI CLIP (Radford et al., 2021), several of its variants
specifically developed for the biomedical domain, and our PathGen-CLIP as a feature extractor.
Features are extracted and saved with a dimension of 512 for ViT-Base and 768 for ViT-Large. In
line with the regular practice of MIL methods, the feature extractor is frozen during training to save
computational resources and storage.

Model Architecture. The MIL framework commonly used for WSI classification includes three
learnable components: (1) A fully-connected layer to reduce the dimensionality of features to 256 for
the ViT-Base model and 384 for the ViT-Large model. (2) An attention network to aggregate and
transform the instance features. (3) A final fully-connected layer for making predictions. ABMIL (Ilse
et al., 2018) and ACMIL (Zhang et al., 2023b) share the same fully-connected layers for reducing
feature dimensionality and making predictions. For the attention network, ABMIL uses the gated
attention network, and ACMIL introduces Multiple Branch Attention (MBA) and Stochastic Top-K
Instance Masking (STKIM) based on the gated attention network.

Training. The models are trained for 50 epochs using a cosine learning rate decay schedule. The
initial learning rates are determined through a grid search within the range [0.0001, 0.0002, 0.0005],
based on validation performance. The training process utilizes the Adam optimizer with a weight
decay of 0.0001, and the batch size is consistently set to 1. Otherwise, we set M = 5, K = 10, and
p = 0.6 for ACMIL.

C.4 HARDWARE

We utilize 24 NVIDIA A100-80G GPUs for caption generation, 8 NVIDIA A100-80 G GPUs for
training the PathGen-LLaVA model, 4 NVIDIA A100-80G GPUs for fine-tuning LLaMA, and 4
NVIDIA A100-40 G GPUs for training and testing on downstream datasets.
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C.5 TRAINING HYPERPARAMETERS

For the CLIP training, we adhere to the open clip framework2 and use OpenAI CLIP as initialization.
We use a learning rate of 3e-5 with an Adam optimizer that includes a weight decay of 0.1. We set a
batch size of 96 across 4 NVIDIA A100 GPUs, resulting in an effective batch size of 384. In the first
stage of training using PathGen-1.6M, we limit the training to only one epoch. For the second stage
of training with PathGeninit, we conduct two epochs.

For the training of PathGen-LLaVA, we use our trained PathGen-CLIP-L as the vision encoder and
LLaVA-v1.5-13B (Liu et al., 2024) as the LLM component. We fully adhere to the training framework
and parameters provided in LLaVA framework 3. The training follows a two-stage process: in the
first stage, we align the LLM with PathGen-CLIP-L using the PathGeninit dataset, and in the second
stage, we train using the PathGen-Instruct-200K dataset. We employ 8 NVIDIA A100-80G cards for
the training of PathGen-LLaVA.

This is a microscopic image  of cells or tissues. Please first describe the 
morphological characteristics  of the cells or tissues in the image, and then 
supplement and correct it according to the additional description provided, 
but only include features that are observable in the image. 

Be aware that some details in the additional description might not be 
present or identifiable in the image. Focus solely on the characteristics of the 
cells or tissues. Do not mention you have additional description such as 
'considering the additional description', 'based on the given description'. Do 
not ask for other information or give unrelated response. 

Additional description : {description}

Image

Figure 13: Prompt for GPT-4V to add details and enhance existing image captions.

Image

You need to evaluate the performance of two models in generating descriptions 
for a pathological image. The task for both models is to meticulously describe the 
visual pathological features evident in the provided image. Below are the 
responses from the two models. You are required to:

1. Carefully examine the provided pathological image and compare the responses 
from both models. Please focus on the description of the visual pathological 
features in the image and avoid placing too much emphasis on purely textual 
pathological expressions that are unrelated to the image.
2. Provide a comparison of the responses based on the given image, and analyze 
which model performed better. Conclude by stating which model is superior in 
the last line using the format “Model X is better” or “Both models are equally 
good” if you believe both models performed equally well.

Model A: {Caption generated by A} 

Model B: {Caption generated by B}

Figure 14: Prompt for GPT-4o to evaluate the quality of descriptions generated by two comparative
multimodal models.

2https://github.com/mlfoundations/open_clip
3https://github.com/haotian-liu/LLaVA
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You need to modify the description generated by a multimodal model to intentionally introduce discrepancies that are 
inconsistent with the original image content described. The changes should adhere to the following requirements:

1. Modifications must be logically coherent and consistent with general pathological knowledge, but they should 
contradict or omit details relative to the described image content.
2. You need to specify the changes you make. For additions, include the sentence preceding the new content. Format 
the modifications as a JSON array, with each change detailed as follows:
    - For edits: {'before': 'original text', 'after': 'modified text', 'mode': 'edit', 'edit_content': 'description of change'}
    - For additions: {'before': '', 'after': 'added text', 'mode': 'add', 'previous_sentence': 'text before addition'}
    - For deletions: {'before': 'original text', 'after': '', 'mode': 'delete'}
3. Ensure there are 3-4 additions and deletions. Present the modifications in a JSON format like:
    {"changes": [change1, change2, ….] }

Description: {description}

Figure 15: Prompt for GPT4 to transform generated captions into erroneous versions and to specify
the corresponding operations (add, delete, edit).

This image is a pathological microscopic view of cells/tissues. Below is the image description.

Description: {description}

Please develop 2-5 high-quality, logically structured, challenging Q&A questions. Keep the following guidelines in mind: 
1. Focusing on the cellular and tissue feature/morphology/diagnosis. 
2. Frame the questions to resemble professional pathology exam questions, and ensure that each question has an 
answerable solution. 
3. The questions should be designed that the answers are discernible only through careful observation of the image. 
4. Ensure the answers are in detail and cannot be easily guessed.
5. Besides asking questions like "xxx feature suggests/indicative/consistent with  xxx," you must include questions that 
directly ask about the characteristics observed in the objects within the pathology image, such as "What features does 
the cell/tissue/xxx exhibit?"
6. Provide the questions along with their respective answers. Do not mention the answers are based on any provided 
description.\n\n'''+''' The answer should follow a JSON format: {"questions":[{"question": xxx, "answer": xxx}]}'''

Figure 16: Prompt for GPT4 to generate open-ended QA-based instruction-tuning data based on
existing descriptions.

This image is a pathological microscopic view of cells/tissues. Below is the image description.

Description: {description}

Please develop 1-3 high-quality multiple-choice questions. Keep the following guidelines in mind: 
1. Focusing on the cellular and tissue feature/morphology/diagnosis. 
2. Frame the questions to resemble professional pathology exam questions, and ensure that each question has an 
answerable solution. 
3. Besides asking questions like "xxx feature suggests/indicative/consistent with  xxx," you must include questions 
that directly ask about the characteristics observed in the objects within the pathology image, such as "What features 
does the cell/tissue/xxx exhibit?"
4. The questions should be designed that the answers are discernible only through careful observation of the image.
5. The correct answer choices need to be deceptive; they cannot be easily guessed by just taking a shot in the dark. 
6. Provide the questions along with their respective answers and explanations. Do not mention that the answers are 
based on any provided description.

The answer should follow a JSON format: 
[{"question": xxx, "options": ['A) xxx', ....], "answer": xxx, "explanation": xxx}]'''

Figure 17: Prompt for GPT4 to generate multi-choice QA-based instruction-tuning data based on
existing descriptions.
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This image is a tissue patch 
from a {source of tissue} 
whole slide image of TCGA-
{source of TCGA}. Please 
list 20 pathological features 
or attributes that might 
appear in this type of 
whole slide image.

Your task is to extract descriptions of histomorphological characteristics 
evident in a whole slide image from the pathology report. The summary should: 

1. Concentrate solely on the features visible in the microscopic image, 
disregarding any additional, non-visible details like descriptions of the gross 
morphology of the pathological specimen, clinical data, and measurements in 
centimeters (cm) and grams (g). 
2. Retain the original terminology with high fidelity. 
3. Refrain from using terms like 'mentioned,' 'description,' or 'report.' 
4. Should the summary surpass 50 words, it must be divided into multiple 
segments, each not exceeding 50 words. 
5. The summary must be presented in JSON format, structured as 
{"summary_part1": "<content>", "summary_part2": "<content>"}

Report: {WSI report}

Figure 18: Prompt for generating attribute-based and finding-based text prompts for PathGen-CLIP,
used to retrieve the most representative patches from WSIs.

Table 12: Classes for each dataset on zero-shot image classification. Note that we used the same
prompt templates for each dataset. The templates used are: [ ’An H&E image of {}’, ’this is an image
of {} presented in image’, ’An H&E patch of {}’, ]

Dataset Classes

PatchCamelyon ’lymph node’, ’lymph node metastasis’

NCK-CRC ’Adipose’, ’Debris’, ’Lymphocytes’, ’Mucus’, ’Smooth
muscle’, ’Normal colon mucosa’, ’Cancer-associated
stroma’, ’Colorectal adenocarcinoma epithelium’

LC25000Lung ’Lung adenocarcinoma’, ’benign lung tissue’, ’lung
squamous cell carcinomas’

LC25000Colon ’Colon adenocarcinoma’, ’normal colon tissue’

BACH ’Benign tissue’, ’In-situ carcinoma’, ’Invasive
carcinoma’, ’Normal tissue’

SICAPv2 ’Non-cancerous’, ’Atrophic well differentiated and dense
glandular regions’, ’Cribriform, ill-formed, large-fused
and papillary glandular patterns’, ’Isolated cells or file of
cells, nests of cells without lumina formation and
pseudo-rosetting patterns’

Osteo ’Non-tumor’, ’Necrotic tumor’, ’Viable tumor’

SkinCancer ’Non-tumor chondral tissue’, ’Non-tumor dermis’,
’Non-tumor elastosis’, ’Non-tumor epidermis’,
’Non-tumor hair follicle’, ’Non-tumor skeletal muscle’,
’Non-tumor necrosis’, ’Non-tumor nerves’, ’Non-tumor
sebaceous glands’,’Non-tumor subcutis’, ’Non-tumor
sweat glands’, ’Non-tumor vessel’,’Tumor epithelial basal
cell carcinoma’, ’Tumor epithelial squamous cell
carcinoma’, ’Tumor melanoma’, ’Tumor naevus’

WSSS ’tumor’, ’normal’
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Table 13: Datasets used in our study and their corresponding source links
Dataset Source Link
PatchCamelyon17 https://patchcamelyon.grand-challenge.org/Download/
CRC-100K https://zenodo.org/records/1214456
SICAPv2 https://data.mendeley.com/datasets/9xxm58dvs3/1
BACH https://iciar2018-challenge.grand-challenge.org/Dataset/
Osteo https://journals.plos.org/plosone/article?id=10.1371/journal.pone.

0210706
SkinCancer https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:

10.11588/data/7QCR8S
MHIST https://bmirds.github.io/MHIST
WSSS4LUAD https://wsss4luad.grand-challenge.org/
LC25000 (LC-Lung and LC-
Colon)

https:
//github.com/tampapath/lung_colon_image_set?tab=readme-ov-file

BRCAS https://www.bracs.icar.cnr.it/
Camelyon17 https://camelyon17.grand-challenge.org/Data/
Camelyon16 https://camelyon16.grand-challenge.org/Data/
PathMMU https://pathmmu-benchmark.github.io/#/

31

https://patchcamelyon.grand-challenge.org/Download/
https://zenodo.org/records/1214456
https://data.mendeley.com/datasets/9xxm58dvs3/1
https://iciar2018-challenge.grand-challenge.org/Dataset/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210706
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210706
https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/7QCR8S
https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/7QCR8S
https://bmirds.github.io/MHIST
https://wsss4luad.grand-challenge.org/
https://github.com/tampapath/lung_colon_image_set?tab=readme-ov-file
https://github.com/tampapath/lung_colon_image_set?tab=readme-ov-file
https://www.bracs.icar.cnr.it/
https://camelyon17.grand-challenge.org/Data/
https://camelyon16.grand-challenge.org/Data/
https://pathmmu-benchmark.github.io/##/


Published as a conference paper at ICLR 2025

D EXAMPLES

D.1 GENERATED IMAGE-CAPTION PAIRS

Figures 20 to 24 showcase the descriptions we generated and the captions after summarization.

D.2 GPT-4O EVALUATION EXAMPLES

Figures 25 to 28 showcase the evaluation of description quality generated by PathGen-LLaVA,
Quilt-LLaVA, and LLaVA-Med-v1.5 using GPT-4o. These figures intricately demonstrate the specific
strengths of our generated descriptions.

D.3 PATHGEN-INSTRUCT EXAMPLES

Figures 29 and 30 showcase the multi-choice QA-based and open-ended-based instruction-tuning
samples in PathGen-Instruct-200K.
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Figure 19: Comparison of image quality from different datasets: OpenPath, PathCap, Quilt, and
PathGen.
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Generated description: The image shows a section of liver tissue with numerous cells 
exhibiting various morphological characteristics. The cells have large, round to oval nuclei with 
prominent nucleoli, which is typical for hepatocytes. Some of the cells contain multiple nuclei, 
suggesting they may be binucleated or multinucleated, which can be a normal variation in liver 
tissue. The cytoplasm of the cells appears eosinophilic, which is pinkish in color due to the 
staining technique used.

There are clear spaces within the cytoplasm of some cells, which could represent vacuolation 
or lipid droplets, a common feature in certain liver pathologies. The overall architecture of the 
tissue appears to be preserved, with no immediate signs of fibrosis or significant disruption of 
the normal lobular pattern.

The presence of red blood cells can be observed within the sinusoidal spaces, which are the 
small blood vessels within the liver. There is no obvious evidence of inflammatory infiltrate or 
neoplastic changes in this particular field of view. However, without additional context or 
staining, it is difficult to provide a definitive diagnosis or to identify subtle changes that might 
be present.

Summarized caption: The liver tissue section displays 
hepatocytes with large, round nuclei and eosinophilic 
cytoplasm, some binucleated. Notable are vacuoles or 
lipid droplets in the cytoplasm. Sinusoids contain red 
blood cells; the architecture is largely intact with no 
signs of fibrosis, inflammation, or neoplastic changes. 
Further testing is required for a definitive diagnosis.

Tissue origin: Liver

Figure 20: An example of a generated description and summarized caption for a given pathology
image. Different pathological descriptions from various aspects are marked in distinct background
colors.
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Generated description: The image shows a section of tissue with cells that have a somewhat 
irregular architecture. The cells appear to be follicular in nature, which is typical for thyroid 
tissue. They are organized in a pattern that is somewhat disrupted, with variable follicle sizes 
and shapes. The nuclei of the cells are enlarged and hyperchromatic, meaning they are darker 
than usual, suggesting a high nuclear-to-cytoplasmic ratio. There are also some nuclei that 
appear to have irregular contours and some with prominent nucleoli. The stroma, or 
connective tissue, between the follicles seems to be increased, which could indicate a fibrotic 
process. These features are suggestive of a neoplastic process, and given the clinical context of 
a thyroid nodule, could be consistent with a thyroid carcinoma. However, a definitive diagnosis 
would require clinical correlation and possibly additional immunohistochemical staining or 
molecular testing.

Summarized caption: The histological section shows 
pink-staining collagenous stroma and cells with dark 
nuclei, likely lymphocytes, indicating inflammation. 
Larger cells suggest histiocytes. Absence of thyroid 
follicles suggests atrophy. These features, combined 
with the clinical history, may indicate Hashimoto's 
thyroiditis in a patient with Graves' disease and a 
diffuse goiter. Confirmation requires further clinical 
and immunohistochemical evaluation.

Tissue origin: Thyroid

Figure 21: An example of a generated description and summarized caption for a given pathology
image. Different pathological descriptions from various aspects are marked in distinct background
colors.
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Generated description: The microscopic image shows a section of lung tissue with several 
morphological features. The tissue is composed of cells with a high nucleus-to-cytoplasm ratio, 
which is indicative of a high cellular density. The nuclei appear hyperchromatic and 
pleomorphic, suggesting variability in size and shape, which can be a sign of cellular atypia. 
There are also areas where the cells are arranged in a glandular or acinar pattern, which is 
typical of certain types of lung tissue, such as adenocarcinoma. The stroma, or connective 
tissue, appears to be fibrous with some inflammatory cells scattered throughout.

Based on the morphological characteristics observed in the image, a differential diagnosis 
could include a form of lung carcinoma, such as adenocarcinoma, given the glandular 
structures and cellular atypia. However, a definitive diagnosis would require clinical correlation 
and possibly additional immunohistochemical staining or molecular studies.

Summarized caption: The lung tissue image displays 
cells with a high nucleus-to-cytoplasm ratio, 
hyperchromatic and pleomorphic nuclei, suggesting 
cellular atypia. Cells form glandular patterns, 
indicative of adenocarcinoma. The stroma is fibrous 
with inflammation. Differential diagnosis points to 
lung carcinoma, possibly adenocarcinoma, pending 
further clinical and molecular analysis for confirmation.

Tissue origin: Lung

Figure 22: An example of a generated description and summarized caption for a given pathology
image. Different pathological descriptions from various aspects are marked in distinct background
colors.
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Generated description: The image displays a section of tissue with various cellular and 
structural features. On the left side of the image, there is a cluster of cells with a high nucleus-
to-cytoplasm ratio, pleomorphic nuclei, and prominent nucleoli, which are indicative of 
malignant cells. These cells are irregularly shaped and vary in size, suggesting a lack of normal 
cellular differentiation and tissue architecture.

The right side of the image shows a more organized structure with elongated cells that have a 
regular, spindle-shaped morphology. These cells are arranged in a parallel fashion, which is 
characteristic of smooth muscle or fibrous tissue. The boundary between the two areas is not 
sharply defined, indicating possible infiltration of the malignant cells into the adjacent tissue.

The overall features are consistent with a urothelial carcinoma, which is a common type of 
bladder cancer. The presence of atypical cells infiltrating into the muscularis propria suggests a 
higher stage of disease, as this indicates that the cancer has penetrated beyond the urothelial 
lining into the deeper muscle layer of the bladder wall.

Summarized caption: The image shows malignant 
urothelial carcinoma cells with high nucleus-to-
cytoplasm ratios, pleomorphic nuclei, and prominent 
nucleoli on the left. These cells infiltrate the organized, 
spindle-shaped cells of the muscularis propria on the 
right. The irregular cell shapes and disrupted tissue 
architecture indicate advanced disease, reflecting the 
cancer's penetration into deeper bladder layers.

Tissue origin: Bladder

Figure 23: An example of a generated description and summarized caption for a given pathology
image. Different pathological descriptions from various aspects are marked in distinct background
colors.
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Generated description: The image shows a section of colonic tissue with several notable 
features. The mucosal layer is visible with columnar epithelial cells lining the lumen. Goblet 
cells, which are mucus-secreting cells, can be seen interspersed between the epithelial cells. 
The lamina propria, which is the connective tissue layer beneath the epithelium, appears to 
have a dense infiltrate of inflammatory cells, including lymphocytes and plasma cells.

There is also evidence of crypt architectural distortion, with some crypts appearing irregular 
and branching, which is a sign of chronic inflammation. The submucosa appears to be 
expanded and contains more inflammatory cells, and there is a loss of the normal orderly 
arrangement of the crypts.

The presence of these features, particularly the crypt distortion and the dense inflammatory 
infiltrate in the lamina propria, is consistent with chronic colitis. The specific diagnosis of 
ulcerative colitis (UC) or Crohn's disease (CD) would typically require clinical correlation and 
additional features not visible in this image, such as ulcers or granulomas respectively.

Summarized caption: The colonic tissue image shows 
a mucosal layer with columnar epithelial cells and 
goblet cells, and a lamina propria with dense 
inflammatory infiltrate. Crypt architecture is distorted. 
These findings suggest chronic colitis. Differentiation 
between ulcerative colitis and Crohn's disease 
requires further clinical correlation and specific 
pathological characteristics like ulcers or granulomas.

Tissue origin: Colon

Figure 24: An example of a generated description and summarized caption for a given pathology
image. Different pathological descriptions from various aspects are marked in distinct background
colors.
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GPT-4o: Comparison of Responses Based on the Given Image

Model A:
1.Description of Lobule and Epithelial Cells:

1. Mentions a lobule that is not densely packed with cells and notes the presence of epithelial cells.
2. This description does not seem to directly correspond to the given image, where no clear lobules or 

concentrated epithelial cells are evident.
2.Collagenous Stroma:

1. Describes a significant presence of collagenous stroma in the upper left quadrant and centrally.
2. Correctly identifies the pink, fibrous structures as collagenous stroma and notes the presence of fibroblasts.

Model B:
1.Adipocytes:

1. Accurately identifies the large, white, empty-looking spaces as adipocytes, which characteristically contain 
vacuoles pushed to the side.

2. This is visible in the provided image, corresponding to the large spaces with thin peripheral nuclei.
2.Fibrous Stromal Elements:

1. Appropriately describes the pink, thread-like structures as fibrous stromal elements (collagen fibers).
3.Cellular Features and Neoplastic Changes:

1. Mentions clusters of cells with enlarged, hyperchromatic nuclei and some degree of pleomorphism, indicating 
nuclear atypia and neoplastic changes.

2. Suggests the presence of invasive carcinoma based on the description of these atypical cells.
3. The given image does show irregular nuclei, which aligns with this description.

Analysis:
•Model A provides a less accurate description of the image. The mention of epithelial cells and lobules does not reflect the 
actual contents depicted. Additionally, while it correctly identifies collagenous stroma, it adds details about fibroblasts 
which are not prominently seen or inferable from the image alone.
•Model B accurately describes the adipocytes and fibrous stroma, which are clearly visible in the image. It also identifies 
key pathological features such as enlarged, hyperchromatic nuclei and their disorganized pattern, indicative of neoplastic 
changes, possibly pointing towards invasive carcinoma. This description aligns closely with the visible histological features
in the given image.
Conclusion:
Model B is better.

Model B (PathGen-LLaVA): 
The microscopic image shows a section of breast tissue with several distinct features. There are 
multiple adipocytes, which are the large, white, empty-looking spaces that are characteristic of breast 
tissue. These cells have thin, peripheral nuclei due to the large vacuole of stored fat that pushes the 
nucleus to the side.

Interspersed between the adipocytes are fibrous stromal elements, which appear as pink, thread-like 
structures. These are collagen fibers providing structural support to the tissue.

Within the stroma, there are clusters of cells with enlarged, hyperchromatic nuclei and some degree 
of pleomorphism, which suggests an increased nuclear-to-cytoplasmic ratio. These cells are 
irregularly distributed and vary in size and shape, which is indicative of neoplastic changes.

The presence of these atypical cells within the breast tissue, along with the architectural disruption of 
the normal glandular structures, is suggestive of an invasive carcinoma. The cells' morphology, 
including their nuclear atypia and disorganized growth pattern, supports this diagnosis.

Model A (Quilt-LLaVA): 
Upon examining the histopathology image of the breast, I 
observe a lobule that is not densely packed with cells. The cells 
within this lobule are predominantly epithelial cells, which are 
the primary constituents of the breast tissue. 

In the upper left quadrant of the image, there is a significant 
presence of collagenous stroma. This stroma, which is the 
supportive framework of the breast tissue, appears to be 
interspersed with fibroblasts. These fibroblasts are cells that 
produce collagen and other fibers, contributing to the structural 
integrity of the tissue.

Moving towards the center and slightly to the right of the image, there is a region that is almost 
entirely composed of collagenous stroma. This area is characterized by a dense, fibrous structure, 
indicative of a high collagen content. The fibroblasts in this region appear to be less numerous, 
suggesting a mature and well-structured stromal component.

Figure 25: An example of GPT-4o’s evaluation and comparison of generated descriptions by PathGen-
LLaVAdesp and Quilt-LLaVA.
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GPT-4o:  Upon examining the provided pathological image, the following comparisons and analysis can be made about 

the responses from both models:
Model A:
•Describes the tissue as renal with specific emphasis on malignant features.
•Mentions high pleomorphism, hyperchromatic nuclei, and prominent nucleoli indicative of malignancy.
•Notes the presence of abnormal mitotic figures and disrupted architecture.
•Identifies clear cells with abundant clear cytoplasm, linking these features to clear cell renal cell carcinoma (RCC).
•Highlights sparse, vascularized stroma, characteristic of clear cell RCC, and concludes with a diagnosis of clear cell RCC.
Model B:
•Describes the tissue as kidney and mentions the presence of inflammatory cells.
•Focuses on the distribution of inflammatory cells in interstitial spaces and tubules.
•Describes the inflammation as patchy with some areas having a higher density of inflammatory cells.
•Concludes by suggesting a chronic inflammatory process possibly due to an ongoing disease condition.
Comparison and Analysis:
•Accuracy in Describing Visual Features:

• Model A: Accurately identifies features such as pleomorphism, hyperchromatic nuclei, prominent nucleoli, 
abnormal mitotic figures, clear cells with abundant cytoplasm, and vascular stroma which are all visible in the 
image. It provides a cohesive description that matches the pathological features seen.

• Model B: Mentions inflammatory cells and their distribution in interstitial spaces and tubules. While there is 
scattering of cells, the description does not match the image which heavily leans towards features of malignancy, 
specifically characteristics of clear cell RCC rather than chronic inflammation.

•Overall Observation:
• Model A properly identified the specific type of pathology, matching its description with the visual details in the 

image such as clear cells and pleomorphism.
• Model B provides a detailed account of inflammatory processes but does not align well with the image features 

that indicate malignant characteristics.
Based on the accuracy and relevance to the provided image:
Model A is better

Model B (Quilt-LLaVA): 
The histopathology image reveals a kidney tissue sample with a notable presence of inflammatory 
cells. These cells are scattered throughout the tissue, indicating an ongoing inflammatory response. 
The cells are predominantly located in the interstitial spaces, which is a common site for 
inflammation in the kidney.

In addition to the interstitial inflammation, there is also evidence of inflammation within the tubules. 
This tubular inflammation is characterized by the infiltration of inflammatory cells into the tubular 
lumen. The tubules appear to be affected in a patchy manner, suggesting a non-uniform distribution 
of the inflammatory process.

The image also shows a few areas where the inflammation seems to be more pronounced. These 
areas are characterized by a higher density of inflammatory cells, indicating a more severe or active 
phase of inflammation. The overall picture is suggestive of a chronic inflammatory process, possibly 
due to an ongoing disease condition.

Model A (PathGen-LLaVA): 
The microscopic image displays a section of renal tissue with 
several notable features. The cells exhibit a high degree of 
pleomorphism, with some cells having large, hyperchromatic 
nuclei and prominent nucleoli, which are indicative of malignant 
transformation. There is also evidence of abnormal mitotic figures, 
which are consistent with neoplastic activity. The architecture of 
the tissue is disrupted, lacking the organized structure typically 
seen in normal renal parenchyma. The presence of clear cells, 
which are large cells with abundant clear cytoplasm and distinct 
cell borders, is characteristic of clear cell renal cell carcinoma 
(RCC). The stroma appears to be sparse and vascularized, which is 
common in clear cell RCC. The overall features observed are 
consistent with a diagnosis of clear cell renal cell carcinoma.

Figure 26: An example of GPT-4o’s evaluation and comparison of generated descriptions by PathGen-
LLaVAdesp and Quilt-LLaVA.
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GPT-4o: Upon examining the provided histology image of the prostate and comparing the responses, the following 

analysis can be made:
Model A:
•Describes the presence of nucleoli within the nuclei of the cells, which is accurate upon observation of the image.
•Highlights that nucleoli are indicative of a high level of cellular activity but not necessarily malignancy.
•Lacks detail about other features present in the image, such as glandular structures, stroma, or variability in cell size and
shape.
Model B:
•Offers a more comprehensive description of the pathological features evident in the image.
•Accurately describes the presence of irregularly shaped glandular structures lined by epithelial cells and notes variability 
in cell size and shape.
•Comments on prominent nucleoli, suggestive of neoplastic changes, correlating well with the image.
•Includes observation of the fibrous stroma with a pinkish hue, indicating connective tissue presence.
•Mentions the lack of evidence of invasive malignancy yet observes architectural distortion and cellular atypia, suggesting 
possible prostatic intraepithelial neoplasia (PIN).
Given the image and the required detailed pathological description, Model B has provided a more thorough and accurate 
analysis of the visual features in the image. It covers more aspects of the tissue structure and offers insights into potential 
pathological conditions.
Model B is better.

Model B (PathGen-LLaVA): 
The image shows a section of prostate tissue with glandular structures that are irregularly shaped and 
lined by epithelial cells. The cells exhibit some variability in size and shape, with prominent nucleoli, 
which is suggestive of neoplastic changes. The stroma between the glands appears fibrous with a 
pinkish hue, indicating connective tissue. There is no clear evidence of invasion into the surrounding 
stroma by the glandular structures, which would be a feature suggestive of malignancy. However, the 
presence of architectural distortion and cellular atypia could be consistent with prostatic 
intraepithelial neoplasia (PIN), which is a precursor to prostate cancer.

Model A (Quilt-LLaVA): 
The histology image of the prostate reveals a number of 
intriguing features. The most striking aspect is the presence of 
nucleoli within the nuclei of the cells. These nucleoli are clearly 
visible, indicating a high level of cellular activity. However, it's 
important to note that the presence of nucleoli is not 
necessarily indicative of malignancy. In fact, it's quite common 
to observe nucleoli in prostate cells, even in a healthy state.

Figure 27: An example of GPT-4o’s evaluation and comparison of generated descriptions by PathGen-
LLaVAdesp and Quilt-LLaVA.
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GPT-4o: Comparison of Responses Based on the Given Image

Model A:
1.Description of Lobule and Epithelial Cells:

1. Mentions a lobule that is not densely packed with cells and notes the presence of epithelial cells.
2. This description does not seem to directly correspond to the given image, where no clear lobules or 

concentrated epithelial cells are evident.
2.Collagenous Stroma:

1. Describes a significant presence of collagenous stroma in the upper left quadrant and centrally.
2. Correctly identifies the pink, fibrous structures as collagenous stroma and notes the presence of fibroblasts.

Model B:
1.Adipocytes:

1. Accurately identifies the large, white, empty-looking spaces as adipocytes, which characteristically contain 
vacuoles pushed to the side.

2. This is visible in the provided image, corresponding to the large spaces with thin peripheral nuclei.
2.Fibrous Stromal Elements:

1. Appropriately describes the pink, thread-like structures as fibrous stromal elements (collagen fibers).
3.Cellular Features and Neoplastic Changes:

1. Mentions clusters of cells with enlarged, hyperchromatic nuclei and some degree of pleomorphism, indicating 
nuclear atypia and neoplastic changes.

2. Suggests the presence of invasive carcinoma based on the description of these atypical cells.
3. The given image does show irregular nuclei, which aligns with this description.

Analysis:
•Model A provides a less accurate description of the image. The mention of epithelial cells and lobules does not reflect the 
actual contents depicted. Additionally, while it correctly identifies collagenous stroma, it adds details about fibroblasts 
which are not prominently seen or inferable from the image alone.
•Model B accurately describes the adipocytes and fibrous stroma, which are clearly visible in the image. It also identifies 
key pathological features such as enlarged, hyperchromatic nuclei and their disorganized pattern, indicative of neoplastic 
changes, possibly pointing towards invasive carcinoma. This description aligns closely with the visible histological features
in the given image.
Conclusion:
Model B is better.

Model B (PathGen-LLaVA): 
The microscopic image shows a section of breast tissue with several distinct features. There are 
multiple adipocytes, which are the large, white, empty-looking spaces that are characteristic of breast 
tissue. These cells have thin, peripheral nuclei due to the large vacuole of stored fat that pushes the 
nucleus to the side.

Interspersed between the adipocytes are fibrous stromal elements, which appear as pink, thread-like 
structures. These are collagen fibers providing structural support to the tissue.

Within the stroma, there are clusters of cells with enlarged, hyperchromatic nuclei and some degree 
of pleomorphism, which suggests an increased nuclear-to-cytoplasmic ratio. These cells are 
irregularly distributed and vary in size and shape, which is indicative of neoplastic changes.

The presence of these atypical cells within the breast tissue, along with the architectural disruption of 
the normal glandular structures, is suggestive of an invasive carcinoma. The cells' morphology, 
including their nuclear atypia and disorganized growth pattern, supports this diagnosis.

Model A (Quilt-LLaVA): 
Upon examining the histopathology image of the breast, I 
observe a lobule that is not densely packed with cells. The cells 
within this lobule are predominantly epithelial cells, which are 
the primary constituents of the breast tissue. 

In the upper left quadrant of the image, there is a significant 
presence of collagenous stroma. This stroma, which is the 
supportive framework of the breast tissue, appears to be 
interspersed with fibroblasts. These fibroblasts are cells that 
produce collagen and other fibers, contributing to the structural 
integrity of the tissue.

Moving towards the center and slightly to the right of the image, there is a region that is almost 
entirely composed of collagenous stroma. This area is characterized by a dense, fibrous structure, 
indicative of a high collagen content. The fibroblasts in this region appear to be less numerous, 
suggesting a mature and well-structured stromal component.

Figure 28: An example of GPT-4o’s evaluation and comparison of generated descriptions by PathGen-
LLaVAdesp and LLaVA-Med-v1.5.
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Multi-choice QA

Question: Which of the following cellular features is
observed in the epithelial cells lining the duct-like
structures?

Option:

(A) Necrosis
(B) Increased mitotic figures
(C) Hyperchromasia
(D) Presence of prominent nucleoli

Answer: C

Question: Which feature in the image is atypical for
normal liver architecture?

Option:

(A) Presence of hyperchromatic nuclei
(B) Scattered inflammatory cells in the surrounding

stroma
(C) Presence of pink-staining collagen fibers in the

stroma
(D) Hepatocytes arranged in a trabecular pattern

Answer: D

Figure 29: An example of a multi-choice QA-based instruction tuning sample from PathGen-Instruct-
200K.
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The cells have a variable amount of eosinophilic cytoplasm, which 
indicates the presence of smooth muscle cells or myofibroblastic
cells.

What evidence is there in the image that the cells might be 
experiencing cellular atypia, despite the absence of mitotic 
figures and necrosis?

The cells are arranged in interlacing fascicles, which is 
characteristic of smooth muscle or myofibroblastic proliferation.

The nuclei in the spindle-shaped cells are elongated and vary 
in size and shape, with some showing hyperchromasia.

What characteristic feature of the nuclei is observed in the 
spindle-shaped cells in this microscopic image?

Describe the arrangement of the cells within the tissue section. 
What does this arrangement suggest about the type of cells 
present?

What type of cytoplasmic staining is observed in the cells, 
and what might this indicate about the cellular composition?

Dialogue-based 
Open-ended QA

The nuclei vary in size and shape, with some showing 
hyperchromasia, which indicates a degree of cellular atypia, even 
though there are no mitotic figures or necrosis visible.

Figure 30: An example of a dialogue based open-ended QA instruction tuning sample from PathGen-
Instruct-200K.
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