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Abstract

Algorithmic stability—the robustness of predictions to training data perturbations—is fun-
damental to reliable machine learning. We propose a unified mathematical framework that
rigorously distinguishes between two sources of instability: structural inconsistency and
statistical variance. We formalize structural inconsistency using Combinatorial Hodge The-
ory, characterizing it as cyclical flows (Condorcet cycles) on a graph of hypotheses. This
framework reveals that methods like inflated operators and regularization specifically tar-
get these structural obstructions, while methods like bagging primarily address statistical
variance. We provide direct empirical validation through three key experiments. First, in a
controlled setting with engineered Condorcet cycles (pure structural instability), inflated op-
erators achieve perfect stability while bagging fails, confirming the core distinction. Second,
we validate on a standard digit classification task that structural obstructions are negligible
(||Ccycle|| ≈ 2.3×10−16, machine precision), explaining the empirical dominance of variance-
reduction methods. Third, we demonstrate that significant structural obstructions naturally
emerge in fairness-constrained model selection on real-world data (||Ccycle|| = 0.857, approx-
imately 1015 times larger), providing a topological characterization of the instability arising
from incompatible objectives.

1 Introduction

The generalization performance of machine learning models is deeply connected to their stability—the ro-
bustness of outputs to perturbations in the training data (Bousquet & Elisseeff, 2002). Stability matters not
only for training algorithms but also for any data-driven selection procedure: choosing among pre-trained
models, selecting from ensembles, or aggregating predictions. Methods to enhance stability have been devel-
oped across these contexts, including bagging (Breiman, 1996; Soloff et al., 2024), regularization (Bousquet
& Elisseeff, 2002), and more recently, "inflated" operators (Adrian et al., 2024; Liang et al., 2025).

While effective, these methods appear disconnected, and it is often unclear which method is appropriate
for a given source of instability. Moreover, the classical stability framework assumes i.i.d. data from a
single distribution, but modern applications face distribution shift, domain adaptation, and multi-objective
learning where this assumption fails. This fragmentation raises a fundamental question: Can we rigorously
distinguish the sources of instability and unify the approaches to address them across both single- and
multi-distributional settings?

We argue the answer is yes, provided by the tools of Combinatorial Hodge Theory applied to the geometry
of preferences. We propose that instability arises from two distinct sources: statistical variance (sensitivity
of the learning process to noise or near-ties) and structural inconsistency (fundamental conflicts in the data
preferences). We can conceptualize structural inconsistency by viewing subsets of the data as "voters" and
the potential models as "candidates."
Example 1.1 (Running Example: The Ranking Cycle). Consider selecting the best model among three
candidates {A,B,C}. Suppose one subset of the data (voter group 1) strongly suggests A is better than B
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(A > B). A second subset suggests B > C, and a third suggests C > A. This creates a cycle: A > B > C >
A. No single global ranking can satisfy all local preferences. An algorithm forced to choose a single winner
will be highly unstable in this scenario.

This scenario is the well-known Condorcet Paradox. We demonstrate that these paradoxes, which can be
rigorously characterized by the cyclical component in a Hodge decomposition (Lim, 2020; Jiang et al., 2011),
represent structural instability. This leverages established connections between social choice theory and
algebraic topology (Chichilnisky, 1980; Baryshnikov, 1993).

While we find that structural inconsistencies are rare in standard supervised learning tasks—explaining
the empirical success of methods like bagging—we demonstrate that they arise naturally in domains with
conflicting objectives, such as fairness-aware machine learning. Our framework provides a mathematical
characterization of the inherent instability in these scenarios.

Our framework formalizes the stability problem as one of preference aggregation under metric constraints.
We show that:

1. The Hodge decomposition of ordinal preferences characterizes the mathematical conditions that
determine the source of instability. A non-zero cyclical component (Ccycle > 0) indicates structural
inconsistency, while Ccycle ≈ 0 indicates instability is primarily due to statistical variance.

2. Structural inconsistency requires structural solutions. Inflated operators provide obstruction reso-
lution (target space enlargement), while regularization can provide obstruction prevention.

3. Statistical variance is effectively addressed by variance reduction techniques like bagging. Crucially,
we demonstrate that bagging is ineffective against pure structural instability.

4. We demonstrate that the framework naturally generalizes beyond the standard single-distribution
setting to encompass distribution shift, domain adaptation, and multi-objective learning. The stan-
dard algorithmic stability framework (i.i.d. samples from a single distribution) emerges as a special
case—the restriction of the preference sheaf to a single point in distribution space. This gener-
alization provides a rigorous mathematical foundation for understanding instability arising from
heterogeneous data sources or conflicting distributional objectives.

This framework provides mathematical unification, revealing deep connections between algorithmic stabil-
ity, social choice theory, and algebraic topology, and provides theoretical insight into selecting appropriate
stabilization methods.

2 Related Work

Our work sits at the intersection of algorithmic stability, topological data analysis, and social choice theory.

2.1 Foundations of Algorithmic Stability

The foundational work of Bousquet & Elisseeff (2002) established the link between algorithmic stability
and generalization. The standard paradigm often addresses stability through statistical variance reduction,
canonically exemplified by bagging (Breiman, 1996), whose assumption-free stability properties have been
recently formalized (Soloff et al., 2024).

More recently, research has focused on the instability inherent in selection procedures like the argmax.
Inflated operators (Adrian et al., 2024; Liang et al., 2025) address this by returning a stable set of near-
optimal solutions, motivated largely by the metric sensitivity of the loss function under near-ties. Our
work provides a unifying theoretical framework that reinterprets these methods as strategies for handling
topological obstructions in the underlying data preferences.
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2.2 Topological Data Analysis in Machine Learning

The application of Topological Data Analysis (TDA) to machine learning is a growing field ((Wasserman,
2018; Hensel et al., 2021; Zia et al., 2024)). Much of this work focuses on the geometry of the parameter
space or the loss landscape. For instance, persistent homology and Morse theory have been used to identify
obstructions to optimization, such as the structure of local minima and saddle points (Barannikov et al.,
2020).

Crucially, our work analyzes the geometry of the preference space—how data induces rankings over the
hypothesis space. The obstructions we identify are not features of the optimization landscape, but rather
fundamental inconsistencies in the problem definition itself (conflicting data preferences), which exist inde-
pendently of the optimization procedure.

2.3 Cohomology and Hodge Theory in ML

The mathematical tools we employ have precursors in related ML domains, though their application and
interpretation differ significantly from ours.

Fairness. The foundational theory of topological social choice (Chichilnisky, 1980; Baryshnikov, 1993) has
been applied to diagnose impossibility results in fairness. Prior work demonstrates that simultaneously
satisfying disparate fairness criteria can be impossible due to Condorcet-like cycles across different metrics.
Our work generalizes this insight from fairness to the foundational property of algorithmic stability.

Rank Aggregation. Combinatorial Hodge theory was introduced to the problem of rank aggregation
by Lim (2020); Jiang et al. (2011). They utilized the Hodge decomposition to extract a global ranking
(the gradient component) from pairwise comparison data and quantify the remaining inconsistencies (the
cyclical components). While this provides a powerful tool for analyzing ranking data, our work makes
the crucial connection between this mathematical structure and algorithmic stability. We reinterpret the
cyclical component as the obstruction that causes instability, thereby providing a unifying framework for
understanding stability-enhancing methods like bagging and inflated operators.

3 Stability as Constrained Preference Aggregation

We formalize the learning problem and stability constraints, analyzing how local data preferences can conflict.

3.1 The Learning Setup and Stability

Let X be the data space and let P denote a family of probability distributions over X . We define the dataset
space D as the space of all training datasets of fixed size N that may be encountered in practice, potentially
arising from different distributions in P.

Distributional Structure. In the most general setting, D encompasses datasets sampled from a mixture or
family of distributions, representing scenarios such as distribution shift, domain adaptation, or heterogeneous
data sources. We equip D with an adjacency structure: two datasets S, S′ ∈ D are adjacent if they are
sufficiently similar in the distributional sense. This can be formalized via:

• Point-wise adjacency: S and S′ differ by exactly one data point (standard leave-one-out).

• Distributional adjacency: The empirical measures P̂S and P̂S′ satisfy Wp(P̂S , P̂S′) < δ for some
Wasserstein distance Wp and tolerance δ > 0.

The Standard Case as Specialization. When P = {P0} consists of a single distribution and datasets
are sampled i.i.d. from P0, point-wise adjacency coincides with the classical leave-one-out perturbation.
The algorithmic stability literature (Bousquet & Elisseeff, 2002) primarily focuses on this special case. Our
framework naturally generalizes to accommodate the multi-distributional setting, treating the standard case
as the restriction of the sheaf to a single point (see Section 4.5).
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Throughout, we write D to denote the support of the dataset distribution, equipped with a prescribed
probability measure µ over this distributional mixture. Expectations are taken with respect to µ.

Let H be the hypothesis space, equipped with a metric dH. Let L : H × D → R be the loss function. A
learning algorithm A : D → H aims to select A(S) ≈ arg minh∈H L(h, S).
Definition 3.1 (Algorithmic Stability). An algorithm A is ϵ-stable if for any two adjacent datasets S, S′ ∈ D:
dH(A(S), A(S′)) ≤ ϵ.

3.2 Local Preferences and the Accuracy-Stability Tradeoff

The loss function induces preferences over the hypothesis space for each dataset.
Definition 3.2 (Induced Preference Relation). For a dataset S, we say h1 is preferred over h2 (denoted
h1 >S h2) if L(h1, S) < L(h2, S).

To capture the set of viable hypotheses, we define the set of near-optimal solutions.
Definition 3.3 (Near-Optimal Hypothesis Set). For accuracy tolerance δ ≥ 0, the δ-optimal hypothesis set
for dataset S is: Oδ(S) := {h ∈ H|L(h, S) ≤ minh′∈H L(h′, S) + δ}.

The fundamental challenge is finding an algorithm that is simultaneously accurate and stable.
Definition 3.4 (The Stable Selection Problem). Given ϵ, δ ≥ 0, the Stable Selection Problem is to find a
map A : D → H such that for all S, S′ ∈ D:

1. A(S) ∈ Oδ(S) (Accuracy)

2. If S, S′ are adjacent, dH(A(S), A(S′)) ≤ ϵ (Stability)

To ensure the problem is well-posed, we assume standard regularity conditions.
Assumption 3.5. The dataset space D (as defined by adjacency) is connected.

This assumption is necessary to analyze the global implications of local stability constraints. If D were
disconnected, an algorithm could be locally stable within each component but globally unstable across
components. For the definition of D given above (fixed size N , differing by one point), this connectivity
generally holds.

4 Cyclical Obstructions to Stability

We introduce the mathematical framework used to characterize inconsistencies in preferences. While moti-
vated by deep connections between social choice theory and abstract algebraic topology (Chichilnisky, 1980;
Baryshnikov, 1993, see Appendix A), we utilize the concrete machinery of Combinatorial Hodge Theory
(Lim, 2020; Jiang et al., 2011). This approach analyzes flows on a graph, providing a rigorous and accessible
way to quantify structural inconsistencies (cycles) in the data preferences.

4.1 The Graph of Hypotheses and Preference Flows

We focus on a finite subset of relevant hypotheses Hk = {h1, . . . , hk} (e.g., models in an ensemble or
candidates in model selection). We construct a complete graph K where the vertices are the hypotheses Hk.

We analyze the preferences induced by the data over these hypotheses. As introduced earlier, we view the
collection of datasets D as "voters." In practical contexts, such as analyzing an existing ensemble on a test
set (as in Experiment 2), individual data points can also serve as the voters, providing an empirical estimate
of the preferences.
Definition 4.1 (Preference Profile). A preference profile P is a collection of preference relations {>S}S∈D
over Hk.
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We are interested in how these preferences manifest as flows on the edges of the graph K.
Definition 4.2 (Cochains/Flows).

• A 0-cochain is a function assigning values to vertices (e.g., a loss or utility function).

• A 1-cochain (or flow) is a function assigning values to edges (e.g., pairwise comparisons).

The fundamental operator connecting these is the coboundary operator d0. It transforms a 0-cochain (po-
tential) f into a 1-cochain (flow): (d0f)(hi, hj) = f(hj) − f(hi).
Definition 4.3 (Gradient Flow). A flow C is a gradient flow (or coboundary) if it can be derived from a global
potential function, i.e., C = d0f . Gradient flows represent perfectly consistent preferences corresponding to
a global ranking.

4.2 Aggregating Preferences: The Importance of Ordinal Data

To analyze stability, we must aggregate the local preferences in the profile P into a single global flow CP on
the graph K. The method of aggregation is critical.

Cardinal Aggregation. If we aggregate the losses (cardinal values) directly, e.g., by averaging the loss
differences across datasets: Ccard

P (hi, hj) = ES∼D[L(hj , S) − L(hi, S)]. This construction always results in
a gradient flow, as it is the gradient of the aggregate loss function Lagg(h) = ES [L(h, S)]. Therefore, Ccard

P

cannot detect Condorcet cycles. To see this explicitly, define Lagg(h) := ES [L(h, S)]. Then:

Ccard
P (hi, hj) = ES [L(hj , S) − L(hi, S)]

= Lagg(hj) − Lagg(hi) = (d0Lagg)(hi, hj).

Thus Ccard
P = d0Lagg is a gradient flow by construction.

Ordinal Aggregation (Pairwise Majority Vote). To detect structural inconsistencies analogous to
those in social choice theory, we must aggregate the rankings (ordinal preferences). We define the Ordinal
Preference Flow Cord

P using Pairwise Majority Vote (PMV): Cord
P (hi, hj) = PS∼D(hi >S hj) − PS∼D(hj >S

hi). This represents the net preference for hi over hj across the dataset distribution. Crucially, Cord
P is

generally not a gradient flow.

Aggregation Across Distributions. In the general distributional setting where datasets in D may arise
from different source distributions P ∈ P, the ordinal aggregation via PMV naturally captures conflicts
between distributional preferences.

Consider a scenario where different subregions of the data space are governed by different distributions (e.g.,
different demographic groups in fairness applications, different domains in transfer learning, or different
wilderness areas in ecological classification). Each distribution Pi induces local preferences over hypotheses.
The aggregated flow Cord

P synthesizes these potentially conflicting local preferences into a global structure.

When datasets from distribution Pi consistently prefer ha over hb, while datasets from distribution Pj

consistently prefer hb over ha, the ordinal aggregation reveals this structural conflict. If such conflicts form
cycles across multiple distributions, the resulting Cord

P exhibits a non-zero cyclical component, indicating
that no single hypothesis can simultaneously satisfy the preferences induced by all distributions in P.

Formally, we can decompose the preference flow by distribution:

Cord
P (hi, hj) =

∑
P ∈P

wP · Cord
P (hi, hj) (1)

where wP is the weight (prevalence) of distribution P in the mixture, and Cord
P is the preference flow induced

by datasets sampled from P alone. Cyclical obstructions arise when the local flows {Cord
P }P are mutually

inconsistent in their global aggregation.

Empirical estimation: In practice, we estimate the preference profile using a test set. Individual test
points x reveal the preference structure induced by training on different data samples: Cord

P (hi, hj) ≈
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1
n

∑
x∈X [1ℓ(hi,x)<ℓ(hj ,x) − 1ℓ(hj ,x)<ℓ(hi,x)], where ℓ(h, x) is the pointwise loss and 1 denotes the indicator

function. This empirically estimates the aggregate preference relationship between hypotheses.

4.3 Hodge Decomposition and Cyclical Obstructions

We use the Hodge decomposition theorem to analyze the structure of the ordinal preference flow Cord
P . The

divergence operator δ1 : C1 → C0 is the adjoint of d0 with respect to the standard inner product. A flow C
is divergence-free (or harmonic) if δ1C = 0, meaning it has zero net flow at each vertex.
Theorem 4.4 (Hodge Decomposition on Graphs). Any flow C on the graph K can be uniquely and orthog-
onally decomposed as: C = Cgradient + Ccycle. Where Cgradient is a gradient flow (the consistent part), and
Ccycle is a divergence-free flow (the cyclical part).

(See Appendix A.4 for mathematical details and the definition of the divergence operator).

This theorem provides the central tool for our framework. It allows us to quantify the degree to which a
preference profile deviates from a global consensus.
Definition 4.5 (Cyclical Obstruction). The component Ccycle in the Hodge decomposition of the ordinal
preference flow Cord

P is the cyclical obstruction. It mathematically characterizes the structural inconsistency
(Condorcet cycles) inherent in the preference profile P .

The magnitude ||Ccycle|| quantifies the severity of the obstruction. When ||Ccycle|| = 0, the preferences
are perfectly consistent. When ||Ccycle|| > 0, a structural inconsistency exists. In the language of algebraic
topology, Ccycle corresponds to a non-trivial element in the first cohomology group (H1). We use the standard
L2 norm: for a 1-cochain C, ||C|| =

√∑
(i,j)∈edges C(hi, hj)2.

Example 4.6 (The Condorcet Cocycle). The profile (A > B, B > C, C > A) from Example 1.1, if dominant
across the data, results in a Cord

P where the flow is purely cyclical (Cgradient = 0). This is the canonical
example of a structural obstruction.

4.4 Mapping Obstructions to Instability

We now connect this mathematical structure back to the Stable Selection Problem. While the existence
of a cyclical obstruction (||Ccycle|| > 0) indicates inconsistency, instability arises when this inconsistency is
sufficiently strong and localized.
Definition 4.7 (Strong Structural Inconsistency). A preference profile P exhibits a strong structural in-
consistency with margin γ > 0 if there exists a cycle of hypotheses {h1, . . . , hk} and disjoint regions of
the dataset space, Di ⊆ D, such that for S ∈ Di, hi is strongly preferred over hi+1 (indices modulo k):
L(hi, S) < L(hi+1, S) − γ.
Remark 4.8. Strong structural inconsistency (Definition 4.7) is a sufficient condition for non-zero cyclical
obstruction when the cycle is sufficiently prevalent in the dataset distribution. Specifically, when disjoint
regions Di with the cycle structure induce net positive flow Cord

P (hi, hi+1) > 0 for each edge (hi, hi+1) in the
cycle, the ordinal aggregation via PMV necessarily yields ∥Ccycle∥ > 0.

Justification: If Cord
P (hi, hi+1) > 0 for all edges in the cycle, then summing around the cycle gives∑k

i=1 Cord
P (hi, hi+1) > 0. However, any gradient flow d0f satisfies

k∑
i=1

(d0f)(hi, hi+1) =
k∑

i=1
[f(hi+1) − f(hi)] = 0 (2)

because each value f(hj) appears exactly once with a positive sign (when j = i+1) and once with a negative
sign (when j = i), causing all terms to cancel. This contradiction implies Cord

P is not a gradient flow, forcing
∥Ccycle∥ > 0 by the Hodge decomposition.

This condition implies that different regions of the data space have strongly conflicting preferences, forcing
an accurate algorithm to choose different hypotheses in different regions.
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Proposition 4.9 (Instability Induced by Strong Obstructions). If the preference profile induced by the data
contains a strong structural inconsistency with margin γ, and for sufficiently small δ the accuracy constraint
implies metric localization (i.e., there exists δ′(δ) → 0 such that dH(A(S), hi) < δ′ when S ∈ Di), then for
δ < γ/2 and sufficiently small ϵ, the Stable Selection Problem is unsolvable.

Proof. The condition of strong structural inconsistency ensures a separation margin γ. We choose the
accuracy tolerance δ < γ/2. If S ∈ Di, assuming hi is near-optimal, L(hi, S) < L(hi+1, S) − γ. Since γ > 2δ,
hi+1 cannot be in the near-optimal set: hi+1 /∈ Oδ(S). This confirms that the optimal sets in different
regions are disjoint with respect to the hypotheses in the cycle.

To satisfy the accuracy constraint, an algorithm A must select A(S) ∈ Oδ(S). The structural inconsistency
forces the algorithm to choose between distinct hypotheses in different regions. We demonstrate that stability
prevents this.

Intuitive Case: Discrete Metric. Consider the simplified case where H has the discrete metric
(d(ha, hb) = 1 if a ̸= b) and ϵ < 1. Stability implies A(S) = A(S′) for adjacent S, S′. Since D is connected
(Assumption 3.5), this forces a single global choice h∗. However, the strong structural inconsistency (a cycle)
implies that for any h∗, there exists a region Di where h∗ is strongly dispreferred and thus h∗ /∈ Oδ(S) for
S ∈ Di. Thus, the problem is unsolvable.

General Case: General Metric Space. We generalize the argument using the triangle inequality. This
requires that the structural inconsistency manifests metrically (standard regularity conditions assumed in
Section 3.2). 1

Let hi and hj be two distinct hypotheses in the cycle, separated by distance D = dH(hi, hj) > 0. Consider
the corresponding regions Di and Dj . We assume that for sufficiently small δ, the accuracy constraint
implies metric localization. Formally, we assume there exists a δ′ (which decreases as δ decreases) such that
for S ∈ Di, dH(A(S), hi) < δ′, and for S′ ∈ Dj , dH(A(S′), hj) < δ′. We choose δ small enough such that
2δ′ < D/2.

Since D is connected, there exists a finite path of adjacent datasets S0, S1, . . . , SM , where S0 ∈ Di and
SM ∈ Dj .

By the stability constraint, dH(A(Sk), A(Sk+1)) ≤ ϵ. By the triangle inequality along the path:

dH(A(S0), A(SM )) ≤
M−1∑
k=0

dH(A(Sk), A(Sk+1)) ≤ M · ϵ.

Now we relate this to the separation D using the triangle inequality again:

D = dH(hi, hj) ≤ dH(hi, A(S0)) + dH(A(S0), A(SM )) + dH(A(SM ), hj)
< δ′ + (M · ϵ) + δ′.

This gives the requirement D < 2δ′ + M · ϵ.

The distance D and path length M are fixed by the problem structure. We have chosen δ such that 2δ′ < D/2.
We can now choose ϵ sufficiently small such that M · ϵ ≤ D/2. Then 2δ′ + M · ϵ < D. This violates the
derived inequality, creating a contradiction. Thus, the Stable Selection Problem is unsolvable.

When a strong cyclical obstruction exists, no single-valued algorithm can simultaneously satisfy the incon-
sistent preferences and the metric constraints of stability.

1Metric localization follows from standard continuity assumptions, such as β-Lipschitz continuity of the loss function in the
hypothesis space: |L(h, S) − L(h′, S)| ≤ β · dH(h, h′).
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4.5 Sheaf-Theoretic Interpretation: Local-to-Global Obstructions

The distributional framework admits an elegant interpretation through the lens of sheaf theory, revealing the
preference structure as a sheaf over distribution space and cyclical obstructions as cohomological obstructions
to gluing local sections.

The Preference Sheaf. Let (P, τ) be the space of distributions over X , equipped with a suitable topology
τ (e.g., the weak topology or topology induced by the Wasserstein metric). We define the preference sheaf
F over P as follows:

• For each open set U ⊆ P, the space of sections F (U) consists of hypothesis selection rules σ :⋃
P ∈U DP → H that are locally optimal and stable within U .

• For each point P ∈ P, the stalk FP represents the space of stable selections for datasets drawn from
distribution P alone, characterized by the local preference structure Cord

P .

• Restriction maps ρUV : F (U) → F (V ) for V ⊆ U restrict the selection rule to the smaller region.

Local Consistency, Global Obstruction. A global section σ ∈ F (P) would be a hypothesis selection rule
that is simultaneously accurate and stable across all distributions in P. The existence of such a global section
is precisely the solvability of the Stable Selection Problem (Definition 3.4) in the distributional setting.

The cyclical obstruction Ccycle ̸= 0 is the manifestation of a cohomological obstruction: the local sections
(stable selections within each distribution P ) cannot be glued into a global section due to incompatible tran-
sition functions on overlaps. In classical sheaf cohomology, such obstructions are measured by cohomology
groups H1(P, F ).

The Standard Case. When P = {P0} is a single point, the sheaf theory trivializes: there is only one
stalk, and the cohomological obstruction reduces to the local structure within that single distribution. This
recovers the standard algorithmic stability setting. The power of the sheaf perspective emerges when P is
non-trivial, capturing scenarios with genuine distribution shift or heterogeneity.
Remark 4.10. This sheaf-theoretic interpretation provides a rigorous mathematical foundation for un-
derstanding why certain learning problems admit stable solutions (global sections exist) while others do
not (cohomological obstructions). It also suggests natural generalizations: higher-order cohomology groups
Hq(P, F ) for q ≥ 2 may characterize more complex multi-way conflicts beyond pairwise cycles, a direction
for future investigation.

5 A Mathematical Explanation for Stability Methods

Our framework, centered on the Hodge decomposition, rigorously distinguishes between two sources of
instability and unifies the methods used to address them based on the presence or absence of structural
obstructions (Ccycle).

5.1 Addressing Structural Obstructions (Ccycle ̸= 0)

When the data preferences contain fundamental inconsistencies, the instability is structural. This requires
methods that either resolve the ambiguity or enforce consistency.

5.1.1 Obstruction Resolution: Target Space Enlargement

When obstructions are inherent (Ccycle ̸= 0), a stable single-valued solution may not exist (Proposition 4.9).
The mathematical solution is to change the target space.

In social choice theory, when a single consensus winner does not exist due to cycles, the solution is to identify
a consensus set, such as the Top Trading Cycle (TTC) set—the minimal set of hypotheses H∗ that dominate
those outside H∗. Inflated operators, rigorously analyzed by Adrian et al. (2024) and Liang et al. (2025),
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implement this principle by enlarging the target space from H to P(H). For set-valued outputs, we use the
Hausdorff distance on P(H):

dH(A, B) = max
{

sup
a∈A

inf
b∈B

dH(a, b), sup
b∈B

inf
a∈A

dH(a, b)
}

Alternatively, stability can be defined via set intersection: two set-valued outputs are stable if Oδ(S) ∩
Oδ(S′) ̸= ∅.
Definition 5.1 (Inflated Argmax (Adrian et al., 2024)). argmaxϵ(w) := {j|wj ≥ maxkwk − ϵ}.

Interpretation 5.2. Cohomological Significance of Inflation Inflated operators resolve cyclical ob-
structions by systematic target space enlargement. The set-valued output of the inflated operator approximates
the Top Trading Cycle set associated with the underlying preference cycle.

Argument. Consider a profile P with a significant cyclical obstruction, represented by a cycle h1 > · · · >
hk > h1. As shown in Proposition 4.9, if this obstruction is strong, it leads to the failure of the single-valued
Stable Selection Problem.

The Top Trading Cycle (TTC) set associated with this cycle is H∗ = {h1, ..., hk}. Now consider the appli-
cation of the inflated operator (e.g., returning the near-optimal set Oδ(S)). If for each pair hi, hj ∈ H∗, the
losses satisfy |L(hi, S) − L(hj , S)| ≤ ϵ′ uniformly across datasets S in the relevant region (cycle balanced),
then the losses of the hypotheses in the cycle will be close across the relevant region of the dataset space:
|L(hi, S) − L(hj , S)| ≤ ϵ′ for hi, hj ∈ H∗.

If we choose the tolerance parameter δ ≥ ϵ′, the near-optimal set Oδ(S) will contain H∗. If hypotheses
outside the cycle have significantly higher loss, then Oδ(S) ≈ H∗.

The inflated operator thus identifies the set of hypotheses involved in the structural ambiguity characterized
by the obstruction. Under bounded loss variations (a standard regularity assumption), for adjacent datasets
S, S′ and a balanced cycle, if hi ∈ H∗ has L(hi, S) ≤ minh L(h, S) + δ, then by continuity L(hi, S′) ≤
minh L(h, S′) + δ′ for δ′ ≈ δ. Thus all hypotheses in the cycle remain near-optimal on both datasets,
guaranteeing H∗ ⊆ Oδ(S) ∩ Oδ(S′).

5.1.2 Obstruction Prevention: Enforcing Consistency

Alternatively, we can attempt to prevent obstructions by enforcing consistency during the learning process.
Regularization-based ensemble stability adds penalty terms that discourage disagreement (e.g., Lglue =∑

x

∑
i,j ||hi(x) − hj(x)||2, where hi(x) denotes the prediction of model hi on input x, and the sum is taken

over a some discrete set of inputs on which agreement is required and all pairs of predictors). This explicitly
enforces consensus among the ensemble members. By minimizing Lglue, the optimization procedure forces
the local preferences to align. When models are forced to produce similar outputs, their rankings across
the data become more consistent, directly minimizing the inconsistencies that contribute to the cyclical
component Ccycle. Our proposed method in Section 6.1 is a higher-order generalization of this approach.

5.2 Addressing Statistical Variance (Ccycle ≈ 0)

When the cyclical component is near zero, the aggregated preferences are globally consistent. However,
instability can still occur due to statistical variance—the sensitivity of the learning algorithm or the selection
procedure (like argmax) to noise, near-ties, or specific data samples.

5.2.1 Bagging: Variance Reduction

Bagging (Breiman, 1996) utilizes bootstrap samples {Si} from S and aggregates the results. Its effectiveness
is statistically grounded in variance reduction (Soloff et al., 2024).

Interpretation 5.3. Role of Bagging in the Hodge Framework Bagging is a mechanism for reducing
statistical instability when the underlying preference structure is largely consistent (Ccycle ≈ 0). It is not
designed to resolve strong structural obstructions (Ccycle ̸= 0).

9
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Argument. Let Vij(S) = L(hj , S)−L(hi, S) be the cardinal preference score. When Ccycle ≈ 0, the ordinal
preferences are largely aligned with a global ranking. Instability occurs when Vij(S) has high variance,
causing the sign of Vij(S) (the ordinal preference) to flip frequently across the dataset distribution, especially
in near-ties.

The bagged learner Abag smooths the cardinal preferences, resulting in V bag
ij (S) with significantly reduced

variance. This stabilization makes the ordinal preferences more robust and less likely to fluctuate, thereby
improving stability.

However, if a strong structural obstruction exists (Ccycle ̸= 0), the data inherently contains conflicting prefer-
ences. Variance reduction alone cannot create a stable consensus, as the underlying problem is fundamentally
ambiguous. Bagging averages over the conflicting preferences but does not resolve the cycle itself. As we
demonstrate in Experiment 1, bagging fails to stabilize the selection process in the presence of a strong
Condorcet cycle.

6 Obstruction-Aware Ensembling: A Framework Inspired by Cohomological Insights

Our cohomological perspective suggests principled approaches to designing stable algorithms by systemati-
cally targeting these mathematical structures.

6.1 Cohomologically-Inspired Regularization

Motivated by the mathematical structure of disagreement cycles, we propose regularization terms that target
higher-order inconsistencies, moving beyond pairwise agreement. Consider an ensemble with models {hi}
and learnable alignment maps {ϕji} between their representation spaces. Global consistency requires the
alignment maps to satisfy the cocycle condition: ϕki = ϕkj ◦ ϕji.

Definition 6.1 (Obstruction-Aware Ensemble Loss). A cohomologically-inspired loss includes a term en-
forcing higher-order consistency: Lcocycle =

∑
i,j,k ||ϕki − ϕkj ◦ ϕji||2F The total loss is Ltotal = Ltask +

λ1Lglue + λ2Lcocycle.

Minimizing Lcocycle encourages global consistency in the geometric relationships between models, directly
targeting the structures identified by the framework in the representation space.

Computational Complexity and Stochastic Approximation. The proposed Lcocycle involves a sum-
mation over all triplets (i, j, k), resulting in a computational complexity of O(N3) for an ensemble of size N .
This can be computationally prohibitive for very large ensembles. However, this complexity can be readily
mitigated using a stochastic approximation. Instead of calculating the loss over all triplets at every step, we
can randomly sample a fixed number of triplets K and calculate the average loss:

Lstochastic-cocycle = 1
K

∑
(i,j,k)∈Samples

∥ϕki − ϕkj ◦ ϕji∥2
F

This reduces the complexity to O(K) per training step and provides an unbiased estimator of the aver-
age cocycle defect. This stochastic approach effectively enforces the cocycle constraint while maintaining
computational tractability.

Connection to Cycle Consistency. The mathematical form of Lcocycle is analogous to the ’Cycle-
Consistency Loss’ widely used in unsupervised learning domains like image translation and unsupervised
machine translation Grover et al. (2020). In those domains, cycle consistency serves as an engineering
heuristic to constrain ill-posed, unsupervised problems. Our work re-contextualizes this mechanism: we
derive the cocycle constraint from a theoretical framework, arguing that violations of this consistency are
manifestations of a mathematical obstruction with direct consequences for stability. This elevates the mech-
anism from a heuristic to a principled, theoretically-grounded tool for improving robustness.

10
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6.2 Adaptive Target Space Enlargement

Inspired by the success of inflated operators, we propose adaptive mechanisms that automatically transition
between single-valued outputs when consensus exists (suggesting Ccycle ≈ 0) and set-valued outputs when
obstructions may be present (Ccycle ̸= 0), based on measures of ensemble disagreement.

7 Computational Experiments

We validate our theoretical framework through three complementary experiments. First, we demonstrate the
core mechanism in a controlled setting with engineered structural obstructions, confirming that inflated oper-
ators succeed where bagging fails (Experiment 1). Second, we validate the fundamental empirical prediction
that standard single-distribution supervised learning exhibits negligible structural obstructions, explaining
why variance-reduction methods dominate practice (Experiment 2). Third, we demonstrate that significant
structural obstructions emerge naturally in multi-objective fairness-constrained model selection, confirming
the framework’s diagnostic power for identifying boundary conditions (Experiment 3).

7.1 Experiment 1: Structural Instability (Engineered Condorcet Cycle)

This experiment validates the core distinction of our framework: structural instability requires structural
solutions (inflation), while statistical methods (bagging) fail. We test this in a scenario with a pure structural
obstruction.

Setup: We engineered a scenario with three hypotheses (A, B, C) where the underlying data distribution is
a mixture of three regions (Z1, Z2, Z3) inducing a balanced Condorcet cycle (A > B > C > A). We simulate
the process of drawing a dataset S and an adjacent dataset S′ (by perturbing the sampling weights by a
small amount). We ran 5000 trials.

Loss function: A dataset S is represented by weights WS = (w1, w2, w3) indicating the sampling proportion
from each region. Each hypothesis hi has a utility vector Ui = (ui1, ui2, ui3) where uij is its utility in region
j. The aggregate loss is:

L(hi, S) = − ⟨Ui, WS⟩
w1 + w2 + w3

= −
∑3

j=1 uijwj∑3
j=1 wj

(For this experiment: UA = [3, 1, 2], UB = [2, 3, 1], UC = [1, 2, 3])

Methods: We compare the stability of:

1. Standard ’argmax’.

2. Inflated ’argmax’ (ϵ = 0.01) (Structural solution).

3. Bagged ’argmax’ (50 bootstraps) (Statistical solution).

Metrics: Agreement Rate (probability the winner is the same for S and S′) for single-valued methods;
Intersection Consistency (probability the output sets intersect) for the inflated method.

Table 1: Experiment 1: Stability under a pure structural obstruction (Condorcet cycle).
Method Type Stability (Agreement/Intersection) Avg. Output Size
Standard Argmax Baseline 0.4094 1.00
Bagged Argmax Statistical 0.3432 1.00
Inflated Argmax Structural 1.0000 3.00

Results: As shown in Table 1, the standard ’argmax’ exhibits low stability (0.4094). Crucially, the Bagged
’argmax’ also fails to stabilize the selection, performing slightly worse (0.3432). This confirms Interpreta-
tion 5.3: statistical variance reduction is ineffective against structural instability. In contrast, the Inflated
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’argmax’ achieves perfect stability (1.0000) by identifying the ambiguity inherent in the cycle and returning
the consensus set {A, B, C}.

7.2 Experiment 2: Validating the Absence of Structural Obstructions in Standard Classification

This experiment validates the central empirical prediction of our framework: standard single-distribution
supervised learning with i.i.d. data exhibits negligible structural obstructions (||Ccycle|| ≈ 0), explaining the
empirical success of variance-reduction methods like bagging.

Setup: We use the scikit-learn handwritten digits dataset (8×8 pixel images of digits 0-9, N=1797) as a
representative standard supervised learning task. We train ensembles of K = 20 classifiers on bootstrap
samples of the training data to induce diversity, mirroring standard bagging practice. We then compute the
Hodge decomposition of the ordinal preference flow on the test set.

Model Architectures: We test two canonical model families: multi-layer perceptrons (single hidden layer
with 64 units, trained for 20 epochs with early stopping) and decision trees (maximum depth 10, unpruned
otherwise).

Bootstrap sampling ensures the ensemble contains diverse but related hypotheses trained on the same un-
derlying distribution.

Methodology: For multiple trials with different random seeds:

1. Split data into train (70%) and test (30%) with stratification

2. Train K = 20 models on bootstrap samples from training set

3. Compute ordinal preference cochain via PMV on test set (using 0-1 loss)

4. Apply Hodge decomposition to measure ||Ccycle||

Table 2: Experiment 2: Structural obstructions in standard classification (Digits dataset). Values at machine
precision confirm the absence of cyclical inconsistencies.

Model Type Trials ||Ccycle|| (mean) ||Ccycle|| (std) Interpretation
MLP 10 2.33 × 10−16 1.29 × 10−16 Machine precision
Decision Tree 5 2.05 × 10−16 6.96 × 10−17 Machine precision

Results and Interpretation: As shown in Table 2, the measured cyclical norms are consistently at the
level of machine precision (||Ccycle|| ≈ 10−16), effectively indistinguishable from zero across both model
families and all trials. This empirically validates the theoretical prediction that standard supervised learning
with i.i.d. data produces consistent preference structures.

The absence of structural obstructions provides a mathematical explanation for a fundamental empirical
pattern: the dominance of variance-reduction methods (bagging, ensembling) in the machine learning liter-
ature (Breiman, 1996; Soloff et al., 2024). When ||Ccycle|| ≈ 0, instability is purely statistical— arising from
sensitivity to noise, near-ties, or specific samples—and methods that smooth cardinal preferences without
requiring structural resolution are both sufficient and effective.

This contrasts sharply with the multi-objective fairness setting (Experiment 3), where structural obstructions
emerge (||Ccycle|| = 0.857, approximately 1015 times larger) and require fundamentally different approaches.

Theoretical Grounding: This empirical observation aligns with our theoretical framework (Section 4).
In the standard single-distribution setting (|P| = 1) with convex or near-convex loss landscapes, the aggre-
gated preferences naturally form a consistent total order. Each hypothesis has a well-defined expected loss
ES [L(h, S)], and the preference profile induced by the data distribution corresponds to the gradient of this
expected loss, resulting in Ccycle = 0 by construction (as shown in Section 4.2 for cardinal aggregation).
While we aggregate ordinal preferences, the underlying consistency of the expected loss landscape ensures
the ordinal flow also exhibits negligible cyclical structure.
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7.3 Experiment 3: Structural Obstructions in Fairness-Constrained Model Selection

Motivation and Distributional Interpretation. This experiment demonstrates that structural obstruc-
tions—absent in standard single-distribution classification tasks—emerge naturally in multi-distributional
settings with conflicting objectives. Fairness-aware machine learning provides a canonical testbed: different
fairness criteria correspond to different distributional priorities (e.g., optimizing performance on reweighted
demographic subpopulations), which are mathematically incompatible (Kleinberg et al., 2017).

We leverage the distributional generalization of our framework (Section 3.1, Section 4.5). Each stakeholder
perspective can be interpreted as representing a different distribution Pi ∈ P over the data space, where Pi

reweights or resamples the base distribution to prioritize specific fairness objectives. For instance:

• Demographic Parity: Distribution PDP reweights minority groups to equalize selection rates.

• Equalized Odds: Distribution PEO emphasizes equal error rates across groups.

• Predictive Parity: Distribution PP P focuses on calibration within groups.

Models trained or selected under these different distributional objectives induce different local preferences.
The aggregation of these distributional preferences via PMV (Section 4.2) reveals whether a globally stable
selection exists or whether the objectives are fundamentally incompatible (inducing cycles).

Setup. We use the UCI Adult dataset (Becker & Kohavi, 1996) to simulate fairness-constrained selection.
We train five Logistic Regression models using different training heuristics (reweighting, regularization ad-
justments) to generate a diverse set of models exhibiting varied fairness-accuracy tradeoffs. These heuristics
are not intended to optimally achieve specific metrics, but to simulate the pool of candidate models that
would be available when optimizing under different distributional constraints.

We define five distributional perspectives (Business: accuracy-focused; Civil Rights: demographic parity-
focused; Equal Opportunity: equalized odds-focused; Calibration: predictive parity-focused; Regulator:
balanced), each representing a different implicit data distribution or prioritization scheme. Each perspec-
tive evaluates models according to utility functions that weight accuracy and fairness metrics differently,
effectively representing preferences under different distributional constraints.

Crucially, we aggregate preferences across these distributional perspectives using PMV (not across datasets
with a single loss function, as in Experiments 1-2). This models the real-world scenario where decision-
makers must reconcile models optimized under different distributional objectives—a natural instance of the
multi-distributional framework.

(See Appendix B.5 for detailed methodology.)

Methodology: For each of 20 trials with different train-test splits, we:

1. Trained the five models with different fairness-accuracy tradeoffs.

2. Computed stakeholder preferences based on model performance.

3. Constructed the ordinal preference flow Cord
P via Pairwise Majority Vote (PMV).

4. Applied Hodge decomposition to measure ||Ccycle|| and the Cycle Ratio (||Ccycle||/||Ctotal||).

Note on Aggregation Method: Unlike Section 4.2 where we aggregate over random datasets with iden-
tical loss functions, here we aggregate over stakeholders with different utility functions. Each stakeholder’s
utility encodes a normative priority over fairness-accuracy tradeoffs. This models real-world scenarios where
multiple decision-makers with conflicting objectives must select from a common model pool. The PMV
aggregation captures the democratic aggregation of these preferences.

Results and Interpretation: The results, summarized in Table 3, reveal a striking contrast with standard
classification tasks. The mean cyclical norm is ||Ccycle|| = 0.857, approximately 1015 times larger than the
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Table 3: Experiment 3: Structural obstructions in fairness-constrained model selection (UCI Adult). Multi-
objective problems exhibit cyclical norms approximately 1015 times larger than standard single-distribution
classification (Experiment 2).

Task Type ||Ccycle|| (mean) Cycle Ratio (mean) vs. Standard Tasks
Standard Classification (Digits, Exp. 2) 2.3 × 10−16 ∼ 0 Baseline
Fairness Selection (Adult, Exp. 3) 0.857 ± 0.173 0.363 ± 0.075 ∼ 1015× larger

machine-precision values observed in Experiment 2. The mean cycle ratio is 0.363, indicating that over 36%
of the preference disagreement is fundamentally structural rather than statistical.

Theoretical Significance: This validates the core distinction of our framework on real data. Standard
learning problems produce negligible structural obstructions (Ccycle ≈ 0), explaining the effectiveness of
bagging. In contrast, fairness-constrained selection involves genuinely conflicting objectives that create
strong cyclical obstructions (Ccycle ̸= 0), making single-model selection fundamentally unstable.

Topological Characterization of Fairness Impossibility: This provides a topological characterization
of known fairness impossibility theorems (Kleinberg et al., 2017). The incompatibility between fairness
definitions manifests as non-trivial cohomology (H1 ̸= 0) in the preference space. Our contribution is not
discovering that fairness metrics conflict—this is well-established—but providing the first rigorous quantifi-
cation of this conflict via topological invariants (||Ccycle||), unifying these impossibilities with the broader
theory of algorithmic stability and social choice theory under a common mathematical framework.

Practical Implications: When Ccycle ̸= 0, Proposition 4.9 establishes that stable, single-valued selection is
impossible. The appropriate structural solution (Interpretation 5.2) is target space enlargement via inflated
operators, returning a portfolio of models (the Pareto frontier). Crucially, this does not "solve" the fairness
conflict; it merely acknowledges the impossibility of a single solution characterized by the cycle norm, and
externalizes the decision to policymakers. The framework clarifies that the challenge is structural and cannot
be resolved by purely statistical means.

8 Limitations and Future Directions

While our framework provides a unifying perspective on algorithmic stability, it has several limitations that
suggest promising directions for future research.

8.1 Limitations

Continuous Hypothesis Spaces: The framework of topological social choice theory and Hodge decom-
position is primarily developed for a finite set of alternatives Hk. Extension to continuous hypothesis spaces
requires additional technical machinery, such as analysis on function spaces or discretization schemes that
preserve the relevant topological structure.

Theoretical Scope and Empirical Findings: Our framework characterizes two distinct mathematical
sources of instability: structural obstructions (cyclical inconsistencies) and statistical variance. The empir-
ical findings of Experiment 2—that ||Ccycle|| ≈ 0 in standard classification tasks—constitute a significant
theoretical result rather than a limitation. They explain mathematically why the field has empirically con-
verged on variance reduction methods: the structural obstructions that would defeat such methods simply
do not arise in well-posed supervised learning problems with convex or near-convex loss surfaces and i.i.d.
data. The cases where Ccycle ̸= 0 represent important boundary conditions where fundamentally different
mathematical structures emerge. We provide concrete evidence for this in Experiment 2, demonstrating that
significant structural obstructions arise in fairness scenarios due to incompatible metrics. Investigating the
precise conditions under which structural obstructions manifest in other domains (e.g., adversarial settings,
multi-agent systems), and their prevalence in these specialized domains, remains an important direction for
future theoretical and empirical work.
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Computational Scalability of Analysis: Calculating the Hodge decomposition for theoretical analysis
(as in Experiment 2) requires operations such as computing the pseudoinverse of the graph Laplacian, which
scale as O(K3) where K is the number of hypotheses. This limits the direct application of the decomposition
as an online diagnostic tool for very large hypothesis spaces.This stochastic approach effectively enforces the
cocycle constraint while maintaining computational tractability.

Connection Between Ordinal and Cardinal Structures: While we rigorously distinguish between
ordinal aggregation (which detects cycles) and cardinal aggregation (which does not), the precise relationship
between high variance in cardinal preferences and the emergence of near-cycles in ordinal preferences remains
to be fully characterized. A deeper understanding of this connection would strengthen the theoretical link
between variance reduction (bagging) and cycle suppression.

8.2 On the Rarity of Structural Obstructions and Boundary Conditions

Our framework distinguishes structural from statistical instability based on the presence or absence of cyclical
obstructions (||Ccycle||). A critical empirical question is: when do structural obstructions occur in practice?

Standard Supervised Learning: The Null Case. Experiment 2 provides definitive empirical validation
that standard single-distribution supervised learning exhibits negligible structural obstructions. Across mul-
tiple trials with two different model families (MLPs and decision trees) on a standard classification task, we
consistently measured ||Ccycle|| ≈ 2 × 10−16— effectively zero at the level of machine precision.

This observation has deep theoretical grounding. In the standard setting—where datasets are sampled i.i.d.
from a single distribution (|P| = 1), the loss landscape is convex or near-convex, and hypotheses are evaluated
under a fixed objective—the aggregated preferences naturally form a consistent total order. Each hypothesis
has a well-defined expected loss ES [L(h, S)], and the preference profile Cord

P aligns with the gradient of this
expected loss, resulting in Ccycle = 0.

This mathematical characterization explains a fundamental empirical pattern in machine learning: the dom-
inance of variance-reduction methods like bagging (Breiman, 1996; Soloff et al., 2024). When ||Ccycle|| ≈ 0,
instability is purely statistical (sensitivity to noise, near-ties, specific samples), and methods that smooth
cardinal preferences without requiring structural resolution are both sufficient and effective. The field has
empirically converged on these methods precisely because the structural obstructions that would defeat them
are absent in standard well-posed learning problems.

Boundary Conditions: When Obstructions Emerge. Our framework characterizes the boundary
conditions under which structural obstructions arise, transforming the nature of the stability problem. Ex-
periment 3 demonstrates one such boundary condition: multi-objective learning with incompatible criteria.
The measured cyclical norm in the fairness setting (||Ccycle|| = 0.857) is approximately 1015 times larger
than in standard classification, with 36% of the preference structure being fundamentally cyclical rather
than statistical.

Structural obstructions (||Ccycle|| ̸= 0) emerge under three characteristic conditions. First, when differ-
ent distributions Pi ∈ P induce conflicting preferences—as in fairness-aware learning where optimizing for
different demographic groups or incompatible fairness metrics creates genuine Condorcet cycles. Experi-
ment 3 demonstrates this quantitatively: aggregating preferences across stakeholders prioritizing accuracy,
demographic parity, equalized odds, and predictive parity yields ||Ccycle|| = 0.857, indicating fundamental
preference conflicts that cannot be reconciled.

Second, highly multimodal loss surfaces with multiple local minima of comparable quality can create local
preference cycles, particularly in adversarial or game-theoretic settings where different regions of the data
space favor fundamentally different solutions.

Third, multi-task learning, Pareto optimization, or settings with mathematically incompatible objectives (ac-
curacy vs. interpretability vs. computational efficiency) naturally generate preference cycles when different
criteria rank hypotheses in mutually inconsistent orders.

Diagnostic Framework and Contribution. Our contribution is not discovering that these boundary
conditions exist—fairness impossibilities (Kleinberg et al., 2017), multi-objective conflicts, and adversarial
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instabilities are well-documented. Rather, we provide the first rigorous quantitative framework for diagnosing
the source of instability via ||Ccycle|| as a precise, computable diagnostic; for characterizing when structural
vs. statistical methods are appropriate (Experiment 2 shows bagging suffices for standard ML while Exper-
iment 3 shows it would fail for fairness-constrained selection); and for unifying seemingly disparate stability
phenomena under a common topological language.

Standard supervised learning is not merely a special case of our framework, but the null case where structural
obstructions vanish (||Ccycle|| = 0). The boundary conditions where ||Ccycle|| ̸= 0 represent fundamental
limits of learning that cannot be overcome by purely statistical means—they require structural solutions such
as target space enlargement (inflated operators) or acknowledgment that no single stable solution exists (as
in fairness trade-offs). The framework provides the mathematical tools to diagnose which regime a learning
problem occupies and select appropriate stabilization strategies accordingly.

8.3 Future Directions

Algorithmic Applications: Further development of obstruction-aware algorithms. This includes design-
ing efficient methods to estimate when Ccycle ̸= 0 during training and adaptively deploying regularization
(structural) or bagging (statistical) strategies based on the diagnosed source of instability.

Theoretical Extensions: Investigating the precise mathematical relationship between the smoothing effect
of bagging (variance reduction) and the reduction of the cyclical component in the Hodge decomposition.
Furthermore, exploring the use of higher-order cohomology groups (Hq for q ≥ 2) to identify more complex
structural inconsistencies beyond pairwise cycles.

Connections to Fairness and Explainability: Preference cycles often underlie paradoxes in fairness
and explainability, where different metrics or perspectives lead to conflicting conclusions. Extending this
cohomological framework to analyze the stability and consistency of fairness metrics is a promising direction.

9 Conclusion

We have presented a unified framework for algorithmic stability based on Combinatorial Hodge Theory
and the geometry of preferences. This framework rigorously distinguishes between structural instability,
caused by cyclical obstructions (Condorcet cycles, Ccycle > 0), and statistical instability, caused by variance
(Ccycle ≈ 0). We demonstrated that structural instability requires targeted solutions like inflated operators
or novel obstruction-aware regularization, while statistical instability is addressed by methods like bagging.
Our experiments validate this distinction, showing that bagging fails in the presence of strong structural
obstructions but succeeds when instability is statistical. This framework provides a mathematical foundation
for understanding and improving the robustness of machine learning systems.
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A Appendix A: Mathematical Foundations: Cohomology of Preferences

This appendix provides the rigorous mathematical details underlying the connection between social choice
theory, algebraic topology, and the cohomological obstructions discussed in the main text. We adapt the
framework established by Chichilnisky (1980) and Baryshnikov (1993), and incorporate tools from Hodge
theory for ranking.

A.1 The Geometry of Rankings and Preferences

Let Hk = {h1, ..., hk} be a finite set of hypotheses.
Definition A.1 (Space of Preferences). A utility function U : Hk → R induces preferences. The space of
utility functions is U = Rk. A preference profile is a collection of utility functions {US}S∈D. Alternatively,
we can consider the space of strict linear orders P.

A.2 The Source of Obstructions: Topological Social Choice

The motivation for analyzing preference cycles comes from Topological Social Choice Theory (Chichilnisky,
1980; Baryshnikov, 1993). This theory analyzes the topology of the space of all possible preferences (P) to
determine if fair aggregation rules F : PN → P exist.

A.2.1 Topological Interpretation (Chichilnisky’s Approach)

Chichilnisky (1980) showed that the impossibility of fair aggregation (satisfying certain axioms like Arrow’s
conditions) stems from the topological properties of P. To define a continuous aggregation rule, P must be
equipped with a topology. The standard approach identifies the space of preferences P with a subset of the
space of utility functions U = Rk (e.g., normalized utility vectors). The topology on P is then induced by
the standard Euclidean metric on U . This means preferences are considered "close" if their utility values are
close.
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Theorem A.2 (Chichilnisky, 1980). If a continuous aggregation rule F : PN → P exists satisfying certain
desirable axioms (e.g., anonymity, unanimity), then P must be contractible.

A space is contractible if it has no topological "holes" (i.e., its homology and cohomology groups are trivial).

A.2.2 Cohomology of Preference Spaces

We analyze the topology of the space of strict linear orders Sk. This space is known to be non-contractible
for k ≥ 3.

The Condorcet cycle (A > B, B > C, C > A) represents a loop in the space of preferences. This loop cannot
be contracted to a point while maintaining the structure of the preferences.
Lemma A.3. The existence of a non-contractible loop in the space of preferences corresponds to a non-trivial
element in the first cohomology group H1(Sk).

This abstract theory shows that the possibility of Condorcet cycles arises because the space of preferences
itself has a non-trivial topology (it is not contractible). This motivates the search for these structures in
specific preference profiles.

A.3 Connecting Topology to Stability

While the abstract theory analyzes the space of all preferences, in machine learning we analyze a specific
profile P induced by the data. Combinatorial Hodge Theory provides the tools to detect the manifestation
of these topological obstructions within a specific profile by analyzing flows on the graph of hypotheses K.

A.4 Algebraic Tools: Cochains and Hodge Decomposition

This section provides the rigorous definitions for the tools used in Section 4.

A.4.1 Cochains and the Coboundary Operator

Let K be the 1-skeleton (the complete graph) on the vertices Hk.

• C0(K; R): 0-cochains (functions assigning values to vertices, i.e., utility functions).

• C1(K; R): 1-cochains (functions assigning values to edges, i.e., pairwise comparisons or flows).

The coboundary operator d0 : C0 → C1 maps a potential function f ∈ C0 to a flow: (d0f)(hi, hj) =
f(hj) − f(hi). This represents a perfectly consistent ranking.

A.4.2 Preference Cochain Construction: Cardinal vs. Ordinal

We define the preference cochain CP ∈ C1(K, R). The construction method is critical, as detailed in Section
4.2.

Cardinal Aggregation: If we aggregate the losses directly (e.g., average loss difference): Ccard
P (hi, hj) =∫

D(L(hj , S) − L(hi, S))dµ(S). This construction always results in a coboundary, as it is the gradient of the
aggregate loss function Lagg(h) =

∫
L(h, S)dµ(S). Therefore, Ccard

P cannot detect Condorcet cycles.

Ordinal Aggregation (Pairwise Majority Vote): To detect cohomological obstructions relevant to
social choice theory, we must aggregate ordinal preferences. Let RS be the ranking induced by L(·, S).
Cord

P (hi, hj) =
∫

D sign(RS(hj)−RS(hi))dµ(S). In practice (Experiment 2), this is calculated as: (Proportion
of voters preferring hi over hj) - (Proportion preferring hj over hi). This construction allows for CP to be
non-coboundary.
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A.4.3 Hodge Decomposition

We use the Hodge decomposition theorem to analyze flows (cochains) on the graph K.
Theorem A.4 (Hodge Decomposition on Graphs). The space of 1-cochains C1 can be orthogonally decom-
posed as: C1 = im(d0) ⊕ ker(δ1) where δ1 is the adjoint of d0 (the divergence operator).

Here, im(d0) is the space of coboundaries (gradient flows, Cgradient). ker(δ1) is the space of harmonic
cochains (cyclical flows, Ccycle). This harmonic component corresponds to the cohomological obstruction
identified in the topological framework.

This theorem allows us to rigorously decompose a preference profile CP into its consistent part (Cgradient)
and its cyclical obstruction (Ccycle), providing the diagnostic tool used in Section 7.

B Appendix B: Experimental Details and Reproducibility

This appendix provides the detailed configurations and methodologies for the experiments presented in
Section 7, ensuring reproducibility. We utilized Python with the following key libraries: NumPy, SciPy,
scikit-learn (including fetch_covtype), and PyTorch.

B.1 Experiment 1: Structural Instability

Objective: Validate that structural instability (Condorcet cycles) is resolved by inflation but not by bagging.

Setup Details:

• Hypotheses: K = 3 (A, B, C).

• Data Regions (defining the cycle):

– Z1 (prefers A > B > C): Utility vector U1 = [3.0, 2.0, 1.0].
– Z2 (prefers B > C > A): Utility vector U2 = [1.0, 3.0, 2.0].
– Z3 (prefers C > A > B): Utility vector U3 = [2.0, 1.0, 3.0].

• Simulation: 5000 trials.

• Dataset Generation: A dataset S is simulated by sampling weights WS for the three regions around
a base weight of 100 (with uniform noise [−0.5, 0.5]).

• Perturbation: An adjacent dataset S′ is generated by perturbing one weight in WS by ±1.

• Argmax: Standard argmax with random tie-breaking.

• Inflated Argmax: ϵ = 0.01.

• Bagged Argmax: Simulated by drawing B = 50 bootstrap samples (using a multinomial distribution
based on WS) and aggregating the winners by majority vote (with random tie-breaking).

B.2 Experiment 2: Absence of Obstructions in Standard Classification

Objective: Validate that ||Ccycle|| ≈ 0 in standard single-distribution supervised learning.

Setup Details:

• Dataset: Scikit-learn digits (8×8 handwritten digits, 1797 samples)

• Models: MLPs (hidden layer 64 units) and Decision Trees (max depth 10)

• Ensemble size: K = 20 models per trial
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• Bootstrapping: Models trained on bootstrap samples to induce diversity

• Test split: 30% of data

• Trials: 10 for MLPs, 5 for Decision Trees

Hodge Decomposition: Applied to ordinal preference cochain constructed via PMV on test set using 0-1
loss.

Key Results:

• MLPs: Mean ||Ccycle|| = 2.33 × 10−16 (std 1.29 × 10−16)

• Trees: Mean ||Ccycle|| = 2.05 × 10−16 (std 6.96 × 10−17)

• All values at machine precision level, confirming negligible structural obstructions

B.3 Experiment 3: Structural Obstructions in Fairness

Objective: Demonstrate the emergence of structural obstructions in fairness-constrained model selection
on the UCI Adult dataset.

Setup Details:

• Dataset: UCI Adult Income (Becker & Kohavi, 1996) (fetched via OpenML). N=48842.

• Features: 12 features (5 numeric, 7 categorical) processed via standardization and one-hot encoding.
Missing values handled by mode imputation.

• Sensitive Attribute: Sex (Male/Female).

• Target: Income (>50K / <=50K).

• Models (K=5): Logistic Regression models trained with different heuristics. The objective is to
induce diversity in the fairness-accuracy trade-offs, not necessarily to optimally achieve the target
metrics:

– Accuracy: Standard optimization (C=1.0).
– Demographic Parity: Reweighting minority group (weight=2.5).
– Equalized Odds: Reduced regularization (C=0.1).
– Predictive Parity: Using class_weight=’balanced’.
– Balanced: Moderate reweighting (weight=1.5) and regularization (C=0.5).

• Stakeholders (Voters=5): Simulated utility functions prioritizing different metrics: Business (Accu-
racy only), Civil Rights (DP/EO), Equal Opportunity (EO/Acc), Calibration (PP/Acc), Regulator
(Balanced).

• Aggregation: Pairwise Majority Vote (PMV) across the 5 stakeholders.

• Trials: 20 trials with different randomized train-test splits (70/30).
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