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Abstract—We propose a novel approach that applies convolu-
tional dictionary learning (CDL- decomposition directly in the
sensor domain before solving the inverse problem, contrasting
it with the classical approach where the inverse problem is
solved first. This method enhances computational efficiency
and improves spatial localization accuracy, especially when he
sources activity is sparse. Theoretically, we establish a formal
equivalence between CDL decomposition in the source and
sensor domains, laying the groundwork for a practical transition
between these two approaches. Using synthetic data, we compare
two approaches: (1) resolving the inverse problem first and then
performing CDL decomposition, and (2) initially decomposing in
the sensor domain, followed by solving the inverse problem on the
spatial dictionary. Our results show that the second approach of-
fers improved reconstruction quality and reduced computational
costs, making it a promising strategy for addressing complex
inverse problems.

Index Terms—inverse problem, convolutive sparse coding, low
rank decomposition.

I. INTRODUCTION

Inverse problems have a wide range of applications, includ-
ing source reconstruction in acoustics [1], medical imaging
[2], and computer vision [3]. This article will focus on solving
inverse problems using low-rank decomposition and dictionary
learning. Low-rank decomposition is an important category of
signal processing methods, including techniques like principal
component analysis (PCA) [4], robust, sparse PCA, and non-
negative matrix factorization (NMF) [5]–[7]. The latter has
improved upon interpretability. These methods are used in
hyperspectral unmixing [8], recommendation systems often
referred to as the Netflix problem [9], and inverse prob-
lems, notably for source separation in audio signals [1] and
magneto/electroencephalography (M/EEG) studies [10]. While
traditional dictionaries with fixed waveforms –such as wavelets
or time-frequency atoms– in signal analysis may only capture
certain types of events within the data, dictionary learning
methods, such as NMF in Gabor domains or convolutional
dictionary learning (CDL) [11], are well-suited for inverse
problems. For example, in [10], the authors proposed tackling
the M/EEG inverse problem using a CDL decomposition in
the sensor space, focusing on learning temporal features and
brain activities. Then, to localize the different sources, they
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employed dipole fitting methods [12]. Building on this model,
we explore whether a CDL decomposition could be directly
applied in the source space. We analyze the relationship
between CDL decomposition in the source space versus the
sensor space and investigate the transition between the two.

Contributions and outline: After a brief reminder of the
inverse problem and on multivariate CDL methods in Sec-
tion II, we introduce the model for decomposing the data in
the source domain in Section III. Then, Thm. 1 establishes
the equivalence between decomposition in the source domain
after solving the inverse problem versus solving the inverse
problem on the spatial dictionary found through decomposition
in the sensor space. Next, we present the algorithm to solve
our proposed method. Finally, in Section IV, we illustrate our
method and its competitiveness through numerical experiments
on synthetic data.

Notations: Vectors will be denoted using bold lowercase
and matrix in bold uppercase. The element at i-th rows and
j-th column of a matrix M will be denoted by M [i, j], while
M[i, :] denotes the i-th rows and M[:, j] the j-th column.
Similarly, the i-th coordinate of a vector v will be denoted
by v[i]. We define the operator (·)+ as max(0, ·). We also
denote by ⊙ the element-wise multiplication between two
matrices/vectors of the same dimension. We consider circular
convolution between a filter d ∈ RL and a signal z ∈ RT

denoted by d ∗ z ∈ RT , where L ≪ T. To perform this
operation, the filter d is zero-padded to length T. Since d is
zero-padded to length T prior to the operation, we will regard
d ∈ RT for the sake of notation. The multivariate circular
convolution between z ∈ RT and D ∈ RP×T is denoted

D ∗ z =

d1 ∗ z
...

dP ∗ z

 ∈ RP×T and is obtained by convolving

each row of D with z.

II. STATE OF THE ART

This section briefly presents the considered linear inverse
problems and state-of-the-art on multivariate convolutional
dictionary learning.

A. Inverse problem

We consider the inverse problem where data are obtained
from a limited number P of sensors. The temporal duration of



sensor data acquisition is represented by T , while N denotes
the number of sources one might wish to reconstruct. This
leads to the following standard formulation of the inverse
problem [13]:

M = GX+E , (1)

where the rows of M ∈ RP×T correspond to the temporal
acquisitions from the sensors. The rows of X ∈ RN×T

represent the temporal activities of the different sources.
G ∈ RP×N is the lead-field matrix, which facilitates the
projection between the sources’ activities and the sensors’
acquisitions. E ∈ RP×T is an additive white noise.

Equation (1) cannot be solved directly due to the non-
invertibility of G. Consequently, regularized optimization
problems are employed to estimate the source activity [13].
One possible approach involves utilizing a resolution with
time-frequency dictionaries while incorporating a sparse prior
[14], highlighting the challenges associated with dictionary
selection and representation estimation.

While Gabor or wavelet dictionaries are well-suited for
linear analysis, they may face difficulties capturing certain
’non-rhythmic events’ that occur in the brain [15], [16].
To tackle this issue, one potential solution is to learn the
dictionary directly from the data. This article will specifically
focus on Convolutional Dictionary Learning (CDL) [17].

B. Multivariate convolutional dictionary learning

The CDL approach has yielded excellent results in many
fields, such as image processing [18], [19] and audio signals
[20]. We recall the definition of the multivariate CDL model
as proposed by Wohlberg [21].

Definition 1 (Multivariate CDL). Let M ∈ RP×T ,
{Dk}Kk=1 ∈ RP×T , and {zk}Kk=1 ∈ RT

+. We say that M
admits a CDL decomposition if it can be expressed as

M =

K∑
k=1

Dk ∗ zk . (2)

The primary advantage of this decomposition lies in its high
interpretability. Specifically, D = {Dk}Kk=1 ∈ RP×T repre-
sents the spatio-temporal dictionary, while z = {zk}Kk=1 ∈ RT

+

corresponds to their activations over time. To achieve such
a decomposition, Wohlberg proposed solving the following
optimization problem:

min
D,z

1

2
∥M−

K∑
k=1

Dk ∗ zk∥22 + λ

K∑
k=1

∥zk∥1 (3)

s.t. ∥Dk∥22 ≤ 1, zk ≥ 0

This model has been applied to 3-channel images. In our case,
we adopt a variant that imposes a rank-1 constraint on the
spatio-temporal atoms, as proposed in [10], [22] for M/EEG
data: ∀, k ∈ J1,KK, Dk = ukv

⊤
k , where {uk}Kk=1 ∈ RP and

{vk}Kk=1 ∈ RT denote the spatial and temporal atoms, respec-
tively. We summarize this model in the following definition.

Definition 2 (Rank-1 Multivariate CDL). We say that M
admits a rank-1 CDL decomposition if it exists u = {uk}Kk=1,
v = {vk}Kk=1 and z = {zk}Kk=1 such that:

M =

K∑
k=1

(
ukv

⊤
k

)
∗ zk . (4)

To achieve such a decomposition, one can solve the follow-
ing optimization problem [10]:

min
u,v,z

1

2
∥M−

K∑
k=1

(ukv
⊤
k ) ∗ zk∥22 + λ

K∑
k=1

∥zk∥1 (5)

s.t. ∥uk∥22 ≤ 1, ∥vk∥22 ≤ 1, zk ≥ 0 .

This optimization problem can be solved using alternating
minimization with respect to u,v and z [11], [23]. The
minimization with respect to z corresponds to a LASSO
problem [24] or Basis Pursuit Denoising [25] which can be
efficiently solved by FISTA [26].

III. CDL DECOMPOSITION: FROM THE SOURCES TO THE
SENSORS

This section presents our modelizations of the inverse prob-
lem as a CDL decomposition directly on the source domain.

A. Theoretical analysis

Assuming that the source domain admits a CDL decom-
position, Thm. 1 shows that the sensor data also admits a
decomposition of the same form, sharing the same temporal
atoms and activations. Moreover, the spatial source atoms can
be recovered by solving an inverse problem on the spatial
dictionary derived from the sensors.

Theorem 1. Suppose X ∈ RN×T admits a rank-1 CDL
decomposition. That is, it exists ũ = {uk}Kk=1, v = {vk}Kk=1

and z = {zk}Kk=1 such that X =
∑K

k=1

(
ũkv

⊤
k

)
∗ zk. Let

G ∈ RP×N such that M = GX, then M also admits a
rank-1 CDL decomposition:

M =

K∑
k=1

(
ukv

⊤
k

)
∗ zk ,

with uk = Gũk ∀k .

Proof. We have

M = GX =

K∑
k=1

G
(
(ũkv

T
k ) ∗ zk

)
. (6)

Let Wk = (ũkv
⊤
k ) ∗ zk . By remarking that one has

Wk[j, :] = ũk[j]v
⊤
k ∗ zk, we get

M[i, :] =

K∑
k=1

N∑
j=1

G[i, j]Wk[j, :] =

K∑
k=1

N∑
j=1

G[i, j]ũk[j]v
⊤
k ∗ zk

(7)

=

K∑
k=1

 N∑
j=1

G[i, j]ũk[j]v
⊤
k

 ∗ zk (8)



In the end, we can write

M =

K∑
k=1

(
(Gũk)v

⊤
k

)
∗ zk =

K∑
k=1

(ukv
⊤
k ) ∗ zk . (9)

Hence, M can also be expressed as a rank-1 convolutional
decomposition which shares the same temporal activations z
and temporal atoms v as X, while its spatial atoms are given
by uk = Gũk.

Furthermore, the converse is true: if M admits a rank-1 CDL
decomposition such that M =

∑K
k=1

(
ukv

⊤
k

)
∗ zk, and if G

is a full-rank matrix, then it exists ũk such that uk = Gũk.
That is, it exists X =

∑K
k=1

(
ũkv

⊤
k

)
∗zk which admit a rank-1

CDL decomposition such that M = GX.

B. Optimization implications

Assuming that both spatial localization in the source domain
and temporal activities are sparse, one may want to solve the
following multi-objective optimization problem [27]

min
ũ,v,z

(
K∑

k=1

∥zk∥1,
K∑

k=1

∥ũk∥1

)
(10)

s.t.

M = GX,X =

K∑
k=1

(ũkv
⊤
k ) ∗ zk

∥ũk∥22 ≤ 1, ∥vk∥22 ≤ 1, zk ≥ 0, ũk ≥ 0

As a consequence of Thm. 1, the following corollary demon-
strates that the optimization problem below leads to a Pareto
optimal solution of the problem Eq. (10).

Corollary 1. Suppose X ∈ RN×T admits a rank-1 CDL
decomposition. That is, it exist ũ = {uk}Kk=1, v = {vk}Kk=1

and z = {zk}Kk=1 such that X =
∑K

k=1

(
ũkv

⊤
k

)
∗ zk. Let

M = GX with G a full rank matrix. Let

(u∗,v∗, z∗) = argmin
u,v,zk

K∑
k=1

∥zk∥1 (11)

s.t. M =

K∑
k=1

(ukv
⊤
k ) ∗ zk, ∥uk∥22 ≤ 1, ∥vk∥22 ≤ 1, zk ≥ 0

and let

ũ∗ = argmin
ũ

K∑
k=1

∥ũk∥1 s.t. u∗
k = Gũk, ũk ≥ 0, (12)

Then, (ũ∗,v∗, z∗) is a Pareto optimal solution of Eq. (10)

Proof. Let (u∗,v∗, z∗) be a global minimizer of Eq. (11) and
ũ∗ a global minimizer of Eq. (12). Let (ũ†,v†, z†) be a Pareto
optimum of Eq. (10). Let u† = Gũ†, so according to Thm. 1:

M =

K∑
k=1

(u†
kv

†⊤
k ) ∗ z†k = G

K∑
k=1

(ũ†
kv

†⊤
k ) ∗ z†k , (13)

hence (u†,v†, z†) is a feasible point of Eq. (11) and (ũ†) a
feasible point of Eq. (12). Consequently, we have

K∑
k=1

∥z∗k∥1 ≤
K∑

k=1

∥z†k∥1 and
K∑

k=1

∥ũ∗
k||1 ≤

K∑
k=1

∥ũ†
k||1 (14)

hence the conclusion.

A numerical consequence of Corollary 1, illustrated in the
next section, is that applying a rank-1 CDL decomposition in
the sensor domain, followed by solving the inverse problem
on the spatial dictionary, leads to lower computational cost
than the reverse order. This gain in efficiency is due to:

• Reduced problem size: Since P < N , CDL on the
sensor data (P × T ) is faster than on the source space
(N × T ).

• Cheaper inverse step: Solving K inverse problems of
size P × N on a low-rank spatial dictionary is less
demanding than the one on full sensor data of size
P × (N × T ) when K << N .

IV. NUMERICAL RESULTS

To demonstrate the advantages of the proposed approach,
we simulate sparse temporal activations zk ∈ RT (and spatial
activations ũk ∈ RN ) following a Bernoulli-Gaussian model
[28] with parameters ptemporal = 0.01 (resp. pspatial = 0.2) and
σtemporal = σspatial = 1, where N = 20 and T = 10000. We se-
lect K = 3 temporal atoms vk ∈ RT with an original support
of size L = 128 and then 0-padded to a size T , as illustrated
in red in Fig. 1. We then generate X =

∑K
k=1 ũkv

⊤
k ∗ zk and

subsequently compute M = GX+E for various G ∈ RP×N ,
with P = 10 and varying levels of white Gaussian noise to
achieve input Signal to Noise Ratios (iSNR) of 5, 10, and
20 dB. The operator G is a random centered Gaussian matrix
with a covariance matrix C defined such that C[i, j] = w|i−j|,
where w ∈ [0, 1[.

We then compare the two following approaches
1) IPFirst: We first solve the inverse problem Eq. (1) using

a structured sparse prior in the time-frequency domain
to estimate X following [14]. Then, we apply a rank-1
CDL decomposition to X by solving (5). We use a Hann
window of length 2L = 256 with 50% overlap for the
time-frequency dictionary. The procedure is summarized
in Alg. 1. The hyper-parameters µ1 and µ2 are tuned to
maximize the output SNR of the estimated X.

2) CDLFirst: We first solve the rank-1 CDL decomposi-
tions in the sensor doamin on M by solving (5), and then
we solve the sparse inverse problem (12). The procedure
is summarized in Alg. 2. The hyper-parameters λ when
solving Eq. (5) is tuned to maximize the estimated X
output SNR.

In both methods, we initialize the temporal atoms of the
CDL decomposition based on a Nonnegative Matrix Factor-
ization of the spectrograms, following [29], using the same
parameters as in IPFirst.

To compare the two methods, we evaluated the quality of
the overall data reconstruction using the SNR of the estimated



Quantitative results oSNR Temporal atoms Spatial atoms optimal transport oSNR reconstruction
Correlation w Methods iSNR=5 iSNR=10 iSNR=20 iSNR=5 iSNR=10 iSNR=20 iSNR=5 iSNR=10 iSNR=20

0 IPFirst 8.47 10.23 11.35 6.03 6.08 4.18 8.47 15.84 21.23
CDLFirst 9.55 11.57 12.94 5.98 3.59 1.34 16.43 24.65 33.68

0.8 IPFirst 8.63 11.64 12.47 8.73 7.10 6.81 11.7 14.01 24.37
CDLFirst 9.43 11.82 13.97 7.23 5.04 4.52 17.52 19.76 22.03

0.99 IPFirst 8.93 11.34 11.41 11.41 10.6 9.54 10.89 20.82 26.23
CDLFirst 9.27 12.24 12.15 10.06 9.5 8.35 12.37 17.43 23.1

TABLE I
QUANTITATIVE COMPARISON OF THE IPFIRST AND CDLFIRST APPROACHES IN VARIOUS SCENARIOS. IPFIRST AND CDLFIRST ARE COMPARED

REGARDING THE OSNR OF THE TEMPORAL ATOMS v, UP TO A GLOBAL PHASE SHIFT (THE HIGHER, THE BETTER), THE WASSERSTEIN DISTANCE OF THE
SPATIAL ATOMS ũ (THE LOWER, THE BETTER), AND THE OSNR OF THE GLOBAL RECONSTRUCTION OF THE SOURCES X (THE HIGHER, THE BETTER).

THE BEST RESULTS ARE IN BOLD.

Algorithm 1: IPFirst: solving the inverse problem first,
then the CDL.

Input : y ∈ RT an observed signal Result: X, ũ, z, v
Estimate X by solving:
X = Φ argmin 1

2∥M−GΦα∥22+µ1∥α∥21+µ2∥α∥1;
where Φ is a time-frequency dictionary;
Estimate ũ,v, z by solving Eq. (5) on X with λ → 0;

Algorithm 2: CDLFirst: solving the CDL first, then
the inverse problem.

Result: X, ũ, z, v
Estimate u,v, z by solving Eq. (5) on M .
Estimate ũ by solving Eq. (12)
Estimate X =

∑K
k=1 ũkv

T
k ∗ zk

sources. The temporal atoms’ recovery quality v is evaluated
using the SNR up to a global phase shift. The SNR being too
sensitive to an estimation error in the support for the spatial
atoms ũ, we propose to use the Wasserstein distance between
the true atoms and the estimated ones as proposed in [30] (the
lower, the better).

All quantitative results are summarized in Table I. As
shown in both Fig. 1 and Table I, temporal features are well-
reconstructed by both methods, except for the third atom.
Global reconstruction and spatial localization are significantly
improved when low-rank decomposition is performed in the
sensor rather than the source space, as illustrated in Fig. 2
in the iSNR = 5 dB and w = 0.99 scenario. One can also
observe that the higher the decorrelation is, the harder it is
to locate the sources precisely. From a computational point
of view, the CDLFirst method converges in 585 s instead
of 732 s for the IPFirst method to reach an accuracy of
ϵ = 10−4 on the relative error averaged on the outputs. If the
number of iterations is fixed to 100, CDLFirst (resp. IPFirst)
computes in 137 s (resp. 212 s), with marginal differences
in the quantitative results. All numerical results have been
obtained on a MacBook with an Apple M1 Pro processor using
MATLAB. The MATLAB code is available at the following
address: https://github.com/JBMalagnoux/Code SAMPTA.
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Fig. 1. Temporal patterns recovery for w = 0.8 and iSNR = 5
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Fig. 2. Wasserstein distance on spatial dictionnary ũ with respect to the
correlation coefficient w (the lower, the better).

V. CONCLUSION

The proposed method of applying CDL to the sensor
space before addressing the inverse problem improves both
computational efficiency and localization accuracy. By initially
conducting CDL decomposition on the sensor data, we can
effectively reduce dimensional complexity and enhance source
activities’ temporal and spatial localization. This approach
yields superior results in source reconstruction, particularly in
scenarios characterized by high data sparsity when compared
to methods that tackle the inverse problem before decomposi-
tion. Future research will aim to implement this methodology
with actual MEG data.

https://github.com/JBMalagnoux/Code_SAMPTA
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