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Abstract

For very large values of k, we consider methods
for fast k-means clustering of massive datasets
with 107 ~ 10 points in high-dimensions (d >
100). All current practical methods for this prob-
lem have runtimes at least 2(k?). We find that
initialization routines are not a bottleneck for this
case. Instead, it is critical to improve the speed
of Lloyd’s local-search algorithm, particularly the
step that reassigns points to their closest center.
Attempting to improve this step naturally leads us
to leverage approximate nearest-neighbor search
methods, although this alone is not enough to
be practical. Instead, we propose a family of
problems we call Seeded Approximate Nearest-
Neighbor Search, for which we propose Seeded
Search-Graph methods as a solution.

1. Introduction

k-means clustering is a classical problem in unsupervised
learning and computational geometry, with numerous appli-
cations in machine learning and data mining. It has been
thoroughly studied over the years, and it holds significant
practical importance. See the recent survey of Ikotun et al.
(2023) for a detailed discussion of this problem, its variants,
and applications.

The problem considers as input a finite set of points P C R?
in d-dimensional space, and a parameter k. The goal is to
choose a set of k centers C C R4, |C| = k, minimizing
the function >° _ p mincec||p — ¢|*. In other words, we
wish to find k centers C such that the sum of the squared
distances from each input point p € P to its closest center
is minimized. Note that that the centers we choose may
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not be points of the original point set P. There are many
alternative versions of this problem that have also been
extensively studied (An & Svensson, 2017).

k-means clustering has long been known to be NP-hard,
even for k = 2 (Aloise et al., 2009), but a number of poly-
nomial time approaches are known to obtain good solutions,
both in theory and in practice. We will discuss several of
them in Appendix A.1. The most significant is a local search
algorithm commonly attributed to Lloyd (1982) which is
extremely popular in practice. The basic version of the
algorithm is as follows:

1. Initialize A set of k centers C' by uniform sampling
from P.

2. Assign each point P to its closest center. If no points
change their assignment, the algorithm terminates.

3. Recompute each center C; by taking the mean of
points assigned to it. Return to step 2.

We will henceforth refer to this method as Lloyd’s algo-
rithm. The second and third steps constitute a local search
on the problem, and are referred to as Lloyd iterations.

Importantly, note that a single iteration of step 2 always
computes O(|P| - k) pairwise distances, regardless of the
dataset. For use-cases of k-means clustering that require
very large values of &, the runtime of this algorithm has
a rather impractical dependence on k. To our knowledge,
almost every other known competitive approach to k-means
clustering over large high-dimensional datasets, both in
practice and in theory, requires at least 2(k?) time overall.
In particular, horizontal scaling and specialized hardware
(such as GPUs) have been the only successful approaches
used to mitigate this dependence.

1.1. Our Contribution

In this work, we study methods to better-mitigate the depen-
dence on k in standard k-means that do not require special-
ized hardware or multiple machines. We focus on the par-
ticularly challenging case of large datasets (|P| > 107)and
moderate-to-high dimensionality (d > 100). As specific
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motivation, we will also briefly discuss one possible appli-
cation of this particular case in Section 2.1.1. Additionally,
in a first experiment, we will show that the most promising
path towards designing a solution for this high-dimensional
large-k case is to study improvements to Lloyd’s algorithm.

For this challenging case, we will present one modified form
of Lloyd’s method that is quite practical, even when £k is
almost on the same order of magnitude as | P|. Moreover,
our method requires no specialized hardware, requiring only
a reasonably fast CPU to out-perform GPU implementations
of the best known methods at this scale. At a high-level, our
method will leverage techniques devised for (in-memory)
approximate nearest-neighbor search (ANNS).

However, as we will see, the most direct method for applying
ANNS techniques does not result in practical algorithms.
Instead, we propose a more appropriate family of prob-
lems to study, which we call seeded approximate nearest-
neighbor search (SANNS) where we have initial guesses
(called seeds) for candidate nearest neighbors. SANNS can
be seen as a learning-augmented form of ANNS. We present
a framework of solutions to SANNS that we call seeded
search-graphs. In particular, we present one particularly
practical solution to SANNS using this framework. After
tailoring our practical seeded search-graph approach to k-
means, we show that our solution is highly effective for
scalable high-dimensional k£-means clustering with large k.
We call our full solution SHEESH (Seeded searcH-grapHs
for k-mEans cluStEring). !

1.2. Outline

In Section 2 and Appendix A, we discuss existing works on
k-means clustering, approximate nearest-neighbor search,
and related works. We will run several experiments in our
paper, so we present shared details of our experimental setup
in Appendix B. In Section 3, we experiment with initializa-
tion methods for large & (Section 3.1) and a straightforward
approach to accelerating Lloyd’s algorithm (Section 3.2),
and conclude that these methods are not sufficient to surpass
simple forms of hardware-acceleration in terms of practical-
ity. In Section 4, we first present the seeded approximate
nearest-neighbor search problem (SANNS), as well as a
semi-offline variant, and present seeded search-graphs as
a method for solving SANNS. In addition, we discuss a
highly practical seeded search-graph method specialized for
k-means clustering, which consistently beats the hardware-
accelerated implementations of Lloyd’s algorithm. In Ap-
pendix E, we discuss some implementation details of this
practical approach. In Appendix C, we present the full
set of results. In Appendix D, we discuss another seeded
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search-graph method with some theoretical bounds. Lastly,
in Section 5, we discuss some avenues for future work.

2. Background

In this section, we discus some background on approximate
nearest-neighbor search. We have deferred discussion of
existing works on k-means clustering, as well as existing
works applying approximate nearest-neighbor search meth-
ods to clustering, to Appendix A.

2.1. Background on ANNS Methods

In the approximate nearest-neighbor search (ANNS)
problem, the goal is to design a data structure that takes
as input a set P of points and a pairwise distance/similarity
function on the points, and efficiently outputs the k&’ (approx-
imate) nearest-neighbors to a query point ¢ in P (we use k'’
to differentiate from the k in k-means). For a set of d dimen-
sional points P C R4, it is standard to use one of Euclidean,
cosine, or inner-product functions as the distance/similarity
function. All of these are essentially equivalent for high-
dimensional ANNS (Bachrach et al., 2014). This problem is
also often called vector search or vector similarity search.
There are strong lower bounds for exact nearest-neighbor
search data structures (Borodin et al., 1999), as well as
lower bounds in approximate settings (Liu, 2004).

For our purposes, practical applications of approximate
nearest-neighbor search can be divided into two groups:

* Those permitting in-memory techniques (i.e., the en-
tire dataset P can be stored in RAM). We will refer to
this as in-memory ANNS.

e Those requiring out-of-core techniques (i.e., the
dataset is too large to store in RAM, and is instead
stored on disk or over a network). We will refer to this
as out-of-core ANNS.

The distinguishing difference between these two groups
is often the size of the data sets considered. Techniques
for in-memory ANNS are usually only applied to million-
scale datasets, while techniques for out-of-core ANNS are
frequently applied to billion-scale datasets. There has been
significant divergence between in-memory and out-of-core
techniques.

For simplicity, we can categorize some of the most relevant
techniques as follows:

¢ Quantization methods, such as product quantiza-
tion (Matsui et al., 2018) and vector quantization (Liu
et al., 2024), are (in a simplified sense) similar to
dimension-reduction. Such methods are usually used
in tandem with another technique, either as a method
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to reduce memory usage, to reduce runtime, or both.
Although they are an important tool for ANNS in other
cases, we will not need to discuss them in detail for the
purposes of this work.

* Space-partitioning and clustering-based methods
constitute a very broad category of methods for ANNS.
Theoretically-studied methods in this category include
locality-sensitive hashing (Jafari et al., 2021) and
RP-trees (Dasgupta & Freund, 2008). Several pop-
ular practical heuristic approaches include IVF (Sivic
& Zisserman, 2003), IVFADC (Jegou et al., 2010;
Jégou et al., 2011), SPANN Chen et al. (2021), and
ScaNN/SOAR (Guo et al., 2020; Sun et al., 2024). In
particular, all of these popular heuristic approaches ap-
ply some form of k-means clustering. In practice, such
methods usually answer queries in two parts: First,
a number of candidate clusters/partitions are identi-
fied (sometimes recursively). Next, they are searched,
usually via another technique.

¢ Graph-search methods, such as HNSW (Malkov &
Yashunin, 2018), NSG (Fu et al., 2019), and NSSG (Fu
et al., 2022). Wang et al. (2021) give a survey of many
such techniques. These methods answer queries using
a beam search on a (sparse) directed graph defined
over the dataset (described formally in Algorithm 1).
In particular, many of the most popular methods for
defining such a graph involve variations of a nearest-
neighbor graph.

Almost all successful modern techniques for both in-
memory and out-of-core ANNS leverage some sort of quan-
tization, although they appear to be more critical for out-of-
core ANNS (where they serve the purpose of memory-usage
reduction, in addition to speed). However, the other two
categories are more clearly separated. As a general rule,
space-partitioning and clustering-based methods are used
for out-of-core ANNS, while graph-search methods are used
for in-memory ANNS. One reason for this rule is that graph-
search methods are extremely efficient in terms of number of
operations, but exhibit very poor locality, which is important
in out-of-core contexts.

We will only apply in-memory ANNS algorithms in this work.
However, out-of-core ANNS is still important to discuss
for another reason: It serves as some direct motivation for
accelerating k-means clustering, since many out-of-core
ANNS algorithms rely on k-means clustering for extremely
large datasets.

2.1.1. OUT-OF-CORE ANNS

For out-of-core ANNS, space partitioning or clustering-
based methods are practically essential, since they are the
most effective tool for reducing memory usage. Some of the

most recent successful methods for out-of-core ANNS also
use a hybrid approach that additionally incorporates a graph
(see Jayaram Subramanya et al. (2019), as well as some of
the 2024 submissions to Big ANN Benchmarks (Simhadri
etal., 2024)).

Out-of-Core ANNS Uses k-Means As stated before, we
will not be running any out-of-core ANNS algorithms in
this work, but they do motivate improvements to k-means
clustering with large k. In particular, variants of k-means
clustering are used in the vast majority of popular methods
for space partitioning and clustering-based approaches. One
reason for this is that k-means clustering over a dataset ac-
tually obtains two things: A clustering of the dataset itself,
and a straightforward method for assigning new points (i.e,
query points) to clusters. However, the most straightfor-
ward application of k-means would require many clusters,
and the query-time assignment routine would also require k
distance-comparisons per query, in addition to performing
a search within the chosen cluster(s). One way to mitigate
this issue is to choose a value of k balancing the average
cluster size and the total cluster count (i.e., k> ~ |P|).
Existing work has either had to make this balancing trade-
off (Jegou et al., 2010; Jégou et al., 2011; Bachrach et al.,
2014; Baranchuk et al., 2018; Johnson et al., 2021), or ap-
ply workarounds like hierarchical clustering (e.g., k-means
trees) (Guo et al., 2020; Chen et al., 2021; Sun et al., 2024).
This presents us with a clear motivation for improving k-
means clustering:

Mitigate the dependence on k in methods for k-means
clustering.

If we could do so in a way that would also allow for effi-
cient assignment of query points, this would pave the way
for out-of-core algorithms that do not have to apply such
workarounds or tradeoffs. In particular, the methods we will
present in Section 3.2 and Section 4 will do exactly this, by
using variants of in-memory ANNS on the cluster centers.
In this sense, one could start with an out-of-core ANNS in-
stance (i.e., a massive dataset), and leverage our techniques
to reduce to a special variant of in-memory ANNS (i.e., a
much smaller dataset).

2.1.2. IN-MEMORY ANNS

In contrast to out-of-core ANNS, almost all of the competi-
tive techniques for in-memory ANNS primarily use graph-
search methods. To the best of our knowledge, the only no-
table exception to the dominance of graph-based techniques
for in-memory ANNS is ScaNN/SOAR (Guo et al., 2020;
Sun et al., 2024), which (at a high-level) uses a k-means tree
and some clever quantization. Douze et al. (2024) note that
the reference implementation for both works is thoroughly
optimized (and moreover, that the engineering optimizations



Scalable k-Means Clustering for Large & via Seeded Approximate Nearest-Neighbor Search

Algorithm 1 Beam Search

Input: P C RY, search-graph G = (P, E), p* € P,
qeERYLp* €PbE L
Initialize sets C, N = {p*} (candidates, nearest).
Mark p* as visited.
repeat
Extract the element ¢ from C' nearest to q.
if [N| = band d(c,q) > d(n,q) foralln € N then
break
end if
for each (outgoing) neighbor v of ¢ in G do
if v is not marked as visited then
Mark v as visited
if [IN| < bord(v,q) < d(n,q) forsomen € N
then
Add v to C and N
If [N| > b, remove the furthest element in V.
If |C| > b, remove the furthest element in C'.
end if
end if
Mark v as visited.
end for
until C' is empty
QOutput: N, the b points in P close to g

are not discussed in the paper) so it is possible this perfor-
mance is more a result of careful engineering rather than
characteristic to the algorithm. The repository by Aumiiller
et al. (2020) maintains an up-to-date benchmark of various
in-memory ANNS implementations. For an evaluation of
graph-based algorithms for approximate nearest-neighbor
search, and discussions of parallelization techniques, see
ParlayANN (Manohar et al., 2024).

HNSW  One important in-memory method we will high-
light now is Hierarchical Navigable Small Worlds
(HNSW) (Malkov & Yashunin, 2018), a graph-search
method for in-memory ANNS that has seen considerable in-
dustry adoption among vector search databases and libraries
(e.g. Qdrant (2024), Milvus (2024), Weaviate (2024), USe-
arch (Vardanian, 2023), and many more). For a detailed
discussion on vector similarity search databases, see the
recent survey by Pan et al. (2024).

HNSW is an incremental graph-search method, meaning
it allows for both queries and insertions. At a high-level,
most incremental graph-search methods (including HNSW)
maintain a sparse subgraph of an approximate k’-nearest-
neighbor graph over the dataset P for some value of %’
Queries are performed with this structure using beam search
over the graph. Beam search (see Algorithm 1) is sometimes
called greedy search or best-first search in this context.

For HNSW in particular, these searches have an initial start-
ing point which is an approximate nearest-neighbor from a
random subsample of the data. This subsample can be per-
formed successively, and a sparse graph can be maintained
at each level (that is, a search-graph is maintained for each
level, whose initial search points are determined within the
level above), allowing for the starting point of a search to
be determined recursively.

The routine for insertions is actually quite similar: To insert
a point p into an HNSW data structure containing a set
of points P, the first step is to find the (approximate) k'-
nearest-neighbors S of p in P. Then, some local updates are
made to the graph to incorporate p, in a special (relatively
fast) routine. For our purposes, we need not discuss the
details of this routine, and we point curious readers to the
original paper (Malkov & Yashunin, 2018). It should be
noted that Manohar et al. (2024) made the observation that a
careful sequence of bulk insertions are often more efficient
when using parallelism.

HNSW has three key parameters, which are typically tuned
based on the dataset and desired results:

e ef_buildisthe value k to use for queries at insertion-
time (a build-time parameter).

* M controls the sparsity of the final graph — it is the
maximum number of outgoing edges at each vertex (a
build-time parameter).

e ef_search is the value k to use for queries at query-
time (a query-time parameter).

Larger values of e f build require longer build times, but
usually offer better query time/accuracy tradeoffs.M is in-
tended to be representative of the “intrinsic dimensionality”
of the dataset, in a sense that is commonly applied to mani-
fold learning techniques (see e.g., (Belkin & Niyogi, 2001)).
Finally e f_search allows for the tuning of the tradeoff be-
tween query time and accuracy. Malkov & Yashunin (2018)
present several other parameters and suggest methods for
choosing them based on these three.

3. Initialization and Black-Box Reassignment

In this section, we first run some experiments for alternative
initialization methods with a fairly large value of k. We
conclude that the typical initialization methods applied to
small values of k are not very effective for large values of
k, and that the important step to obtaining good solutions
is Lloyd’s algorithm. Afterwards, we will present a naive
formulation of Lloyd’s algorithm using a black-box ANNS
data structure. We will then test this formulation over a suite
of ANNS data structures.
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To aid in the reading of our plots, in each legend, entries are
sorted by their best score before the timeout. This is true of
every plot in the paper.

3.1. Initialization Techniques for Large k

Classic formulations of Lloyd’s algorithm typically use
uniform sampling to choose the initial centroids (see Ap-
pendix A.1 for further discussion). A key observation of
typical applications of k-means (i.e., when k is small) is
that the initialization method can be quite important (Arthur
& Vassilvitskii, 2006; Bahmani et al., 2012). However, our
testing indicates that the same does not hold for larger val-
ues of k. Even for the relatively small value of £ = 10000,
we observe that all initialization methods appear to con-
verge to a near-identically-scored solution quite quickly on
all of our tested datasets: See Figure 1, where we plotted
the score over Lloyd iterations after various initialization
methods. We used the cuML (Raschka et al., 2020) im-
plementations of k—-means++ and k-means| |, as well
as the SciKit-Learn (Pedregosa et al., 2011) k—-means++
implementation in the case of one dataset due to VRAM
constraints. Note that there are some subtleties with some
implementations of these methods (Grunau et al., 2023).

3.2. Black-Box ANNS for Reassignment

We suggest a natural modification of Lloyd iterations using
in-memory approximate nearest-neighbor search:

Build: Compute an ANNS data structure over the centers.

Reassign: Use the data structure to compute the approxi-
mate nearest center for each point in the dataset, and
assign the point to the corresponding cluster.

Recompute: Recompute the centers as the centroids for
the contents of each cluster.

The recompute step remains unchanged from Lloyd’s al-
gorithm. In the low-dimensional setting, an exact nearest-
neighbor search data structure (such as a k-d tree) can be
used in this framework to give an exact speedup to Lloyd’s
algorithm. For the high-dimensional setting we consider,
such methods are inefficient, and we instead apply ANNS
data structures.

We ran experiments on a large suite of popular in-memory
ANNS algorithms, mostly by leveraging the implementa-
tions in the FAISS library (Douze et al., 2024). For base-
lines, we used three different implementations of Lloyd’s
algorithm: The (CPU) SciKit-Learn implementation (Pe-
dregosa et al., 2011), a simple (GPU) implementation of
our own using PyTorch (Paszke et al., 2019), and the (GPU)
cuML implementation (Raschka et al., 2020). We give a
detailed overview of our experimental setup in Appendix B,

and a more detailed overview of the suite in Appendix C,
alongside more detailed plots.

Some of the algorithms we tested performed quite well (e.g.,
hnsw [b] in Figure 2). Additionally it turns out that one
very simple change to the reassignment step can also lead
to marginally better results for all such methods: When
performing a reassignment of a point, ensure that the new
center is closer than the previously assigned center. After
performing this change, we did obtain some slightly im-
proved results (e.g., hnsw [a] vs hnsw [b] in Figure 2). but
our previous observations remain true.

For a full list of algorithms we tested, see Appendix C. The
main observations are as follows:

* For sufficiently large values of k£, most methods based
on clustering and/or quantization generally exhibited
comparable performance to SciKit-Learn’s implemen-
tation (Pedregosa et al., 2011) of Lloyd’s algorithm.
Generally these methods performed iterations much
more rapidly than Lloyd’s algorithm (as expected), but
improved in score at a much slower rate over time.

¢ In contrast, the search-graph methods we tested were
generally quite effective. Moreover, they appeared to
obtain even better comparative performance compared
to Lloyd’s algorithm as k increased. In a handful of
cases, with large values of £, HNSW in particular was
marginally better than the GPU implementations of
Lloyd’s algorithm (specifically, the cuML implementa-
tion (Raschka et al., 2020), and a basic implementation
of ours leveraging PyTorch (Paszke et al., 2019)).

While these results are extremely promising, this black-
box approach is (in most cases) not more practical than
simply running Lloyd’s algorithm on a GPU, even if it is
comparable in some cases. We aim to arrive at a more
practical method, so we will discuss our more carefully-
designed methods in the next section.

4. Bulk Seeded Approximate Nearest-Neighbor
Search via Search-Graphs

Although approximate nearest-neighbor search seems to fit
in nicely into the framework of Lloyd’s algorithm, naively
using it does not result in good practical performance. We
believe that this is because it does not take advantage of all
available information.

Instead, we argue that the correct problem to solve is one we
will call Seeded Approximate Nearest-Neighbor Search
(SANNS), as well as a semi-offline variation of the problem
we will call Bulk Seeded Approximate Nearest-Neighbor
Search (BSANNS). Similarly to ANNS, in SANNS, the
goal is to design a data structure that takes as input a set P
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Figure 1: Comparisons of different initialization methods for k-means with &£ = 10 000.
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Figure 2: Comparison of HNSW as a black-box method
for k-means clustering vs Lloyd’s algorithm on the DPR5SM
dataset, with £ = 10000. Initialization is uniformly ran-
dom.

of points (say P C R? for simplicity), and a pairwise dis-
tance function (say Euclidean distance for simplicity). Then,
the data structure must answer queries consisting of a query
point g as well as identifiers for some small set of points in
P. This small set of points in P is called the set of seed
points. This is intended to be a learning-augmented form
of ANNS: It is not guaranteed that the seed points are good
approximate nearest-neighbors of ¢q. That is, algorithms
for this problem should work regardless of whether or not
the seed points provide useful information (in the language
of learning-augmented algorithms, they should be robust)
However, such algorithms should provide better results (in
the tradeoff between time and result accuracy) if the seed
points happen to be decent approximate neighbors of ¢ (in
the language of learning-augmented algorithms, they should
be consistent). See (Mitzenmacher & Vassilvitskii, 2021)
for an overview of learning-augmented algorithms. In the
batched version of this problem (BSANNS), the only differ-
ence is that the queries are given in large batches (say, of
size | P|). The batched version of this problem is related to
the so-called “approximate all-k’-nearest-neighbor search”
problem, which is an offline version of ANNS (see e.g. (Ma
& Li, 2019) for an algorithm in the low-dimensional exact
version of this problem). In the context of k-means cluster-

ing, the “semi-offline” variation with batches of our dataset
is more useful than a fully offline version because it allows
us to minimize RAM usage.

Additionally, in Appendix D, we observe that a previously-
studied search-graph algorithm with theoretical guarantees
for ANNS naturally extends to SANNS as well, with guar-
antees for robustness and consistency (the expected types
of guarantees for learning-augmented algorithms), based on
analysis by Indyk & Xu (2023). Unfortunately, this algo-
rithm is impractical for our use-case of k-means clustering
with large k, since the build routine would take 2(k®) time
in this context.

4.1. Seeded Search-Graphs

Recall that search-graph methods use the greedy/beam
search routine in Algorithm 1. In particular, they use a
prescribed initial point, whose choice depends on the par-
ticular search-graph method. We can additionally modify
this routine to use multiple initial points, so long as the
additional points are not too numerous. This leads us to a
candidate method for SANNS: In Algorithm 1, use the pro-
vided seed points as additional initial points in the greedy
search routine. We note that, for HNSW in particular, these
additional initial points should only used during the search
at the bottom-most layer, since such points may not even
exist at higher layers.

Bulk queries for additional seed points To approach
the BSANNS problem while leveraging our techniques for
SANNS, we propose a heuristic: Specifically, we introduce
additional seed points for bulk queries. By grouping to-
gether correlated queries from a bulk query, we can then
perform queries for each group in a careful fashion. Specifi-
cally, while iterating through each group, we obtain the top
results for each query, and then use them as additional seeds
for the next query. We also propose a simple method for
choosing an iteration order for the datapoints within each
group: Randomly project all datapoints into a 1-dimensional
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space, and sort them.

The idea here is simple: Correlated query groups can be
considered a very “rough” clustering of the data (not nec-
essarily a k-means clustering), and so they are more likely
to be assigned to the same final centroid. Moreover, within
each group, the ordering is expected to project each group
of n points into R with O(logn) distortion, as shown by
Johnson & Lindenstrauss (1984). With HNSW, the corre-
lation technique we used was simply to group everything
by its default “initial point” given by the recursive structure
of HNSW. One could also consider grouping everything
by its best seed point, but we would only expect this to be
effective in cases where the size of a bulk query is much
larger than the number of datapoints (so that the groups are
of nontrivial size).

4.2. Seeded Search-Graphs for k-Means

We now discuss how to apply seeded search-graphs (and
more broadly, algorithms for SANNS/BSANNS) to Lloyd’s
algorithm, and some further specialized improvements. In
particular, we will implement our method using HNSW as a
basis, with several layered improvements.

Using Seed Points The first method we employed was to
to use the previous iteration’s assignments as seed points
for seeded search-graphs. There is reason to believe this is
a good heuristic: The centers slow their movements over
the course of many Lloyd iterations (see Table 1), so the
best approximate assignment is increasingly likely to be the
previous assignment as the number of iterations increases.

It. | Avg. dist. || It. | Avg. dist. || It. | Avg. dist.
1 136.012 || 14 4.070 || 27 1.889
2 31.827 || 15 3.780 || 28 1.842
3 19.410 || 16 3.529 || 29 1.766
4 14.190 || 17 3.302 || 30 1.682
5 11.243 || 18 3.096 || 31 1.591
6 9.357 || 19 2.899 || 32 1.519
7 8.044 || 20 2.766 || 33 1.456
8 7.082 || 21 2.587 || 34 1.375
9 6.282 || 22 2432 || 35 1.295

10 5.701 || 23 2.290 || 36 1.239

11 5.160 || 24 2.182 || 37 1.237

12 4732 || 25 2.084 || 38 1.172

13 4408 || 26 1.969

Table 1: The average distance centroids move during each
standard Lloyd iteration while clustering SIFTIM (10°
points) with & = 5000 clusters, demonstrating that the
movement of the centroids slows over time. The average
distance from a datapoint in SIFT1M to the respective clos-
est of these centroids ranges from approximately 43 481 to
46 524 over 38 iterations, showing that these movements are
small.

It turns out this often already provides a small improvement
(this comparison is shown in Appendix C, alongside many
others). However, we can obtain even better performance
as follows: In each iteration, instead of recording just the
best centroid assignment, we can actually record several
of the top assignments. We use the top 10, although this
parameter has not been tuned. Then, instead of using a
single seed point during the next iteration, we can them all
as seed points, by initializing the sets C, IV in Algorithm 1
with these seed points (N obtaining only the nearest b of
the seed points). This leads to an even further improved
algorithm (this comparison is also shown in Appendix C).

Algorithm 2 SHEESH: Accelerated Lloyd Iteration with
BSANNS via Seeded Search-Graphs

Input: P C RY, centers C C RY, |C| = k, previous
multi-assignments S : P — 2¢, previous search-graph
data structure D
Build: Build a new search-graph data structure D’ by
using D.
Reassign:
for each chunk U of O(k) points in P (in parallel) do
Group the points of U into roughly-correlated groups.
Randomly project each group into R', and sort the
projected group.
for each group G of U do
for each point p of G, in the sorted order do
Let g be the previous point.
Use S"(q) U S(p) as seeds.
With all these seeds, compute the seeded approxi-
mate ~ 10 nearest centers of p using D’, and save
the results as S’ (p).
end for
end for
end for
Recompute: Compute the new centers C’ as centroids.
Output: New centers C’, new multi-assignments S’, new
search-graph data structure D’

Continuous Rebuilds As noted by each of the works us-
ing the so-called “inverse assignment” method discussed in
Appendix A.2, it is often inefficient to build a data structure
over the centers from scratch at each iteration. The inverse
assignment method is one way of handling this issue, al-
though, as noted, it does not scale to large datasets. Instead,
we suggest the following approach: On all iterations except
the first, leverage the search-graph of the previous iteration
to construct the new search-graph, rather than starting with
an empty graph. Since most centers do not significantly
change between later iterations on average (see Table 1),
this graph serves as a good coarse approximation of the
desired search-graph, and the quality of the approximation
improves over time as the centers simultaneously converge.
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Figure 3: Comparison of our approach with GPU acceleration, as well as the black-box HNSW approach on the SIFT20M,
Text2Image10M, and DPR5M datasets respectively, for the listed values of k. Initialization is uniformly random.

For HNSW in particular, we note that we fix the subsam-
pling of the centers at higher levels of the data structure —
allowing the same simultaneous convergence to occur on
the higher levels of the search-graph.

Min Iteration Count Intuitively, search-graphs seeded
with result from a previous Lloyd iteration may get stuck
more easily in the exact same local optimum across itera-
tions, especially if the graph itself is less prone to change
over time. To combat this, we suggest a heuristic: Rather
than always terminating Algorithm 1 early once a local opti-
mum is reached, we also require that a specified minimum
number of iterations have been performed. In particular, for
HNSW, this bound is only applied at the lowest level of the
hierarchy (the search-graph over the full dataset), where the
seeds are also applied.

The combination of these two additional improvements,
along with the bulk methodology discussed Section 4.1, is
an algorithm we call SHEESH (Seeded searcH-grapHs for
k-mEans cluStEring). It is labeled sheesh [a] in Figure 3.
Recall that, in all of our plots’ legends, entries are in de-
scending order by their best score. In addition, any plot
entries marked with a “*” timed out by taking > 500 sec-
onds to finish even a single Lloyd iteration. In particular, our
algorithm with all features enabled (sheesh [a]), achieved
the best score in all experiments. We have run numerous ex-
periments in addition to the ones shown in Figure 3, which
we discuss more thoroughly in Appendix C. Our full al-
gorithm for k-means leveraging seeded search-graphs is
outlined in Algorithm 2.

5. Conclusion

We have presented a methodology for accelerating k-means
with large values of k. In particular, we leveraged meth-
ods previously applied to ANNS, and improved them for
SANNS and the specific application of k-means cluster-
ing, culminating in Algorithm 2. We have demonstrated
that our method is quite performant for k-means clustering

some large high-dimensional image and text embedding
datasets. We believe there are two main interesting direc-
tions of further research: Evaluating our methodology on
various applications of k-means clustering, and Studying
methods to further accelerate our methods. For the latter
reason in particular, we believe the results in Section 3.2
are quite interesting, since they do not agree with the per-
formance of the same techniques for standard in-memory
ANNS. This may indicate that there are more interesting
specialized methods that can be applied to SANNS in the
context of k-means. One avenue for exploration could be to
try adapting similar techniques to what is used for so-called
“out-of-distribution” ANNS, such as Chen et al. (2024).

Another avenue for accelerating our methods could be to
explore approaches based on specialized hardware. We
focused on devising CPU-based algorithms, and our fi-
nal methods rely on search-graphs. There is some work
exploring GPU-based algorithms for ANNS on search-
graphs (Zhao et al., 2020; Yu et al., 2022; Groh et al.,
2023; Ootomo et al., 2024). Currently, the fastest of these
is CAGRA (Ootomo et al., 2024). Unfortunately, CA-
GRA’s preprocessing routine starts by applying a (hardware-
accelerated) quadratic-time algorithm. Moreover, one of its
key hardware-leveraging methods (step O of their described
algorithm) seems unlikely to be helpful for SANNS. Con-
sequently, we believe it is likely that CAGRA’s hardware-
acceleration methods would not obtain the same speedup
over CPU, although this would need to be tested. Intuitively,
searching over a graph (even a regular graph) is not a very
efficient operation for a GPU, so there may be other more-
effective families of methods for hardware acceleration.
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A. Further Background

In this section, we discuss the additional background information omitted from Section 2.

A.l. k-Means

A typical implementation of k-means clustering in a larger application (for example, SciKit-Learn (Pedregosa et al., 2011))
would be the following:

1. (Optionally) use a sub-sampling technique to reduce the dataset size.
2. Initialize the centroids.
3. Use a local search technique to improve the solution.

4. Terminate after a pre-specified number of iterations or amount of time.

Each of these steps has a variety of avenues for improvement, see the survey by Ikotun et al. (2023). For each, we will
summarize only some of the most important methods potentially relevant to our case of large k. In particular, sub-sampling
is quite limited for large k, since the number of points per cluster may already be quite small.

Existing work on initialization The easiest and most efficient initialization method is to uniformly sample points.
However, strong initialization methods are often desirable since they can obtain provable approximation ratios. Some
particularly popular and easily implementable algorithms include k—-means++ (Arthur & Vassilvitskii, 2006), scalable
k-means++/k-means | | (Bahmani et al., 2012), and multi-swap k-means++ (Beretta et al., 2024)). However,
even the theoretically fastest of these algorithms (k-means | | ) takes time at least Q2(k?) (a tighter lower bound in terms
of some slightly different parameters is given in (Bahmani et al., 2012)). For large values of k, this is still far slower than
uniformly random initializations. Standard implementations support this observation: SciKit-Learn’s (Pedregosa et al.,
2011) implementation of k—means++, the reference implementation of k—-means | | (Bahmani et al., 2012), and the cuML
implementation of each (Raschka et al., 2020), all seem to be fairly slow on even moderately sized datasets.

Approximation guarantees There has been prior work on providing approximation guarantees for the k-means problem
using techniques related to local search. One example is a (9 + €)-factor approximation algorithm by Kanungo et al. (2002b),
and a PTAS when the dimension d is fixed by Friggstad et al. (2019). It is also known that there is no PTAS for arbitrary
dimension (Awasthi et al., 2015).

Existing work on Local Search Methods We previously mentioned Lloyd’s algorithm as a popular local search method
for k-means clustering. There are also other local-search methods that have been well-studied. However, Lloyd’s algorithm
has remained standard and has continued to show strong results in practice, particularly for high-dimensional datasets. One
reason for this is that Lloyd’s algorithm is highly parallelizable. See the survey by Ikotun et al. (2023) for an overview. That
said, all techniques we will discuss in this work could be generalized to many variations of Lloyd’s algorithm clustering that
subsample data points in each step, but studying the effectiveness of such techniques is more difficult.

Although Lloyd’s algorithm obtains good results in practice, it is known that there are two-dimensional datasets (Vattani,
2009) for which Lloyd’s algorithm takes an exponential number of iterations to converge. Moreover, without a careful
initialization, it may produce an arbitrarily bad clustering (Arthur & Vassilvitskii, 2006). Practical implementations often use
a time limit or an iteration limit (see implementations in the popular SciKit-Learn (Pedregosa et al., 2011) and FAISS (Douze
et al., 2024) libraries), instead of waiting for convergence.

A natural question is whether the execution speed of Lloyd iterations can be improved, which is essentially equivalent to
asking if step 2 (assignment) can be accelerated. This question has been studied in several contexts. For low-dimensional
data, various methods are quite effective at accelerating this step exactly, including the use of k-d trees (Kanungo et al.,
2002a), and methods based on the triangle inequality (Elkan, 2003; Hamerly, 2010; Hamerly & Drake, 2015)2. However, in
many practical applications, we would like to run k-means in higher dimensions for applications such as natural language

2For a comprehensive discussion of these techniques, their limitations in high dimensions, and other methods of acceleration (like the
use of parallelism), see the book chapter by Hamerly & Drake (2015).
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processing (e.g. word2vec recommends 100 to 300 dimensions (Mikolov et al., 2013), and the dense retriever model of
Karpukhin et al. (2020) uses 768 dimensions) and neural network embeddings (e.g. the image embeddings of Hu et al.
(2020) are 154-dimensional). Unfortunately, there are known lower bounds for exact techniques to accelerate this step in
high-dimensional datasets (Borodin et al., 1999). A few works have attempted to bypass exact nearest-neighbor search by
leveraging classical techniques for approximate nearest-neighbor search. We discuss these works in Appendix A.2.

A.2. Related Work

Compared to the vast literature on k-means clustering as a whole, we are only aware of a handful of works that have
attempted to apply any form of approximate nearest-neighbor search to any form of clustering.

Works using ANNS to Accelerate Lloyd’s algorithm A few existing works have applied methods for approximate
nearest-neighbor search in a black-box fashion to accelerate Lloyd’s algorithm (or variants) in various contexts of k-means
clustering. Note that we will omit discussion of methods that are essentially just dimension reduction techniques, for which
there are many works.

Several of these use a similar approach to the general “black-box” methodology we thoroughly test in Section 3.2. Philbin
et al. (2007) presented a method greedily traversing randomized k-d trees as an ANNS heuristic for this purpose, but they do
not test their solution w.r.t. k-means clustering score (although some later work uses their solution as a baseline). Gong
et al. (2015) applied techniques for locality-sensitive hashing (LSH) — which is a subclass of space-partitioning methods
(see the survey by Jafari et al. (2021)) — to binary data under Hamming distance with “mini-batch” k-means local search
(Sculley (2010) gives a discussion of mini-batches, which can be seen as a modified form of Lloyd’s algorithm that maintains
parallelizability). Hu et al. (2017) present a similar method, instead using Hamming LSH with a “reranking” step to cluster
Euclidean data via binary code quantization. Note that ANNS over Hamming distance is generally easier than Euclidean
distance, since it a special case. Moreover, locality-sensitive hashing is now significantly outperformed by modern ANNS
techniques in practice (Aumiiller et al., 2020), so this is likely not the most effective use of this black-box approach (as
we will see in Section 3.2). As part of an implementation for a variant of “Product Quantization”, Baranchuk et al. (2018)
applied HNSW to k-means clustering over relatively small chunks of data. Their method for doing so is similar to our initial
“black-box” methodology presented in Section 3.2, although they focus on a much smaller-scale case, and they did not
provide any empirical justification for their choice of HNSW over other ANNS methods, nor did they empirically test their
methods w.r.t. the k-means clustering objective (nor was obtaining a good clustering score their goal).

A few works have also explored a different method of applying ANNS techniques to the assignment stage of Lloyd iterations:
Instead of assigning dataset points in P to their nearest center in C, the centers can instead “flood fill” the dataset using
certain types of ANNS data structures constructed over P instead of C'. We will call this the inverse assignment method.
Kanungo et al. (2002a) applied the inverse assignment method to compute exact assignments. Avrithis et al. (2015) applied
the inverse assignment method by essentially projecting into a quantized two-dimensional space (thereby doing a quantized
dimension reduction). Wang et al. (2015) also employ a variation of the inverse assignment method by constructing an
approximate neighborhood graph, which they then leverage to prune distance computations. In particular, they construct
their graph using random-projection trees (Dasgupta & Freund, 2008), an ANNS space-partitioning method. Unfortunately,
the inverse assignment method is limited to (small) data sets that can fit wholly in-memory, since it requires a more careful
traversal of a specialized ANNS data structure built for P, rather than C. This is in contrast to methods that build structures
over the “forward” assignment method (including ours), which only need to build and store a structure for k points in the
metric space — even for excessively large values of k (e.g. k = |P|/100), this is still a very significant difference in memory
usage for massive datasets. There is one method for which this limitation can be overcome for the inverse method: Matsui
et al. (2017) suggest using product quantization on the input vectors. Since this is a quantization method, rather than another
form of ANNS method, applying the inverse method does not actually prune any distance computations, but rather just
speeds them up individually. The experimental results of Matsui et al. (2017) suggest that, although faster, their method
cannot achieve the same score as Lloyd’s algorithm, very quickly arriving at poor local optimums even for quite small values
of k. In particular, since their method amounts to a brute force with quantization methods, this suggests that any similar
approaches applying an ANNS technique to Lloyd’s algorithm involving any sort of quantization is likely to result in poor
local optimums. As we will see, this appears to be true in our results as well.

Compared to all of these approaches, we present a more complete analysis of ANNS methods for Lloyd’s algorithm, and we
furthermore determine that they are not effective without further work. Moreover, we complete this further work, eventually
devising seeded search-graphs.
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Other Forms of Clustering To the best of our knowledge, only one academic work has studied the application of
approximate nearest-neighbor search to large-scale clustering that is not k-means clustering: PECANN (Yu et al., 2023;
Yu, 2024) studies the application of black-box approximate nearest-neighbor search methods to hierarchical density-based
clustering.

Although not an academic work, the software library USearch (Vardanian, 2023) can produce a hierarchical clustering using
HNSW, although the developer has not publicized any experimental results or detailed documentation on their methodology,
and the feature is still marked as in-development. Their method appears to involve treating each point on a non-zero level as
a cluster “center”, and performing a simultaneous flood fill from all points in a non-zero level to the points of the dataset
in the level below. This would be similar to performing a random sample initialization of k-means, with no local search
iterations, and performing the “assignment” stage in a way so as to perform graph-based clustering (i.e., approximating
geodesic distance over a manifold approximated by the graph).
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Dataset Type | Dim | Points Size
SIFT1B Image | 128 1bil. | 512.00 GB
SIFT20M Image | 128 | 20 mil. | 10.24 GB
Text2Imagel0M | Image | 200 | 10 mil. 8.00 GB
DPR5SM Text | 768 Smil. | 15.36 GB

Table 2: Description of the datasets used in experiments.

B. Experimental Setup

We ran multiple rounds of experiments, so in this section, we present the shared details of our experimental setup.
Environment We conducted the experiments on a workstation machine with Ubuntu 22.04.5 LTS, equipped with an AMD
Ryzen 9 7950x CPU, 64GB of RAM, an Nvidia RTX 3090 GPU, and datasets stored in a 2TB SSD. Note that this large
amount of RAM is primarily for testing baseline code and existing libraries — our own methods will not use a significant
amount of RAM for any dataset, and (most importantly) will not require storing the entire dataset in memory at any time.

Note also that, at the time of writing, this GPU is significantly more expensive (by a factor of 2x in most marketplaces)
than the CPU.

All timed CPU-based algorithms were allowed to use a maximum of 12 threads to reduce possible conflicts with operating
system processes. No limits were placed on the algorithms using the GPU.

Software Libraries We will make use of the following libraries for various baselines:

* SciKit Learn (Pedregosa et al., 2011) on CPU

¢ cuML (Raschka et al., 2020) on GPU

L]

PyTorch (Paszke et al., 2019) on GPU

FAISS (Douze et al., 2024) on CPU

We use SciKit Learn, cuML, and PyTorch for reference implementations of Lloyd’s algorithm and initialization routines.
In particular, SciKit Learn and cuML both offer built-in implementations of Lloyd’s algorithm and initialization methods,
while PyTorch enabled us to write a straightforward, short, and highly-efficient GPU-based implementation of Lloyd’s
algorithm. We use FAISS for its implementations of various baseline approximate nearest-neighbor search routines. Note
that none of these libraries are used for our own code, for which we discuss implementation details in Appendix E.

Datasets We tested on two image-embedding datasets, and one text-embedding dataset:

* Yandex’s Text2Imagel0M dataset (Simhadri et al., 2022) which consists of images embeddings produced by the
Se-ResNext—-101 model (Hu et al., 2020). This data set was used for benchmarking for the NeurIPS 2023
large-scale ANNS competition (Simhadri et al., 2024). Typically, this is used as a cross-modal data set, with an ANNS
query set derived from text embeddings, but in this paper we use Text2Image10M purely for its image embeddings,
since clustering these points is what one would do for our suggested application (see Section 2.1.1).

e The SIFT1B dataset (Jégou et al., 2011), and a 20M slice of the SIFT1B dataset that we will call SIFT20M.
These datasets are 128-dimensional image descriptors in SIFT format (Lowe, 2004). This dataset is also frequently
used for benchmarking large-scale out-of-core ANNS algorithms (Baranchuk et al., 2018; Johnson et al., 2021;
Jayaram Subramanya et al., 2019).

* The DPR10M dataset generated by Aguerrebere et al. (2023) from 768-dimensional dense passage retriever model of
(Karpukhin et al., 2020). To make the dataset of comparable size to the other ones, we created DPRSM by taking a SM
slice of DPR10M. This is a higher dimensional text-based dataset, to contrast with the other datasets.
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Since these datasets are quite large, we are unfortunately unable to distribute them ourselves. However, we provide
instructions for reproduction of these datasets as part of our code. For development purposes, we also used SIFT10K and
SIFT1M. For these smaller datasets, we leveraged the Pooch (Uieda et al., 2020) library for retrieval and caching.

We note that our comparison plots use the 10-million and 5-million sized datasets only. This is primarily due to limitations
in our baselines, rather than any limitations in SHEESH.
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C. Full Results

In this section, we present the full set of results for our experiments.

For black-box acceleration, we tested the following families of popular methods:

* Baseline: Lloyd’s algorithm (3 implementations, 2 of which were on GPU)
* Quantization-only techniques: Scalar Quantization (Liu et al., 2024), Product Quantization (Matsui et al., 2018)

 Clustering-only techniques: IVF (Sivic & Zisserman, 2003), ScaNN (Guo et al., 2020) (with quantization disabled,
amounting to a k-means tree)

* Combined clustering+quantization techniques: ScaNN (Guo et al., 2020), IVFPQ (Jegou et al., 2010), IVFPQR (Jégou
etal., 2011)

» Search-graph techniques: NN-Descent (Dong et al., 2011), HNSW (Malkov & Yashunin, 2018), NSG? (Fu et al., 2019)

Whenever possible, we leveraged implementations given in FAISS (Douze et al., 2024). For ScaNN, we used the reference
implementation, which itself is called ScaNN (Guo et al., 2020; Sun et al., 2024). For a baseline CPU implementation,
we used SciKit-Learn (Pedregosa et al., 2011)’s CPU implementation of Lloyd’s algorithm. We also compared against
two GPU implementations of Lloyd’s algorithm: The GPU implementation in cuML (Raschka et al., 2020), as well as
a simple implementation of our own using PyTorch (Paszke et al., 2019). We note that, in some sense, comparing the
CPU-based approaches to GPU implementations is unfair, especially since our GPU is significantly more expensive than
our CPU (as noted in Appendix B). However, practical implementations of k-means clustering very frequently use GPU
acceleration (e.g., (Douze et al., 2024)), so this is an important comparison to make when attempting to devise a method to
be used in practice. Moreover, since our experiments suggest that our final methods are far superior to the GPU accelerated
implementations, they serve as a good reference point.

We had a number of parameters that varied for each black-box technique, as well as some that varied for our own techniques
discussed in Section 4. Most notably, we have the “avoid_regress” parameter (the simple improvement discussed in
Section 3.2). For the quantization-only techniques, we opted not to re-run with avoid_regress=true, since they were
excessively slow. For the ScaNN library, we tried many combinations of parameters, including turning on/off quantization.
For our own techniques, we also had several parameters. In particular, we toggled several of the different strategies discussed
in Section 4 to study their effectiveness. We give a legend of all parameter variations in Table 3, which can be used as
reference for all of our experimental plots.

For the algorithm parameters we did not vary, we generally applied sane/recommended defaults. In particular, for our
methods, as well as the black-box tests with HNSW, we used the following parameters:

e ef build = 200
* M=60
e ef_search =10 X num_prev_assignments

e min_iterations =2 X ef_search+1=21

There is almost certainly some improvement to be gained by better tuning these parameters to each dataset, but we have not
done so.

We tested each algorithm on each dataset (listed in Appendix B) with each variation of parameters, using a 500 second
timeout — we record the score up to and including the first iteration that exceeds the 500 second threshold, at which point we
halt the algorithm. Note that many such scores vastly exceed the 500 second threshold for cases in which the algorithm takes

3While we attempted to thoroughly test NSG, which showed promising preliminary results similar to HNSW, we were not able to
evaluate it in most of our experiments, for the following reason: At the time of writing, there appears to be an occasional bug in the FAISS
implementation of NSG that can result in an infinite loop, so we disabled it while performing most of our experiments. It still appears in
one of our plots, where it shows good performance.
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Tagged Label Parameters

ivf-PQJa] avoid_regress: true

ivf-PQIb] avoid_regress: false

hnswia] avoid_regress: true

hnsw[b] avoid_regress: false

ivf-PQr|a] avoid_regress: true

ivf-PQr[b] avoid_regress: false

ivf-flat[a] avoid_regress: true

ivf-flat[b] avoid_regress: false

scann[a] num_leaves: 200, num_leaves_to_search: 10, use_score_ah: true, reorder_size: 100, avoid_regress: false
scann|[b] num_leaves: 200, num_leaves_to_search: 10, use_score_ah: false, reorder_size: null, avoid_regress: false
scann[c] num_leaves: 500, num_leaves_to_search: 10, use_score_ah: true, reorder_size: 100, avoid_regress: false
scann([d] num_leaves: 500, num_leaves_to_search: 10, use_score_ah: false, reorder_size: null, avoid_regress: false
scann[e] num_leaves: 200, num_leaves_to_search: 10, use_score_ah: true, reorder_size: 100, avoid_regress: true
scann(f] num_leaves: 200, num_leaves_to_search: 10, use_score_ah: false, reorder_size: null, avoid_regress: true
scann[g] num_leaves: 500, num_leaves_to_search: 10, use_score_ah: true, reorder_size: 100, avoid_regress: true
scann[h] num_leaves: 500, num_leaves_to_search: 10, use_score_ah: false, reorder_size: null, avoid_regress: true
nndescent[a] avoid_regress: false

nndescent[b] avoid_regress: true

sheesh[a] use_rebuilds: true, num_prev_assignments: 10, enable_seeds: true, enable_bulk: true, enable_min_iter: true
sheesh[b] use_rebuilds: false, num_prev_assignments: 10, enable_seeds: true, enable_bulk: true, enable_min_iter: true
sheesh|c] use_rebuilds: false, num_prev_assignments: 10, enable_seeds: true, enable_bulk: false, enable_min_iter: true
sheesh[d] use_rebuilds: false, num_prev_assignments: 10, enable_seeds: true, enable_bulk: false, enable_min_iter: false
sheesh[e] use_rebuilds: false, num_prev_assignments: 1, enable_seeds: true, enable_bulk: false, enable_min_iter: false
sheesh|[f] use_rebuilds: false, num_prev_assignments: 1, enable_seeds: false, enable_bulk: false, enable_min_iter: false

Table 3: Legend for algorithms with multiple parameter variations.
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Figure 4: A plot of SHEESH running on SIFT1B with £ = 1000 000 for just over 12 hours. Initialization is uniformly
random. We estimate SciKit-Learn would take roughly 9.5 days to run a single iteration in this case.

a long time to compute a single iteration. Note also that the cuML implementation of Lloyd’s algorithm ran out of VRAM
for several cases (from which it is omitted), but generally exhibited similar performance to our PyTorch implementation in
those where it did not. We have plotted all of our data in Figures 5 to 7. We also performed one additional limited test, to
demonstrate the scalability of our algorithm, plotted in Figure 4. To aid in the reading of our plots, we have sorted all entries
in each legend by their best score. This is true of every plot in the paper. In particular, with this information, one can see
that our algorithm (with all features enabled, sheesh [a] from the table) achieved the best score in every single experiment
we performed. In addition, any plot entries marked with a “*” timed out (took > 500 seconds to finish their first iteration).
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Figure 5: Comparisons of all methods on the Text2Image10M dataset, for all tested values of k. Initialization is uniformly
random.
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Figure 6: Comparisons of all methods on the SIFT20M dataset, for all tested values of k. Initialization is uniformly random.
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Figure 7: Comparisons of all methods on the DPR5M dataset, for all tested values of k. Initialization is uniformly random.
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D. A Graph-Search Algorithm for SANNS with Provable Guarantees

In this section, we observe that analysis for an existing search-graph algorithm with provable guarantees for ANNS (given
by Indyk & Xu (2023)) naturally extends to become a seeded search-graph algorithm with provable guarantees for SANNS.
That is, we show that the algorithm easily adapts to become a form of learning-augmented algorithm, with robustness and
consistency guarantees.

Indyk & Xu (2023) present a modified form of the “Vamana” data structure given by Jayaram Subramanya et al. (2019) for
ANNS over a pointset P C R? with some provable guarantees. For clarity, we will refer to the modified data structure as
Vamana with slow preprocessing, or simply VamanaSP. In particular, their provable guarantees are in terms of several
parameters we must introduce:

 The aspect ratio A is a property of P. Specifically, it is the ratio Dy,ax/Dmin between the distance of the furthest
pair D ,,x and the distance of the closest pair D.,;, (where D is the distance function of the metric space, usually
Euclidean distance in the rest of our paper).

* The doubling dimension d’ is also a property of P. For simplicity of presentation, we omit its format definition here,
but it can be considered a measure of “intrinsic dimensionality” of the dataset in the same sense as discussed at the end
of Section 2.1.

» The parameter o > 1 is a preprocessing-time parameter of both Vamana and VamanaSP.

* The parameter € > 0 is a query-time parameter for tuning the approximation ratio of the nearest-neighbor returned by
VamanaSP.

Indyk & Xu (2023) give a preprocessing algorithm for VamanaSP running in O(|P|?) time. This constructs a search-graph,
which they show has maximum degree O((4a)? log A). Using Algorithm 1 for queries with b = 1, they show that
only O (loga ﬁ) node visits are sufficient to find a (Z—i + 5) -approximate nearest-neighbor. Note that each node
visit requires O((4a)d' log A) distance computations. Note that doubling dimension is NP-hard to compute (Gottlieb &
Krauthgamer, 2013), so it is unclear if it is expected to be a small quantity in a typical dataset.

We claim that, if seeded with a “learned” element of P, running Algorithm 1 on their constructed graph constitutes a form of
learning-augmented algorithm. In particular, it has the following two high-level properties, in terms of the tradeoff between
iteration count and approximation ratio:

* Robustness: It maintains worst-case guarantees.

* Consistency: If the seed point already has a good approximation ratio, then the tradeoff between iteration count and
approximation ratio improves.

To prove this, we will simply leverage the techniques of Indyk & Xu (2023). In particular, they showed that the aforemen-
tioned guarantees for Algorithm 1 on VamanaSP hold regardless of the initial starting vertex, meaning we obtain robustness
for free from their analysis.

We now present a brief proof that (seeded) VamanaSP also has a form of consistency, which we will again prove by
leveraging the analysis of Indyk & Xu (2023):

Theorem D.1. Let q be a query point whose nearest-neighbor in P is a. Let s € P be a point so that 1 + § > 552’33, for

some value § > 0. Then Algorithm 1 starting at s returns a (% + 5) -approximate nearest-neighbor in [loga 1%5] node

VISits.

Proof. Let p; be the ith point visited during the execution of Algorithm 1. Let d; be the distance D(p;, ¢). As part of their
proof, Indyk & Xu (2023) show that d; < M + %D(a, q). In particular, it also follows from their argument that the

[eY
a+1
a—1

algorithm will only terminate without intervention if it has found an ( )-approximate nearest-neighbor. We leverage this
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in a straightforward manner: If i > log,, 1, thene > 12 > D%Sé%i' Thus:

D(s,q) L atl

d; < .
a’ a—1

a+1
< _— =
D(a,q) <eD(a,q) + - 1D(a,q) (a —

+5> D(a,q).
O

Although Indyk & Xu (2023) note that the aspect ratio of typical datasets tends to be quite small, this is not always necessarily
the case. Moreover, they note that their algorithm essentially cannot have the worst-case log A factor in the number of
node visits replaced with a log | P| factor (they give a more formal argument for this than we provide here). Their proof of
this relies on the fact that they have no guarantees about the starting vertex. Hence, it is reasonable to assume that we may
sometimes be able to leverage our consistency guarantee to offer a slightly different algorithm with an analogous improved
ratio. In fact, we can sometimes do even better than this, by applying methods that can obtain O(logn)-approximate
nearest-neighbors in well-known metric spaces. In particular:

Corollary D.2. Assume an oblivious adversary. For data embedded in R?, under the Euclidean, inner-product, or cosine
distances, there exists an algorithm that, with O(nd?) preprocessing time, can, in O(d? + logn) time per query, produce a

a+tl

min(O(logn) ol 4 e) -approximate

seed point for VamanaSP requiring expected at most log,, =

node visits to produce a (
nearest-neighbor.

In particular, such a seed point can be easily achieved with a random projection of P, and the proof follows. Note that
Euclidean/inner-product/cosine distance are all isometric up to the inclusion of one extra dimension (Bachrach et al., 2014).
Note also that many other forms of (fixed approximation-ratio) ANNS could be applied to further accelerate this method.
However, we have highlighted the ability to use random projection in particular since it is somewhat related to our use
of random projection in the main body of our work for BSANNS (see Section 4.1). For instance, we believe it would
be interesting to determine if a “bulk” method using only random projection (no grouping step) could obtain interesting
amortized guarantees. That is, an approach where a bulk query of O(|P|) points could be randomly projected into R for
sorting purposes, and then the results of each query could be provided as seed points for the next.

Overall, in this section, we have given a nice extension of VamanaSP to SANNS. Unfortunately, the preprocessing step
of VamanaSP is too slow for our overall goal of k-means clustering with large %, but this result is still of interest from the
theoretical viewpoint of the SANNS problem. We believe a promising avenue for future theoretical work on SANNS would
be to work with greedy trees (Chubet et al., 2023). For fixed doubling dimension, Chubet et al. (2023) show that greedy
trees have better approximation guarantees than VamanaSP, and the work of Har-Peled & Mendel (2006) can be leveraged to
show that they can be computed with near-linear preprocessing time.
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E. Implementation Details

In this section, we discuss some details of our specific implementation that aided us in obtaining our final performance.

E.1. HNSW Implementation

Our base HNSW implementation has been carefully tuned. The majority of its runtime when analyzed in a profiler (Linux
perf (Linux Kernel Organization, 2024) and KDBA Hotspot (KDAB, 2020)) is taken up by distance computations. In
particular, most of these distance computations take place within Algorithm 1. The distance computations are accelerated
with careful manual prefetching (preemptive insertions into cache) and SIMD-acceleration. We implemented SIMD-
accelerated distance queries with the Eigen C++ library (Guennebaud et al., 2010) for simplicity. Manual prefetching is
important since search-graph approaches to ANNS inherently have almost zero data-locality — they involve comparing
high-dimensional vectors according to an unpredictable graph traversal. Consequently, compilers and hardware prefetchers
are not well-equipped to predict cache lines to prefetch.

In particular, the reference implementation for HNSW (Malkov & Yashunin, 2018) (‘hnswlib”) did not implement
prefetching in the optimal manner. We summarize their prefetching scheme for beam search in Algorithm 3 (slightly
simplified for presentation). We identified three areas for improvement in their implementation:

* It only ever prefetches exactly one vector ahead (it is unparameterized).

» For each vector, it only fetches the first cache line containing the vector. For sufficiently high-dimensional data, it does
not manually prefetch entire next vector (only first cache line). This may be mitigated by smart compilers or hardware
prefetchers, but (as far as we know) such mitigations are not guaranteed.

* When the current vector has already been visited, it does not prefetch any part of the next vector, even if that vector is
unvisited.

Algorithm 3 beam search with hnswlib’s prefetching scheme

Input: P C RY, search-graph G = (P, E),p* € P,q € R, b € Z>;
Initialize sets C, N = {p*} (candidates, nearest).
Mark p* as visited.
repeat
Extract the element ¢ from C' nearest to q.
if [N| = band d(c,q) > d(n, q) foralln € N then
break
end if
Prefetch: The first cache line of the data for the first neighbor of c.
for each (outgoing) neighbor v of ¢ in G do
if v is not marked as visited then
Mark v as visited
Prefetch: The first cache line of the data for the next neighbor of c after v.
if [N| < bord(v,q) < d(n,q) forsomen € N then

Addvto Cand N
If IN| > bor |C| > b, remove the furthest element.
end if
end if
Mark v as visited.
end for

until C' is empty
Output: N, the b points in P closest to q.

Our own implementation is not based on hnsw1lib, and we use a more careful (and simpler) prefetching scheme, outlined
in Algorithm 4 (again, slightly simplified for presentation). The main ideas are as follows:
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* We make a list containing the indices of all unvisited neighbor before iterating through the list.

* We parameterize the distance ahead that vectors are prefetched.

Algorithm 4 beam search with our prefetching scheme

Input: P C RY, search-graph G = (P, E),p* € P,q € R4, b € Z>;
Initialize sets C, N = {p*} (candidates, nearest), and an empty list L (neighbor list).
Mark p* as visited.
repeat
Extract the element ¢ from C' nearest to q.
if [N| = band d(c,q) > d(n,q) forall n € N and a sufficient number of iterations have occurred then
break
end if
for each (outgoing) neighbor v of ¢ in G do
if v is not marked as visited then
Add v to L and mark v as visited.
end if
end for
Prefetch: All cache lines for the first 4 elements in L.
for each v in L do
Prefetch: All cache lines for the next element of L that not yet prefetched.
Compute d(v, q).
if IN| < bord(v,q) < d(n,q) forsomen € N then
Add v to C and N.
If |IN| > b, remove the furthest element.
end if
end for
Clear L.
until C' is empty
Output: N, the b points in P closest to q.

One of the NeurIPS 2023 Big-ANN competition (Simhadri et al., 2024) winners, PyANNS (Wang, 2023), also took a similar
approach to prefetching. In particular, they also automatically tuned the added parameter. In contrast, we simply use a sane
default of prefetching 4 vectors ahead; a number of values seemed to exhibit essentially the same performance.

We have not carefully examined the prefetching schemes of other ANNS search-graph implementations.

E.2. Data Streaming

Since we are dealing with datasets too large to fit in RAM, we require some form of multi-threaded data streaming
system. We adopted a simple and straightforward approach leveraging the C++ template system to create an abstract
container we simply call a “bucket” implementing some kind of data streaming routine using callbacks. We created several
implementations of buckets, including one wrapping NumPy containers (Harris et al., 2020), which is what we used for all
of our benchmarking. One could create similar bucket implementations for a database or similarly bulky tool, although we
have opted to implement only simple variations, since our methods are all quite compute-limited, and the IO patterns are
extremely simple (we simply stream through the dataset in order during each iteration).
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