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Abstract

We present a general system and approach to improve the quality and efficiency1

of interactive annotation. A specific use case based on instance segmentation2

of vehicles for autonomous driving is used as an illustration. Via incremental3

AB testing and a custom analytics pipeline, we show how to optimize human-4

ML interaction to systematically improve annotation efficiency, and address the5

shortcomings of ML models.6

1 Introduction7

Pre-annotation and interactive (few-click) annotation are now commonly used in labelling tools and8

platforms to accelerate annotation and therefore reduce the cost of producing labelled datasets to train9

Deep Neural Networks (DNNs). In this paper, we present a general analytics-driven methodology that10

we have found useful to optimize our Machine Learning (ML) approach and incrementally improve11

its integration with human annotators.12

2 Interactive annotation for segmentation13

The annotation task considered in this study consists in labelling images to train computer vision14

models toward autonomous driving. Human annotators are required to draw accurate polygons around15

vehicles on those images. This is, however, a time-consuming and costly process.16

Given the cost involved, multiple approaches have been suggested for machine-assisted instance17

segmentation. These usually consist of a deep learning-based segmentation of the object(s) integrated18

into a human-in-the-loop system. The human can interact with the system by correcting the model19

output, initializing the model with one or several clicks, or a combination of those steps. Examples of20

such systems include Polygon-RNN++ [1], DELSE [10], DEXTR [8], and CurveGCN [7].21

We build upon an approach presented in [2] in order to illustrate our system. In a nutshell, this22

approach uses a few-click segmentation model (custom DEXTR) and a post-processing procedure that23

converts the produced raster mask into a sparse polygon. Figure 1 shows an example of human-edited24

ML output, compared with a fully manual approach, on the SYNTHIA-AL synthetic automotive25

dataset [12].26

The goal is to conduct a series of AB tests in order to optimize the adequacy of the system’s output27

for human editing, thus making the annotators as efficient as possible.28
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Figure 1: Comparing polygonal annotations of vehicles: (top) polygons drawn from scratch; (bottom)
polygons manually edited from the output of the custom DEXTR.

3 Efficiency Metrics: a deep look into annotation analytics29

3.1 Definition of the metrics30

The performance of human annotators is dependent upon the quality of the interactions between the31

person and the labelling platform. As new features (such as ML-based automation) are introduced, it32

is of utmost importance to rigorously measure the impact of those features on annotation quality and33

efficiency. In order to achieve this, we have introduced a series of metrics that help us gather detailed34

insights into how annotation tasks are performed.35

We have created a mapping between user tasks performed throughout the day, both on and off the36

annotation tool. We assign each type of activity that annotators do, on a daily basis, to a category and37

measure the amount of time devoted to them. The detailed categories are:38

• Training and feedback: Before annotators begin work on a project, they go through a39

training program. Furthermore, once the project is in production, they receive constant40

feedback to improve their annotation work, based on the tasks performed so far.41

• Scanning: Depending on the asset being labelled, finding the objects of interest can take a42

significant amount of time. This can include moving around a high-resolution image, with43

constant zooming in and out of regions, or navigating frames back and forth on a video.44

• Annotation creation: This includes creating polygons that enclose objects of interest, in45

the case of vector annotation, as well a marking pixels in raster-based tasks.46

• Label selection: Depending on the complexity of the task, finding the correct label to47

assign is not necessarily a quick operation. Because of that, we create a separate category48

to account for the amount of time spent searching for the right label, out of a catalog of49

available labels.50

• Annotation adjustment: The process of initial polygon creation regularly requires anno-51

tators to adjust the shapes drawn. We track how much time is devoted to this type of task.52

In addition to this use case (i.e., create a shape and then adjust edges), there exists the53

possibility of asking annotators to redo a task, when the quality criteria are not met. It is54

expected that some of this feedback can be addressed by providing further adjustments to55

shapes.56

• Validation: Annotators can perform a final check on their annotations, before they submit57

the work for a task to our platform. We want to assess how much of the time goes into this58

type of check.59

For the case study laid out here we focus on two of the metrics, primarily: annotation creation and60

adjustment. For this, we have created a specific catalog of actions that can be performed on the user61

interface, which affect each of the categories. The tool reports back those actions into our analytics62

infrastructure, which allows us to create two data sources:63
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Figure 2: Efficiency Metrics data sources. A) The detailed log stores all events of interest processed
by our internal data pipelines, which enables us to understand how each annotation task progressed.
B) On top of the detailed data, we create daily aggregates per annotator, grouped by categories of
interest, that are then fed into a statistical framework, for significance evaluation.

• Efficiency metrics detailed log: All user interface actions are stored sequentially for a64

given task so that we can reconstruct the actions performed on the annotation tool, as65

depicted in Figure 2.A. This is the finest granularity level in our analytics infrastructure and66

is useful to validate patterns. For example, one agent may choose to draw all shapes first67

and then do a second pass to select labels. Other agents may choose to select the label with68

each shape. Some other tasks may center around adjusting shapes after they are returned to69

annotators. That level of detail is only available through this source.70

• Annotator aggregates: In order to power A/B testing, we need to define a granularity71

level to create populations that can be compared against each other. Figure 2.B shows two72

aggregation levels that we have found useful in our analyses. For instance, we may want73

to know if we reduced the daily number of hours that annotators spent creating polygons,74

due to some automation improvement. In that case we may define as population individuals75

the daily metrics gathered per annotator and then do either before/after or side by side76

comparisons between different groups. Creating this data source requires transforming77

individual actions from the detailed log into accurate time aggregates. We can then query78

population metrics based on the granularity of interest and assess the significance of the79

changes.80

The combined usage of these two data sources becomes a critical asset in the way we can iterate81

quickly in our feature development. All of the metrics generated are updated on a near real-time basis,82

which allows members in different areas of the organization, from data scientists to project managers,83

to analyze the evolution of their projects and determine if the alleged improvements are verifiable.84
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(a) Annotation Time

(b) Adjustment Time

Figure 3: Comparison of average annotation time and adjustment time per object instance (in
seconds) across all human annotators, for the baseline (Manual), the initial experiment (Few-click),
and the experiment after improving the guidelines and the model output (Few-click*).

3.2 A/B testing capabilities85

In an effort to conduct evidence-based process and product development, we follow best practices86

in the industry [3, 5, 6, 9, 11] and adopt an experimentation approach that informs decision making.87

To this end, we have developed a flexible testing infrastructure that can consume data from multiple88

internal processes and is available to virtually anyone within the organization who wishes to setup89

and keep track of an experiment [5].90

The adoption or rejection of software, UI/UX, and/or procedure changes that impact our annotation91

pipeline are evaluated through our AB testing framework, which measures the statistical impact92

of these changes on our efficiency metrics such as drawing and adjustment times. Significance of93

observed differences in a given efficiency metric is evaluated using rigorous statistical tests (e.g.94

two-tailed hypothesis test). For the duration of an AB experiment, treatments are randomly assigned95

and fixed to annotators from within our annotation tool [4].96
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4 Experimental setup97

In the current experiment, we wish to compare the newly introduced interactive annotation system to98

a manual annotation baseline. Our setup is similar to the one described in [2]. In each group (A and99

B populations), each annotator is asked to label Motor Vehicles in 80 distinct images from a current100

customer project related to autonomous vehicles. Annotators are initially given clear guidelines along101

with a practice set, which is not counted towards in the metrics.102

For this case study, efficiency metrics are gathered and stored for all annotators working on both103

treatments, and hypothesis tests evaluate two efficiency metrics of interest: initial polygon drawing104

time (from hereon dubbed annotation time) and adjustment time. We hypothesize that the new105

few-click tool will reduce both annotation and adjustment times.106

5 Results and discussion107

The first experiment did not yield the expected improvement (see Manual and Few-click Experiment108

in Figure 3). We confirmed our hypothesis concerning annotation time which saw a significant109

decrease, but had to reject the one pertaining to adjustment time, which was greatly increased. In110

order to understand what was happening, we selected images containing instances with very high111

adjustment time. After close inspection, we concluded the following:112

• Our annotators entered sub-optimal extreme few-clicks which once fed into our custom113

DEXTR model along with corresponding images yielded low-quality polygons.114

• Polygons on smaller objects had a much lower IoU on average when compared to established115

ground truths. We discovered that the source of this issue was in the parameters of the116

raster-to-polygon mask conversion algorithm.117

We addressed the first issue by enhancing the training of our annotators and the labelling guidelines,118

and the second one by adjusting the parameters of the raster-to-polygon algorithm to maintain the119

quality of the output shapes at all scales. We then ran a new experiment whose results are shown120

as Few-click* on Figure 3. Even though adjustment time remained slightly higher when using the121

few-click tool, the total labelling time decreased by 78%, a vast improvement over the initially122

observed 21% increase. Furthermore, the quality of the delivered polygons was maintained with an123

average IoU around 95% when compared to established ground truths.124

6 Conclusion125

In this paper, we described a general methodology to incrementally improve a human-in-the-loop126

system based on annotation analytics and AB testing, with a specific use case in image labelling127

for autonomous driving. We have shown that detailed analytics can help pinpoint shortcomings in128

annotation guidelines and improve the quality of the output of ML models.129

Broader Impact130

Our work is concerned with improving the efficiency of human-in-the-loop annotation systems. While131

ML is bound to automate certain tasks (including within annotation itself), we hope that optimizing132

human-ML interaction in annotation systems will direct human labour towards where it is needed,133

thus preserving the need for these jobs while removing the more tedious aspects of it.134
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