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ABSTRACT

Molecular representation learning using graph neural networks(GNNs) has become
a research hotspot in the fields of chemistry and biology in recent years. The
pretraining-finetuning paradigm has been widely used to address the issue of limited
labeled molecular datasets, achieving great success due to its ability to leverage
large amounts of unlabeled data. Additionally, frequently occurring molecular
substructures, known as motifs, can often capture the local information and higher-
order connectivity of molecules more effectively, providing a better paradigm for
pretraining. However, existing motif extraction methods face the issues of relying
on domain-specific knowledge and neglecting the local structural information of
atoms. To address these problems, we propose a motif self-extraction method based
on a graph autoencoder. This method utilizes the graph autoencoder for structural
reconstruction, allowing the model to automatically identify frequently occurring
local patterns. Furthermore, we also propose a motif-based pretraining method
that simultaneously captures the local information and higher-order connections of
both the molecular graph and the motif graph. We pretrain on the 250K Zinc15
dataset and conduct downstream performance prediction on eight commonly used
molecular property prediction datasets. Experimental results demonstrate the
effectiveness of our method.

1 INTRODUCTION

Molecular representation learning (MRL) has garnered increasing attention in recent years in the
fields of chemical analysis and drug discovery research. Molecules can be naturally represented
as graphs, making graph neural networks a popular choice for molecular analysis. However, while
vast amounts of unlabeled molecular data are available, labeled datasets remain scarce. Inspired
by the success of the pretraining-finetuning paradigm in the fields of computer vision (CV) and
natural language processing (NLP), recent studiesHu et al.| (2019); |Wang et al.| (2022);|Zhang et al.
(2021)) have explored pretraining models on large unlabeled molecular datasets before fine-tuning
them for specific downstream tasks. For example, GROVERRong et al.|(2020) utilize large-scale
unlabeled datasets to generate chemical and topological labels for molecular predicting learning,
AttrMaskingHu et al.| (2019) uses node embeddings to predict attributes of masked nodes. The
generative method Hu et al.|(2020); |[Zhang et al.| (2021) learns the distribution of molecular graphs by
training a model. Contrastive learning Wang et al.| (2022); Stark et al.| (2022); |Xiang et al.| (2023);
Luong & Singh| (2024), as a popular approach in unsupervised methods, is also widely applied in
molecular pretraining. InfoGraphSun et al.[(2019) maximizes the mutual information between the
graph-level representation and substructure representations at different scales to learn the graph-level
representation. GraphMVPLiu et al.|(2021)) introduced 3D molecular graphs, leveraging contrastive
learning between 2D-graphs and 3D-graphs. Although the model’s performance improved, the cost
of obtaining 3D-graph coordinates is high.

Typically, most work focuses on pretraining at the node or graph level. Node-level pretraining
captures the local structure of molecules but overlooks higher-order structural arrangements, while
graph-level pretraining may neglect more fine-grained details within the molecules. To address
this problem, some studies have proposed motif-based pretraining methods [Zhang et al.| (2021);
Yan et al.|(2024); |[Luong & Singh!(2024); Zang et al.| (2023)), where a motif is defined as a pattern
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Table 1: Compare existing motif extraction methods and the problems they face. No Over-Frag.
: molecule is not overly decomposed into too many small motifs; High-Freq. : extracted motifs
are high-frequency; Knowledge-Free : no expert knowledge is required for guidance; Considers
Local-Struc. : local structural information of the atomic is considered during motif extraction.

Method No Over-Frag. High-Freq. Knowledge-Free  Considers Local-Struc.
BRICSDegen et al.[(2008) v - - -
JT-VAEJin et al[(2018) - v - -
MGSSLZhang et al.[(2021) - v - -
DBPGYan et al.|(2024)) v - v -
PS-VAEKong et al.| (2022) v v v -
OURS v v v v

of connections in a complex network that appears significantly more frequently than in a random
network Milo et al.|(2002). Motif-based pretraining methods require first using motif extraction
techniques to convert molecular graphs into motif graphs. Inspired by chemistry, BRICSDegen
et al.|(2008) utilizes domain-specific knowledge related to molecules to customize 16 rules for motif
decomposition of molecules; however, the extracted vocabulary is often quite large and contains
many specific or low-frequency fragments which poses significant challenges for motif recognition.
To overcome these shortcomings, JT-VAEJin et al.[|(2018) further decomposes molecules at the ring
and bond levels, while MGSSLZhang et al.|(2021) customizes two new rules to further segment the
generated motifs. However, reducing the fragment size hinders the ability to capture higher-order
representations of molecules, and these methods all require domain-specific knowledge for guidance.
Although DBPGYan et al.|(2024) and PS-VAEKong et al.| (2022) proposed automatically extracting
motifs based on structural similarity and frequency, respectively, they only consider atomic bonds and
their terminal atoms when capturing molecular motifs, while ignoring the local structural information
of atoms, which is clearly unreasonable.

To address the aforementioned problems, we propose a graph autoencoder-based motif extraction
method (GAME) in Section Specifically, we first train a graph autoencoder to perform structural
reconstruction on a large-scale unlabeled molecular dataset. When two atoms are connected, the
model will make their representation, which include local structural information, more similar to each
other. After multiple optimizations, the representations of frequently occurring connection patterns
become more and more similar. We then input the molecules into the pre-trained graph autoencoder
and evaluate the connection frequencies between all atom pairs. By combining this information
with the molecular structure graph and removing low-frequency atomic bonds, we decompose the
molecules into multiple motifs. After processing a large number of unlabeled molecules, we filter out
motifs with higher frequencies to form a motif vocabulary, which can be used to extract motif graphs
from unseen molecules. Table[I|compares all the motif extraction methods and the problems they
encounter. Although previous methods address several of these problems, they still have limitations.

In addition, we propose a motif-based molecular pretraining method that captures both the local
structures and higher-order connectivity of molecules. The model is mainly divided into three parts:
(1) motif-based contrastive learning, which performs contrastive learning at the motif level to enhance
the interaction of information between atoms and motifs; (2) cross-level matching learning, which
establishes a matching task that connects motif-level and molecular-level training; (3) prototype-based
motif prediction learning, which uses prototype representations for motif classification to alleviate
the class imbalance and overfitting problems encountered by previous prediction methods.

The major contributions of this work are as follows:

* We identify limitations in existing motif extraction methods and propose GAME, a graph
autoencoder-based approach that captures local atomic structures without requiring domain-
specific knowledge. To our knowledge, this is the first GNN-based motif extraction method.

* We introduce a motif-based molecular pretraining framework MBMP that jointly leverages
molecular and motif graphs to learn both local features and high-order connectivity.

 Extensive experiments on eight molecular property prediction datasets show that our method
consistently outperforms strong baselines, demonstrating its effectiveness and generalizabil-

1ty.
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» We further validate our approach through comparative studies with existing motif extraction
and motif-based pretraining methods, demonstrate the effectiveness of the proposed two
methods.

2 RELATED WORK

2.1 MOLECULAR REPRESENTATION LEARNING

Traditional approaches [Carhart et al.| (1985); Nilakantan et al.| (1987); Rogers & Hahn| (2010)
commonly represent molecular structures through fingerprints. Earlier works Svetnik et al.[ (2004);
Wu et al.| (2018)); Meyer et al.| (2019)) utilized tree-based models such as Random Forest Breiman
(2001)) and XGBoost|Chen & Guestrin|(2016)) to predict molecular properties using these fingerprints.
String-based representations |Shen & Nicolaou| (2019); |Yiiksel et al.|(2023) generally use SMILES
and InChl notations as inputs, leveraging the language modeling capabilities to extract features. On
the other hand, graph-based representations |Gilmer et al.| (2017)); [Zhang et al.[|(2021)); |Chen et al.
(2024) treat atoms as nodes and bonds as edges, utilizing graph neural networks (GNNs) to capture
molecular structure. Recently, unsupervised pretraining|Wang et al.|(2019); [Li et al.| (2021); Wang
et al.| (2022)); |Stark et al.|(2022) has been increasingly applied to tackle the challenge of limited
labeled data. For example, SMILES-BERT [Wang et al.|(2019) uses transformer layers with attention
and is pre-trained on 35 million compounds from ZINC15 through a masked SMILES recovery task.
MPG/Li et al.|(2021) and GROVER [Rong et al.|(2020) applies a graph-based framework combined
with effective node and graph-level pretraining strategies for learning molecular representations.
MoleculeSTM |Liu et al.| (2023) integrates contrastive learning to simultaneously learn molecular
chemical structures and their textual descriptions. Git-Mol [Liu et al.|(2024) extends this approach
by incorporating a multimodal large language model that integrates graph, image, and text data to
capture the intricate details of molecular structures and their corresponding images. Despite their
advancements, these methods primarily target molecular or atomic-level representations.

2.2 MOTIF EXTRACTION ALGORITHM

Recently, motif-based pre-training methodgZhang et al.[(2020; [2021)); Zang et al.| (2023)); Luong &
Singhl (2024) have been proposed to better extract molecular features using motifs or fragments of
molecules. The success of these methods relies on the development of motif extraction techniques.
Early approachegDegen et al.| (2008)) used predefined chemical rules to fragment molecular bonds and
derive motifs, but this often led to numerous low-frequency motif fragments. To address this issue, Jin
et al.|(2018)) and Zhang et al.| (202 1)) further refined the motifs generated by BRICS, producing smaller
yet more frequent fragments. Furthermore, in an effort to eliminate reliance on expert knowledge,
Kong et al.| (2022) and |Yan et al.| (2024) proposed self-supervised motif extraction methods that
iteratively capture frequently co-occurring atoms from large datasets to form new nodes, ultimately
yielding larger and more frequent motifs. However, these methods fail to consider the local influence
of atoms on motif formation.

3 METHODOLOGY

3.1 GRAPH AUTOENCODER-BASED MOTIF EXTRACTION

Unlike traditional motif extraction methods, we propose an innovative algorithm that eliminates the
reliance on specialized knowledge while fully leveraging the local structural information of molecules.
Our motif extraction framework consists of two key stages: (1) training a graph autoencoder for
capturing high-frequency connection patterns and (2) discovering motifs using the trained graph
autoencoder. In the following sections, we will provide a detailed explanation of each stage, including
its application and underlying principles.

3.1.1 TRAINING A GRAPH AUTOENCODER.

Among the existing motif extraction algorithmsDegen et al.| (2008); Jin et al.[|(2018); Zhang et al.
(2021)); Kong et al.| (2022)); |Yan et al.| (2024), only Kong et al. (2022)) and |Yan et al.| (2024) do
not rely on expert knowledge. However, when partitioning motifs, they only consider the bond
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between atoms and the relationship between the atoms at both ends, without fully taking into
account the local structural information of each atom. This is clearly limited, as whether two atoms
belong to the same motif is influenced not only by their bonding relationship but also by their local
environment, such as whether they are part of a ring or how strongly they are connected to other atoms.

Question 1: How can we effectively capture
the local structural information of atoms? To | e action .
capture the local structural information, a com- G %)
mon approach is to represent the molecule as a =
graph, with atoms as nodes and bonds as edges. @_\< — ¢y &
Graph neural networks are then employed to ag-
gregate information between nodes, effectively
capturing the local structural features of atoms. = " ‘
. H et (123456) _sbgrapn.
However, while graph neural networks can cap- @ - OB
ture local information, they are not able to di-
rectly capture the high-frequency connectivity =~ ® MotifVocabulary
patterns of molecules. > |
Question 2: How can GNNs be used to cap- @ \/© <:> @ e
ture the high-frequency connectivity patterns
of molecules? Inspired by Kipf & Welling
(2016)) where a graph autoencoder is used for
structural reconstruction to optimize the model,
we found that extending this approach to molec-
ular graphs allows for the capture of high-frequency connectivity patterns. Specifically, when a
large number of molecular graphs are fed into the autoencoder for structural reconstruction, frequent
patterns of connectivity (e.g., —C' = O and —C H3) will lead to repeated adjustments during opti-
mization, making their embeddings more similar. After multiple rounds of optimization, the model
will naturally tend to bring the embeddings of atom pairs with such local connectivity patterns closer
together. In contrast, for connectivity patterns that occur infrequently or not at all, the model will
reduce the similarity of the corresponding atom pair embeddings. After training, the model will
have the ability to capture high-frequency connectivity patterns, which can then be used for motif
extraction.
The specific training process is shown in Figure[I] For a molecule M, we first represent it as a graph
GV, &) = (A, X), with atoms as nodes and bonds as edges. This graph is then passed through a
graph encoder G, which uses its aggregation mechanism to capture the local structural patterns of
the atoms:

Figure 1: The framework of the motif extraction
algorithm.

Z:Ge(AvX) ()

After obtaining the embeddings for each atom, we use a decoder to calculate the probability of an
edge existing between each pair of atoms:

A=o(z27) (2)

where o represents the sigmoid function. Finally, we use binary cross-entropy loss £ to reconstruct
the molecular structure:

Lp==Y ajloga,+ (1 —aj)log(l—a;) 3)

J k

where a;, and G, are the element in the j-th row and k-th column of A and A, respectively.

3.1.2 MOTIF DISCOVER THROUGH THE TRAINED GRAPH AUTOENCODER

After several optimization iterations, the graph autoencoder effectively captures the high-frequency
connectivity patterns of the molecule. When a new molecule is fed into the autoencoder, it can
assess the frequency of the connection between two atoms within their local structural environment.
However, we cannot directly define molecular motifs based solely on connection frequency, as some
high-frequency connections may not correspond to actual bonds in the molecule. Therefore, it is
essential to analyze this in conjunction with the molecular graph structure.

Question 3: How can we use A and A for motif extraction in molecules? Typically, motif
extraction is achieved by determining whether atomic bonds should be broken, ultimately resulting
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Figure 2: The overall framework of Motif-based Molecular Pretraining.

in multiple subgraphs. To achieve subgraph partitioning, we first remove edges that do not actually
exist:

D=AoA )
where o represents Hadamard (element-wise) product. D sets the positions where there are no edges

in A to 0, while keeping the positions with edges unchanged. To further remove low-frequency
connectivity patterns, we define a function F(X):

1, if Xiy>k

F(X){o, if X<k .

where k is a hyperparameter used to determine whether the atomic bond is broken, X;;; is the element

in the i-th row and j-th column of X. By applying D = F'(D), we filter out low-frequency edges,
which typically represent the breakpoints of motifs. As a result, the molecule is divided into several
smaller subgraphs. We collect the indices of all subgraphs and identify these substructures within the
molecular graph, treating each substructure as a motif.

We trained on the 250K Zinc15 dataset and collected the motif sets of its molecules. To ensure
the motifs are of high frequency, we further split those motifs with a frequency lower than the
hyperparameter N, resulting in a high-frequency motif vocabulary V.

After obtaining the motif vocabulary, we constructed the corresponding motif graph for each
molecule. For a molecular graph G(V, &) € Xg = {G1(V1,€1),G2(V2,E2), -+ ,Gn(Vn, En)} and
n is the number of molecule, let M = {S 0, 5@ ... ,S(m)} be its corresponding motif, where
SOV @) € V is a subgraph, V) N VU) = § and U™, V@) = V. We denote the motif graph of
G as G(V, ), where |V| = | F| and each node v;f) € V corresponds to a motif S, If there exists at
least one edge connecting the atoms of two motifs, an edge is established between the corresponding
nodes of these motifs, defined as € = {(4, j)|Fu, v,u € V? v € VU (u,v) € £}. For simplicity,
we retained the edge features within each motif, and the node features of the motifs are derived from
embeddings in an optimizable lookup table.

3.2 MOTIF-BASED MULTI-LEVEL MOLECULAR PRETRAINING

In this section, we propose a motif-based multi-level molecular pretraining(MBMP), which consists
of three components: motif-based contrastive learning, cross-level matching learning, and prototype-
based motif prediction learning. Figure [2]illustrates the overall framework of the pretraining.

3.2.1 MOTIF-BASED CONTRASTIVE LEARNING

We first define two graph neural networks, Gs and G's, to encode the molecular graph and the motif
graph, respectively. Given a molecular graph G(V, ) and its corresponding motif graph G(V, &), we
obtain their node representations separately as follows:

HS), = Gu(V.€) ©6)
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Hbig = Gs(V.€) )
where H fj)om and H, félti ¢ represent the embeddings of the molecule’s atoms and motifs, respectively.

After obtaining the representations of atoms and motifs, we perform contrastive learning at the motif
level to better capture the molecule’s local structural information. Contrastive learning optimizes
the model by pulling positive samples closer together while pushing negative samples apart in the
embedding space. In the context of unlabeled data, this typically involves generating different views
of the same sample, treating data from the same sample as positive samples and data from other
samples as negative samples. Following this approach, we define a MOTIFPOOL function to perform
average pooling on the atomic embeddings belonging to the same motif:

HY .+ = MOTIFPOOL(H ), MAP(V, V) (8)

moti atom>
where MAP(+) is a mapping function that establishes the relationship between motifs and atoms. We
then minimize the motif-based contrastive learning objective using the InfoNCE loss:

exp (<Hy(2)tif,r’ ffﬁm‘f}r»

Le=—la ———, O go ©
Zj:l Zkzjl exrp (<Hmotif,r7 Hmotif,k>)
where H, fﬁm 7, and H glt iy, are the r-th row of A, f;lt i and H glt ;> respectively. |Vj| is the number

of motifs in the j-th molecule.

3.2.2 CROSS-LEVEL MATCHING LEARNING

While motif-based contrastive learning enhances information exchange between atomic and motif-
level data, it overlooks the interaction between motif-level and molecular-level information. To
address this limitation, we propose a cross-level matching learning approach. We aggregate the
atomic node representations to generate the embedding for the entire graph:

HY = MoLPooL (H;;Lm> (10)

mol —

where MOLPOOL(+) represents the average pooling operation for atom belonging to same molecule.
Through permutation and concatenation, we iteratively combine molecular and motif representations,
and train a discriminator to predict the existence of a relationship. Given a permutation P, the
corresponding matching labels y = {y1,1,...,%1,8,¥Y2,1,-- -, Ym,~ } and the discriminator d, the
matching loss is:

gﬂ1:__;nuéépwdk%(d(gggﬁ,gg;)) (11)
+(1—y;;)log (1 —d(ﬁ,ﬁj{,w,ﬂﬁ,{gl)) (12)

By establishing cross-level matching learning, the training process encourages information to interact
between the two levels.

3.2.3 PROTOTYPE-BASED MOTIF PREDICTION LEARNING

Unlike previous methods that directly predict motif labels, which may suffer from motif class
imbalance and overfitting, we leverage prototype representations to enhance the predictive learning
of motifs. Specially, for the k-th motif class, Ci, we first obtain its class prototype embedding py:

1 ~
P =(a > Huotifj (13)
Fljeck
where |Cy,| is the number of motifs in class k and H,,o¢i 7 ; is the embedding of the j-th motif. We use
prototypes for motif classification, assigning each motif to the nearest class prototype. To achieve this,

we minimize the distance between the motif and its corresponding class prototype, while maximizing
the distance to other class prototypes. The loss function L is used for this classification task:

V| n, exp (— llze — Pi||2)

Lp= %ZZ—log

b)
i=1 k=1 >irce, €XP (* |zr — Pi/\|2>

(14)
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where |V| is the number of motif class, M is the total number of motifs, and n; represents the motifs
number of class i.

Finally, we combine these three training methods. Since contrastive learning and matching learning
involve optimizing two models, while predictive learning involves only motif model, we use « as a
weight hyperparameter. The joint pretraining objective is then:

£:a£p+(1—a)(£c+£M) (15)

After pre-training, we obtained two models GGj; and Gg. Inspire by [Luong & Singh| (2024)), we using
the embeddings generated G s and G g, concatenating them for downstream fine-tuning tasks.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We use a processed subset containing 250k unlabeled molecules sampled from the
ZINCI1S5 databaselrwin et al.|(2012)) for pretraining. As shown in Section we first extract a motif
vocabulary. To ensure proper motif division for unseen molecules, we expand the vocabulary by
adding atoms that are not present in the pretraining dataset. In the pretraining phase, we generate
motif graphs for the ZINC15 dataset using the motif vocabulary and perform motif-based molecular
pretraining. For downstream tasks, we evaluate our method on eight binary graph classification tasks
from MoleculeNet Wu et al.|(2018). To simulate real-world applications, we apply scaffold splitting
to partition the downstream dataset, dividing the data into training, validation, and test sets with an
80%:10%:10% split based on molecular structure. We conduct three independent runs for each data
split and report the mean and standard deviation.

Model Configuration. In the GNN-based motif extraction algorithm, we employ a two-layer GIN
(Graph Isomorphism Network) as the graph encoder. For molecular pretraining, we adopt a 5-layer
GIN as the molecular encoder and a shallower 2-layer GIN for motif encoding, both with hidden
layer dimensions of 300 as in previous workLuong & Singh|(2024);|Zhang et al.|(2021)). During the
downstream fine-tuning phase, we append a MLP to the pre-trained model for classification.

Baselines As shown in Table 2] we compare our model with several notable pre-trained baselines
in the molecular classification task, including predictive methods (AttrMask & ContextPredHu et al.
(2019) , G-Motif & G-Contextual Rong et al.|(2020)) ), generative method (GPTGNNHu et al.| (2020)),
contrastive methods (GraphLoG Xu et al.|(2021), GraphCL |You et al.| (2020), JOAOYou et al.|(2021),
JOAOV2You et al.|(2021), GraphMVPLiu et al.[(2021))), and motif-based method(MGSSLZhang et al.
(2021), GraphFPLuong & Singh!(2024), DGPMYan et al.| (2024)).

Implementation details. In pretraing stage, we use the Adam optimizer to train ours framework
with initial learning rate le-3, epoch 100, and batch size 32. We reduce the learning rate by a factor
of 0.1 every 5 epochs without improvement. We use the models at the last pretraining epoch for
fine-tuning. In the fine-tuning stage, to ensure comparability, our setting is mostly similar to that
of previous works [Liu et al.|(2021); Luong & Singh|(2024)): Adam optimizer, initial learning rate
chosen from {1le-3, le-4}, epoch 100, batch size 32, and dropout rate chosen from {0.0, 0.5}. We
reduce the learning rate by a factor of 0.3 every 30 epochs.

4.2 RESULTS ON DOWNSTREAM TASKS

Table [2| report the results on 8 molecular property prediction benchmark. To provide a thorough
evaluation, we compare MBMP with existing molecular pretraining methods and introduce four
ablated variants: 1) without Gg in downstream evaluation (w.o. S); 2) without contrastive learning
(w.0. C); 4) without matching-based learning (w.o. M); 4) without predictive learning (w.o. P).
The experimental results are shown in Table 2] where we summarize all methods into five different
categories. The results show that our method consistently outperforms prior approaches, with an
average ROC-AUC gain of 1.66% over the best baseline, and achieves state-of-the-art performance
on 6 out of § datasets. Furthermore, the ablation study on MBMP and its variants highlights the im-
portance of each pretraining component. Among the three strategies, contrastive learning contributes
the most to performance, followed by matching learning and predictive learning. Notably, utilizing
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Table 2: Test ROC-AUC on eight molecular property prediction datasets. The mean and standard
deviation are reported for five random seeds. The top-3 performances on each dataset are shown in
red color, with red being the best result, red being the second best result, and red being the third best
result. We summarize the methods into 5 categories: (1) No-pretrain; (2) prediction or generation
learning methods ; (3) contrastive learning methods ; (4) motif-based pretraining methods ; (5)
MBMP and its variants.

Method BBBP Tox21 Toxcast ~ SIDER  ClinTox MUV HIV BACE Avg.AUC

No-pretrain 656414 715410 61.5408 59.4+12 665452 745405 644419 72.6+1.9  67.00

AttrMaskingHu et al.|(2019) 64.3£2.8 76.7£0.4 642+05 61.0£0.7 71.8+£4.1 747£14 772£1.1 793£1.6 71.15
ContextPredHu et al.|(2019) 68.0£2.0 75.7£0.7 63.9£0.6 60.9+0.6 659+3.8 758+1.7 773£1.0 79.6£1.2  70.89

G-MotifRong et al.|(2020) 66.9+3.1 73.6£0.7 623£0.6 61.0£1.5 77.7£2.7 73.0£1.8 73.8+1.2 73.0£33 70.16
G-ContextualRong et al.[(2020) 69.9+2.1 75.0+0.6 62.8+0.7 58.7+£1.0 60.6+£52 72.1+0.7 76.3+1.5 79.3+1.1  69.34
GPT-GNNHu et al.{(2020) 645114 749£03 62.5£04 58.1£0.3 583£52 759£23 652+2.1 779+£32  67.16
GraphLoGXu et al.|(2021) 67.8£1.9 751£1.0 624£0.2 59.5£1.5 653£3.2 73.6£1.2 73.7£09 80.2£3.5 69.70
GraphCL You et al.|(2020) 69.7£0.7 73.9£0.7 62.4£0.6 60.5£0.9 76.0£2.7 69.8+2.7 78.5+1.2 754+14  70.78
JOAQYou et al.{(2021) 70.2£1.0 75.0£0.3 629£0.5 60.0£0.8 81.3£25 71.7£14 76.7£1.2 773+£05 71.89
JOAOv2You et al.[(2021) 71.4+09 743+0.6 63.2+0.5 60.5+0.7 81.0+£1.6 73.7£1.0 77.5£12 755+£13 72.14
GraphMVELiu et al [ (2021) 68.5£0.2 74.5£04 62.7£0.1 623+1.6 79.0£25 750+1.4 748+14 768+1.1 71.70
MGSSI{Zhang et al.|(2021) 67.2£1.6 744£0.2 64.1£0.8 60.4£0.5 72.8+£53 76.1£0.6 752£1.5 769+0.7  70.88
GraphFELuong & Singh|(2024) 72.24+0.7 73.9+0.2 63.7+£0.2 62.5+1.0 86.5+3.6 73.7+£0.6 76.6+04 79.2+1.8  73.54
HiMolZang et al.[(2023) 69.8+£1.8 748+1.0 64.1£1.1 59.7£0.7 729+£3.5 73.6£0.5 755£1.7 79.24£28 7122
DGPMYan et al.| (2024) 71.2£0.5 753£04 64.0£0.7 60.3+£0.8 809+1.3 753£1.6 77.3£0.6 81.1£0.7  73.17
MBMP (w.o0. S) 69.7£2.3 742404 624£09 62.5+04 77.4+4.6 759408 76.8+1.6 80.2+1.6 7239
MBMP (w.o. C) 68.1+1.3 744405 63.1£0.3 60.2+04 80.1+2.3 73.84+1.3 745£1.3 74.1+£2.1 71.04
MBMP (w.0. M) 70.8£1.5 759£0.7 64.1£0.6 61.8+£04 859£3.9 76.0£0.6 77.9+£09 79.8+£0.6  74.02
MBMP (w.p. P) 71.2£1.2 751£0.7 64.5£0.2 63.1+£0.3 87.7£0.9 76.8+£1.7 759+0.6 81.3+£0.3  74.54
MBMP 72.9+£0.7 747£03 64.4£0.7 61.6+£0.6 89.1£1.5 79.1£0.9 784£1.0 81.5£1.2 7520

the embeddings from both models during downstream prediction leads to substantial performance
gains. Finally, a comparison across five categories shows that MBMP and its variants yield the best
average performance. Motif-based pretraining methods follow, while contrastive learning methods
and prediction or generation learning methods perform moderately well. Models without pretraining
perform the worst. These results not only further demonstrate the effectiveness of our proposed ap-
proach, but also suggest that motif-based pretraining is more capable of capturing the local structures
and higher-order connectivity of molecules.

4.3 IMPACT OF MOTIF EXTRACTION ALGORITHMS ON MOTIF-BASED PRETRAINING

To verify the effectiveness of our proposed graph autoencoder based motif extraction method (GAME),
we compare it with existing motif extraction approaches by applying each to different motif-based
pretraining methods. We exclude BRICS from the comparison as it lacks general applicability.
Table [3] presents the experimental results, which demonstrate the effectiveness of our proposed
GAME method. Among the four pretraining strategies, three achieve the best average ROC-AUC
when combined with GAME, and it consistently yields superior performance across the majority
of datasets. These results indicate that our proposed GAME method is more effective at capturing
meaningful motif structures, thereby highlighting the importance of incorporating local atomic
structural information in the motif extraction process.

4.4 PARAMETER ANALYSIS

To better assess the impact of the proposed Motif extraction algorithm (GAME) on model performance,
we conduct a parameter analysis of GAME. Table ] shows the results for the bond-breaking threshold
k and the minimum Motif frequency N. The experimental results show that the model performs
best when a smaller value of £=5.5 is used. A smaller k tends to produce overly large subgraphs,
which can lead to an excessive number of low-frequency Motifs and negatively impact performance.
In contrast, a larger k results in overly fragmented subgraphs, making it difficult to capture the
high-order molecular structures effectively. Additionally, for the minimum frequency N, the best
performance is observed when N = 50. A smaller value like N=20 may include low-frequency
Motifs that poorly represent local molecular structures. On the other hand, a large N may filter
out too many meaningful Motifs, retaining mostly smaller ones, which limits the ability to capture
high-order connectivity within molecules.
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Table 3: Test ROC-AUC on eight molecular property prediction datasets. The experimental results

present the performance of four different motif-based pretraining methods under four distinct motif
extraction algorithms. The red indicates the best performance under each pretraining method.
Motif-Based | Motif Extraction

BBBP Tox21 Toxcast ~ SIDER  ClinTox MUV HIV BACE | Avg-AUC

Method Algorithm
JT-VAE 66.1+£1.1 74.6+0.2 63.6+£0.8 61.3+0.6 71.2+3.3 77.3+24 75.1£0.3 759425 | 70.65
MGSSL MGSSL 67.2+1.6 744402 64.1+0.8 60.4+0.5 72.845.3 76.1+0.6 75.2+1.5 76.9+0.7 | 70.88
PS-VAE 65.1+£2.4 73.7+£04 63.2+0.8 61.1+£0.6 75.6+t1.1 74.3+0.3 744+14 76.7£19| 70.51
GAME(ours) 68.2+1.9 745+1.6 63.8+£04 61.5+£0.3 724+14 74619 753+0.8 75.6£1.5| 70.74
JT-VAE 67.2+1.3 73.9+0.8 63.7+£0.6 61.7+£0.1 72.7+t44 743+2.0 744+0.6 77.5£0.6| 70.68
GraphFP MGSSL 68.5+1.2 73.0+£0.9 62.2+0.5 61.1+£0.7 65.6+£3.7 73.9+1.5 745+09 77.7£15| 69.56
rap PS-VAE 68.3+1.5 742412 63.240.7 59.8+0.8 742412 73.3+3.6 76.1+14 785+2.0| 7095
GAME(ours) 69.7+1.1 74.6+0.7 62.74£0.2 60.1+£0.7 74.5+2.7 751+1.9 73.3+0.8 80.1+2.8 | 71.26
JT-VAE 63.5+34 748+12 64.7+0.7 589+04 70.9+3.1 749+0.3 76.1+£0.5 82.2+0.3| 70.75
HiMol MGSSL 68.2+1.1 742+0.1 65.3+0.3 59.7+£0.2 70.5£19 73.3+1.8 76.4+0.1 80.8+0.5| 71.05
o PS-VAE 68.6+1.3 75.5+0.1 65.4+0.4 59.2+0.5 71.5£2.6 73.5£2.1 77.6+£1.0 80.4+0.5| 71.46
GAME(ours) 68.6+1.7 75.6+0.7 65.2+0.3 61.1+0.7 72.6+1.3 76.1+1.2 76.7+£1.8 81.4+12| 72.16
JT-VAE 69.1+1.1 73.8+£0.7 63.1+£0.3 62.1+£0.8 74.3+2.3 75.1+£1.8 742+1.6 79.7+£1.1 71.43
MBMP(ours) MGSSL 69.2+1.0 74.0+£0.7 61.8+£0.8 61.6+0.7 67.7+£2.9 753+12 75.1+£14 78.1+1.7| 70.35
PS-VAE 69.9+1.2 73.6+£0.9 63.6+£0.7 61.1+£0.8 78.9+2.2 753+1.8 73.9+1.1 77.7£23| 7175
GAME(ours) 69.7£2.3 742404 624+09 62.5+04 774+4.6 75.9+0.8 76.8+1.6 80.2+1.6| 72.39

Table 4: Parameter analysis of bond-breaking threshold & and minimum Motif frequency N.

MBMP BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg.AUC

k=0.50,N =50 722413  75.5+0.6 642408 61.2+0.8 87.1+3.5 788+0.8 77.6+2.1 80.2+2.4 74.60
k=0.55,N=50 72.940.7 7474+03 644407 61.6+£0.6 89.1+15 79.1+£0.9 784+1.0 81.5+1.2 75.20
k =0.60, N =50 70.8£1.1 749406 63.7+£0.6 62.8+1.3 873+£22 784+27 78.7+0.5 80.8+2.1 74.68
k =0.65,N=50 70.6£1.6 745405 64.5+0.9 622+12 86.2+£29 77.5+0.7 755+1.6 79.6£3.2 73.83

k=055N=20 71.7£06 751+£03 651£02 623+13 852+24 786+£12 79.14+0.6 80.5£1.8 74.70
k=0.55,N=50 72.9+0.7 747403  64.4+0.7 61.6+06 89.1+1.5 79.1+0.9 784+1.0 81.5+1.2 75.20
k=055N=100 70.7£13 749405 642402 61.8+1.3 8744+12 77.6£0.8 77.8+£09 80.2+2.7 74.33
k=055N=200 70.7£0.6 76.2+0.1 643%£1.1 61.5£0.6 86.6+2.6 76.6£0.8 764+1.1 81.2£2.1 74.19

Furthermore, to analyze the impact of different loss components on model performance, we conduct
a parameter study on the loss weight . The results in Table [5] show that performance peaks at
a=0.1, with performance first increasing and then decreasing as o grows. This indicates that both
contrastive learning and matching learning from multiple perspectives are crucial for the model.
Moreover, increasing the weight of prototype learning helps align Motif representations more closely,
contributing to better pretraining.

Table 5: Parameter analysis of the loss weight .
MBMP BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE Avg AUC

a=0.10 72.9+0.7 747+£03 64.4+0.7 61.6£0.6 89.1+1.5 79.1+0.9 784+10 81.5+1.2 75.20
a=020 69.8+14 75.1+£0.7 63.3+£0.8 625+£1.1 872425 765+1.1 787+£09 79.9+19 74.13
a=030 709+0.8 75.0+0.7 64.1£0.6 61.9+09 88.7+0.8 77.5+0.7 79.24+0.3 80.2+1.5 74.69
a=040 71.6+1.6 745+£09 63.3+£0.8 62.7+09 86.2+1.1 78.6+0.7 77.3+13 80.6£1.6 74.35
a=050 715408 75.3+0.3 639+09 619407 857401 76.7+1.1 78.1+0.5 80.9+0.8 74.25

5 CONCLUSION

To address the limitation of existing Motif extraction methods that overlook local atomic structure,
we propose a novel graph autoencoder-based Motif extraction algorithm (GAME). By leveraging
graph autoencoder-based structure reconstruction, GAME effectively identifies frequently occurring
subgraphs, capturing the underlying Motifs of molecules. In addition, to better capture multi-
perspective molecular information, we introduce a Motif-based multi-level molecular pretraining
framework (MBMP). We pretrain our model on 250K unlabeled molecules from the ZINC15 dataset
and evaluate it on eight widely used molecular benchmarks. Experimental results show that our model
outperforms existing state-of-the-art methods. Furthermore, we compare our approach with existing
Motif extraction and Motif-based pretraining methods, further demonstrating the effectiveness of
both the proposed Motif extraction algorithm and the pretraining framework.
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