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Abstract

Speculative decoding stands as a pivotal tech-001
nique to expedite inference in autoregressive002
(large) language models. This method employs003
a smaller draft model to speculate a block of004
tokens, which the target model then evaluates005
for acceptance. Despite a wealth of studies006
aimed at increasing the efficiency of specula-007
tive decoding, the influence of generation con-008
figurations on the decoding process remains009
poorly understood, especially concerning de-010
coding temperatures. This paper delves into011
the effects of decoding temperatures on spec-012
ulative decoding’s efficacy. Beginning with013
knowledge distillation (KD), we first highlight014
the challenge of decoding at higher tempera-015
tures, and demonstrate KD in a consistent tem-016
perature setting could be a remedy. We also017
investigate the effects of out-of-domain testing018
sets with out-of-range temperatures. Building019
upon these findings, we take an initial step to020
further the speedup for speculative decoding,021
particularly in a high-temperature generation022
setting. Our work offers new insights into how023
generation configurations drastically affect the024
performance of speculative decoding, and un-025
derscores the need for developing methods that026
focus on diverse decoding configurations.027

1 Introduction028

Large language models (LLMs) such as GPT-029

4 (OpenAI, 2023), Claude (Bai et al., 2022), and030

LLaMA (Touvron et al., 2023a,b) are revolutioniz-031

ing the field of natural language processing (NLP)032

and machine learning (ML). While being powerful033

tools for various downstream tasks, LLMs’ real-034

time deployment is still challenging due to the size035

and the inference cost (Pope et al., 2022). Con-036

versely, smaller models have less latency but lower037

generative quality. In a word, efficiency and ac-038

curacy form a trade-off. Inspired by this, spec-039

ulative decoding (Leviathan et al., 2023; Chen040

et al., 2023a) emerges as a promising token-level041

Figure 1: Speedup and acceptance rate (y-axises) for dif-
ferent decoding temperatures (x-axis) on Alpaca dataset.
The draft model (Llama-68M) is distilled from Llama-
2-13B-chat with data generated in 0.2 temperature.

solution to reduce the latency of generation for 042

LLMs. Specifically, speculative decoding leverages 043

smaller models as draft models to speculate succes- 044

sive candidate tokens for multiple inference steps 045

with autoregressive generation, which are then veri- 046

fied with the target LLM in parallel through a single 047

forward pass. If a token fails to be accepted by the 048

target LLM, all the consecutive tokens will be dis- 049

carded, and the target LLM needs resampling for 050

that rejected token. 051

Previous studies (Xia et al., 2024) generally test 052

speculative decoding in fixed generation configu- 053

rations, with temperature sampling (Ackley et al., 054

1985) being the default setting. Compared with 055

other hyperparameters such as top-k (Fan et al., 056

2018) in text generation, temperature has a domi- 057

nating effect in re-estimating the distribution before 058

top-k sampling (Radford and Narasimhan, 2018), 059

balancing generation quality and diversity (Holtz- 060

man et al., 2020). However, previous works only 061

test at a coarse-grained level, setting the tempera- 062

ture to binary extremes of either 0 (greedy decod- 063

ing) or 1.0. On the other hand, accelerating specu- 064

lative decoding in various generation scenarios is 065

important to better suit user needs in downstream 066
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tasks. To this end, this paper investigates from067

a temperature-centric perspective of speculative068

decoding for LLMs.069

We focus on knowledge distillation (KD) (Hin-070

ton et al., 2015) as the general investigation setting,071

which has been introduced as an intuitive and gen-072

eral solution to speculative decoding (Zhou et al.,073

2023; Liu et al., 2023). Particularly, KD aims074

to align the distributions of draft models better075

to that of target models. In this way, the accep-076

tance rate of candidate tokens generated by the077

draft model to the target model could be boosted.078

Our preliminary experiments in Figure 1 validate079

our motivation, highlighting the impacts brought080

by different temperatures for both decoding and081

KD stages. Notably, the speedup of the decod-082

ing processes increases and peaks at a decoding083

temperature of 0.2 before declining as the tempera-084

ture approaches 1. The impact of temperature on085

speedup can reach a relative difference of around086

30% (2.23−1.72
1.72 = 29.7%), highlighting its impor-087

tance. We also notice that KD relieves the degrada-088

tion of speedup when temperature increases.089

Overall, we explore the impact of temperature090

on speculative decoding with KD. Specifically, we091

address three pivotal research questions:092

• RQ1. What is the influence of temperature on093

speculative decoding’s efficacy in the context094

of KD? To answer this question, we explore two095

key processes where the temperature is a critical096

factor in speculative decoding (§ 2). Utilizing the097

Llama series as the foundational model for both098

target and draft models, we train the draft model099

across a spectrum of training sets, each regulated100

by nuanced temperature settings, to assess and101

benchmark their performance (§ 4.1).102

• RQ2. Can the observed results extrapolate103

to out-of-domain datasets and out-of-range104

temperatures? Building upon RQ1, we examine105

the adaptability of KD with temperature-specific106

configurations to out-of-domain test sets derived107

from the training sets (§ 4.2), and its performance108

with out-of-range temperatures from those used109

during training (§ 4.3).110

• RQ3. How do we design an efficient recipe111

for enhancing speculative decoding in a112

temperature-centric manner? Drawing from113

the insights of RQ1, we investigate various114

strategies for assembling training data with a115

temperature-aware approach (§ 4.4). Our goal116

is to amplify the performance of speculative de- 117

coding, particularly under conditions of elevated 118

decoding temperatures. 119

The experiments are conducted on several com- 120

monly used public datasets. Our analysis offers a 121

new perspective on understanding speculative de- 122

coding by applying fine-grained temperature con- 123

trols, especially with KD. The key contributions 124

and takeaways can be summarized as follows: 125

• We pinpoint temperature as the key factor in the 126

process of speculative decoding with KD. We 127

empirically identify the most suitable setup, and 128

find that temperature alignment between training 129

and inference accelerates decoding significantly. 130

• We explore both out-of-domain test sets and 131

out-of-range decoding temperatures, and show 132

the importance of token difficulties for out-of- 133

domain sets and the “U-curve” phenomenon for 134

out-of-range temperatures. 135

• Building upon our findings, we propose a sim- 136

ple yet effective data-centric strategy to boost the 137

speedup for speculative decoding at high temper- 138

atures, and show that it can further improve the 139

speedup of 12%-20%. 140

2 Background 141

2.1 Temperature in Decoding 142

Temperature τ is an important hyperparameter in 143

the configurations for decoding, which controls the 144

randomness of predictions by scaling the logits be- 145

fore applying the softmax function during the text 146

generation process (Ackley et al., 1985). It affects 147

how the next word is chosen from the vocabulary: 148

P(tk|t1:k−1) =
exp(lk/τ)∑
i exp(li/τ)

, (1) 149

where tk and lk are the k-th token to predict and the 150

corresponding logit. Lower temperatures will skew 151

the distribution toward high-probability events, re- 152

ducing the mass in the tail distribution to make 153

the generation more focused and deterministic, and 154

vice versa. 155

2.2 Temperature in Knowledge Distillation 156

The latency reduction actually depends on how 157

aligned the draft model and the LLM are. With 158

better alignment comes lower rejection rates of to- 159

kens, thus higher acceleration speed. To make draft 160

models better aligned with LLMs, KD is proposed 161
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as an intuitive yet effective solution (Zhou et al.,162

2023; Liu et al., 2023). In the KD process, the draft163

model Md acts as the student, and the target model164

Mt serves as the teacher. We consider the two KD165

paradigms, online and offline distillation (Zhong166

et al., 2024), in our investigation. Note that this167

paper focuses on lossless speculative decoding and168

the detailed algorithm for KD can be found in Ap-169

pendix A.170

During the KD process, the effect of temperature171

is mostly brought by the process of training data (G)172

generation, which is contrastive to the temperature173

used in loss functions1. Temperature guides the174

training data generation from the teacher model for175

offline data inference. Similar to offline distillation,176

the student model is asked to generate on-policy177

training data with temperature being the controlling178

factor in online distillation (Agarwal et al., 2023).179

Offline Distillation We use SeqKD (Kim and180

Rush, 2016) as the representative technique for of-181

fline distillation. It is a black-box style framework,182

where only the teacher-generated texts are acces-183

sible. Training data are first generated by teacher184

Mt with decoding temperature τ :185

yi = Mt(xi; τ)

G = {(xi, yi) | i = 1, 2, ..., n}
(2)186

where (xi, yi) denotes the input-output pair. The187

collected data are then used to train the student Mθ
d188

parameterized by θ:189

θ∗ = argmin
θ

∑
(xi,yi)∈G

L(Mθ
d(xi), yi) (3)190

The student model Mθ
d is trained to minimize this191

loss, effectively learning to mimic the teacher’s192

behavior.193

Online Distillation In this setting, we assume194

white-box access to both target and draft models,195

i.e., we can obtain the token-level distributions.196

Online distillation to the draft models seeks to min-197

imize the divergence between the soft logits of198

teacher and student distributions over a training set,199

by using online data generated by Md:200

θ := argminE(x,y)∼G [D(Mt||Mθ
d(y|x; τ ;λ))],

1In our investigation, the temperature in loss functions
is always set to 1.0 following previous works (Chang et al.,
2023).

Setting Divergence (D) Training Data (G)

Offline Distill FKL Data generated by Mt offline

Online Distill FKL Fixed dataset + Online data
generated by Md

Table 1: Comparison of two settings for offline distilla-
tion and online distillation.

D measures the distance of two distributions and 201

we use the default forward Kullback-Leibler diver- 202

gence (FKL) in our experiments. τ and λ control 203

the generation temperature and data fractions of the 204

student model, respectively. Table 1 summarizes 205

the setting of offline and online distillation. 206

3 Experimental Setup 207

This section outlines the detailed experimental 208

setup, including model architecture, dataset selec- 209

tion, and evaluation metric employed for knowl- 210

edge distillation (KD) and decoding phases. Fur- 211

ther details on implementation, including hyper- 212

parameter configurations and computation time- 213

frames, are provided in Appendix B. 214

3.1 Models and Datasets 215

Models In our experiments, we follow the set- 216

tings of previous works (Liu et al., 2023; Miao 217

et al., 2023) and employ the Llama (Touvron et al., 218

2023a,b) series as model architectures, a publicly 219

available and prevalently used LLM family. Specifi- 220

cally, we select the instruction-tuned Llama-2-13B- 221

chat 2 as the target model, and Llama-68M 3 as the 222

draft model. The pre-trained model parameters for 223

both models used are accessible via HuggingFace. 224

Datasets We focus on the general task of text gen- 225

eration with instructions. We use the Alpaca (Taori 226

et al., 2023) dataset as our fixed dataset follow- 227

ing (Miao et al., 2023). The original Alpaca 228

collection contains 52k samples in the format of 229

instruction-input-output triples, and we take 51k 230

as the training set for KD. The rest of the 1k sam- 231

ples are left as in-domain testing set. For offline 232

distillation, we employ vLLM (Kwon et al., 2023) 233

first to generate responses for each sample in the 234

fixed dataset using the teacher model Mt. The 235

generated responses are paired with the original 236

input as the training data for offline distillation. For 237

online distillation, we use a half-fixed dataset with 238

another half-on-policy data generated by student 239

2https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

3https://huggingface.co/JackFram/llama-68m
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model Md. All data generated by either Mt or240

Md is based on temperature sampling with temper-241

ature τ in [0, 1] of interval 0.1. That being said, we242

have a total of 11 configurations of data generation243

in the KD process, which results in 22 draft models244

for testing for both offline and online distillation245

settings. Apart from the 1k samples from Alpaca as246

the in-domain set, we also use the GSM8K (Cobbe247

et al., 2021) test set containing 1.28k4 samples as248

the out-of-domain set.249

3.2 Evaluation250

Metrics Following previous works (Leviathan251

et al., 2023; Miao et al., 2023; Zhou et al., 2023),252

we measure the empirical acceptance rate α, and253

relative wall time (latency) improvement γ. α254

serves as the measure of how closely Md approxi-255

mates Mt, and directly influences γ. In our imple-256

mentations, we adapt the code from HuggingFace257

assisted decoding 5 and count the numbers of to-258

kens generated by Md and tokens accepted by Mt259

for α. Time for decoding is documented for γ.260

All the decoding processes are conducted based261

on temperature sampling with temperature τ ∈262

[0, 1] spanning 0.2. The batch size is set to 1 by263

default. For statistical robustness, we decode each264

sample 5 times and take the averaged number of α265

and γ and the final results.266

Platforms The KD training was executed over267

eight V100 NVIDIA GPUs, each with 32GB mem-268

ory. The decoding phase for all draft models was269

carried out on a single A100 40G NVIDIA GPU270

for the consistency of our conclusions.271

4 Experiments and Analyses272

Our experiments and analyses are organized in the273

following workflow. We start with an overall inves-274

tigation of temperature configurations for two KD275

settings for in-domain testing. Leveraging these276

observations, we further test these insights on out-277

of-domain datasets with out-of-range temperatures.278

Finally, we brought out a simple yet effective solu-279

tion to further improve the performance of specula-280

tive decoding with higher decoding temperatures.281

4The original test set of GSM8K contains 1.32k samples,
we filter out samples that exceed the context length of the draft
model.

5https://huggingface.co/blog/
assisted-generation

4.1 Overall Investigation 282

To quantify how temperature impacts the specula- 283

tive decoding process, we plot the overall investiga- 284

tion results for both offline distillation and online 285

distillation using 11 KD models trained with differ- 286

ent temperatures under 6 decoding configurations 287

in Figure 2 (a) and (b) respectively. We interpret 288

the results in the following aspects. Additional 289

analyses can be found in Appendix C. 290

Decoding at a high temperature is generally 291

slower. First of all, we observe a consistent trend 292

of diminishing speedup as the decoding temper- 293

ature increased from 0 to 1. This trend corrobo- 294

rates the findings of previous studies, such as those 295

by Xia et al. (2024). Our analysis revealed that this 296

phenomenon persists across all KD temperatures, 297

affecting both offline distillation and online distil- 298

lation processes. The effect was most pronounced 299

when the KD temperature was set to 0, leading to a 300

relative speedup difference of 31% and 29% for of- 301

fline distillation and online distillation, respectively. 302

This is attributed to the increased computational 303

complexity of the speculative sampling criterion 304

at high temperatures, as demonstrated in prior re- 305

search (Joao Gante, 2023). Thus, low temperatures 306

are more likely to retain most of the latency bene- 307

fits from generation via draft models. Additionally, 308

we also observe that temperatures surrounding the 309

peak values always lead to sub-optimal speedups. 310

This is intuitive as the temperature can be seen as 311

an approximate distribution measure. Apart from 312

that, we find that higher temperatures in the sur- 313

rounding ones usually lead to better results. For 314

example, KD temperature at 0.7 is better than 0.5 315

when decoding at temperature 0.6 even with the 316

same temperature difference. This highlights an- 317

other important factor, the diversity of data in KD, 318

for the decoding process. 319

Using consistent temperatures for KD and de- 320

coding leads to better results. Our study re- 321

veals that configurations along the diagonals of 322

Figure 2 typically yield the most accelerated decod- 323

ing speeds. Grids outside the diagonals show pretty 324

large differences with values on diagonals, with 325

a peak relative difference of 24%. This verifies 326

the effectiveness of KD at a consistent temperature. 327

The speedup can be attributed to the alignment of 328

probability distributions when the KD and decod- 329

ing temperatures are nearly identical or perfectly 330

match. We posit that this alignment facilitates a 331
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Figure 2: Speedup for different decoding temperatures (y-axis) corresponding to different temperatures during KD
(x-axis) for both (a) offline distillation and (b) online distillation for the testing of in-domain Alpaca set.

Figure 3: Peak speedup brought by offline distillation
and online distillation. The relative speedup for on-
line distillation against offline distillation is depicted in
dashed lines.

more efficient decoding process. Interestingly, as332

the decoding temperature increases, the speedup333

improvement resulting from this alignment dimin-334

ishes. Specifically, for offline distillation, the rela-335

tive improvement transitions from 31% down to ap-336

proximately 7%. Despite the challenges associated337

with accelerating speculative decoding at elevated338

temperatures, employing a uniform KD tempera-339

ture for decoding — particularly at 1.0 — proves340

to be more effective than using 0. That being said,341

the upper right corner of Figure 2 is darker than the342

upper left corner. This finding further underscores343

the potential of KD as a remedy for alleviating344

the difficulty in decoding under high-temperature345

conditions.346

Online distillation is a better KD strategy for347

speculative decoding compared with offline dis-348

tillation. Figure 2 illustrates that online distilla-349

tion consistently outperforms offline distillation350

across a range of decoding temperatures. This351

is particularly evident at higher KD temperatures,352

where the student model benefits from softened 353

probability distributions, allowing for a more nu- 354

anced understanding of the teacher’s distributions. 355

For better observation, we also plot the peak 356

speedup for every decoding temperature in Fig- 357

ure 3, where the relative speedup of online distilla- 358

tion against offline distillation is in an increasing 359

trend with higher temperatures. Additionally, we 360

find that although online distillation surpasses of- 361

fline distillation across multiple temperatures, the 362

performance for online distillation at decoding tem- 363

perature 0 does not align with our expectations, 364

especially with higher KD temperatures. Despite 365

the alignment difference for binary temperature ex- 366

tremes between 1.0 and 0, the richer signal offered 367

by online distillation could be another important 368

factor since decoding at temperature 0 usually en- 369

tails hard labels. 370

4.2 Evaluation on Out-of-domain Test Sets 371

To test whether our observations could be extended 372

to out-of-domain datasets from training sets, we 373

conduct experiments on GSM8K, a dataset focus- 374

ing on multi-step graduate-school-level mathemati- 375

cal reasoning problems. It differs from the Alpaca 376

training set that focuses more on general domains 377

for everyday tasks. Results are shown in Figure 4. 378

Generally, the speedup brought by specula- 379

tive decoding for GSM8K is much larger than 380

that for the Alpaca set. This could seem counter- 381

intuitive for an out-of-domain testing set. One po- 382

tential reason could be that the output for GSM8K 383

consists of easier tokens for the draft model to 384

predict. Therefore, the acceptance rate is much 385

higher for target models, which leads to a larger 386

speedup. We found that the number of tokens gen- 387
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Figure 4: Speedup for different decoding temperatures (y-axis) corresponding to different temperatures during KD
(x-axis) for both (a) offline distillation and (b) online distillation for the testing of out-of-domain GSM8K set.

Figure 5: The distribution of token length and the fre-
quencies for both Alpaca and GSM8K test sets.

erated for the Alpaca set (18, 716) is much larger388

than that of GSM8K (11, 130), around 68% more389

than GSM8K, indicating the diversity in decoding390

processes. We also plot the distribution of token391

length for generation outputs in Figure 5. Intu-392

itively, length can be seen as an approximate of393

the difficulty for that token. We observe that to-394

ken length distribution for Alpaca is leaning to-395

wards longer tokens. This phenomenon sheds light396

on differentiating tokens of difficulties and design-397

ing corresponding strategies (Shen et al., 2024) or398

employing Mixture-of-Experts structures (Shazeer399

et al., 2017) at a token level.400

The overall trend for GSM8K set at different de-401

coding temperatures with KD settings is similar to402

Alpaca sets. Apart from this, we observe two other403

notably different phenomena. First of all, the abso-404

lute differences in speedup across various tem-405

peratures for GSM8K are significantly larger406

than that for Alpaca. For example, with a KD407

temperature of 0, the relative speedup difference408

achieved on the Alpaca set is around 30% when the409

decoding temperature is set to 0 and 1.0, respec-410

tively. However, this value increases to 42% for the 411

GSM8K set. This pronounced variance indicates a 412

stronger sensitivity to the decoding temperature in 413

the GSM8K set. Such sensitivity may be attributed 414

to the nature of the mathematical reasoning tasks, 415

which perhaps rely more critically on certain tem- 416

perature thresholds to achieve optimal speculative 417

decoding performance. Additionally, we find that 418

decoding at temperature 0 with online distilla- 419

tion is particularly slow. For one thing, the most 420

aligned and fast choice of training under KD tem- 421

perature 0 does not yield the best speedup. Also, 422

both offline distillation and online distillation do 423

not yield strong performance at decoding tempera- 424

ture 0. In contrast, offline distillation on the Alpaca 425

set shows positive results. 426

4.3 Evaluation on Out-of-range Decoding 427

Temperatures 428

In the previous experiments, we mainly focus on a 429

traditionally recommended temperature range [0, 1] 430

that makes LLMs respond in a human-acceptable 431

way. To further understand the robustness and 432

adaptability of our models, we have conducted ad- 433

ditional experiments by evaluating them using out- 434

of-range decoding temperatures. Specifically, we 435

have expanded our evaluation to include decoding 436

temperatures of 1.5 and 2.0, which are beyond the 437

commonly used upper limit. 438

As illustrated in Table 2, we observe several no- 439

table phenomena in the performance of both the 440

Alpaca and GSM8K test sets when the decoding 441

temperature is set to these higher values of 1.5 and 442

2.0. First of all, we find a similar decreasing 443

trend of speedup when the decoding tempera- 444

ture gets higher. Specifically, we witness a relative 445

difference of around 15% of decoding at temper- 446
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ature 2.0 compared with 1.5. We also obtain the447

same observation where the speedup brought for448

offline distillation is larger than that for online dis-449

tillation. However, the effect brought by different450

KD paradigms does not offset decoding tempera-451

tures. The effect of decoding temperatures tends to452

have different representations concerning datasets.453

Notably, GSM8K seems to have larger speedup454

differences for temperatures 1.5 and 2.0. This is455

because GSM8K has a higher speedup as baselines.456

Interestingly, the data reveals a distinctive457

U-curve in the relationship between KD temper-458

ature and decoding speedup. For instance, with459

the Alpaca test set at a decoding temperature of 1.5,460

the speedup incrementally declines from 1.52x at461

KD temperature 0 to 1.45x at KD temperature 0.4,462

before ascending back to 1.58x at KD temperature463

1.0. For one thing, increasing data diversity during464

KD training still helps for out-of-range and higher465

decoding temperatures, which might be caused by466

the somewhat approaching distributions with target467

models. However, speedup with KD temperature468

0 suggests that generation with fixed configura-469

tions holds a special meaning, potentially due to470

the alignment of distributions between the student471

and teacher models at this initial point.472

4.4 Temperature-aware Recipe for473

Speculative Decoding474

In our prior investigations (as detailed in § 4.1),475

we establish that decoding at higher temperatures476

presents challenges. However, we also discover477

that KD can act as a promising remedy when train-478

ing models under consistent temperature condi-479

tions. In this section, we propose a temperature-480

aware recipe for speculative decoding inspired481

by Chang et al. (2023). Our approach employs482

a simple and intuitive data-centric composition483

strategy, which represents an initial step toward484

enhancing decoding speed.485

Specifically, we first manually identify the top-486

k best-performing KD temperatures for the target487

decoding temperature from Figure 2 motivated by488

the following: (i) Values that approximate the best-489

performing temperature tend to align more with the490

target model’s distribution; (ii) Diversity in training491

data for KD further boosts the performance. The492

selected temperature values are then used for KD493

in both settings for generation with teacher model494

and online student model generation. The detailed495

temperature configurations and experiment results496

are shown in Table 3.497

The composition data for KD are all chosen from 498

the generation of the surrounding peak tempera- 499

tures. On both Alpaca and GSM8K sets, we ob- 500

serve huge improvements in speedup, achieving 501

an increase of 12%-20%. Interestingly, a decoding 502

temperature of 0.8 with composition yields higher 503

speedups than the higher temperature of 1.0, sug- 504

gesting that the influence brought by compositional 505

data generation can fully make up for the slow 506

speed when decoding at high temperatures. For 507

the GSM8K dataset, similar trends are observed 508

with even greater speedup values. For instance, 509

with offline distillation and a KD temperature set 510

of {0.9, 0.8, 0.7}, we achieve the highest reported 511

speedup of 5.62 with an impressive acceptance rate 512

of 89.5%. Additionally, the observed differences 513

in speedup gains between offline distillation and 514

online distillation methods indicate that the former 515

may be more amenable to training data composi- 516

tion strategies. These strategies, which leverage a 517

set of temperatures rather than a single temperature, 518

introduce a more nuanced control over the gener- 519

ated data’s variability and quality. This granularity 520

appears to be particularly beneficial for offline dis- 521

tillation, potentially due to the method’s intrinsic 522

reliance on the data itself as the primary source of 523

knowledge transfer, which is well aligned with the 524

black-box offline distillation. 525

5 Related Work 526

Speculative Decoding The sequential decoding 527

strategy that is prevalently used in autoregressive 528

Transformers (Vaswani et al., 2017) brings latency 529

in real-world servings. To reduce the latency 530

and accelerate decoding speed, the idea of par- 531

allel decoding was initially explored in various 532

works (Stern et al., 2018; Ghazvininejad et al., 533

2019), with strict constraints and deviated distribu- 534

tions. Speculative decoding (Leviathan et al., 2023; 535

Chen et al., 2023a) brings success in reducing the 536

inference latency of LLMs, some recent works (Xia 537

et al., 2024) have attempted to further improve spec- 538

ulative decoding by reducing the rejection rate of 539

candidate tokens. Specifically, Predictive Pipeline 540

Decoding (Yang et al., 2023) was proposed at first 541

to incorporate early exit (Schuster et al., 2022) into 542

the decoding process. Another line of work is to 543

leverage the target model for the self-drafting pro- 544

cess, such as Draft&Verify (Zhang et al., 2023), 545

Medusa (Cai et al., 2024), and Speed (Hooper et al., 546

2023). Tree attention is also explored, where multi- 547

7



KD Temp. Offline Distillation Online Distillation

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Alpaca test set
w/ decoding temp. 1.5 1.58x 1.55x 1.53x 1.52x 1.56x 1.60x 1.52x 1.49x 1.45x 1.50x 1.53x 1.58x
w/ decoding temp. 2.0 1.27x 1.25x 1.23x 1.26x 1.30x 1.35 x 1.22x 1.19x 1.16x 1.21x 1.23x 1.27x

GSM8K test set
w/ decoding temp. 1.5 3.50x 3.48x 3.44x 3.47x 3.52x 3.59x 3.41x 3.36x 3.30x 3.34x 3.42x 3.48x
w/ decoding temp. 2.0 3.11x 3.09x 3.07x 3.04x 3.05x 3.07x 3.02x 2.93x 2.90x 2.92x 2.96x 3.03x

Table 2: Performance with out-of-range decoding temperatures on two KD settings with both Alpaca and GSM8K
test set.

Methods Decoding KD temp. Alpaca GSM8K

temp. Alpaca GSM8K Acc. Rate Speedup Acc. Rate Speedup

Offline distillation 1.0 1.0 1.0 80.6 1.98x 86.1 4.59x
0.8 0.8 0.8 81.9 2.07x 87.3 4.93x

w/ composition 1.0 {1.0, 0.9, 0.8} {1.0, 0.9, 0.8} 83.0 2.23x 88.7 5.28x
0.8 {0.9, 0.8, 0.7} {0.9, 0.8, 0.7} 83.6 2.34x 89.5 5.62x

Online distillation 1.0 1.0 1.0 82.2 2.10x 87.1 4.75x
0.8 0.8 0.8 82.6 2.18x 87.9 5.00x

w/ composition 1.0 {1.0, 0.9, 0.8} {1.0, 0.9, 0.8} 83.5 2.27x 88.5 5.20x
0.8 {0.9, 0.8, 0.7} {0.9, 0.8, 0.7} 83.7 2.33x 88.9 5.41x

Table 3: Performance with data composition on two KD settings. Acceptance rate and speedup are reported for both
in-domain and out-of-domain datasets.

ple candidates during drafting are taken into consid-548

eration (Miao et al., 2023). Cascaded drafting pro-549

cess (Spector and Re, 2023; Chen et al., 2023b) is550

also invented to reduce drafting latency. However,551

almost all of the previous works only investigate the552

coarse-grained effect brought by generation config-553

urations, such as temperature. For example, CSDe-554

coding (Chen et al., 2023b) and SpecInfer (Miao555

et al., 2023) only explore greedy decoding for test-556

ing. Our work mostly relates to the work that lever-557

ages knowledge distillation (Zhou et al., 2023; Liu558

et al., 2023), with a focus on temperature-centric559

investigation for instruction-tuned KD draft mod-560

els.561

Knowledge Distillation for LLMs Knowledge562

distillation (KD) (Hinton et al., 2015) is a widely563

used model compression technique, aiming at train-564

ing a student model with the guidance of a teacher565

model (Gou et al., 2021). The student model566

emulates the teacher models’ behavior on down-567

stream tasks. Standard KD methods are approxi-568

mately minimizing the generation distribution of569

the student and the teacher. This is achieved by570

using the teacher’s output at each time step as571

supervision (Sanh et al., 2019) or direct training572

on the teacher’s generated texts (Kim and Rush,573

2016). With the emergence of LLMs, more tech-574

niques were invented for KD of LLMs, such as575

using reversed KL Divergence (Gu et al., 2024) or 576

other variants of KLD (Agarwal et al., 2023; Wen 577

et al., 2023). In this work, since we are targeting 578

temperature-centric investigation of KD for specu- 579

lative decoding, we only explore the two standard 580

KD settings, i.e., black-box SeqKD (Kim and Rush, 581

2016), and online data generation that targets better 582

KD for LLMs (Agarwal et al., 2023). 583

6 Conclusion 584

In this paper, we have presented a comprehensive 585

investigation into the impact of temperature on 586

speculative decoding, particularly within the con- 587

text of knowledge distillation (KD), for large lan- 588

guage models (LLMs). Through a series of meticu- 589

lous experiments utilizing the Llama series as both 590

target and draft models, we have explored the nu- 591

anced interplay between temperature settings dur- 592

ing KD and their consequent effect on speculative 593

decoding’s efficiency and efficacy. Apart from of- 594

fering empirical findings, we also propose a practi- 595

cal strategy to enhance speculative decoding’s per- 596

formance by leveraging temperature-centric train- 597

ing data assembly. By presenting this work, we 598

aspire to facilitate future works on diverse genera- 599

tion configurations for speculative decoding, and 600

exploring theoretical understanding of the multi- 601

faceted relations in between. 602
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Limitations603

We discuss the limitations of this work in the fol-604

lowing aspects:605

1. Scope of the paper: The factor of tempera-606

ture for speculative decoding is an important607

aspect to investigate. While we investigated a608

general setting of knowledge distillation, we609

were not able to explore other settings due to610

limited computation resources.611

2. Empirical analysis: This study is an em-612

pirical investigation of the effect brought by613

different temperatures in speculative decod-614

ing. We interpret the conclusions and findings615

largely based on observations at hand, without616

solid theoretical foundations. Future works617

are encouraged to explore this direction.618

3. Preliminary approach: This study attempts619

to understand and accelerate speculative de-620

coding at higher temperatures. We propose an621

empirical solution for data composition that622

has proven effective in our tests. However,623

our primary focus was not on developing com-624

prehensive algorithms for speedup at higher625

temperatures. Further work could create more626

refined and mature solutions in this area.627

References628

David H. Ackley, Geoffrey E. Hinton, and Terrence J.629
Sejnowski. 1985. A learning algorithm for boltz-630
mann machines. Cogn. Sci., 9:147–169.631

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk,632
Sabela Ramos, Matthieu Geist, and Olivier Bachem.633
2023. Gkd: Generalized knowledge distillation for634
auto-regressive sequence models. arXiv preprint635
arXiv:2306.13649.636

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda637
Askell, Anna Chen, Nova DasSarma, Dawn Drain,638
Stanislav Fort, Deep Ganguli, Tom Henighan,639
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,640
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac641
Hatfield-Dodds, Danny Hernandez, Tristan Hume,642
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel643
Nanda, Catherine Olsson, Dario Amodei, Tom B.644
Brown, Jack Clark, Sam McCandlish, Chris Olah,645
Benjamin Mann, and Jared Kaplan. 2022. Train-646
ing a helpful and harmless assistant with rein-647
forcement learning from human feedback. CoRR,648
abs/2204.05862.649

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,650
Jason D Lee, Deming Chen, and Tri Dao. 2024.651

Medusa: Simple llm inference acceleration frame- 652
work with multiple decoding heads. arXiv preprint 653
arXiv:2401.10774. 654

Chung-Ching Chang, David Reitter, Renat Aksitov, and 655
Yun-Hsuan Sung. 2023. Kl-divergence guided tem- 656
perature sampling. arXiv preprint arXiv:2306.01286. 657

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 658
Jean-Baptiste Lespiau, Laurent Sifre, and John 659
Jumper. 2023a. Accelerating large language model 660
decoding with speculative sampling. arXiv preprint 661
arXiv:2302.01318. 662

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, 663
Jie Huang, and Kevin Chen-Chuan Chang. 2023b. 664
Cascade speculative drafting for even faster llm infer- 665
ence. arXiv preprint arXiv:2312.11462. 666

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 667
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 668
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 669
Nakano, Christopher Hesse, and John Schulman. 670
2021. Training verifiers to solve math word prob- 671
lems. arXiv preprint arXiv:2110.14168. 672

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. 673
Hierarchical neural story generation. In Proceedings 674
of the 56th Annual Meeting of the Association for 675
Computational Linguistics (Volume 1: Long Papers), 676
pages 889–898, Melbourne, Australia. Association 677
for Computational Linguistics. 678

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and 679
Luke Zettlemoyer. 2019. Mask-predict: Parallel de- 680
coding of conditional masked language models. In 681
Proceedings of the 2019 Conference on Empirical 682
Methods in Natural Language Processing and the 683
9th International Joint Conference on Natural Lan- 684
guage Processing (EMNLP-IJCNLP), pages 6112– 685
6121, Hong Kong, China. Association for Computa- 686
tional Linguistics. 687

Jianping Gou, Baosheng Yu, Stephen J Maybank, and 688
Dacheng Tao. 2021. Knowledge distillation: A 689
survey. International Journal of Computer Vision, 690
129(6):1789–1819. 691

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. 692
MiniLLM: Knowledge distillation of large language 693
models. In The Twelfth International Conference on 694
Learning Representations. 695

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 696
2015. Distilling the knowledge in a neural network. 697
CoRR, abs/1503.02531. 698

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 699
Yejin Choi. 2020. The curious case of neural text de- 700
generation. In International Conference on Learning 701
Representations. 702

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 703
Hasan Genc, Kurt Keutzer, Amir Gholami, and 704
Sophia Shao. 2023. Speed: Speculative pipelined 705
execution for efficient decoding. arXiv preprint 706
arXiv:2310.12072. 707

9

https://api.semanticscholar.org/CorpusID:12174018
https://api.semanticscholar.org/CorpusID:12174018
https://api.semanticscholar.org/CorpusID:12174018
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH


Joao Gante. 2023. Assisted generation: a new direction708
toward low-latency text generation.709

Yoon Kim and Alexander M. Rush. 2016. Sequence-710
level knowledge distillation. In Proceedings of the711
2016 Conference on Empirical Methods in Natu-712
ral Language Processing, pages 1317–1327, Austin,713
Texas. Association for Computational Linguistics.714

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying715
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.716
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-717
cient memory management for large language model718
serving with pagedattention. In Proceedings of the719
ACM SIGOPS 29th Symposium on Operating Systems720
Principles.721

Yaniv Leviathan, Matan Kalman, and Yossi Matias.722
2023. Fast inference from transformers via spec-723
ulative decoding. In International Conference on724
Machine Learning, pages 19274–19286. PMLR.725

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-726
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.727
2023. Online speculative decoding. arXiv preprint728
arXiv:2310.07177.729

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao730
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-731
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and732
Zhihao Jia. 2023. Specinfer: Accelerating generative733
llm serving with speculative inference and token tree734
verification. arXiv preprint arXiv:2305.09781.735

OpenAI. 2023. Gpt-4 technical report. ArXiv,736
abs/2303.08774.737

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,738
Jacob Devlin, James Bradbury, Anselm Levskaya,739
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and740
Jeff Dean. 2022. Efficiently scaling transformer in-741
ference. CoRR, abs/2211.05102.742

Alec Radford and Karthik Narasimhan. 2018. Im-743
proving language understanding by generative pre-744
training.745

Victor Sanh, Lysandre Debut, Julien Chaumond, and746
Thomas Wolf. 2019. Distilbert, a distilled version747
of bert: smaller, faster, cheaper and lighter. arXiv748
preprint arXiv:1910.01108.749

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,750
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.751
2022. Confident adaptive language modeling. Ad-752
vances in Neural Information Processing Systems,753
35:17456–17472.754

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof755
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,756
and Jeff Dean. 2017. Outrageously large neural net-757
works: The sparsely-gated mixture-of-experts layer.758
In International Conference on Learning Representa-759
tions.760

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, 761
Yoon Kim, and David Sontag. 2024. Learning to 762
decode collaboratively with multiple language mod- 763
els. arXiv preprint arXiv:2403.03870. 764

Benjamin Spector and Chris Re. 2023. Accelerating llm 765
inference with staged speculative decoding. arXiv 766
preprint arXiv:2308.04623. 767

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 768
2018. Blockwise parallel decoding for deep autore- 769
gressive models. In Advances in Neural Information 770
Processing Systems 31: Annual Conference on Neu- 771
ral Information Processing Systems 2018, NeurIPS 772
2018, December 3-8, 2018, Montréal, Canada, pages 773
10107–10116. 774

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 775
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 776
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 777
An instruction-following llama model. https:// 778
github.com/tatsu-lab/stanford_alpaca. 779

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 780
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 781
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 782
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 783
Grave, and Guillaume Lample. 2023a. Llama: Open 784
and efficient foundation language models. Preprint, 785
arXiv:2302.13971. 786

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 787
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 788
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 789
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 790
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 791
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 792
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 793
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 794
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 795
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 796
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 797
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 798
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 799
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 800
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 801
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 802
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 803
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 804
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 805
Melanie Kambadur, Sharan Narang, Aurelien Ro- 806
driguez, Robert Stojnic, Sergey Edunov, and Thomas 807
Scialom. 2023b. Llama 2: Open foundation and 808
fine-tuned chat models. Preprint, arXiv:2307.09288. 809

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 810
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 811
Kaiser, and Illia Polosukhin. 2017. Attention is all 812
you need. In Advances in Neural Information Pro- 813
cessing Systems, volume 30. Curran Associates, Inc. 814

Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. 2023. 815
f-divergence minimization for sequence-level knowl- 816
edge distillation. In Proceedings of the 61st An- 817
nual Meeting of the Association for Computational 818

10

https://doi.org/10.57967/hf/0638
https://doi.org/10.57967/hf/0638
https://doi.org/10.57967/hf/0638
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2211.05102
https://doi.org/10.48550/ARXIV.2211.05102
https://doi.org/10.48550/ARXIV.2211.05102
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.605
https://doi.org/10.18653/v1/2023.acl-long.605
https://doi.org/10.18653/v1/2023.acl-long.605


Linguistics (Volume 1: Long Papers), pages 10817–819
10834, Toronto, Canada. Association for Computa-820
tional Linguistics.821

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,822
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and823
Zhifang Sui. 2024. Unlocking efficiency in large824
language model inference: A comprehensive sur-825
vey of speculative decoding. arXiv preprint826
arXiv:2401.07851.827

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dim-828
itris Papailiopoulos, and Kangwook Lee. 2023. Pre-829
dictive pipelined decoding: A compute-latency830
trade-off for exact llm decoding. arXiv preprint831
arXiv:2307.05908.832

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,833
Gang Chen, and Sharad Mehrotra. 2023. Draft834
& verify: Lossless large language model accelera-835
tion via self-speculative decoding. arXiv preprint836
arXiv:2309.08168.837

Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han,838
and Pengcheng He. 2024. Seeking neural nuggets:839
Knowledge transfer in large language models from a840
parametric perspective. In The Twelfth International841
Conference on Learning Representations.842

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,843
Aditya Krishna Menon, Afshin Rostamizadeh, San-844
jiv Kumar, Jean-François Kagy, and Rishabh Agar-845
wal. 2023. Distillspec: Improving speculative de-846
coding via knowledge distillation. arXiv preprint847
arXiv:2310.08461.848

A KD Algorithm849

In this section, we give the detailed algorithm of850

the KD training setting used in this paper.851

Algorithm 1: Online Distillation Algo-
rithm

Input: Target model Mt, Draft model Mθ
d, Data set

containing (input, output) pairs
Output: Distilled draft model Mθ

d

Hyperparameters: Data fraction from online
generation λ ∈ [0, 1], Temperature τ ∈ [0, 1], loss
ratio γ ∈ [0, 1]

for k in 0, ..., n do
Generate a random value µ ∈ (0, 1)
if µ ≤ λ then

sample inputs x from X and generate
outputs y by Mθ

d(·|x) with temperature τ
end
else

sample inputs x from X and outputs y from
Y

end
Update θ to minimize
L = Llm + γD(Mt||Mθ

d(y|x))
end

B Implementation Details 852

Data Formulation for Alpaca Dataset For 853

knowledge distillation, we instruction-tuned the 854

model on the Alpaca dataset. Specifically, for each 855

data sample in the dataset with triple “instruction- 856

input-output”, we use the following template to 857

curate input for training: 858

If the elements in the triple are complete, we use 859

the following template: 860

Below is an instruction that describes 861

a task, paired with an input that 862

provides further context. Write a 863

response that appropriately completes the 864

request. ###Instruction:{instruction} 865

### Input:{input}### Response: 866

If there is only “instruction” for the data sample 867

without “input”, the above template will be simpli- 868

fied as: 869

Below is an instruction that describes 870

a task. Write a response that 871

appropriately completes the request.### 872

Instruction:{instruction}### Response: 873

Implementation Details for KD For online dis- 874

tillation, we set the batch size to 8, learning rate to 875

3e-5, maximum length of input to 512. The train- 876

ing process continues for 30 epochs with 200, 000 877

steps in total. It takes around 30 hours to finish. 878

For offline distillation, it takes 8 hours to finish. 879

Implementation Details for Evaluation We set 880

the maximum decoding length to 128 due to the 881

limit in A100 40G’ GPU memory. Each evaluation 882

corresponding to KD temperatures and decoding 883

temperatures requires around 12h to run on the 884

A100 GPU with batch size 1. 885

C Detailed analysis for Section 4.1 886

887

Speedup is hard to get offset with longer KD 888

steps. According to our observation, the optimal 889

performance is achieved when the decoding tem- 890

perature and KD temperature align with each other. 891

To further understand the improvement in speedup 892

regarding the temperatures, we study the relation 893

with KD steps in Figure 6. We consider a rather 894

extreme setting where the decoding temperature is 895

set as 1.0 with KD temperatures 0 and 1.0. During 896

the initial stages of knowledge distillation, the two 897

curves representing different temperature settings 898

exhibit rapid growth and are relatively close to each 899
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Figure 6: Acceptance rate of different KD temperatures
for decoding at temperature 1.0 regarding KD steps on
the Alpaca test set.

other. As the KD process progresses, the curve with900

KD temperature 1.0 diverges significantly from the901

other and the acceptance rate still steadily increases.902

As the KD process gradually approaches the end,903

the curve with KD temperature 1.0 achieves higher904

speedup and continues to show an upward trend,905

whereas the other temperature curve plateaus with906

a lower acceptance rate.907

Phenomenon of symmetric temperature config-908

urations. Intuitively, we might expect that distill-909

ing from a teacher with temperature τ1 and then910

using decoding temperature τ2 can behave simi-911

larly to distilling with temperature τ2 and decoding912

with temperature τ1. This phenomenon could be913

referred to as diagonals (from upper left corner to914

lower right) in Figures 2. We find that symmet-915

ric temperature settings do bring similar speedups.916

However, decoding at lower temperatures is still917

faster than at higher temperatures.918
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