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Abstract

Every day, the human brain processes an immense volume of visual information,
relying on intricate neural mechanisms to perceive and interpret these stimuli. Re-
cent breakthroughs in functional magnetic resonance imaging (fMRI) have enabled
scientists to extract visual information from human brain activity patterns. In this
study, we present an innovative method for decoding brain activity into meaningful
images and captions, with a specific focus on brain captioning due to its enhanced
flexibility as compared to brain decoding into images. Our approach takes advan-
tage of cutting-edge image captioning models and incorporates a unique image
reconstruction pipeline that utilizes latent diffusion models and depth estimation.

We utilized the Natural Scenes Dataset, a comprehensive fMRI dataset from eight
subjects who viewed images from the COCO dataset. We employed the Generative
Image-to-text Transformer (GIT) as our backbone for captioning and propose a
new image reconstruction pipeline based on latent diffusion models. The method
involves training regularized linear regression models between brain activity and
extracted features. Additionally, we incorporated depth maps from the ControlNet
model to further guide the reconstruction process.

We propose a multimodal based approach that leverages similarities between neural
and deep learning representations and by learning alignment between these spaces,
we produce textual description and image reconstruction from brain activity.

We evaluate our methods using quantitative metrics for both generated captions and
images. Our brain captioning approach outperforms existing methods, while our
image reconstruction pipeline generates plausible images with improved spatial
relationships.

In conclusion, we demonstrate significant progress in brain decoding, showcasing
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the enormous potential of integrating vision and language to better understand hu-
man cognition. Our approach provides a flexible platform for future research, with
potential applications based on a combination of high-level semantic information
coming from text and low-level image shape information coming from depth maps
and initial guess images.
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Figure 1: Our model utilizes fMRI measurements to extract features for GIT captioning and VDVAE initial
and depth image estimation using linear models. Image captions serve as the primary general result, used in the
second stage alongside other conditioning to generate plausible reconstructions with a latent diffusion model.
GIT and VDVAE models are pre-trained and frozen, while linear regressions are trained from fMRI to their
latent spaces.

1 Introduction

The human visual system is an extraordinary product of evolution, enabling us to navigate and
interact with our surroundings. From basic patterns to intricate scenes, our brains persistently process
and interpret visual information. A central challenge in neuroscience is comprehending how these
elaborate processes occur at the neural activity level. Functional magnetic resonance imaging (fMRI)
has emerged as an essential tool for studying neural activity associated with visual perception,
by measuring blood oxygen level-dependent (BOLD) signals. Brain decoding has progressed
significantly, employing fMRI data to reconstruct visual stimuli from brain activity patterns. This has
the potential to revolutionize our understanding of the neural code underlying visual perception with
possible applications in brain-computer interfaces and clinical diagnostics. The increasing interest
in reconstructing information from noninvasive brain data is driven by enhanced data availability,
improved computational power, and sophisticated deep learning methods. Despite challenges with
signal-to-noise ratio, session duration, and hemodynamic response function variability, fMRI has
proven effective in various tasks such as visual stimulus and text classification and reconstruction

[Schneider et al, Zafar et al.| 2015} [Cindsayl 2021}, [Awangga et al., [2020].

In this work, our first contribution is shifting the prediction from images to text, aiming to generate
a caption of the observed scene from brain activity. To compare with prior work, we propose
a new model for image captioning from brain activity and propose a new image reconstruction
pipeline based on a conditioned and controlled version of the latent diffusion model, Stable Diffusion.
Predicting a caption instead of the image in brain decoding from fMRI of visual stimuli offers several
advantages. Captions naturally represent a higher level of abstraction, requiring a more advanced
interpretation and summarization of visual information than merely predicting the image itself. As a
result, predicting captions can help us understand how the brain processes and represents complex
visual information. In real-world situations, humans often describe visual scenes with words, so
predicting captions instead of images may better capture an important aspect of visual information
processing. Recent neuroscience research has shown substantial evidence that large language models
can be correlated with brain activity and that it is possible to predict one representation from the
other [[Caucheteux and King| [Tang et al]. Finally, predicting text from fMRI could lead to better
generalization across modalities. Natural language is our main tool as humans to interact with each
other and nowadays even with foundation models. We can exploit large language models to condition
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Figure 2: Comparison of our results (Columns 2-4) with the shown stimuli and reconstructions from other
works. The second column displays the caption computed from the brain activity, the third column presents the
initial guess image, the fourth column shows the depth estimated images, and the fifth column reports our final
reconstruction. The last two columns showcase reconstructions from two recent works. All results are from
subjO1.

other models to generate images, videos, audio, and more. Predicting text from brain helps us
rapidly change the reconstruction model, leveraging state-of-the-art text-to-image models to generate
realistic images from brain activity. In summary, our contributions in this paper are two-fold: We
propose a method to generate image captions from brain activity using a multimodal large language
model and introduce a novel image reconstruction pipeline based on predicted text and
estimated initial and depth maps from brain activity. The main novelty proposed in our work is a
pipeline that leverage aligned representations of brain, text and images for visual stimuli. Fig[T]is a
scheme of the entire procedure that we propose, while Fig[2]shows generated captions and images
from brain activity compared to other image reconstruction methods.

1.1 Related Works

In the field of brain decoding, researchers have utilized various modeling frameworks with pre-
processed fMRI time series as input. These data have served as the basis for numerous decoding
approaches. Some examples include employing a variational autoencoder with a generative ad-
versarial component (VAE-GAN) to encode latent representations of human faces
and applying sparse linear regression on preprocessed fMRI data to predict features
extracted from early convolutional layers in a pre-trained CNN [Horikawa and Kamitanil, 2017

for natural images. Unsupervised and adversarial strategies have been used to reconstruct images,
incorporating dual VAE-GAN and unsupervised methods for fMRI stimuli decoding with various
encoders and decoders trained in different ways [Shen et al [2019] [Ren et al 2019} [Gaziv et al]
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Figure 4: Examples of generated caption with our BrainCaptioner pipeline. Shown images are test set stimuli
used for subj01 and subjO2 during the fmri experiment. COCO Caption column report the first annotations for
the original COCO image, while the other two columns are the output of our model for the two subjects.

2022]|. Optimizing the latent spaces of pretrained architectures, such as BigBiGAN and IC-GAN,
can facilitate reconstructing high-quality images from fMRI patterns [Donahue and Simonyan) 2019,
Casanova et al.||2021} Mozafari et al., [2020, |Ozcelik et al., 2022]. Recently, diffusion models have
become a significant component of the decoding pipeline due to their improved performance in
image generation [Takagi and Nishimoto| 2023| |Chen et al.;[2022], also incorporating semantic-based
strategies like [Ferrante et al., 2023]] or multi-step decoding strategies as in [Ozcelik and VanRullen,
2023 (Chen et al. 2023] |Scotti et al.| [2023| [Tang et al.]. To the best of our knowledge, only a
few works [Takada et al., Matsuo et al.,|2016, |Q1ao et al., 2018|] have attempted brain captioning,
utilizing a combination of a pre-trained convolutional neural network and recurrent neural network
for captioning and estimating the convolutional features from brain activity. The primary differences
between our work and previous research are the shift in paradigm from direct image estimation to
brain captioning and leveraging multimodal transformer-based language models, which have been
shown to better describe brain activity [Choksi et al.].

2 Methods

In this section, we describe the proposed method and the data we used. The data are publicly available
and can be requested at https://naturalscenesdataset.org/. All experiments and models
were trained on a server equipped with four A100 GPU cards and 2 TB of RAM. The entire analysis
took approximately 16 hours per subject. The pipelines are based on pre-trained versions of deep
learning models used as proxies for brain activity, generating latent representations that could be
similar (and thus linearly mapped) to brain activity and vice versa.

Brain Captioner

Data:We employed the Natural Scenes Dataset
(NSD) [Allen et al. 2022], a comprehensive
fMRI dataset featuring eight subjects who

o ' o viewed images from the COCO dataset. Our

- analysis concentrated on four subjects (same
ﬂ Q//& .'__’ & used in other decoding works for comparison),
it yielding a training set of 8,859 images and

24,980 fMRI trials, and a test set of 982 images

and 2,770 fMRI trials per subject. Images are

Figure 3: Image captioning from brain activity pipeline: repeated up to three times and their trials were

Gray dotted lines are only used during training, and only averaged to increase signal-to-noise ratio. To

orange boxes are used during inference, replacing their .o qyce spatial dimensionality to approximately

inputs with those estimated from brain activity. 15,000 voxels, the fMRI signal (1.8mm resolu-
tion) was masked using the NSDGeneral ROI
mask, which covers numerous visual areas. This ROI selection is vital for enhancing the signal-to-
noise ratio and minimizing data complexity. The chosen ROI mask facilitated the investigation of
both low-level and high-level visual features. To decrease temporal dimensionality, we employed
precomputed betas from a GLM with fitted HRF and denoised as described in the NSD paper.
Captioning model and renormalization: For brain captioning, we utilized the state-of-the-art image

captioning model, GIT [Wang et al.], as our backbone. GIT (Generative Image-to-text Transformer)
is an innovative model designed to integrate vision and language tasks. In contrast to conventional
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approaches that depend on intricate architectures and external modules, GIT adopts a streamlined
structure consisting of a single image encoder and a text decoder, unified under one language modeling
task. Leveraging large-scale pre-training data and model size, GIT outperforms existing models on 12
benchmarks and even surpasses human performance on TextCaps. Essentially, GIT comprises a CLIP
Vision encoder [Radford et al., [2021]] followed by a GPT decoder, trained on large-scale datasets.
For the stimuli in the train set, we computed features from images and trained a regularized linear
regression to map between brain activity and these features. We used cross-validation to select the
best regularization parameter « and discovered that a value of 50,000 performed optimally using the
negative mean squared error as a scoring function. This is our brain-to-features model, which serves
as the core component of our method for brain captioning. Before feeding estimated features to the
decoder, we required a normalization pass. Thus, we computed the mean and standard deviation of
features from images and those predicted by the model over the training set, replacing their values
during inference on the test set to match the real feature distributions. A schematic representation of
the overall pipeline can be seen in Fig. [5|and generated captions from this pipeline for both subjects
are shown in Fig ]

Reconstruction pipeline: Recent research in brain decoding has focused on developing image
reconstruction techniques [Ozcelik and VanRullen| 2023} |Ozcelik et al.|[2022} Takagi and Nishimoto}
2023||Lin et al., 2022, |Chen et al., |2022]. Studies have demonstrated that high SNR fMRI data of
visual stimuli enables effective brain decoding using diffusion models. Various approaches have been
proposed to enhance these models’ performance, with the optimal method for image reconstruction
remaining an open question. One approach to improve low-level detail generation and increase the
similarity between original and decoded images is to provide the network with an initial guess image
or an estimated latent space.
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Figure 5: A: Pipeline for initial images capturing 2D RGB pixel information. B: Pipeline for inferred depth
estimates. Both depth image and the initial image are estimated from brain activity. Gray dotted lines are only
used during training, while only orange boxes are used during inference, replacing their inputs with the ones
estimated from brain activity.

Initial Guess: To compare our approach with existing research on brain decoding, we augmented our
method by proposing an image reconstruction pipeline based on latent diffusion models. Following
the approach described in [[Ozcelik and VanRullen, |2023]], we initially estimate a "guess image" to
generate an approximate initial image with colors and shapes. To achieve this, we computed the
latent representations of the first 31 layers of the very deep variational autoencoder model [Child,
2021]] (VDVAE), pre-trained on natural images, and kept frozen. In a VDVAE, the encoder network
maps the input data onto a lower-dimensional latent space, while the decoder network maps the latent
space back to the original data space. The architecture of the VAE is hierarchical. In other words, the
hidden units in each layer depend not only on the input data but also on the outputs of the previous
layer. This conditional dependence allows the VAE to capture complex relationships between the
input data and the latent space, resulting in a more powerful and expressive model. Consequently, we
trained a regularized linear regression between brain activity and estimated features for each of the
first 31 layers, using the renormalization procedure described in the previous section to match the
target distribution. During inference over the test set, these features are estimated from brain activity,
renormalized, and passed to the VDVAE decoder to reconstruct an initial image, as depicted in Fig. [3]

Depth estimation: We propose using ControlNet [Zhang and Agrawala,|[2023]] to augment Stable
Diffusion [Rombach et al.l 2021], a state-of-the-art latent diffusion model, for improving foreground-
background matching in reconstructed images by incorporating depth information. We first compute
grayscale depth images for all training stimuli using Dense Vision Transformer and the Huggingface
library [Ranftl et al., 2021, [Wolf et al., 2019]. We then pass these depth images into the Variational



Metric Baselines Ours
subjOl  subj02 subj05 subj07 subjOl subjO02 subj05 subj07

Meteor (image vs human) 0.176 ~ 0.174 0.177 0.175 0.404 0404 0.404 0.404
Meteor (brain vs image) 0.163 0.166 0.166 0.166 0305 0.298 0.303 0.291
Sentence (image vs human)  0.319  0.315 0.321 0.315 0.703 0.703 0.703 0.703
Sentence (brainvs image) 0.280  0.281 0.282  0.281 0.447 0418 0443 0.413
CLIP (image vs human) 0.672 0.673 0.676 0.673 0.831 0.831 0.831 0.831
CLIP (brain vs image) 0.624 0.627 0.626 0.627 0.705 0.688 0.702  0.693

Table 1: Text Metrics Comparison: This table reports the values of various metrics for each subject, both for
the baseline and our model (columns). Each row represents a different metric. Metrics labeled with "(image
captions and human captions)" evaluate the model-generated captions from images against the original COCO
captions, serving as a comparison of the model’s performance. Metrics labeled with "(brain captions and image
captions)" pertain to captions computed from brain activity.

Diffusion Autoencoder (VDVAE) model and train a regularized linear regression from brain activity
to the model’s latent, as illustrated in Fig 5] The VDVAE is the same used before (pre-trained on
natural images and kept frozen), however here it is here to generate latent representation of the
estimated depth images, which are our target for regression.

Whole Reconstruction pipeline: The pipeline (Fig|l) first decodes brain activity into a latent space
to generate captions for test stimuli using learned ridge regression. Then, the initial guess and
depth images are computed from brain activity to condition the latent model. Stable Diffusion v2 +
ControlNet is used for implementation, with 30 inference steps, guidance scale 9, and control net
weight 0.8. The negative prompt sentence is also included to improve quality.

Evaluation: We compared our brain captioning work with existing methods by re-implementing
the architecture from [Takada et al.], consisting of a CNN followed by an LSTM. We used Ridge
regression to map brain activity to the CNN'’s final convolutional layer and applied renormalization
before feeding the LSTM. We evaluated the generated captions using metrics such as METEOR, CLIP
similarity, and SentenceTransformer similarity. Additionally, we assessed our image reconstruction
pipeline using low-level and high-level metrics like PixCorr, SSIM, 2-way accuracy in AlexNet,
Inception, and CLIP latent spaces, and FID, allowing comparison with other brain decoding studies.

3 Results

Table [3] presents the results of the evaluation of the proposed approach compared to the baseline
models and previous works. This table reports text-based metrics, including Meteor score, CLIP,
and SentenceTransformer similarity, computed for the reference captions, captions generated from
images by both models (baseline and proposed), and captions generated from brain activity using the
proposed approach. Results show that our approach outperforms the baseline models on all metrics
and achieves significantly higher scores than previous works, indicating the effectiveness of the
approach in generating accurate and meaningful captions from brain activity.

The table 2] reports image-based metrics, including PixCorr, SSIM, accuracy in various layers of
AlexNet and Inception, CLIP similarity, and FID score. Results show that the proposed approach
outperforms the previous works in low-level metrics, including PixCorr, SSIM and the lower layer
of AlexNet. High level metrics are on par or slightly lower than state-of-the-art methods, probably
due to a bottleneck in text predictions. If a word is predicted wrongly, this error is propagated in the
image reconstruction pipeline and impacts on high-level metrics. Overall, the results demonstrate
the effectiveness of the proposed approach in decoding brain activity into meaningful images and
captions, performing on par on even outperforming state-of-the-art in several metrics. Fig[2] [6] {] and
figures in the supplementary material show some visual comparison with other works for a qualitative
comparison. Qualitatively, the captions represent plausible descriptions of images matching the
high-level semantic content in most of cases. Sometimes, captions are more general with descriptions
like "animals in the grass" instead of the specific type of animal. In other cases, only details are
missing (or wrong). For example, in Fig ] for the surfer image for one subject, the model adds "on a
wave" while for the other the model specifies "on a beach". Similarly, in the first image of the right
part, the pastry in the man’s hand is changed to "a bowl of foods" or "slice of pizza". This could



Model Low level metrics High level
PixCorr SSIM AlexNet (2) AlexNet(5) Inception CLIP

Lin et al (2022) - - - - 0.782 -
Takagi et al (2022) - - 0.83 0.83 0.76 0.77
Gu et al (2023) 0.15 0325 - - - _
Ozcelik et al (2023)  0.30 028  0.89 0.98 0.92 0.94
Our Model 0353  0.327 0.89 0.97 0.84 0.90

Table 2: Image Metrics Analysis: Metrics from Ozcelik et al were recomputed by requesting images from
subjO1 and subjO2 from the authors and averaging them to facilitate comparison with our results. Metrics from
other works are cited directly from the original articles.

support the hypothesis that our pipeline is able to capture the main characteristic of the images from
brain activity and the GIT decoder help in plausible sentence decoding.
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Figure 6: Comparison of our results (Columns 2-4) with the presented stimuli and other reconstruction
works. The second column displays the caption derived from brain activity, the third column presents
the initial guess image, the fourth column exhibits the depth-estimated images, and the fifth column
showcases our final reconstruction. The last two columns demonstrate reconstructions from two
recent works. All results are from subjO1.

4 Discussion

In this study, we proposed a method to generate captions from brain activity measured during a
vision task. The primary motivation for shifting from image reconstruction to image captions is the



flexibility of manipulating text prompts and the ease of modifying the image reconstruction pipeline
as separate modules. We also proposed an image reconstruction pipeline that incorporates depth
maps and initial guesses to generate plausible images. Depth maps provide information about the
spatial relationships between objects in a scene injecting information that could improve the overall
quality of the reconstructed images.

Neural Art and Examples: Our approach has potential applications in neural art and style transfer.
By leveraging our image reconstruction pipeline, we can explore the creative space of combining
content and style from different text prompts. This could lead to the generation of visually captivating
art, expanding the possibilities for artistic expression using Al. For example, modifying inputs by
adding specific styles could drive the diffusion process toward an image with the same content but
a different style. This approach represents a novel type of art that combines artificial intelligence,
neuroscience, and creativity, starting from the decoded activity of the brain that could be modulated
by a text description of the scene.

Ethics: As brain decoding research advances, ethical considerations must be addressed. For instance,
the potential misuse of image reconstruction and generative models to create misleading or harmful
content raises concerns, given that decoded activity is related to the mental and internal states of
someone. It is crucial to develop guidelines and policies that ensure responsible use and prevent the
exploitation of this technology for malicious purposes. Additionally, we must consider potential
biases in the training data, as these can propagate and influence the generated output, perpetuating
stereotypes and unfair representations, unrelated to thoughts of the specific subject. There are also
possible concerns about privacy, given that brain decoding models are able to decode language,
thoughts, and perceptions [Schneider et al., [Tang et al.]. From early experiments, it seems that
high-level performances are only achievable when subjects are collaborating because the attention
process can warp [[Cukur et al.| 2013|| the semantic representation in the brain, which is the primary
target of these deep learning multimodal models used as a proxy for brain activity [[Choksi et al.]].
Limitations: In our investigation of brain decoding, we have identified several key limitations that
impact the efficacy and generalizability of our findings. The following discussion aims to elaborate
on these constraints, establish their interconnections, and provide a deeper understanding of the
challenges we face in advancing this field of research. A major limitation in brain decoding work
is the necessity for subject-specific models. Individual differences in brain structure, function, and
cognitive processing make it challenging to develop a universal decoding model. This specificity
hinders the broader applicability of our findings and demands the development of personalized models
for each subject.

Even for subject-specific models, to achieve reliable and accurate decoding, a significant amount of
high-quality data is needed. Obtaining such data is often time-consuming and resource-intensive,
limiting the scalability of brain decoding studies. Additionally, low SNR data can introduce errors
and inconsistencies in the decoding process, further compromising the reliability of the results.
In this work we used a 7T dataset, that inherently has higher SNR with respect to previous 3T
datasets [Horikawa and Kamitani, [2017]], enhancing the quality of our results. In our work, the
image captioning model acts as an upper limit: the performance of our brain captioning pipeline is
inherently limited by the GIT image captioning model employed. Any inaccuracies or biases present
in the model will directly impact the quality of decoded information, setting an upper bound on the
performance that can be achieved. Also, the quality of the mapping between neural activity and
external stimuli representation in latent spaces is another critical factor influencing the performance
of our approach. This determines the accuracy and resolution of the decoded information. Current
methods, however, are often limited by the complexity and variability of brain activity, as well as
the constraints imposed by the data acquisition techniques, and usually rely on simple regression
techniques. Addressing these challenges is essential for refining the mapping process and improving
decoding outcomes. Regarding image reconstruction, generating images from text could be another
bottleneck. If the text contains errors, these will be propagated and/or enhanced by a separate image
reconstruction pipeline. This represents the price for increased flexibility and independence from
the specific image reconstruction pipeline used. Finally, the brain decoding process may involve
multiple areas, including temporal poles, which further impact of performances. Different brain
regions may process and represent information differently, and understanding these variations is
crucial for developing accurate and comprehensive decoding models. With the aim of reducing
spatial dimensionality, we used only a visual responding region defined by the NSDGeneral ROI,
however other brain areas could also encode relevant pieces of information that are relevant to



improve performances. Exploring performances as a function of different input regions could be an
interesting field of future research.

5 Conclusions

Our approach builds upon neuroscientific and Al concepts, leveraging multimodal models to generate
captions from brain activity related to the vision of different scenes. We augmented our brain caption-
ing with a pipeline for image reconstruction that uses predicted text and initial information about
colors and depth also estimated by brain activity. In conclusion, our approach demonstrates promising
results in image captioning and reconstruction from brain activity, with potential applications in a
number of cross-disciplinary fields. By drawing on these foundations, we could further our under-
standing of the human brain’s processing of visual and language information, ultimately improving
related Al algorithms as well as applications. As we refine our approach, we can continue to explore
the intricate relationship between neuroscience and Al, potentially uncovering novel insights and
fostering interdisciplinary collaboration.
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6 Supplementary Material

In this section, more comparisons of captions and reconstructed images are provided, compared with
state-of-the-art brain decoding pipelines.

Brain-Diffuses
(Ozcelik et al)
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Figure A1l: Comparison of our results (Columns 2-4) with the presented stimuli and other reconstruc-
tion works. The second column displays the caption derived from brain activity, the third column
presents the initial guess image, the fourth column exhibits the depth-estimated images, and the fifth
column showcases our final reconstruction. The last column demonstrates reconstructions from the
recent BrainDiffuser work. All results are from subjO1.

6.1 Ablation Study

To validate the contributions of our proposed extensions, we conducted ablation studies analyzing
the impact of the depth estimation component. As shown in the attached table, we compared three
model variations: 1) a baseline Stable Diffusion Img2Img pipeline using only the initial guess
image, 2) a Depth2Image pipeline using only the estimated depth map, and 3) our full approach
combining Stable Diffusion and ControlNet with both initial images and depth maps. Across low-
level metrics like PixelCOrr and SSIM, the addition of depth information provided a consistent boost
in performance. This aligns with the hypothesis that depth cues aid in capturing spatial relationships
between objects and foreground-background segmentation. The full model with both initial images
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Figure A2: Comparison of our results (Columns 2-4) with the presented stimuli and other reconstruc-
tion works. The second column displays the caption derived from brain activity, the third column
presents the initial guess image, the fourth column exhibits the depth-estimated images, and the fifth
column showcases our final reconstruction. The last column demonstrates reconstructions from the
recent BrainDiffuser work. All results are from subjO1.

and depth performed the best, indicating that the two components are complementary. Qualitatively,
the depth maps appeared to enhance object boundaries and 3D perspective. These results suggest that
incorporating depth estimates helps the model reconstruct more accurate and realistic representations
of the visual stimuli. The depth component specifically seems to benefit lower-level aspects like
shapes and spatial relationships, which are critical for humans to perceive two images as highly
similar Hermann et al.|[2020]. By guiding the image reconstruction process with depth information
extracted from brain activity, our approach can generate images that better match human perceptual
judgments.




Ablation study Low level metrics High level

Variant PixCorr SSIM  AlexNet (2) AlexNet(5) Inception CLIP

Text + init 0.1204  0.1941 0.5815 0.7454 0.7974 0.8768
Stable Diffusion depth  0.3333  0.3106 0.8493 0.9654 0.8248 0.8778
ControlNet 0.3379 0.3178 0.8707 0.9674 0.8238 0.8788

Table 3: Ablation Study: Performance Metrics of Different Model Variants. Text + init is the plain
Stable Diffusion Img2Img pipeline with initial guess image and captions predicted by the brain.
Stable Diffusion depth is a variant pipeline that takes as input the initial guess image and captions and
internally tries to estimate a depth map from the initial guess. ControlNet is external conditioning
for the StableDiffusion Img2Img pipeline, so the inputs are the initial guess, the captions, and the
depth maps estimated from the brain. This latter method is the one used in the paper and values
(higher is better) show that this particular combination improves performance. Overall, this ablation
study shows that including information about depth improves performances, particularly on low-level
features.
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