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Abstract001

In-context Learning (ICL) utilizes structured002
demonstration-query inputs to induce few-shot003
learning on Language Models (LMs), which004
are not originally pre-trained on ICL-style data.005
To bridge the gap between ICL and pre-training,006
some approaches fine-tune LMs on large ICL-007
style datasets by an end-to-end paradigm with008
massive computational costs. To reduce such009
costs, in this paper, we propose Attention010
Behavior Fine-Tuning (ABFT), utilizing the011
previous findings on the inner mechanism of012
ICL, building training objectives on the atten-013
tion scores instead of the final outputs, to force014
the attention scores to focus on the correct label015
tokens presented in the context and mitigate at-016
tention scores from the wrong label tokens. Our017
experiments on 9 modern LMs and 8 datasets018
empirically find that ABFT outperforms in per-019
formance, robustness, unbiasedness, and effi-020
ciency, with only around 0.01% data cost com-021
pared to the previous methods. Moreover, our022
subsequent analysis finds that the end-to-end023
training objective contains the ABFT objective,024
suggesting the implicit bias of ICL-style data025
to the emergence of induction heads. Our work026
demonstrates the possibility of controlling spe-027
cific module sequences within LMs to improve028
their behavior, opening up the future applica-029
tion of mechanistic interpretability.030

1 Introduction031

In-Context Learning (ICL) (Radford et al., 2019;032

Dong et al., 2022) is an emerging few-shot learning033

paradigm where only a concatenation of few-shot034

demonstrations and a query is needed to conduct035

the specified task on the query, requiring only feed-036

forward calculation on the pre-trained Language037

Models (LMs), as shown in Fig. 1 (A, B). However,038

trained on natural language data, LMs may face a039

distribution gap with ICL-style inputs, potentially040

hindering ICL performance. Therefore, some prior041

studies (see §2) try to bridge such a gap by fine-042

tuning LMs on the ICL-style data on end-to-end043

paradigms, with enormous datasets and calculation 044

cost, preventing practical application, especially on 045

the scaling Large LMs (LLMs). 046

Therefore, in this paper, we try to propose an 047

efficient fine-tuning approach towards better ICL 048

performance, utilizing some previous observations 049

on the inner mechanisms of ICL. In detail, we fo- 050

cus on the Induction Heads in Transformer-based 051

LMs, which are a set of critical attention heads to- 052

wards ICL, where the attention scores of the last 053

token in the ICL input (where the predictions are 054

generated) are dominant on the label tokens in the 055

demonstrations, as shown in Fig. 1 (C), for the clue 056

that the tendency of attention scores from induc- 057

tion heads influences the tendency of prediction 058

synchronously (Reddy, 2024; Cho et al., 2025a) 059

(e.g., if the attention scores of the induction heads 060

focus on the label token “negative” in the context, 061

then the prediction is biased towards “negative”). 062

Consequently, we can directly control the atten- 063

tion scores to make the induction heads focus on the 064

correct label tokens for correct predictions. Given 065

such an objective, as shown in Fig. 1 (C, D), we 066

propose Attention Behavior Fine-Tuning (ABFT), 067

calculating fine-tuning objective (loss function) 068

only on the attention scores of induction heads, 069

to mitigate “wrong” attention score focusing on 070

the wrong label tokens, and promote “correct” at- 071

tention score focusing on the correct label tokens. 072

On such an objective, we fine-tune only the WK 073

and WQ projection matrices of every attention head, 074

with an ICL-style training set of only a few hundred 075

samples, and only a few million of the parameters 076

with gradient activated, which is highly efficient 077

compared to previous works. 078

Our experiments on 9 modern (L)LMs and 8 079

downstream datasets demonstrate that ABFT sig- 080

nificantly improves ICL performance with satis- 081

factory efficiency, robustness, unbiasedness, and 082

harmlessness, even outperforming previous works 083

of end-to-end fine-tuning the whole model on mas- 084
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Figure 1: Diagram of ABFT framework. (A) An example of ICL-style inputs. We build datasets from such
examples to fine-tune models. (B) Feed-forward inference of ICL. We collect the attention scores of every
attention head in every layer to calculate the training objective. and we only enable the gradient of the WQ and WK

matrices. (C) The criterion for induction head. Only attention heads producing attention scores with a significant
focus on the label tokens can be identified as induction heads. (D) Loss calculation of ABFT. Only induction heads
return a non-zero loss, and such loss contains a punishment on “wrong” attention scores to wrong label tokens, and
a reward on “correct” attention scores to correct label tokens.

sive datasets that are approximately 7, 000× larger085

than ours. Moreover, our analysis finds that the086

ABFT objective is an implicit bias of direct end-087

to-end training objective on ICL-style data, sug-088

gesting that the causal language modeling on the089

ICL-style data may naturally evoke the emergence090

of induction heads.091

Our contribution can be summarized as:092

• We propose Attention Behavior Fine-Tuning093

(ABFT), which efficiently fine-tunes LMs on094

ICL inputs using attention-based objectives with-095

out supervision on the final output.096

• Subsequent analysis indicates that the training097

objective of ABFT is implicitly encompassed by098

the end-to-end training objective on ICL-style099

data, suggesting that these data may naturally100

evoke the induction heads, which enhances the101

previous works on the inner mechanism of ICL.102

• Also, we prototypically confirm the possibility103

of optimizing model performance directly by104

controlling the intermediate behavior, without105

any error propagation from the output. This106

is a hint toward Mechanistic Controllability, a107

valuable future of mechanistic interpretability.108

2 Background & Related Works 109

In-context Learning. Given a few-shot demon- 110

stration set {(xi, yi)}ki=1 and a query xq, typ- 111

ical ICL creates a concatenation formed like 112

[x1, y1, x2, y2, . . . , xk, yk, xq], and feeds it into the 113

forward calculation of a pre-trained LM (Radford 114

et al., 2019; Dong et al., 2022) for the next token 115

as the prediction to xq, as shown in Fig. 1 (A). 116

LM Warm-up for ICL. Since LMs are typically 117

pre-trained on plain natural language data instead 118

of ICL-style data, it can be expected that a distri- 119

bution gap between the pre-training and ICL test- 120

ing occurs to prevent optimal performance. There- 121

fore, some works focus on tuning LMs on the ICL 122

data (Chen et al., 2022; Min et al., 2022; Mishra 123

et al., 2022; Wang et al., 2022; Wei et al., 2023). 124

Even effective, these works need gradient-based 125

whole-model and full-precision training on large 126

datasets, making it hard to adapt to real-world ap- 127

plications due to the calculation overhead, and mis- 128

aligning with the low-resource purpose of ICL. 129

Induction Heads in ICL Inference. As shown 130

in Fig. 1 (C), it has been found that some atten- 131

tion heads (called induction heads) in LMs have a 132
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nontrivial influence on ICL inference (Elhage et al.,133

2021; Olsson et al., 2022; Singh et al., 2024; Reddy,134

2024; Cho et al., 2025a), where the attention scores135

from the last token of the query (the location for136

prediction, e.g., the last “: ” in Fig. 1 (A), as the137

attention query) concentrate on the label tokens pre-138

sented in the demonstrations (e.g., “positive”s and139

“negative”s in Fig. 1 (A), as the attention key). At-140

tention connections from induction heads transfer141

label information from the demonstration to the out-142

put, biasing predictions toward labels with higher143

attention scores. Consequently, the accuracy of144

ICL prediction critically depends on whether these145

attentions are on the correct labels.146

3 Attention Behavior Fine-tuning147

Given the inspiration from the previous works,148

where the ICL predictions are biased towards the149

more attention-score-concentrated labels in the in-150

duction heads, in this paper, as shown in Fig. 1, we151

propose Attention Behavior Fine-Tuning (ABFT),152

a novel low-resource fine-tuning method to induce153

attention scores to focus on the correct labels.154

Method Pipeline. Globally, ABFT utilizes such155

a pipeline: (1) Dataset Building: from a selected156

downstream dataset, we build a training set com-157

posed of ICL-style sequences as shown in Fig. 1158

(A). (2) Feed-forward Calculation: For each train-159

ing sample, as shown in Fig. 1 (B), we conduct160

a standard feed-forward calculation on the pre-161

trained LM, and collect the attention matrices of all162

the attention heads in all the layers. (3) Loss Calcu-163

lation: For each attention matrix, we only focus on164

the attention scores of the last token (i.e., the last165

row of the attention matrix), where the predictions166

of queries are made. As shown in Fig. 1 (D), we167

first filter (detailed below) the non-induction head168

out, and return a loss of 0 for these heads. Then, for169

the remaining induction heads, we calculate a loss170

function composed of a punishment of attention171

scores on wrong labels and a reward of attention172

scores on correct labels (detailed below). (4) Back173

Propagation: We back-propagate the calculated174

loss only to the WQ and WK matrices of every175

attention head, and update the model parameters.176

Induction Head Filter. As shown in Fig. 1 (C),177

we skip the attention matrices where the attention178

scores of the last token do not dominate on the label179

tokens. To identify the attention matrices to skip,180

in detail, given an attention matrix A ∈ Rnt×nt ,181

where the nt is the input token sequence length, as182

mentioned before, we focus on the last row α = 183

Ant . Given the position index of label tokens as 184

I = {Ii}ki=1, we calculate the attention score sum 185

on these label tokens as S =
∑

j∈I αj .1 Then, we 186

set a threshold T = k
k+log(nt)

, if S > T , we assert 187

the attention head of score A is an induction head, 188

and vice versa. We will verify the necessity and 189

benefits of this induction head filter in §5.2. 190

Loss Function. As shown in Fig. 1 (D), given an 191

attention matrix A, if judged as a non-induction 192

head by the aforementioned head filter, the loss 193

L for A is assigned to 0. Else, we conduct the 194

following calculation: given the position index of 195

label tokens consistent with the ground-truth label 196

of the query as I+, and the others I− = I\I+,2 197

we calculate the loss from the last row (α) of A as: 198

199
L(A) = A

∑
i∈I−

αi +B
∑
i∈I+

1− αi . (1) 200

That is, as shown in Fig. 1 (D), we punish the 201

“wrong” attention scores towards the label tokens 202

different from the query’s ground-truth with mag- 203

nitude A ⩾ 0, and reward the “correct” attention 204

scores with magnitude B ⩾ 0. These two terms 205

in the loss function may seem redundant, but we 206

will demonstrate in §5.3 that they actually contain 207

antagonistic implicit biases, therefore, the factors 208

A and B should be balanced well. 209

Why not End-to-end LoRA? Intuitively, directly 210

adding LoRA bypasses (Hu et al., 2022) to the 211

trained projection matrices and fine-tuning them 212

on an end-to-end training objective is also a pos- 213

sible approach. However, in end-to-end LoRA, 214

gradients are propagated from the output logits of 215

LMs, which requires that the final layer of the LMs 216

(i.e., output embeddings, or LM Head) must be in 217

full precision and with gradients activated, to get 218

stable gradients into the residual stream. This intro- 219

duces a non-negligible overhead, an issue avoided 220

by ABFT as it does not supervise the final out- 221

put. Moreover, fine-tuning attention projections 222

without selectivity may cause harmful side effects 223

toward the ICL out of the fine-tuned domain. We 224

will compare the performance and efficiency of 225

ABFT against end-to-end LoRA in the following 226

experiments (Table 2) to highlight the efficiency 227

and harmlessness of the ABFT method. 228
1For the case shown in Fig. 1 (C), I = {4, 8} (0-started),

and S is the sum of the values of the red-highlighted bar and
the blue-highlighted bar.

2For the case shown in Fig. 1 (C), I+ = {4} (the position
of “positive”), I− = {8} (the position of “negative”).
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Table 1: Accuracies (%) of ABFT and baselines on 9 LMs and 8 datasets. The best results are in bold.

Model Param. Method SST2 MR FP SST5 TREC SUBJ TEE TEH Average

GPT2-L 812M

Vanilla 56.35 61.13 42.09 29.69 35.45 49.12 39.06 54.00 45.86
MetaICL 85.94 80.96 37.30 42.09 33.98 50.49 45.41 54.20 53.80
PICL 74.70 73.34 54.49 33.79 32.91 51.37 47.46 53.42 52.68
Calibrate 56.35 60.94 36.91 25.10 34.08 49.32 36.72 53.52 44.12
ABFT 88.181.54 85.400.95 81.301.69 36.843.61 50.242.49 61.994.39 46.513.11 55.200.20 63.21

GPT2-XL 1.61B

Vanilla 67.87 69.53 51.07 30.66 35.25 50.98 42.68 53.03 50.13
PICL 74.80 74.32 51.17 32.71 33.20 51.46 47.95 53.42 52.38
Calibrate 68.16 75.00 36.43 28.52 35.55 50.10 39.26 51.56 48.07
ABFT 87.921.47 86.521.50 87.670.45 37.552.67 51.832.73 75.072.96 60.015.38 55.350.04 67.74

Falcon3 7.46B
Vanilla 91.11 92.77 85.35 46.00 50.00 62.60 60.55 52.05 67.55
Calibrate 90.53 93.07 82.71 44.04 54.30 62.40 54.79 51.76 66.70
ABFT 92.140.21 92.170.04 96.140.36 47.320.16 75.810.19 94.870.82 67.970.25 70.340.22 79.59

Llama3 8.03B
Vanilla 89.35 92.87 75.78 44.24 55.76 62.30 57.91 54.59 66.60
Calibrate 90.04 93.36 43.95 41.60 54.39 65.23 54.79 52.83 62.02
ABFT 93.141.39 92.500.84 94.021.72 52.102.31 73.091.11 92.701.44 72.021.81 72.025.87 80.20

DeepSeek-R1
Dist. Qwen
4-bit, LoRA

14.8B
Vanilla 90.92 91.21 92.18 46.97 62.50 66.60 66.60 63.87 72.61
Calibrate 90.04 91.41 92.68 46.09 61.62 65.43 65.33 62.30 71.86
ABFT 93.511.22 91.850.34 91.174.44 46.091.27 69.142.54 92.923.27 69.820.00 71.193.42 78.21

Qwen2.5
4-bit, LoRA 32.8B

Vanilla 93.85 94.43 86.23 47.17 58.40 87.50 65.14 69.63 75.29
Calibrate 93.75 94.82 74.22 44.82 58.79 84.08 63.96 63.96 72.30
ABFT 94.920.00 94.830.10 94.040.00 48.490.05 69.240.10 96.000.00 69.290.24 70.310.00 79.64

SimpleScaling
s1.1

4-bit, LoRA
32.8B

Vanilla 94.82 94.24 91.11 50.20 69.63 89.65 68.36 72.17 78.77
Calibrate 94.43 93.85 88.96 48.63 68.07 89.26 68.55 72.36 78.02
ABFT 94.920.10 94.290.05 96.000.00 49.950.05 72.460.39 95.710.10 71.730.05 73.100.04 81.02

Llama3
4-bit, LoRA 43.2B

Vanilla 93.26 94.04 73.92 49.41 58.98 71.58 62.60 66.70 71.31
Calibrate 95.02 93.07 54.20 44.53 59.08 72.56 61.03 65.82 68.16
ABFT 95.020.10 93.850.10 94.870.05 48.100.14 64.700.14 90.090.05 69.240.29 70.850.15 78.34

Llama3
4-bit, LoRA 55.6B

Vanilla 93.94 92.19 78.81 51.37 67.19 66.70 56.44 60.94 70.95
Calibrate 92.29 92.77 69.92 50.49 68.75 65.92 58.11 62.70 70.12
ABFT 94.530.10 93.410.14 93.210.44 49.020.78 71.780.58 92.680.48 70.760.64 70.750.34 79.52

4 Main Experiments229

In this section, we mainly confirm the effective-230

ness of the proposed ABFT, and find that: ABFT231

effectively improves the ICL performance to about232

10%∼20% relatively, which requires the minimum233

parameters less than 0.05% to be full precision and234

gradient, with other parameters free to be quan-235

tized and gradient-free, and utilize 0.01% data cost236

compared to the previous works.237

4.1 Experiment Settings238

Models and Datasets. We conduct our ex-239

periment on 9 modern LLMs: GPT2 (Large,240

XL) (Radford et al., 2019), Falcon3 7B (Team,241

2024b), Llama3 (8B, 43B, 56B) (AI@Meta, 2024),242

DeepSeek-R1 Distill Qwen 14B (DeepSeek-AI,243

2025), Qwen2.5 32B (Team, 2024a; Yang et al.,244

2024), and SimpleScaling s1.1 32B (Muennighoff245

et al., 2025); and 8 datasets: SST2, SST5 (Socher246

et al., 2013), MR (Pang and Lee, 2005), Financial247

Phrasebank (Malo et al., 2014), TREC (Li and248

Roth, 2002; Hovy et al., 2001), Subjective (Wang249

and Manning, 2012), Tweet Eval Emotion (Mo-250

hammad et al., 2018), Tweet Eval Hate (Basile 251

et al., 2019) (Refer Appendix A.1 for details). 252

Hyperparameters. We set: training samples nd = 253

512, the number of demonstrations per ICL sample 254

k = 4. A standard Adam optimizer (Kingma and 255

Ba, 2014) is used with learning rate lr = 2× 10−5 256

and pseudo-batch-size nb = 32 (i.e., we average 257

gradients per nb = 32 samples before perform- 258

ing a single gradient step). We set the initial val- 259

ues A0 = 0.5, B0 = 1.0, and dynamically bal- 260

ance them with the PID algorithm (refer to Ap- 261

pendix A.3), stabilizing the number of attention 262

heads identified as induction heads (see §5.3). The 263

models are trained for nstep = 32 steps. 264

Quantization Settings. Models over 10B are quan- 265

tized to 4-bit, with full-precision LoRA (Hu et al., 266

2022) (inner dimension r = 16) trained on WQ 267

and WK with learning rate 10−4. 268

Baselines. We compare with: Contextual Calibra- 269

tion with 512 training samples (Zhao et al., 2021), 270

MetaICL end-to-end fine-tuning with 3.55M sam- 271

ples (Min et al., 2022), and PICL re-pre-training 272

with 80M samples (Gu et al., 2023). 273
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Table 2: A comparison between ABFT and End-to-end
Fine-tuning (E2E FT). Param.*: Parameters which are
required in FP16/32 and with gradient on.

Model Method Param.* Time AccID AccOD

Llama3
8.03B

4-bit, LoRA

Vanilla - - 66.02
E2E FT 0.5B 2.2× 78.33 61.74
ABFT 6.8M 1× 72.54 64.34

DeepSeek-R1
14.8B

4-bit, LoRA

Vanilla - - 72.61
E2E FT 0.8B 2.2× 78.26 63.62
ABFT 12M 1× 78.21 67.21

Qwen2.5
32.8B

4-bit, LoRA

Vanilla - - 75.29
E2E FT 0.8B 2.6× 82.09 62.24
ABFT 17M 1× 79.64 64.96

Llama3
55.6B

4-bit, LoRA

Vanilla - - 70.95
E2E FT 1.1B 2.7× 82.80 64.86
ABFT 33M 1× 79.52 67.32

Table 3: Prediction consistency metrics (%) on each
models averaged among 8 datasets.

Model Template Consist. Demonstration Consist.

w/o ABFT w/ ABFT w/o ABFT w/ ABFT

GPT2-XL 81.28 91.74 68.38 82.75
Llama3 8B 86.93 90.32 76.99 92.00

DeepSeek-R1 14B 89.64 92.79 81.30 85.97
Qwen2.5 32B 88.97 92.78 84.52 87.94
Llama3 56B 92.78 93.90 82.10 87.49

Others. We conduct all the experiments on a single274

NVIDIA A40 with 48GB VRAM. We repeat each275

experiment 4 times (⩽10B) or 2 times (>10B), and276

report the averaged results on 1024 fixed test inputs277

for each dataset. ICL-style inputs are built with278

library STAICC (Cho and Inoue, 2025).279

4.2 Main Results280

The test results are shown in Table 1, where281

ABFT consistently outperforms all the baselines,282

even with enormous training sets (to MetaICL,283

3.55M/512 ≈ 7000×) and full-model fine-tuning284

(remind that ABFT only focuses on the WQ and285

WK matrices), suggesting that ABFT is satisfy-286

ingly efficient in both time and data cost. Such287

results also provide strong empirical evidence for288

the effectiveness of induction heads in LLMs.289

Towards Mechanistic Controllability. To the best290

of our knowledge, ABFT is the first approach to291

train models without accessing final outputs, en-292

abling model controlling via intermediate features293

or activations. Through this practice, we prototypi-294

cally implement one of the visions of mechanistic295

interpretability (Rai et al., 2024): by attributing the296

model’s inference to specific modules (circuits), we297

enable their local optimization, thereby improving298

overall performance effectively and efficiently.299
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Prediction Consistency. We evaluate the predic- 300

tion consistency against variations in (1) prompt 301

templates and (2) demonstration sampling on 302

STAICC-DIAG (Cho and Inoue, 2025). For 303

each query, we repeat predictions across differ- 304

ent prompt templates and sampling strategies, and 305

measure consistency as the ratio of the maximum 306

consistent predictions (e.g., 6 positive vs. 3 nega- 307

tive yields 6/9 = 2/3), averaged over the dataset; 308

see Cho and Inoue (2025) and Appendix A.5 for 309

implementation details. As shown in Table 3, 310

ABFT significantly improves consistency across 311

all 8 datasets, stabilizing ICL under diverse con- 312

texts and enhancing prompt design efficiency. 313

Prediction Bias against Wrong Labels. More- 314

over, a known concern in ICL is the bias toward 315

seen labels when ground-truth labels are absent in 316

demonstrations (i.e., I+ = ∅) (Zhao et al., 2021; 317

Cho et al., 2025a), which can lead to incorrect 318

predictions. Our testing on such scenario with 319

and without ABFT in Fig. 3 shows that (see Ap- 320

pendix A.4 for experiment details): ABFT miti- 321

gates this issue via the punish term A , which pe- 322

nalizes incorrect labels during training and reduces 323

the bias effects of induction heads. Notably, ABFT 324

outperforms the 0-shot setting under unseen-label, 325

suggesting the existence or emergence of unknown 326

mechanisms that enable demonstrations in other 327

categories to enhance ICL3. 328

4.3 Comparison against End-to-end 329

Fine-tuning 330

As mentioned before, end-to-end (E2E) fine-tuning 331

on the in-domain dataset (not a wide dataset like 332

MetaICL) with LoRA is also an alternative solu- 333

tion. However, in this section, we will show that 334

3Since that: such a phenomenon contrasts with existing
views (Cho et al., 2025a), where the explicit copying by the
induction head is the only channel through which information
is transferred from the demonstrations to the query (in Fig. 10,
we show that the induction heads in ABFT model are almost
fully suppressed in unseen-label scenario), where unseen-label
demonstrations are harmful to ICL.
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compared with E2E fine-tuning, ABFT is more335

efficient, and more harmless on tasks out of the336

fine-tuning domain.337

Time and Memory Cost. Notice that in the E2E338

scenario, since the gradient is propagated from the339

final output of the model, the LM head, which is the340

top of the model, should be in full precision, to en-341

sure a sufficient numerical resolution to utilize the342

mini-batch for mitigating the gradient noise in the343

stochastic gradient descent (Hubara et al., 2016).344

This introduces a non-negligible overhead, as mea-345

sured in Table 2. E2E fine-tuning slightly outper-346

forms ABFT in in-domain accuracy (ACCID), but347

incurs substantial training time and memory costs.348

Harmlessness. We evaluate out-of-domain (OD)349

performance on datasets different from the fine-350

tuned one (Table 2, ACCOD). Both ABFT and E2E351

fine-tuning degrade OD performance, but ABFT352

causes less harm. This supports a conclusion353

from Cho et al. (2025a): some induction heads354

are intrinsic and task-independent, while others355

are task-induced. ABFT on intrinsic heads harms356

OD performance, whereas ABFT on task-induced357

heads does not. In contrast, E2E fine-tuning on all358

heads broadly degrades OD performance.359

Data Efficiency. We test the accuracy against the360

training set size as a metric of data efficiency, for361

both ABFT and E2E fine-tuning, as shown in Fig. 2362

(refer to Appendix C.1 for results on other mod-363

els). In the results, ABFT and E2E fine-tuning364

consistently benefit from more data samples, and365

in few-shot scenarios (⩽ 512), ABFT and E2E fine-366

tuning act equally, while E2E fine-tuning acts better367

when more training data is given. However, given368

the low-resource objective of ICL, and also the far369

more expensive time and memory cost of E2E fine-370

tuning, we can claim that ABFT has an advantage371

in the few-shot and low-resource scenario.372

Table 4: Ablation analysis of removing some compo-
nents from ABFT. Notice that the PID algorithm is to
stabilize the induction head number by adjusting the
factor A, so when we disable the head filter or fix the A
or B, the PID algorithm naturally loses its function.

Model Method Time Acc.

Falcon3
7.46B

Vanilla - 67.55
ABFT 1× 79.59
w/o PID, A = 0.5, B = 1.0 1.0× 76.86
w/o PID, w/o Head Filter 1.3× 75.57
w/o PID, A = 0, B = 1.0 1.0× 72.13
w/o PID, A = 0.5, B = 0 0.6× 56.47

Llama3
8.03B

Vanilla - 66.60
ABFT 1× 80.20
w/o PID, A = 0.5, B = 1.0 1.1× 80.07
w/o PID, w/o Head Filter 1.2× 70.39
w/o PID, A = 0, B = 1.0 1.2× 63.54
w/o PID, A = 0.5, B = 0 0.6× 58.79

DeepSeek-R1
14.8B

Dist. Qwen
4-bit, LoRA

Vanilla - 72.61
ABFT 1× 78.21
w/o PID, A = 0.5, B = 1.0 1.0× 73.35
w/o PID, w/o Head Filter 2.1× 73.51
w/o PID, A = 0, B = 1.0 0.9× 72.71
w/o PID, A = 0.5, B = 0 0.9× 73.36

5 Analysis 373

5.1 Attention Visualization after ABFT 374

As shown in Fig. 4, we average the global (to I) 375

and correct (to I+) induction attention scores on 376

the last token among attention heads and input sam- 377

ples on each transformer layer, on the validation 378

set. Also, we provide a direct visualization of at- 379

tention scores in Appendix C.3. Compared to the 380

pre-trained model, the ABFT model tends to elimi- 381

nate attention scores towards incorrect label tokens 382

(I−), and shift the attention scores from the atten- 383

tion sinks (the first token) (Xiao et al., 2024) and 384

plain tokens to the correct label token, causing an 385

enhancement to induction attention scores, contin- 386

uously on the middle-to-last layers. Such visualiza- 387

tion indicates that ABFT successfully generalizes 388

to correct the behavior of attention heads. 389

5.2 Ablation Analysis 390

In this section, we disable some components uti- 391

lized in the ABFT training protocol to suggest their 392

necessity. The main results of such ablation experi- 393

ments are shown in Table 4, where: 394

ABFT should be Localized. In Table 4, disabling 395

the head filter ((D) in Fig. 1) harms the accuracy. 396

Knowing that all attention heads are trained to be 397

induction heads under unfiltered ABFT loss, we 398

can infer that: in LLMs, some attention heads with 399
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Figure 6: Accuracies with various settings on hyperpa-
rameter A and B, with and without PID algorithm. PID
weakens the sensitivity to initial parameters.

functions other than the induction head are still400

necessary for ICL, aligning with and enhancing the401

previous work (Reddy, 2024; Cho et al., 2025a).402

However, considering that some implicit antago-403

nistic effects induced by unfiltered ABFT loss still404

promote the formation of other essential heads (i.e.,405

when the ABFT loss from deeper heads propagates406

to shallower heads, its function becomes antagonis-407

tic with the ABFT loss directly connected to those408

shallow heads), the accuracy degradation with no409

head filters is not so significant.410

Loss Factor (A and B) should be Balanced. As411

mentioned in §4.1, we use the PID algorithm to412

adaptively balance the value of A and B in the loss413

calculation. In Table 4, we disable such adjustment414

and observe an accuracy drop. Especially, when415

we set the A or B to 0, the accuracy significantly416

degrades. This eliminates the doubt of “whether417

the loss factors are redundant” raised in §3, and we418

will discuss this in-depth in the next section (§5.3).419

5.3 Balance the Loss Factor A and B420

Punish and Reward Influence Induction421

Heads Antagonisticly. As shown in Table 4, re-422

moving either loss term in Eq. 1 degrades perfor-423

mance, indicating that both are essential. Inter-424

estingly, the two terms introduce antagonistic im-425
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Figure 7: Upper: A better accuracy (lower loss) in the
interpolation path suggests the same basin, and vice
versa. Lower: Contour map of accuracies against the
coefficient αE and αA in Eq. 2. E2E fine-tuned and
ABFT models are located in the same low-loss area.

plicit biases: the punish term A disperses atten- 426

tion across labels, reducing induction heads, while 427

the reward term B concentrates attention on spe- 428

cific labels, increasing induction heads through a 429

stepwise positive feedback loop. We track the num- 430

ber of induction heads during training on Llama3 431

8B and SST2 (see Appendix C.2 for more cases), 432

as shown in Fig. 5, to support this observation. 433

Automatically Stabilizing Induction Head Num- 434

ber. Ablation studies reveal that too many induc- 435

tion heads hinder fine-tuning and overall perfor- 436

mance, as other functional heads are also needed 437

for ICL; whereas an insufficient number prevents 438

the model from handling ICL tasks. To maintain a 439

stable number, we automatically adjust the antago- 440

nistic factor A in Eq. 1 using a classical PID con- 441

troller (Appendix A.3)4. As shown in Fig. 5, PID 442

stabilizes induction head count, improves ABFT 443

performance (Table 4), and reduces sensitivity to 444

hyperparameters A0 and B0, with accuracy remain- 445

ing stable across settings (Fig. 6). 446

6 Consistency of Training Objective: 447

ABFT and End-to-end Fine-tuning 448

To explore whether the emergence of induction 449

head is from ICL-style data—a key question in 450

interpretability (Chan et al., 2022; Reddy, 2024; 451

4Since A and B are antagonistic, controlling A alone suf-
fices to stabilize induction head numbers.
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ABFT

E2E

Pre-trained

Figure 8: Attention score visualization of the pre-trained
model, ABFT model, and E2E fine-tuned model, on the
same input as Fig. 16, and the same models as Fig. 7
(Refer to Appendix C.3 for details and more cases).

Singh et al., 2024)—we examine the consistency452

between ABFT and E2E objectives.453

Principle. Due to the lack of qualitative thresh-454

olds, it is hard to utilize statistic-based similarity455

measures to determine whether two models exhibit456

comparable similarity sufficient to indicate consis-457

tent training objectives. Therefore, our experiment458

is based on such a principle: if the fine-tuning ter-459

minations on both training objectives fall into the460

same basin of the loss function, then both fine-461

tuning trajectories are similar (Neyshabur et al.,462

2020), so that the two training objectives are con-463

sistent. For such an end, we investigate the linear-464

connectivity (Neyshabur et al., 2020; Ilharco et al.,465

2023) among the pre-trained parameters θ0 (as the466

start point of the fine-tuning) and fine-tuned param-467

eters θE for E2E fine-tuning, and θA for ABFT. In468

detail, we mix these three parameters into a new469

model parameter set θ in the following form:470

θ = θ0 + αE(θE − θ0) + αA(θA − θ0), (2)471

and then test the accuracy of θ as an anti-metric472

of model loss. As shown in Fig. 7 (upper), if the473

accuracy of mixed θ is better (or at least, not sig-474

nificantly worse) than the accuracy of θE and θA,475

we can infer that the θE and θA are in the same loss476

basin, with linear low-loss path observed.477

Experiment and Result. We conduct the afore-478

mentioned experiment protocol on SST2 and479
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Figure 9: Contour map of accuracies against the αE and
αA on GPT2-L, and the θE is set as MetaICL model.

GPT2-XL. The results are shown in Fig. 7 (lower), 480

showing no high-loss paths between the E2E fine- 481

tuned model and the ABFT model. It suggests that 482

they are in the same basin of the loss landscape, 483

indicating the high similarity between these two 484

training objectives. Moreover, we visualize the at- 485

tention scores on ABFT and E2E fine-tuned models 486

as shown in Fig. 8: compared with the pre-trained 487

model, attention scores of the fine-tuned models 488

on both objectives consistently focus on the correct 489

label tokens, suggesting that E2E objectives imply 490

a promotion to correct induction head. Moreover, 491

as shown in Fig. 9, repeating the experiment on 492

MetaICL shows MetaICL model lies in the same 493

basin as ABFT, suggesting that full-model tuning 494

on large datasets is essentially equivalent to ABFT, 495

which can be seen as essential ICL fine-tuning. 496

7 Discussion 497

Conclusion. In this paper, we propose a fine-tuning 498

objective that strengthens the correctness of the in- 499

duction head by accessing only the attention matrix, 500

and demonstrate that it significantly improves the 501

performance of ICL. Our results reinforce the in- 502

duction head hypothesis for ICL interpretability 503

and represent a first step toward controlling model 504

behavior through mechanistic interpretability. 505

Towards Mechanistic Controllability. In this 506

paper, we raise the possibility of controlling the 507

model’s behavior by some specific modules (often 508

called circuit in the context of mechanistic inter- 509

pretability), which opens up a new neural network 510

model behavior-controlling paradigm: controlling 511

only the modules that make significant contribu- 512

tions to the output, thereby substantially reducing 513

the number of parameters that need to be adjusted 514

and achieving excellent efficiency. 515
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Limitations516

Towards Open-end Tasks. The first limitation lies517

in the fact that the induction head-based explana-518

tion of ICL (Elhage et al., 2021; Singh et al., 2024;519

Cho et al., 2025a), so that our proposed ABFT ap-520

proach, applies only to classification tasks with a521

finite label set. As mentioned in §4.2 and Fig. 3,522

since our training objective consists of two factors,523

our approach is not limited to the simple retrieval524

setting where the ground-truth label appears in the525

demonstrations, while extending these methods to526

open-ended tasks remains an open challenge that re-527

quires further investigation on the basic mechanism.528

Nevertheless, given the current state of research on529

ICL interpretability, we have made full use of these530

findings and provided a valuable foundation for531

advancing model control through the scope of in-532

terpretability, i.e., Mechanistic Controllability.533

Towards Better Mechanistic Controllability. For534

our vision of Mechanistic Controllability, even535

though this paper successfully identifies a small set536

of modules (i.e., circuits) that require controlling537

towards better ICL performance, the control meth-538

ods based on gradients and moderate amounts of539

data remain coarse. Therefore, future work could540

focus on gradient-free and data-free model edit-541

ing, which directly edits some parameters utilizing542

a deeper understanding of the functional roles of543

model parameters.544

Towards Better Performance. It can be consid-545

ered that some hyperparameters (see §4.1 and Ap-546

pendix A.3), and the induction head filter (see §3)547

may be not optimal, restricting the performance.548

Discussing them in detail, and automatically opti-549

mizing them can be helpful for better performance550

of ABFT. Also, in Fig. 7, we observe that the ex-551

tended line from the pre-trained model towards552

the ABFT model leads to better accuracy, sug-553

gesting a possibility of utilize model parameter554

θ = θ0 + αA(θA − θ0), αA > 1 to further improve555

accuracy without any gradient-based cost.556

Towards Further Efficiency. As shown in Ap-557

pendix B, the WQ and WK projections are signif-558

icantly modified after ABFT only in some layers,559

that is, it is possible to further restrict the gradient-560

on parameters to some Transformer layers for bet-561

ter efficiency (notice that currently we activate the562

gradients of the attention mappings of all layers).563
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A Detailed Experiment Implementation792

A.1 Model & Dataset Details793

Models. All the models in this paper are794

loaded from huggingface. In detail, we list the795

huggingface repository name to keep the repeata-796

bility of this paper, as shown in Table 6.797

Dataset Split. As also described by Cho and Inoue798

(2025), we randomly sample 1024 data samples799

from the original dataset to build the inputs for800

training, and sample 4096+ 512 (especially, 512+801

512 for FP dataset, 3192 + 512 for TEH dataset)802

data samples for the demonstrations+queries for803

the testing, respectively.804

Demonstration Sampling. To generate the train-805

ing examples of k demonstrations, we randomly806

sample (k + 1) data examples from the aforemen-807

tioned 1024 data, and concatenate them into the808

inputs, with the prompt templates shown in §A.2.809

To generate the testing examples, for each query810

in the 512 samples, we sample two sequences of811

demonstrations from the 4096 data samples, and812

concatenate them into testing inputs, 2 for one813

query sample, so that 1024 for one dataset.814

A.2 Prompt Templates815

We utilize the default prompt templates of STAICC,816

as shown in Table 5. For the sake of simplicity,817

we reduce the label tokens into one token, as also818

shown in Table 5.819

A.3 Details of PID Algorithm820

On each model update step t > 2 (i.e., when the821

gradients from all the samples of the t-th pseudo822

batch (of nb data samples) are propagated), we823

calculated the identified induction head numbers824

from the induction head filter described in §3 and825

Fig. 1 averaged on the nb data samples as n̄t. Given826

the similar averaged induction head number on the827

previous time step (t−1) as n̄t−1, we can calculate828

the updated At term5 by standard PID algorithm829

as:830

At = Cp (n̄t − n̄t−1)

+ Ci

(
t∑

i=2

n̄i − n̄i−1

)
+ Cd (n̄t − 2n̄t−1 + n̄t−2)

+At−1,

(3)831

5Remind that for the sake of simplicity, we only control A,
given the findings of A and B are antagonistic, as shown in
§5.3.

0 5 10 15 20 25 30
Layer #

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
ea

d-
av

er
ag

ed
 A

tt
en

tio
n Pre-trained, All Induction

Pre-trained, Correct Induction
ABFT, All Induction
ABFT, Correct Induction

Figure 10: Visualization of induction attention scores
on unseen label settings (Llama3 8B, TREC).

where the Cp = 0.03, Ci = 0.005, and Cd = 832

0.005 are hyperparameters. By such calculation, 833

we implement a feedback control to stabilize the 834

number of induction heads among training steps. 835

A.4 Experiment Protocol of Unseen Label 836

In Fig. 3, we examine that ABFT model can utilize 837

the demonstration with wrong label to improve the 838

ICL performance. Here we introduce the experi- 839

ment protocol. 840

First, we train a Llama3 8B on TREC (a 6- 841

way classification dataset) with the ABFT method. 842

Then, to test the trained ABFT model on the un- 843

seen label condition, we build special test inputs: 844

for each query with label l∗, we choose k = 4 845

demonstrations with label l ̸= l∗, and utilize the 846

standard template shown in Table 5 to build the 847

inputs, then test the accuracy. Notice that during 848

the training, no special sampling for the inputs is 849

conducted, i.e., the training is not under the unseen 850

label setting, so that such an experiment protocol 851

also confirms the generalization of ABFT methods 852

on a different distribution. Moreover, we repeat 853

the induction head visualization shown in Fig. 4 on 854

the unseen label condition in Fig. 10, where the in- 855

duction heads in the ABFT model are almost fully 856

suppressed but with considerable inference accu- 857

racy, which implies a new inference mechanism. 858

A.5 Experiment Protocol of Stability against 859

Prompting 860

In Table 3, we test whether the prediction of 861

ICL is stable against various (1) prompt templates 862

and (2) demonstration sampling, on the STAICC- 863

DIAG (Cho and Inoue, 2025) benchmark, whose 864

method is described briefly below. 865

Method. To test the prediction robustness against 866

prompt templates / demonstration sampling, we 867

repeat several predictions for each query on vari- 868

ous prompt templates / demonstration sampling, 869
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Table 5: Prompt templates used in this paper.

Dataset Prompt Template (Unit) Label Tokens

SST2 sentence: [input sentence] sentiment: [label token] \n negative, positive
MR review: [input sentence] sentiment: [label token] \n negative, positive
FP sentence: [input sentence] sentiment: [label token] \n negative, neutral, positive

SST5 sentence: [input sentence] sentiment: [label token] \n poor, bad, neutral, good, great
TREC question: [input sentence] target: [label token] \n short, entity, description, person, location, number
SUBJ review: [input sentence] subjectiveness: [label token] \n objective, subjective
TEE tweet: [input sentence] emotion: [label token] \n anger, joy, positive, sad
TEH tweet: [input sentence] hate speech: [label token] \n normal, hate

Table 6: Huggingface repository name for models used
in this paper.

Model Repository

GPT2-L openai-community/gpt2-large
GPT2-XL openai-community/gpt2-xl
Falcon3 tiiuae/Falcon3-7B-Base

Llama3 (8B) meta-llama/Meta-Llama-3-8B
DeepSeek-R1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

Qwen2.5 Qwen/Qwen2.5-32B
SimpleScaling s1.1 simplescaling/s1.1-32B

Llama3 (43B) chargoddard/llama3-42b-v0
Llama3 (56B) nyunai/nyun-c2-llama3-56B

and calculate the ratio of the maximum consis-870

tent group (e.g., we get 6 positive and 3 nega-871

tive predictions on one query, then the ratio is872

max(6, 3)/(6+3) = 2/3). The robustness metrics873

are the average value of the whole dataset. Refer874

to Cho and Inoue (2025) for the detailed implemen-875

tation. Notice that only the consistency is tested in876

these experiments, without observing the accuracy.877

Result. The robustness metrics among prompt tem-878

plates / demonstration sampling averaged on all879

8 datasets before and after ABFT are shown in880

Table 3, where both terms of the robustness are881

significantly improved after ABFT, suggesting that882

ABFT stabilizes ICL for various contexts, provid-883

ing higher efficiency on prompt designing. Also,884

given the results with mitigating prediction sensi-885

tivity and bias against prompt templates / demon-886

stration sampling, which is consistent with the ob-887

jective of output calibration (Zhao et al., 2021; Fei888

et al., 2023; Han et al., 2023; Zhou et al., 2024;889

Jiang et al., 2023; Cho et al., 2025b), ABFT can be890

regarded as an implicit calibration inside the LLM.891

B Parameter Shift after ABFT against892

Layers893

We utilize the Frobenius norm to visualize the shift-894

ing distance of the parameter matrix θ before and895

after ABFT (θ′) as ∥θ−θ′∥2. The results are shown896

in Fig. 17, 18, 19, where, although each model ex-897

hibits its own pattern in terms of distance across898

layer numbers, certain layers consistently show sig-899

nificantly lower distances within every model. 900

Moreover, even though the early layers accumu- 901

late more gradients (since the gradients from each 902

later layer propagate backward to them), the peak 903

of the shifting distance typically appears in the mid- 904

dle to later layers. This observation is consistent 905

with previous works on Induction Heads (Cho et al., 906

2025a). 907

C Augmentation Results 908

C.1 Augmentation Results for Data Efficiency 909

(Fig. 2) 910

We repeat the data efficiency experiments shown in 911

Fig. 2 on Qwen2.5 32B, as shown in Fig. 15. The 912

results are globally consistent with Fig. 2. 913

C.2 Augmentation Results for Number of 914

Induction Heads against Training 915

Processing (Fig. 5) 916

We repeat the visualization of the number of in- 917

duction heads against the training processing under 918

various settings on Llama3 8B and Falcon3 7B as 919

shown in Fig. 20 and 21. The results are globally 920

consistent with Fig. 5. 921

Moreover, we visualize the number of induc- 922

tion heads on only standard settings, as shown in 923

Fig. 22-28 for reference. 924

C.3 Augmentation Results for Attention 925

Visualization (Fig. 4 and 8) 926

As shown in Fig. 16, we visualize the attention 927

score on the last token of the given input example 928

in the validation set on Llama3 8B, and repeat this 929

visualization on more input cases for Fig. 16 and 930

Fig. 8 in Fig. 29. Moreover, we expand the Fig. 16 931

towards more layers in Fig. 30, and Fig. 8 in Fig. 31. 932

We observe that ABFT significantly modifies the 933

attention distribution in the middle layers, while in 934

the early and late layers, neither ABFT nor E2E 935

has a substantial impact on attention scores. 936
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Figure 11: Augmentation results of Fig. 4 on GPT2-L.

0 10 20 30 40
Layer #

0.0

0.1

0.2

0.3

0.4

H
ea

d-
av

er
ag

ed
 A

tt
en

tio
n Pre-trained, All Induction

Pre-trained, Correct Induction
ABFT, All Induction
ABFT, Correct Induction

Figure 12: Augmentation results of Fig. 4 on GPT2-XL.
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Figure 13: Augmentation results of Fig. 4 on Falcon3
7B.
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Figure 14: Augmentation results of Fig. 4 on Llama3
42B.
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Figure 15: Accuracy against training set size as a metric
of data efficiency, for Qwen2.5 32B.
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Figure 16: Attention score visualization on the last to-
ken of ICL input of every attention head (vertical axis)
towards each token. Label tokens and their contents are
marked with dotted lines. Refer to Appendix C.3 for
more examples and layers. ABFT successfully focuses
attention scores to correct labels.

Moreover, we repeat the attention score visual- 937

ization similar to Fig. 4 on more models and SST2, 938

as shown in Fig. 11, 12, 13, and 14. 939

D Statements 940

Author Contributions Statement. Not available 941

during the anonymous review. 942

License for Artifacts. Models and datasets used 943

in this paper are used in their original usage, and 944

are open-sourced with the following license: 945

• mit: GPT2-L, GPT2-XL, DeepSeek-R1 946

• Individual License or Unknown: Falcon3, 947

Llama3 8B, Llama3 43B, Llama3 56B, SST5, 948

MR, TREC, SUBJ, TEE, TEH 949

• Apache 2.0: Qwen2.5, SimpleScaling s1.1 950

• cc-by-sa-3.0: SST2, FP, 951

AI Agent Usage. AI Agents are used and only 952

used for writing improvement in this paper. 953
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Figure 18: Shifting distance before and after ABFT on the q_proj and k_proj matrix of Llama3-8B and SST2.
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(a) Llama3-8B SST2 (Fig. 5)
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(b) Llama3-8B MR

0 200 400 600 800 1000
Seen Training Example #

0

100

200

300

400

500

In
du

ct
io

n 
H

ea
d 

#

A = 0, B = 1.0
A = 0.5, B = 0
w/o PID, A = 0.5, B = 1.0
w/ PID, A0 = 0.5, B0 = 1.0

(c) Llama3-8B FP
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(d) Llama3-8B SST5
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(e) Llama3-8B TREC
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(f) Llama3-8B SUBJ
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(g) Llama3-8B TEE
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(h) Llama3-8B TEH

Figure 20: Induction head numbers along training dynamics on Llama3-8B and all 8 datasets.
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(a) Falcon3-7B SST2
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(b) Falcon3-7B MR

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

120

In
du

ct
io

n 
H

ea
d 

#

A = 0, B = 1.0
A = 0.5, B = 0
w/o PID, A = 0.5, B = 1.0
w/ PID, A0 = 0.5, B0 = 1.0

(c) Falcon3-7B FP
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(d) Falcon3-7B SST5
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(e) Falcon3-7B TREC
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(f) Falcon3-7B SUBJ
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Figure 21: Induction head numbers along training dynamics on Falcon3-7B and all 8 datasets.
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Figure 22: Induction head numbers along training dynamics on GPT2-Large and all 8 datasets.
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Figure 23: Induction head numbers along training dynamics on GPT2-XL and all 8 datasets.
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Figure 24: Induction head numbers along training dynamics on DeepSeek-R1 and all 8 datasets.
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Figure 25: Induction head numbers along training dynamics on Qwen2.5-32B and all 8 datasets.
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Figure 26: Induction head numbers along training dynamics on SimpleScaling s1.1 and all 8 datasets.
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Figure 27: Induction head numbers along training dynamics on Llama3-42B and all 8 datasets.
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Figure 28: Induction head numbers along training dynamics on Llama3-56B and all 8 datasets.
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