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ABSTRACT

Neural Implicit Representation (NIR) has recently gained significant attention
due to its remarkable ability to encode complex and high-dimensional data into
representation space and easily reconstruct it through a trainable mapping func-
tion. However, NIR methods assume a one-to-one mapping between the target
data and representation models regardless of data relevancy or similarity. This
results in poor generalization over multiple complex data and limits their efficiency
and scalability. Motivated by continual learning, this work investigates how to
accumulate and transfer neural implicit representations for multiple complex video
data over sequential encoding sessions. To overcome the limitation of NIR, we
propose a novel method, Progressive Fourier Neural Representation (PFNR), that
aims to find an adaptive and compact sub-module in Fourier space to encode
videos in each training session. This sparsified neural encoding allows the neural
network to hold free weights, enabling an improved adaptation for future videos.
In addition, when learning a representation for a new video, PFNR transfers the
representation of previous videos with frozen weights. This design allows the
model to continuously accumulate high-quality neural representations for multiple
videos while ensuring lossless decoding that perfectly preserves the learned repre-
sentations for previous videos. We validate our PFNR method on the UVG8/17
and DAVIS50 video sequence benchmarks and achieve impressive performance
gains over strong continual learning baselines. The PFNR code is available at
https://github.com/ihaeyong/PFNR.git.

1 INTRODUCTION

Neural Implicit Representation (NIR) (Chen et al., 2021a; Li et al., 2022; Chen et al., 2023; Mehta
et al., 2021) is a research field that aims to represent complex data, such as videos or 3D objects, as
continuous functions learned by neural networks. Instead of explicitly describing data points, NIR
models compress high-dimensional data from a low-dimensional embedding space. This process
enables efficient data storage, compression, and synthesis. However, there’s a challenge: when
compressing multiple pieces of data, each high-dimensional data needs to be encoded in the neural
network, increasing linear memory requirements. To address this, Neural Video Representation
proposes a solution, as explored in studies by Chen et al. (2021a; 2022b). This approach combines
different videos into a single video format and then reduces the model size through techniques
like weight pruning and quantization post-training. While this method is effective for current data
compression, it has a significant limitation: it restricts the model’s ability to adapt to new videos
as they are added. To overcome this limitation, inspired by incremental knowledge transfer and
expansion in continual learning, we investigate a practical implicit representation learning scenario
with video data, which aims to accumulate neural implicit representations for multiple videos into a
single model under the condition that videos are incoming sequentially.

Continual Learning (CL) (Thrun, 1995; Rusu et al., 2016; Zenke et al., 2017; Hassabis et al., 2017)
is a learning paradigm where a model learns over multiple sequential sessions. It seeks to mimic
human cognition, characterized by the ability to learn new concepts incrementally throughout a
lifetime without the degeneration of previously acquired functionality. Yet, incremental training of
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NIR is a challenging problem since the model detrimentally loses the learned implicit representations
of past session videos while encoding newly arrived ones, a phenomenon known as catastrophic
forgetting (McCloskey & Cohen, 1989). This issue particularly matters as neural representation
methods for videos encode and reconstruct the target data stream conditioned to its frame indices.
Then, the model more easily ruins its generation ability while learning to continuously encode new
videos due to the distributional disparities in holistic videos and their individual frames. Furthermore,
the compression phase of neural representation makes it wayward to transfer the model to future tasks.
Various approaches have been proposed to address catastrophic forgetting during continual learning,
which are often conventionally classified as follows: (1) Regularization-based methods (Kirkpatrick
et al., 2017; Chaudhry et al., 2020; Jung et al., 2020; Titsias et al., 2020; Mirzadeh et al., 2021) aim
to keep the learned information of past sessions during continual training aided by sophisticatedly
designed regularization terms, (2) Architecture-based methods (Yoon et al., 2018; Mallya et al., 2018;
Serrà et al., 2018; Wortsman et al., 2020; Kang et al., 2022a;b) propose to minimize the inter-task
interference via newly designed architectural components, and (3) Rehearsal-based methods (Rebuffi
et al., 2017; Chaudhry et al., 2019b; Saha et al., 2021; Yoon et al., 2022; Sarfraz et al., 2023) involves
replaying real or synthesized data from previous sessions. However, these methods are less suitable
for video data in CL due to the substantial memory and computational costs required to store and
revisit high-dimensional samples. While conventional architecture-based methods offer solutions to
prevent forgetting, they are unsuited for sequential complex video processing as they reuse a few or
all adaptive parameters without finely discretized operations.

To enhance neural representation incrementally on complex sequential videos, we propose a novel
sequential video compilation method, coined Progressive Fourier Neural Representation (PFNR) to
identify and utilize Lottery tickets (i.e., the weights of complicated oscillatory signals) in frequency
space. To achieve this, we define Fourier Subnetwork Operator (FSO), which breaks down a
neural implicit representation into its sine and cosine components (real and imaginary parts) and
then selectively, identifies the most effective Lottery tickets for representing complex periodic
signals. In practice, given a backbone and FSO architecture, our method continuously learns to
identify input-adaptive subnetwork modules and encode each new video into the corresponding
module during sequential training sessions. Our approach draws inspiration from the Lottery Ticket
Hypothesis (LTH) (Frankle & Carbin, 2019), which suggests that sparse subnetworks can maintain
the performance of a dense network and from the Fourier Neural Operator concepts developed in
studies by Li et al. (2020a;b); Kovachki et al. (2021); Tran et al. (2021). A challenge in this domain
is the inefficiency of continually searching for optimal subnetworks in Fourier space. This process
typically requires iterative training steps with repeated pruning and retraining for each new task. To
address this, PFNR introduces a parametric score function. This function learns to produce binary
masks for the real and imaginary components, enabling the identification of adaptive substructures
for video encoding in each training session by selecting the top-percentage weights based on their
ranking scores. This allows PFNR to discover the optimal subnetwork during training, through joint
training of weights and structure, thus avoiding the laborious processes of iterative retraining, pruning,
and rewinding inherent in LTH. Crucially, PFNR permits overlapping subnetworks with those from
previous sessions during training. This overlap allows the transfer of learned representations from
earlier videos when relevant while keeping the weights for these earlier sessions fixed. As a result, our
model can continuously expand its representation space across successive video sessions, ensuring
that it maintains the encoding and generation quality of previous videos without any degradation
(i.e., remaining forgetting-free). This is achieved without needing a replay buffer to store multiple
high-dimensional frames, a significant advancement in the field.

Our contributions can be summarized as follows:

• We suggest a practical learning scenario for neural implicit representation where the model encodes
multiple videos continually in successive training sessions. Earlier NIR methods suffered from
poor transferability to new videos due to the distributional shift of holistic video and frames.

• We propose a cutting-edge method referred to as the Progressive Fourier Neural Representation
for a complex sequential video compilation. The proposed method continuously learns a compact
subnetwork for each video session given a supernet backbone while preserving the generative
quality of previous videos flawlessly in Fourier space.

• We demonstrate the effectiveness of our method on multiple sequential video sessions by achiev-
ing superior performance over conventional baselines in average PSNR and MS-SSIM without
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any quantitative or qualitative degeneration in reconstructing previously encoded videos during
sequential video compilation.

2 RELATED WORKS

Neural Implicit Representation (NIR). Neural Implicit Representations (NIR) (Mehta et al., 2021)
are neural network architectures for parameterizing continuous, differentiable signals. Based on
coordinate information, they provide a way to represent complex, high-dimensional data with a small
set of learnable parameters that can be used for various tasks such as image reconstruction (Sitzmann
et al., 2020; Tancik et al., 2020), shape regression (Chen & Zhang, 2019; Park et al., 2019), and
3D view synthesis (Mildenhall et al., 2021; Schwarz et al., 2020). Instead of using coordinate-
based methods, NeRV (Chen et al., 2021a) proposes an image-wise implicit representation that
takes frame indices as inputs, enabling fast and accurate video compression. NeRV has inspired
further improvements in video regression by CNeRV (Chen et al., 2022b), DNeRV (He et al., 2023),
E-NeRV (Li et al., 2022), and NIRVANA (Maiya et al., 2022), and HNeRV (Chen et al., 2023). A
few recent works have explored video continual learning (VCL) scenarios for the NIR. To tackle
non-physical environments, Continual Predictive Learning (CPL) (Chen et al., 2022a) learns a mixture
world model via predictive experience replay and performs test-time adaptation using non-parametric
task inference. PIVOT (Villa et al., 2022) leverages the past knowledge present in pre-trained models
from the image domain to reduce the number of trainable parameters and mitigate forgetting. CPL
needs memory to replay, while PIVOT needs pre-training and fine-tuning steps. In contrast, along with
the conventional progressive training techniques (Rusu et al., 2016; Cho et al., 2022), we introduce a
novel neural video representation referred to as "Progressive Fourier Neural Representation (PFNR)",
which utilizes the Lottery Ticket Hypothesis (LTH) to identify an adaptive substructure within the
dense networks that are tailored to the specific video input index. Our PFNR doesn’t use memory, a
pre-trained model, or fine-tuning for a sequential video representation compilation.

Continual Learning. Most continual learning approaches introduce extra memory like additional
model capacity (Li et al., 2019; Yoon et al., 2020) or a replay buffer (Riemer et al., 2018; Chaudhry
et al., 2019a; Buzzega et al., 2020; Arani et al., 2022; Sarfraz et al., 2023). However, several works
have focused on building memory-efficient continual learners using pruning-based constraints to
exploit initial model capability more compactly. CLNP (Golkar et al., 2019) selects important
neurons for a given task using ℓ1 regularization to induce sparsity and freezes them to maintain
performance. And pruned neurons are reinitialized for future task training. Piggyback (Mallya et al.,
2018) trains task-specific binary masks on the weights given a pre-trained model. However, it does not
allow for knowledge transfer among tasks, so the performance highly depends on the quality of the
backbone model. HAT (Serrà et al., 2018) proposes task-specific learnable attention vectors to identify
significant weights per task. The masks are formulated to layerwise cumulative attention vectors
during continual learning. LL-Tickets (Chen et al., 2021b) recently suggests sparse subnetworks
called lifelong tickets that perform well on all tasks during continual learning. The method searches
for more prominent tickets from current ones if the obtained tickets cannot sufficiently learn the
new task while maintaining performance on past tasks. However, LL-Tickets require external data
to maximize knowledge distillation with learned models for prior tasks, and the ticket expansion
process involves retraining and pruning steps. As a strong architecture-based baseline, WSN (Kang
et al., 2022a) jointly learns the model weights and task-adaptive binary masks during continual
learning. It prevents catastrophic forgetting of previous tasks by keeping the model weights selected,
called winning tickets, intact at the end of each training. However, WSN is inappropriate for
sequential complex video compilation since it reuses a few adaptive but sparse learnable parameters.
To overcome the weakness of WSN, our PFNR explores more appropriate forget-free weights for
representing complex video in Fourier space (Li et al., 2020a;b; Kovachki et al., 2021; Tran et al.,
2021) using a newly proposed Fourier Subnetwork Operator (FSO).

3 PROGRESSIVE FOURIER NEURAL REPRESENTATION

This section presents our proposed continual neural implicit representation method, named Pro-
gressive Fourier Neural Representation (PFNR). Given a supernet backbone, where we follow the
NeRV (Chen et al., 2021a) architecture for video embedding and decoding, PFNR aims to expand

3



Published as a conference paper at ICLR 2024

t T

Frame	index

...

Embedding

FC1
FC2

+

Fourier	Subnueral	Operator
(FSO)

Conv

real

imag

NeRV	Block	with	FSO

Conv

NeRV	Block

Upscale

Upscale

...
Stem

frozen	parameters
reused	parameters

all	remained	trainable	parameters

Figure 1: Progressive Fourier Neural Representation (PFNR): PFNR takes time and video (session) indices
as input and uses a sparse Stem + NeRV Blocks with Fourier Subneural Operator (FSO) to output the whole
image through multi-heads HN where ṽt

s is a hidden representation. We denote frozen, reused, and trainable
parameters in training at session 2. Note that each video representation is colored. In inference, we only need
indices of session s and frame t and session mask (subnetwork).

its representation space continuously by sequentially encoding multiple videos within the Fourier
space. As new videos arrive in the model, PFNR jointly updates the binary masks (including real and
imaginary parts) with neural network weights, searching for the adaptive subnetwork to encode given
videos. Once a video session is completed, we ’freeze’ the weights of the chosen subnetwork. This
approach ensures that the quality of previously learned representations and generated outputs remains
unaffected by future training sessions, even if the new subnetwork structure shares some weights with
videos encoded earlier. While the weights learned in earlier video sessions are frozen, we enable our
PFNR to transfer prior knowledge to future video tasks (i.e., forward transfer). This makes the model
adapt new videos effectively by leveraging the representation of past videos (Please see Figure 1).

Problem Statement. Let a video at sth session Vs = {vs
t }

Ts
t=1 ∈ RTs×H×W×3 be represented by

a function with the trainable parameter θ, fθ : R → RH×W×3, during Video Continual Learning
(VCL), where Ts denotes the number of frames in a video at session s, and s ∈ {1 . . . , |S|}. Given
a session and frame index s and t, respectively, the neural implicit representation aims to predict
a corresponding RGB image vs

t ∈ RH×W×3 by fitting an encoding function to a neural network:
vs
t = fθ([s; t], Hs) where Hs is sth head. For the sake of simplicity, we omit Hs in the following

equations. Let’s consider a real-world learning scenario in which |S| = N or more sessions arrive in
the model sequentially. We denote that Ds = {es,t,vs,t}Ts

t=1 is the dataset of session s, composed
of Ts pairs of raw embeddings es,t = [es; et] ∈ R1×160 and corresponding frames vs

t . Here, we
assume that Ds for session s is only accessible when learning session s due to the limited hardware
memory and privacy-preserving issues, and session identity is given in the training and testing stages.
The primary training objective in this sequence of N video sessions is to minimize the following
optimization problem:

θ∗ = minimize
θ

1

N

1

Ts

N∑
s=1

Ts∑
t=1

L(f(es,t;θ),vs
t ), (1)

where the loss function L(vs
t ) is composed of ℓ1 loss and SSIM loss. The former minimizes the

pixel-wise RGB gap with the original input frames evenly, and the latter maximizes the similarity
between the two entire frames based on luminance, contrast, and structure, as follows:

L(Vs) =
1

Ts

Ts∑
t=1

α||vs
t − v̂s

t ||1 + (1− α)(1− SSIM(vs
t , v̂

s
t )), (2)

where v̂s
t is the output generated by the model f . For all experiments, we set the hyperparameter α to

0.7, and we adapt PixelShuffle (Shi et al., 2016) for session and time positional embedding.

Continual learners f frequently use over-parameterized deep neural networks to ensure enough
capacity for learning future tasks. This approach often leads to the discovery of subnetworks that
perform as well as or better than the original network. Given the neural network parameters θ, the
binary attention mask m∗

s that describes the optimal subnetwork for session s such that |m∗
s | is less
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than the model capacity c follows as:

m∗
s = minimize

ms∈{0,1}|θ|

1

Ts

Ts∑
t=1

L
(
f(es,t;θ ⊙ms),v

s
t

)
− J , subject to |m∗

s| ≤ c, (3)

where session loss J = L(vs
t ) and c ≪ |θ| (used as the selected proportion % of model parameters

in the following section). A robust model adhering to this condition is known as WSN (Kang
et al., 2022a). However, WSN falls short in handling sequential complex video compilation due to
its reliance on a limited set of adaptable yet sparse parameters in convolutional operators. In the
following section, we introduce a novel Fourier Subnetwork Operator (FSO) to address this limitation.

3.1 FOURIER SUBNUERAL OPERATOR (FSO)

Conventional continual learner (i.e., WSN) only uses a few learnable parameters in convolutional
operations to represent complex sequential image streams. To capture more parameter-efficient,
forget-free NIRs, the NIR model requires fine discretization and video-specific sub-parameters. This
motivation leads us to propose a novel subnetwork operator in Fourier space, which provides it with
various bandwidths. Following the previous definition of Fourier convolutional operator (Li et al.,
2020a), we adapt and redefine this definition to better fit the needs of the NIR framework. We use
the symbol F to represent the Fourier transform of a function f , which maps from an embedding
space of dimension de = 1× 160 to a frame size denoted as dv . The inverse of this transformation is
represented by F−1. In this context, we introduce our Fourier-integral Subneural Operator (FSO),
symbolized as K, which is tailored to enhance the capabilities of our NIR system (see Appendix A.1):

(K(ϕ)ṽs
t ) (es,t) = F−1(Rϕ · (F ṽs

t ))(es,t), (4)

where ṽs
t is a hidden representation; Rϕ is the Fourier transform of a periodic subnetwork function

which is parameterized by its subnetwork’s parameters of real (θreal ⊙ mreal
s ) and imaginary

(θimag ⊙ mimag
s ). We thus parameterize Rϕ separately as complex-valued tensors of real and

imaginary ϕFSO ∈ {θreal,θimag}. One key aspect of the FSO is that its parameters grow with
the depth of the layer and the input/output size. However, through careful layer-wise inspection
and adjustments for sparsity, we can find a balance that allows the FSO to describe neural implicit
representations efficiently. In the experimental section, we will showcase the most efficient FSO
structure and its performance. Figure 1 shows one possible PFNR structure of a single FSO. We
describe the optimization in the following section.

Algorithm 1 Progressive Fourier Neural Representation (PFNR) for VCL
input: {Ds}Ns=1, model weights of FSO θ∗ = {θ,ϕFSO}, score weights of FSO ρ∗ = {ρ,ρFSO},

binary mask M0 = {0|θ|, 0|θFSO |}, and layer-wise capacity c%.
1: randomly initialize θ∗ and ρ∗.
2: for session s = 1, · · · , |S| do
3: if s > 1 then
4: randomly re-initialize ρ∗.
5: end if
6: for batch bt ∼ Ds do
7: obtain mask ms of the top-c% scores ρ∗ at each layer
8: compute L (f(es,t;θ∗ ⊙ms),bt), where input embedding, es,t = [es; et].

9: θ∗ ← θ∗ − η
(

∂L
∂θ∗
⊙ (1−Ms−1)

)
▷ trainable weight update

10: ρ∗ ← ρ∗ − η( ∂L
∂ρ∗

) ▷ weight score update
11: end for
12: θ̂s = θ∗ ⊙ms

13: Ms ←Ms−1 ∨ms ▷ accumulate binary mask
14: end for

output: {θ̂s}Ns=1

3.2 SEQUENTIAL VIDEO REPRESENTATIONAL SUBNETWORKS

Let each weight θ∗ = {θ,ϕFSO} be associated with a learnable parameter we call weight score
ρ∗ = {ρ,ρFSO}, which numerically determines the importance of the weight associated with it; that
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is, a weight with a higher weight score is seen as more important. We find a sparse subnetwork θ̂s of
the neural network and assign it as a solver of the current session s. We use subnetworks instead of
the dense network as solvers for two reasons: (1) Lottery Ticket Hypothesis (Frankle & Carbin, 2019)
demonstrates the existence of a competitive subnetwork that is comparable with the dense network,
and (2) the subnetwork requires less capacity than dense networks, and therefore it inherently reduces
the size of the expansion of the solver.

Motivated by such benefits, we propose a novel PFNR, the joint-training method for sequential video
representation compilation, as shown in Algorithm 1. The pseudo-code explains how to acquire
subnetworks within a dense network. We find θ̂s = θ∗ ⊙ms by selecting the top-c% weights from
the weight scores ρ∗, where c is the target layer-wise capacity ratio in %; ms is a session-dependent
binary mask. Formally, ms is obtained by applying a indicator function 1c on ρ∗ where 1c(ρ∗) = 1

if ρ∗ belongs to top-c% scores and 0 otherwise. Therefore, the subnetworks {θ̂s}Ns=1 for all video
session S are obtained by θ̂s = θ∗ ⊙ms. Straight-through estimator (Bengio et al., 2013; Hinton,
2012; Ramanujan et al., 2020) is used to update ρ∗, which ignores the derivative of the indicator
function and passes on the incoming gradient as if the indicator function were an identity function.

4 EXPERIMENTS

Our method is validated on benchmark datasets for Video Task-incremental Learning (VTL) and
compared against various continual learning baselines. In all experiments conducted for this paper, we
utilize a multi-head configuration for continual video representation learning. This means the session
identifier, denoted as s, is provided during the training and inference phases. Our experimental setups
align with NeRV (Chen et al., 2021a) and HNeRV (Chen et al., 2023).

Datasets. 1) UVG of 8 Video Sessions: We experiment on eight sequential videos to validate our
PFNR. The eight videos consist of one from the scikit-video and seven from the UVG dataset. The
category index and order in UVG8 are as follows: 1.bunny, 2.beauty, 3.bosphorus, 4.bee, 5.jockey,
6.setgo, 7.shake, 8.yacht.

2) UVG of 17 Video Sessions: We conducted an extended experiment on 17 video sessions by adding
9 more videos to the UVG of 8 video sessions. The category index and order in UVG17 are as follows:
1.bunny, 2.city, 3.beauty, 4.focus, 5.bosphorus, 6.kids, 7.bee, 8.pan, 9.jockey, 10.lips, 11.setgo, 12.race,
13.shake, 14.river, 15.yacht, 16.sunbath, 17.twilight. Please refer to the supplementary material.

Architecture. We employ NeRV as our baseline architecture and follow its details for a fair compar-
ison. After the positional encoding, we apply 2 sparse MLP layers on the output of the positional
encoding layer, followed by five sparse NeRV blocks with upscale factors of 5, 2, 2, 2, 2. These
sparse NeRV blocks decode 1280×720 frames from the 16×9 feature map obtained after the sparse
MLP layers. For the upscaling method in the sparse NeRV blocks, we also adopt PixelShuffle (Shi
et al., 2016). Fourier Subneural Operator (FSO) is used at the NeRV2 or NeRV3 layer, as depicted in
Table 7. The positional encoding for the video index s and frame index t is as follows:

Γ(s, t) =[ sin(b0πs), cos(b0πs), · · · , sin(bl−1πs), cos(bl−1πs),

sin(b0πt), cos(b0πt), · · · , sin(bl−1πt), cos(bl−1πt) ],
(5)

where the hyperparameters are set to b = 1.25 and l = 80 such that Γ(s, t) ∈ R1×160. As differences
from the previous NeRV model, the first layer of the MLP has its input size expanded from 80
to 160 to incorporate both frame and video indices, and distinct head layers after the NeRV block
are utilized for each video. For the loss objective in Equation 2, α is set to 0.7. We evaluate the
video quality, average video session quality, and backward transfer with two metrics: PSNR and
MS-SSIM (Wang et al., 2003). We implement our model in PyTorch and train it in full precision
(FP32). All experiments are run with NVIDIA RTX8000.

Baselines. To show the effectiveness, we compare our PFNR with strong CL baselines: Single-Task
Learning (STL), which trains on single tasks independently, EWC (Kirkpatrick et al., 2017), which
is a regularized baseline, iCaRL (Rebuffi et al., 2017), and ESMER (Sarfraz et al., 2023) which
are current strong rehearsal-based baseline, WSN (Kang et al., 2022a) which is a current strong
architecture-based baseline, and Multi-Task Learning (MTL) which trains on multiple video sessions
simultaneously, showing the upper-bound of WSN. Except for STL, all models are trained and
evaluated on multi-head settings where a video session and time (s, t) indices are provided.
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Table 1: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7) on UVG8
Video Sessions with average PSNR and Backward Transfer (BWT). Note that ∗ denotes our reproduced results.

Method Video Sessions Avg. PSNR /
BWT1 2 3 4 5 6 7 8

STL, NeRV Chen et al. (2021a)∗ 39.66 36.28 38.14 42.03 36.58 29.22 37.27 31.45 36.33 / -

EWC Kirkpatrick et al. (2017)∗ 10.19 11.15 14.47 8.39 12.21 10.27 9.97 23.98 12.58 / -17.59
iCaRL Rebuffi et al. (2017)∗ 30.84 26.30 27.28 34.48 20.90 17.28 30.33 24.64 26.51 / -3.90
ESMER Sarfraz et al. (2023)∗ 31.71 23.09 24.15 28.03 17.30 13.81 12.45 24.57 21.92 / -9.99

WSN∗, c = 50.0 % 34.05 32.28 29.98 32.88 22.15 18.61 27.68 23.64 27.66 / 0.0
PFNR , c = 50.0 %, f -NeRV2 34.46 33.91 32.17 36.43 25.26 20.74 30.18 25.45 29.82 / 0.0
PFNR , c = 50.0 %, f -NeRV3 36.45 35.15 35.10 38.57 28.07 23.06 32.83 27.70 32.12 / 0.0

MTL (upper-bound) 34.22 32.79 32.34 38.33 25.30 22.44 33.73 27.05 30.78 / -

Table 2: MS-SSIM results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7) on
UVG8 Video Sessions with average MS-SSIM, Backward Transfer (BTW) of MS-SSIM. Note that ∗ denotes
our reproduced results.

Method Video Sessions Avg. MS-SSIM /
BWT1 2 3 4 5 6 7 8

STL, NeRV Chen et al. (2021a)∗ 0.99 0.95 0.98 0.99 0.97 0.96 0.98 0.96 0.97 / -

EWC Kirkpatrick et al. (2017)∗ 0.22 0.23 0.35 0.10 0.27 0.19 0.21 0.79 0.30 / -0.62
iCaRL Rebuffi et al. (2017)∗ 0.94 0.80 0.82 0.97 0.59 0.57 0.92 0.81 0.80 / -0.11
ESMER Sarfraz et al. (2023)∗ 0.88 0.65 0.68 0.90 0.42 0.32 0.19 0.81 0.61 / -0.33

WSN∗, c = 50.0 % 0.98 0.91 0.90 0.97 0.74 0.62 0.88 0.77 0.85 / 0.0
PFNR , c = 50.0 %, f -NeRV2 0.98 0.93 0.93 0.99 0.83 0.75 0.92 0.84 0.90 / 0.0
PFNR , c = 50.0 %, f -NeRV3 0.99 0.94 0.97 0.99 0.88 0.84 0.95 0.90 0.93 / 0.0

MTL (upper-bound) 0.98 0.91 0.93 0.99 0.84 0.82 0.95 0.89 0.91 / -

Training. In all experiments, we follow the same experimental settings as NeRV (Chen et al., 2023)
and HNeRV (Chen et al., 2023) for fair comparisons. We train WSN, PFNR, NeRV (STL), and MTL
using Adam optimizer with a learning rate 5e-4. For the ablation study on UVG8 and UVG17, we
use a cosine annealing learning rate schedule (Loshchilov & Hutter, 2016), batch size of 1, training
epochs of 150, and warmup epochs of 30 unless otherwise denoted.

VCL’s performance metrics of PSNR & MS-SSIM. We evaluate all methods based on the following
continual learning metrics:
1. Average PSNR or MS-SSIM (i.e., Ave. PSNR) measures the average of the final performances on all video

sessions: PSNR or MS-SSIM = 1
N

∑N
s=1 AN,s, where AN,s is the test PSNR or MS-SSIM for session s

after training on the final video session S.
2. Backward Transfer (BWT) of PSNR or MS-SSIM measures the video representation forgetting during continual

learning. Negative BWT means that learning new video sessions causes the video representation forgetting
of past sessions: BWT = 1

N−1

∑N−1
s=1 AN,s −As,s.

Table 3: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7) on UVG17
Video Sessions with average PSNR and Backward Transfer (BWT) of PSNR. Note that ∗ denotes our reproduced
results.

Method Video Sessions Avg. PSNR
BWT1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

STL, NeRV Chen et al. (2021a)∗ 39.66 44.89 36.28 41.13 38.14 31.53 42.03 34.74 36.58 36.85 29.22 31.81 37.27 34.18 31.45 38.41 43.86 36.94 / -

EWC Kirkpatrick et al. (2017)∗ 11.15 9.21 12.71 11.40 15.58 9.25 7.06 12.96 6.34 10.31 9.55 13.39 5.76 8.67 10.93 10.92 28.29 11.38 / -16.13
iCaRL Rebuffi et al. (2017)∗ 24.31 28.25 22.19 22.74 22.84 16.55 29.37 17.92 16.65 27.43 13.64 16.42 24.02 21.60 19.40 18.60 26.46 21.67 / -6.23
ESMER Sarfraz et al. (2023)∗ 30.77 26.33 22.79 21.35 23.76 13.64 28.25 15.22 16.71 23.78 13.35 15.23 18.21 19.22 24.59 20.61 22.42 20.95 / -15.23

WSN∗, c = 30.0 % 31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 24.33 23.09 21.23 29.13 26.80 / 0.0
PFNR , c = 30.0 %, f -NeRV2 32.01 35.84 32.97 35.17 31.24 24.82 36.01 25.85 24.83 35.76 20.50 22.79 30.40 27.37 25.52 25.40 32.70 29.36 / 0.0
PFNR , c = 30.0 %, f -NeRV3 33.64 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 32.50 30.22 27.62 29.15 35.68 31.72 / 0.0

MTL (upper-bound) 32.39 34.35 31.45 34.03 30.70 24.53 37.13 27.83 23.80 34.69 20.77 22.37 32.71 28.00 25.89 26.40 33.16 29.42 / -

4.1 COMPARISONS WITH BASELINES

PSNR & MS-SSIM. To compare PFNR with conventional representative continual learning methods
such as EWC, iCaRL, ESMER, and WSN, we prepare the reproduced results, as shown in Table 1,
2, 3, and 4. The architecture-based WSN outperformed the regularized method and replay method.
The sparseness of WSN does not significantly affect sequential video representation results on two
sequential benchmark datasets. Our PFNR outperforms all conventional baselines including WSN
and MLT (upper-bound of WSN) on the UVG8 and UVG17 benchmark datasets. Moreover, our
performances of PFNR with f -NeRV3 are better than those of f -NeRV2 since f -NeRV3 tends to
represent local textures, stated in the following Section 4.2. Note that the number of parameters of
MLT is precisely the same as those of WSN.
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Table 4: MS-SSIM results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7)
on UVG17 Video Sessions with average MS-SSIM and Backward Transfer (BWT) of MS-SSIM. Note that ∗
denotes our reproduced results.

Method Video Sessions Avg. MS-SSIM
BWT1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

STL, NeRV Chen et al. (2021a)∗ 0.99 0.99 0.95 0.98 0.98 0.96 0.99 0.98 0.97 0.95 0.96 0.96 0.98 0.98 0.96 0.99 0.99 0.97 / -

EWC Kirkpatrick et al. (2017)∗ 0.26 0.24 0.44 0.24 0.40 0.29 0.15 0.17 0.26 0.26 0.17 0.34 0.04 0.30 0.33 0.31 0.91 0.30 / -0.55
iCaRL Rebuffi et al. (2017)∗ 0.74 0.88 0.67 0.67 0.64 0.48 0.91 0.53 0.37 0.82 0.35 0.53 0.75 0.70 0.61 0.60 0.87 0.65 / -0.20
ESMER Sarfraz et al. (2023)∗ 0.85 0.86 0.64 0.63 0.66 0.46 0.89 0.51 0.42 0.79 0.30 0.51 0.43 0.68 0.82 0.6 0.63 0.62 / -0.37

WSN∗, c = 30.0 % 0.96 0.97 0.89 0.93 0.88 0.77 0.97 0.77 0.73 0.91 0.60 0.74 0.86 0.81 0.76 0.72 0.93 0.84 / 0.0
PFNR , c = 30.0 %, f -NeRV2 0.97 0.98 0.92 0.95 0.92 0.84 0.98 0.88 0.82 0.93 0.73 0.82 0.92 0.89 0.84 0.87 0.97 0.90 / 0.0
PFNR , c = 30.0 %, f -NeRV3 0.98 0.99 0.93 0.97 0.96 0.91 0.99 0.96 0.87 0.94 0.84 0.87 0.94 0.94 0.90 0.94 0.98 0.94 / 0.0

MTL (upper-bound) 0.97 0.97 0.90 0.94 0.91 0.82 0.99 0.92 0.80 0.92 0.75 0.81 0.94 0.90 0.85 0.89 0.97 0.90 / -

PFNR’s Compression. We follow NeRV’s video quantization and compression pipeline (Chen et al.,
2021a), except for the model pruning step, to evaluate performance drops and backward transfer in the
video sequential learning, as shown in Figure 2. Once sequential training is done, our PFNR doesn’t
need any extra prune and finetune steps, unlike NeRV. This point is our key advantage of PFNR
over NeRV. Figure 2 (a) shows the results of various sparsity and bit-quantization on the UVG17
datasets: the 8bit PFNR’s performances are comparable with 32bit ones without a significant video
quality drop. From our observations, the 8-bit subnetwork seems to be enough for video implicit
representation. Figure 2 (b) shows the rate-distortion curves. We compare PFNR with WSN and
NeRV (STL). For a fair comparison, we take steps of pruning, fine-tuning, quantizing, and encoding
NeRV. Our PFNR outperforms all baselines.
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(a) Quantization and Compression of PFNR (b) PSNR v.s. BPP

Figure 2: PSNR v.s. Bits-per-pixel (BPP) on the UVG17 datasets

Performance and Capacity. Our PFNR outperforms WSN and MTL, as stated in Figure 3 (a). This
result might suggest that properly selected weights in Fourier space lead to generalization more than
others in VCL. Moreover, to show the behavior of PSNR, We prepare a progressive PSNR’s capacity
and investigate how PFNR reuses weights over sequential video sessions, as shown in Figure 3 (b).
PFNR tends to progressively transfer weights used for a prior session to weights for new ones, but
the proposition of reused weights gets smaller as video sessions increase.
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(a) PFNR’s performance with c = 30.0% (b) PFNR’capacity with c = 30.0%

Figure 3: PFNR’s Comparison of PSNR with others and layer-wise accumulated capacities on the UVG17
dataset. Note that, in (b), green represents the percentage of reused subnetwork’s parameters of Stem, f -NeRV3,
and NeRV5 at the current session (s) obtained at the past (s-1) video sessions

4.2 PFNR’S VIDEO REPRESENTATIONS

We prepare the results of video generation as shown in Figure 5. We demonstrate that a sparse
solution (PFNR with c = 30.0%, f -NeRV3) generates video representations sequentially without
significant performance drops. Compared with WSN, PFNR provides more precise representations.
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To find out the results, we inspect the layer-wise representations as shown in Figure 4, which provides
essential observations that PFNR tends to capture local textures broadly at the NeRV3 layer while
WSN focuses on local objects. This behavior of PFNR could lead to more generalized performances.
Moreover, we conduct an ablation study to inspect the best sparsity of f -NeRV3 while holding the
remaining parameters’ sparsity (c=50.0 %), as shown in Figure 10. Please refer to the supplementary
materials for comparisons with baselines.

NeRV3 NeRV4 NeRV5 NeRV6 Head

WSN, c=50.0% (28.95, PSNR)

PFNR, c=50.0%, f -NeRV2 (31.24, PSNR)

PFNR, c=50.0%, f -NeRV3 (34.05, PSNR)

Figure 4: PFNR’s Representations of NeRV Blocks with c = 50.0% on the UVG17 dataset.

t=0 t=1 t=2 t=3

WSN (31.00, PSNR)

PFNR, f -NeRV3 (34.21, PSNR)
Figure 5: PFNR’s Video Generation (from t=0 to t=3) with c = 30.0% on the UVG17 dataset.

5 CONCLUSION

Neural Implicit Representations (NIR) have gained significant attention recently due to their ability to
represent complex and high-dimensional data. Unlike explicit representations, which require storing
and manipulating individual data points, implicit representations capture information through a
learned mapping function without explicitly representing the data points themselves. While they often
compress neural networks substantially to accelerate encoding/decoding speed, yet existing methods
fail to transfer learned representations to new videos. This work investigates the continuous expansion
of implicit video representations as videos arrive sequentially over time, where the model can only
access the videos from the current session. To tackle this problem, we propose a novel neural video
representation, Progressive Fourier Neural Representation (PFNR), that finds an adaptive substructure
from the supernet to the given video based on Lottery Ticket Hypothesis in a complex domain. At each
training session, our PFNR transfers the learned knowledge of the previously obtained subnetworks to
obtain the representation of the current video without modifying past subnetwork weights. Therefore,
it can perfectly preserve the decoding ability (i.e., catastrophic forgetting) on previous videos. We
demonstrate the effectiveness of our proposed PFNR over baselines on the novel UVG8/17 and
DAVIS50 video sequence benchmark datasets.
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A APPENDIX

A.1 FOURIER SUBNEURAL OPERATOR (FSO)

To elucidate the Fourier Subneural Operator (FSO) as delineated in Equation 4, We’ll delve into
a comprehensive review of the Neural (Li et al., 2020b) Operator and Fourier Operator (Li et al.,
2020a), focusing on its discretization methodology.

A.1.1 DISCRETIZATION FOR NEURAL/FOURIER OPERATORS

Let’s consider Dj = {x1, · · · , xn} ⊂ D as an n-point discretization of the domain D. Given this
setting, we have observation aj|Dj

∈ Rn×da , uj|Dj
∈ Rn×dv , pertaining to a finite collection of

input-output pairs indexed by j. The goal of achieving discretization-invariance with a neural
operator implies that the operator is capable of generating a response u(x) for any point x in the
domain D, even for instances where x may not be an element of the discretized subset Dj . This
characteristic ensures the neural operator maintains its predictive and functional integrity across the
continuous domain D, notwithstanding the specific discretization points representing D.

A.1.2 NEURAL OPERATOR

The neural operator, as described by Li et al. (2020b) is formulated as an iterative architecture
denoted by v0 7→ v1 7→, · · · , 7→ vT where vj (for j = 0, 1, · · · , T − 1) represents a sequence of
functions. Each function in this sequence yields values in the space Rdv . As the process iterates,
the transformation from one state vt to the next state vt+1 is defined by the interplay of two distinct
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types of operations: a non-local integral operator K and a local, nonlinear activation function σ.
Specifically, the update from vt to vt+1 in each iteration is articulated as the composition of these
two operations, mathematically represented as follows:

vt+1(x) := σ(Wvt(x) + (K(a;ϕ)vt(x)), ∀x ∈ D (6)
In this formulation, a functional operator K : A × ΘK → L(U(D;Rdv ),U(D;Rdv )) maps to
bounded linear operators on the function space U(D;Rdv ). This mapping is parameterized by
ϕ ∈ ΘK. Additionally, the function W : Rdv → Rdv is a linear transformation, and σ : R → R is a
non-linear activation function whose action is defined-component-wise.

For increasing integration in defining complex, flexible functional mappings, Li et al. (2020a) choose
K(a;ϕ) to be a kernel integral transformation parameterized by a neural network. The kernel integral
operator mapping in Equation 6 is defined by

(K(a;ϕ)vt)(x) :=

∫
D

k(x, y, a(x), a(y);ϕ)vt(y)dy, ∀x ∈ D (7)

where kϕ : R2(d+da) → Rdv×dv is a neural network parameterized by ϕ ∈ ΘK. Here, kϕ plays the
role of a kernel function, which we learn from data. Together Equation 6 and Equation 7 constitute a
generalization of neural networks to infinite-dimensional spaces.

By removing the dependence on the function a and enforcing a shift-invariance property in the
kernel function kϕ(x, y) = kϕ(x − y), the operator simplifies into a convolution operator. This
transformation aligns the kernel integral operator with the principles of fundamental solutions and
leverages the intrinsic properties of convolution operations.

(K(a;ϕ)vt)(x) :=

∫
D

kϕ(x− y)vt(y)dy, ∀x ∈ D (8)

This fact by parameterizing Kϕ directly is exploited in Fourier space and used in the Fast Fourier
Transform (FFT) to compute Equation 8 efficiently.

A.1.3 FOURIER OPERATOR

Li et al. (2020a) suggest replacing the kernel integral operator in Equation 7, by a convolution
operator (see Equation 8) defined in Fourier space. Let F denote the Fourier transform of a function
f : D → Rdv and F−1 its inverse then

(Ff)j(k) =

∫
D

fj(x)e
−2iπ<x,k>dx, (F−1f)j(x) =

∫
D

fj(k)e
2iπ<x,k>dk

for j = 1, · · · , dv where i =
√
−1 is the imaginary unit. By letting kϕ(x, y, a(x), a(y)) = kϕ(x−y)

in Equation 8 and applying the convolution theorem, the convolutional operation in Fourier space
follows as:

(K(a;ϕ)vt)(x) = F−1(F(kϕ) · F(vt))(x), ∀ ∈ D.

Furthermore, the Fourier integral operator is defined directly by parameterizing kϕ in Fourier space
as follows:

(K(ϕ)vt)(x) = F−1(Rϕ · (Fvt))(x) ∀x ∈ D (9)
where Rϕ is the Fourier transform of a periodic function (i.e., sine and cosine functions in the time
domain) k : D̄ → Rdv×dv parameterized by ϕ ∈ ΘK.

For a given frequency mode k ∈ D, the Fourier transformation of vt, denoted as (Fvt)(k) ∈ Cdv .
Similarly, Rϕ(k) ∈ Cdv×dv , representing a complex-valued matrix associated with each frequency
mode k. Key aspects of this setup include:

• (Periodicity and Fourier Series Expansion): Given the periodic nature of k, it can be represented by
a Fourier series. This allows for the analysis and computation to be conducted in terms of discrete
modes k ∈ Zd.

• (Truncation and Finite-dimensional Parameterization): To manage the complexity and ensure
computational feasibility, the Fourier series is truncated at a maximal number of modes kmax.
The truncation is quantified by the set Zkmax

, which includes all modes k ∈ Zd that satisfy the
condition |kj | ≤ kmax,j for each dimension j = 1, · · · , d. The operator Rϕ is parameterized as a
complex-valued tensor of shape (kmax × dv × dv), comprising the collection of truncated Fourier
modes.
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• (Conjugate Symmetry and Real-value of k): Due to the real-valued nature of k, conjugate symmetry
is imposed on the Fourier coefficients. This is a fundamental property of the Fourier transform of
real-valued functions, ensuring that the resulting inverse Fourier transform yields a real-valued
function.

• (Choice of Zkmax and Efficiency Considerations): While the canonical choice for low-frequency
modes typically involves an upper bound on the ℓ1-norm of k ∈ Zd, the set Zkmax

is in this work
chosen based on different criteria for efficient implementation.

A.1.4 FOURIER SUBNUERAL OPERATOR (FSO)

(Discretization for VIL): One difference exists between prior physical modeling for Neural/Fourier
Operators and neural implicit representation for Fourier Subneural Operator (FSO). Following the
previous definition (Li et al., 2020a), vt is the temporal length. In the VIL setting, the function learns
a time-specific continuous hidden output (an implicit representation, ṽs

t ) given discrete session and
time indices (session s, time, t).

(Fourier Subneural Opeartor (FSO): Conventional continual learner (i.e., WSN) only uses a few
learnable parameters in convolutional operations to represent complex sequential image streams. To
capture more parameter-efficient, forget-free NIRs, the NIR model requires fine discretization and
video-specific sub-parameters. This motivation leads us to propose a novel subnetwork operator
in Fourier space, which provides it with various bandwidths. Following the previous definition
of Fourier convolutional operator (Li et al., 2020a), we adapt and redefine this definition to better
fit the needs of the NIR framework. We use the symbol F to represent the Fourier transform of
a function f , which maps from an embedding space of dimension de = 1 × 160 to a frame size
denoted as dv . The inverse of this transformation is represented by F−1. In this context, we introduce
our Fourier-integral Subneural Operator (FSO), symbolized as K, which is tailored to enhance the
capabilities of our NIR system:

(K(ϕ)ṽs
t ) (es,t) = F−1(Rϕ · (F ṽs

t ))(es,t), (10)

where ṽs
t is a hidden representation, as shown in Figure 1; Rϕ is the Fourier transform of a periodic

subnetwork function, kϕ stated in Equation 8 which is parameterized by its subnetwork’s parameters
of real (θreal ⊙mreal

s ) and imaginary (θimag ⊙mimag
s ). We thus parameterize Rϕ separately as

complex-valued tensors of real and imaginary ϕFSO ∈ {θreal,θimag}. One key aspect of the FSO
is that its parameters grow with the depth of the layer and the input/output size since the operator
Rϕ, as stated in Equation 9, is parameterized as a complex-valued tensor of shape (kmax × dṽ × dṽ).
However, through careful layer-wise inspection and adjustments for sparsity, we can find a balance
that allows the FSO to describe neural implicit representations efficiently. In the experimental section,
we will showcase the most efficient FSO structure and its performance. Figure 1 shows one possible
PFNR structure of a single FSO.

A.2 DATASETS

1) UVG of 8 Video Sessions: For "Big Buck Bunny" frames collected from the scikit-video, we use the
frames provided with the NeRV official code. "Big Buck Bunny" comprises 132 frames of 720×1080
resolution. The frames for the other seven videos, collected from the UVG dataset, are extracted from
YUV Y4M videos, and further information can be found in the implementation details. As shown
in Table 5, the seven videos have 1920× 1080 resolution, with the shaking video comprising 300
frames and the other 6 videos containing 600 frames each. These videos are captured at 120 frames
per second (FPS), and the duration of the shaking video is 2.5 seconds, while the duration of the
other 6 videos is 5 seconds. For convenience, the video titles in the UVG of 8 Video Sessions are
abbreviated, and their corresponding full titles in the UVG dataset are as follows: 1.bunny : Big Buck
Bunny, 2.beauty : Beauty, 3.bosphorus : Bosphorus, 4.bee : HoneyBee, 5.jockey : Jockey, 6.setgo :
ReadySetGo, 7.shake : ShakeNDry, 8.yacht : YachtRide.

2) UVG of 17 Video Sessions: Compared to the UVG of 8 video sessions, the other nine videos are all
collected from the UVG dataset. The frames for these videos are extracted from YUV RAW videos
with a resolution of 1920x1080. Further information can be found in the implementation details. As
shown in Table 6, the sunbath video consists of 300 frames at 50 FPS and 12 seconds, the lips video
consists of 600 frames at 120 FPS and 5 seconds, and the other seven videos comprised of 600 frames
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Table 5: the UVG8 Video Sessions.
Video Sessions

1 2 3 4 5 6 7 8
Categories bunny beauty bosphorus bee jockey setgo shake yacht
FPS - 120 120 120 120 120 120 120
Length (sec) - 5 5 5 5 5 2.5 5
Num. of Frames 132 600 600 600 600 600 300 600
Resolutions 720 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080

at 50 FPS and 12 seconds. The full names of each video in the UVG dataset are as follows: 2.city :
CityAlley, 4.focus : FlowerFocus, 6.kids : FlowerKids, 8.pan : FlowerPan, 10.lips : Lips, 12.race :
RaceNight, 14.river : RiverBank, 16.sunbath : SunBath, 17.twilight : Twilight.

Table 6: the UVG17 Video Sessions.
Video Sessions

1 2 3 4 5 6 7 8 9
Categories bunny city beauty focus bosphorus kids bee pan jockey
FPS - 50 120 50 120 50 120 50 120
Length (sec) - 12 5 12 5 12 5 12 5
Num. of Frames 132 600 600 600 600 600 600 600 600
Resolutions 720 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080

Video Sessions
10 11 12 13 14 15 16 17

Categories lips setgo race shake river yacht sunbath twilight
FPS 120 120 50 120 50 120 50 50
Length (sec) 5 5 12 2.5 12 5 6 12
Num. of Frames 600 600 600 300 600 600 300 600
Resolutions 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080

3) DAVIS (Densely Annotated VIdeo Segmentation) of 50 Video Sessions: We prepare a large-scale
sequential video dataset, the Densely Annotation Video Segmentation dataset (DAVIS) (Perazzi et al.,
2016). To validate our algorithm and investigate the limitations, we conducted the experiments on 50
video sequences with 3455 frames with a high-quality, high-resolution (1080p).

A.3 IMPREMENTATION DETAILS

1) 7 Videos in UVG of 8 Video Sessions: To utilize the same video frame with NeRV, we downloaded
7 videos from the UVG dataset and employed the following commands to extract frames from the
YUV Y4M videos.

» Download file : [title] 3840x2160 8bit YUV Y4M

» Command : ffmpeg -i [file_name] [path]/f%05d.png

2) 9 Videos in UVG of 17 Video Sessions: To expand our usage of videos, we acquired an additional 9
videos from the UVG dataset that are exclusively available as YUV RAW videos with a resolution of
3840x2160. We then extracted and resized the frames using the following command.

» Download file : [title] 3840x2160 10bit YUV RAW

» Command : ffmpeg -s 3840x2160 -pix_fmt yuv420p10le -i [file_name] -vf scale=1920:1080
-pix_fmt rgb24 [path]/f%05d.png

Digiturk provides the video contents of the UVG dataset. The dataset videos are available online at
https://ultravideo.fi/#main.

EWC (Kirkpatrick et al., 2017). We trained EWC on the two novel benchmark datasets as a regular-
ized baseline. When training with a new video, the EWC penalty was adopted as a regularization
term to alleviate catastrophic forgetting. The importance of the parameter was calculated through
the diagonal component of the Fisher Information matrix, and the EWC penalty increased as the
difference in the vital parameter increased as follows:

LE(v
s
t ) = L(vst ) +

λ

2

∑
i

Fi(θi − θ∗p,i)
2, (11)

where LE is the total loss for EWC learning, F represents the Fisher information matrix, λ is a
hyperparameter to determine the importance of the previous video, i denotes each parameter, and θ∗p
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Table 7: PFNR’s architecture of Fourier Subneural Operator (FSO), f -NeRV∗. Note that PE denotes
positional encoding.

layer Module Upscale Factor Output Size
(C ×W ×H)

Number of
parameters

0 PE (w frame index) - 80 × 1 × 1 -
PE (w video index) - 80 × 1 × 1 -

1 STEM of fc1 - 512 × 1 × 1 81,920
STEM of fc2 - 112 × 16 × 9 8,257,536

2 NeRV2 block of conv 5× 112 × 80 × 45 2,825,200
f -NeRV2 1× 112 × 80 × 45 1,605,632

3 NeRV3 block of conv 2× 96 × 160 × 90 387,456
f -NeRV3 1× 96 × 160 × 90 37,847,040

4 NeRV4 block of conv 2× 96 × 320 × 180 332,160
5 NeRV5 block of conv 2× 96 × 640 × 360 332,160
6 NeRV6 block of conv 2× 96 × 1280 × 720 332,160

7 Multi-head layer
for a video session - 3 × 1280 × 720 291

denotes the parameter after training with the previous video. We randomly sampled 10 frames per
video to compute the Fisher diagonal and stored them in a replay buffer. The hyperparameter λ was
experimentally set to 2e6 to scale the EWC penalty.

iCaRL (Rebuffi et al., 2017). We trained iCaRL as a rehearsal-based baseline on the two novel
benchmark datasets. To replay previous videos, we store a total of m = 800 frames in the replay
buffer as an exemplar set, and as the training progresses, we save m/s frames per video. The exemplar
management method is similar to that in iCaRL, where we compute the average feature map within
the video and select m/s video frames that approximate the average feature map. For knowledge
distillation, we randomly sample frames from the exemplar set of previous videos at each learning
step and performed training with the current video, as follows:

LC(v
s
t ) = L(vst ) + λ

1

t− 1

t−1∑
i

L(v∗i ), (12)

where v∗i is a frame sampled from example set of ith video, and λ is a hyperparameter experimentally
set to 0.5.

ESMER (Sarfraz et al., 2023). We trained ESMER on the two novel benchmark datasets as a
current strong rehearsal-based baseline. Error-Sensitive Reservoir Sampling (ESMER) maintains
episodic memory, which leverages the error history to pre-select low-loss samples as candidates for
the buffer of 800 samples. At this time, we didn’t use any noisy labels when training ESMER. We
observed that the ESMER could not reduce forgetting in representations. It seems better suited for
retaining information in image classification tasks rather than neural implicit representations. Lastly,
compared with iCaRL, ESMER replies buffer at each iteration, leading to ineffective training cost
and performance as shown in Table 9.

Table 8: Statistics of FPS and PSNR on the UVG17 Video Sessions
Method FPS / Resolution Avg. PSNR FPS / Resolution Avg. PSNR

STL, NeRV Chen et al. (2021a)∗ 120 / 1920 × 1080 35.97 50 / 1920 × 1080 35.56

iCaRL Rebuffi et al. (2017)∗ 120 / 1920 × 1080 21.94 50 / 1920 × 1080 21.06
ESMER Sarfraz et al. (2023)∗ 120 / 1920 × 1080 21.43 50 / 1920 × 1080 19.25

WSN∗ 120 / 1920 × 1080 27.01 50 / 1920 × 1080 25.95
PFNR, f -NeRV2 120 / 1920 × 1080 29.65 50 / 1920 × 1080 28.36
PFNR, f -NeRV3 120 / 1920 × 1080 31.53 50 / 1920 × 1080 31.47

MTL (upper-bound) 120 / 1920 × 1080 29.64 50 / 1920 × 1080 28.83

A.4 ARCHITECTURE

In this paper, we set NeRV as the baseline architecture, and we present a detailed overview of our
architecture, as shown in Table 7. Our architecture has two differences compared to the previous
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NeRV. Firstly, to incorporate the outputs from the positional encoder of both the video index and
frame index, we expand the input size of the first layer in the MLP from 80 to 160. Secondly, to
enable Multi-Task Learning (MTL), we employ distinct head layers (multi-heads) for each video
after the NeRV block. Apart from these modifications, our architecture remains consistent with the
previous NeRV architecture. We stack five NeRV blocks with upscaling factors of 5, 2, 2, 2, and 2,
respectively. The lowest channel width for output feature maps in the NeRV block is also set to 96.
Comparing our architecture to the baseline NeRV, the number of parameters increases by 0.3433% to
12,567,560 for eight videos. Similarly, for seventeen videos, the number of parameters increases by
0.3642% to 12,570,179.

A.5 ADDITIONAL RESULTS

Dataset statistic of FPS and PSNR. As shown in Table 5 and Table 6, we have extracted sample
frames according to each video’s FPS and Length (sec) during training. There are two kinds of videos:
300 and 600 frames. We train each video for 150 epochs. Statistically, the average PSNR of 120
FPS was better than those of 50 FPS, as shown Table 8. When considering 30 PSNR is known as a
sufficient resolution, 50 FPS-based sequence training could be adequate using the proposed PFNR.
Moreover, the number of frames does not seem to be a critical factor to PSNR when considering that
the PSNR of video session 1 (bunny), with 132 (720× 1080) frames, is greater than the 30 PSNR
score.

PFNR’s Structure. We investigate the most expressive, effective, and efficient structure with Fourier
Subneural Operator (FSO, Equation 4) for progressive neural implicit representations. To do so, we
prepare the layer-wise FSO to maintain the output size of the baseline layer as shown in Table 7: the
number of parameters of a spectral layer depends on input and output size, so as the layer increases,
the parameters also increase. Table 9 shows the effectiveness of PFNR with spectral layers in terms
of PSNR, BWT, and CAP. To acquire neural implicit representations, PFNR explores more diverse
parameters than WSN regarding the same capacity.

Table 9: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (NeRV block, Table 7) on
UVG8 Video Sessions with average PSNR and Backward Transfer (BWT), and Capacity (CAP). Note that ∗
denotes our reproduced results.

Method Video Sessions Avg. PSNR /
BWT

CAP1 2 3 4 5 6 7 8

STL, NeRV Chen et al. (2021a)∗ 39.66 36.28 38.14 42.03 36.58 29.22 37.27 31.45 36.33 / - 800.00 %

EWC Kirkpatrick et al. (2017)∗ 10.19 11.15 14.47 8.39 12.21 10.27 9.97 23.98 12.58 / -17.59 100.00 %
iCaRL Rebuffi et al. (2017)∗ 30.84 26.30 27.28 34.48 20.90 17.28 30.33 24.64 26.51 / -3.90 100.00 %
ESMER Sarfraz et al. (2023)∗ 31.71 23.09 24.15 28.03 17.30 13.81 12.45 24.57 21.92 / -9.99 100.00 %

WSN∗, c = 10.0 % 27.81 30.66 29.30 33.06 22.16 18.40 27.81 22.97 26.52 / 0.0 28.00 %
WSN∗, c = 30.0 % 31.37 32.19 29.92 33.62 22.82 18.96 28.43 23.40 27.59 / 0.0 59.00 %
WSN∗, c = 50.0 % 34.05 32.28 29.98 32.88 22.15 18.61 27.68 23.64 27.66 / 0.0 77.00 %
WSN∗, c = 70.0 % 35.62 32.08 29.46 31.37 21.60 18.13 27.33 22.61 27.28 / 0.0 91.00 %

PFNR, c = 10.0 %, f -NeRV2 28.49 32.30 30.30 35.12 24.10 19.82 29.89 24.76 28.10 / 0.0 33.83 %
PFNR, c = 30.0 %, f -NeRV2 31.99 33.56 31.82 36.61 25.28 20.97 31.07 25.73 29.63 / 0.0 76.76 %
PFNR, c = 50.0 %, f -NeRV2 34.46 33.91 32.17 36.43 25.26 20.74 30.18 25.45 29.82 / 0.0 102.64 %
PFNR, c = 70.0 %, f -NeRV2 36.04 33.46 31.05 32.57 23.40 19.41 28.31 24.31 28.57 / 0.0 111.66 %

MTL (upper-bound) 34.22 32.79 32.34 38.33 25.30 22.44 33.73 27.05 30.78 / - 100.00 %

Large-scale Sequence. We conducted the large-scale video sequence training to show its effectiveness
and investigate the limitation of architecture parameters as shown in Table 10. The overall PFNR
performances (STL, WSN, PFNR, and MTL) on the DAVIS50 dataset on the UVG8/17 dataset are
lower than those on the UVG17 dataset. However, the performance trends of PFNR observed on the
DAVIS50 dataset are consistent with the experimental results obtained from the UVG8/17 dataset.
Regarding sequential and multi-task learning, the current performance falls short of achieving the
target of 30 PSNR. This indicates a need for future work focused on designing model structures
capable of continual learning on large-scale datasets.

Forget-free Transfer Matrix. We prepare the transfer matrix to prove our PFNR’s forget-freeness
and to show video correlation among other videos, as shown in Figure 6 on the UVG17 dataset;
lower triangular estimated by each session subnetwork denotes that our PFNR is a forget-free method
and upper triangular calculated by current session subnetwork denotes the video similarity between
source and target. The PFNR proves the effectiveness from the lower triangular of Figure 6 (a) and
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Table 10: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (NeRV block, Table 7) on
DAVIS50 Video Sessions with average PSNR and Backward Transfer (BWT), and Capacity (CAP). Note that ∗
denotes our reproduced results.

Method Video Sessions Avg. PSNR /
BWT10 20 30 40 50

STL, NeRV Chen et al. (2021a)∗ 28.92 31.10 34.96 29.35 28.87 31.41 / -
EWC Kirkpatrick et al. (2017)∗ 10.57 12.87 15.22 11.25 10.45 12.24 / -18.23
iCaRL Rebuffi et al. (2017)∗ 15.22 18.55 17.59 13.47 15.89 16.54 / -8.48
ESMER Sarfraz et al. (2023)∗ 13.54 15.46 16.78 12.48 13.22 14.78 / -15.95

WSN∗, c = 30.0 % 19.20 20.80 23.39 21.56 21.45 21.56 / 0.0
PFNR, c = 30.0 %, f -NeRV2 23.14 23.14 23.14 23.14 23.08 24.22 / 0.0
PFNR, c = 30.0 %, f -NeRV3 25.58 27.79 31.42 27.22 24.88 27.57 / 0.0

MTL (upper-bound) 23.10 23.19 24.63 22.84 23.45 24.57 / -

S1 S5 S10 S15

S1

S5

S10

S15

31.50 7.63 8.81 10.02 8.70 7.29 9.83 9.54 9.76 8.96 8.50 10.21 10.04 9.32 7.36 7.49 7.89

31.50 34.37 12.44 9.45 5.90 7.02 9.59 9.63 8.91 11.42 7.29 9.59 9.84 7.30 5.27 4.48 10.41

31.50 34.37 31.00 11.09 5.92 6.91 10.50 11.14 9.92 14.93 7.36 11.30 11.56 7.48 5.28 4.73 12.22

31.50 34.37 31.00 32.38 7.97 8.61 10.55 11.59 10.72 11.23 9.24 10.52 11.62 8.79 7.29 6.60 9.50

31.50 34.37 31.00 32.38 29.26 8.42 8.36 6.72 8.58 5.60 9.32 7.11 7.05 10.79 12.35 10.87 5.32

31.50 34.37 31.00 32.38 29.26 23.08 8.18 7.79 9.29 7.02 9.62 7.06 7.45 8.84 7.51 6.03 7.13

31.50 34.37 31.00 32.38 29.26 23.08 31.96 10.04 11.24 11.03 8.75 11.55 11.58 8.88 7.37 5.94 10.56

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 10.49 11.44 8.11 11.02 11.82 7.77 6.03 5.33 10.31

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 10.71 9.70 11.41 11.80 9.60 7.67 6.19 10.41

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 7.44 11.62 12.08 7.37 4.97 4.27 14.75

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 7.61 7.73 9.22 8.84 7.23 7.30

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 14.64 7.91 6.32 5.28 11.90

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 8.11 6.26 5.33 11.51

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 24.33 8.41 8.40 6.95

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 24.33 23.09 9.37 4.75

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 24.33 23.09 21.23 3.68

31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 24.33 23.09 21.23 29.13

S1 S5 S10 S15

S1

S5

S10

S15

33.63 7.57 8.75 9.97 8.70 7.28 9.77 9.49 9.72 8.88 8.48 10.13 9.98 9.29 7.36 7.50 7.83

33.63 39.24 12.44 9.45 5.90 7.02 9.60 9.63 8.91 11.42 7.29 9.59 9.84 7.30 5.27 4.48 10.41

33.63 39.24 34.21 11.08 5.92 6.91 10.49 11.13 9.91 14.91 7.36 11.29 11.54 7.48 5.28 4.73 12.21

33.63 39.24 34.21 37.79 7.96 8.59 10.53 11.55 10.69 11.19 9.23 10.49 11.58 8.78 7.29 6.60 9.48

33.63 39.24 34.21 37.79 34.05 8.41 8.33 6.70 8.56 5.58 9.30 7.08 7.02 10.75 12.31 10.85 5.30

33.63 39.24 34.21 37.79 34.05 27.17 8.08 7.69 9.18 6.90 9.56 6.97 7.35 8.83 7.53 6.07 6.99

33.63 39.24 34.21 37.79 34.05 27.17 38.17 10.02 11.21 11.00 8.74 11.52 11.55 8.86 7.36 5.93 10.54

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 10.43 11.30 8.10 10.95 11.73 7.78 6.05 5.37 10.19

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 10.55 9.56 11.18 11.58 9.48 7.61 6.16 10.24

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 7.44 11.61 12.07 7.37 4.97 4.27 14.71

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 7.50 7.63 9.08 8.74 7.21 7.10

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 14.14 7.83 6.31 5.30 11.44

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 32.50 8.09 6.26 5.33 11.42

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 32.50 30.22 8.39 8.36 6.93

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 32.50 30.22 27.62 9.32 4.75

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 32.50 30.22 27.62 29.15 3.64

33.63 39.24 34.21 37.79 34.05 27.17 38.17 29.79 26.56 36.18 22.97 24.36 32.50 30.22 27.62 29.15 35.68

(a) WSN, c = 30.0% (b) PFNR, c = 30.0%, f -NeRV3

Figure 6: Transfer Matrixes of WSN v.s. PFNR on the UVG17 dataset measured by PSNR of source and target.

(b). Nothing special is observable from the upper triangular since they are not correlated, however,
there might be some shared representations.

Ablation Study of FSO. We prepare several ablation studies to prove the effectiveness of FSO. First,
we show the performances of only real part (ignore an imaginary part) in f-NeRV2/3 as shown in
Table 11. The PSNR performances of only real part were lower than those of both real and imaginary
parts in f-NeRV2/3. We infer that the imaginary part of the winning ticket improves the implicit
neural representations. Second, we also investigate the effectiveness of only FSO without Conv.
Layer in f-NeRV2/3, as shown in Table 12. The PSNR performances were lower than FSO with Conv
block. Therefore, the ensemble of FSO and Conv improves the implicit representations. Lastly, we
investigate the effectiveness of sparse FSO in STL, as shown in Table 13. The sparse FSO boots the
PSNR performances in STL. These ablation studies further strengthen the effectiveness of FSO for
sequential neural implicit representations.

Table 11: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7) on
UVG8 Video Sessions with average PSNR and Backward Transfer (BWT). Note that w/o imag. ignores the
imaginary part in f -NeRV∗.

Method Video Sessions Avg. PSNR /
BWT1 2 3 4 5 6 7 8

PFNR, c = 50.0 %, f -NeRV2 34.46 33.91 32.17 36.43 25.26 20.74 30.18 25.45 29.82 / 0.0
PFNR, c = 50.0 %, f -NeRV2 w/o imag. 34.34 33.79 32.04 36.40 25.11 20.59 30.17 25.27 29.71 / 0.0

PFNR, c = 50.0 %, f -NeRV3 36.45 35.15 35.10 38.57 28.07 23.06 32.83 27.70 32.12 / 0.0
PFNR, c = 50.0 %, f -NeRV3 w/o imag. 35.66 34.65 34.09 37.95 25.80 21.94 32.17 26.91 31.15 / 0.0
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Table 12: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7) on
UVG8 Video Sessions with average PSNR and Backward Transfer (BWT). Note that w/o conv. ignores the conv.
layer in f -NeRV∗.

Method Video Sessions Avg. PSNR /
BWT1 2 3 4 5 6 7 8

PFNR, c = 50.0 %, f -NeRV2 34.46 33.91 32.17 36.43 25.26 20.74 30.18 25.45 29.82 / 0.0
PFNR, c = 50.0 %, f -NeRV2 w/o conv. 30.05 32.10 30.12 31.82 24.00 19.60 28.21 24.47 27.54 / 0.0

PFNR, c = 50.0 %, f -NeRV3 36.45 35.15 35.10 38.57 28.07 23.06 32.83 27.70 32.12 / 0.0
PFNR, c = 50.0 %, f -NeRV3 w/o conv. 35.46 35.06 34.98 38.23 28.00 22.98 32.57 27.45 31.84 / 0.0

Table 13: PSNR results of STL with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7)
on UVG8 Video Sessions with average PSNR and Backward Transfer (BWT).

Method Video Sessions Avg. PSNR /
BWT1 2 3 4 5 6 7 8

STL, NeRV Chen et al. (2021a)∗ 39.66 36.28 38.14 42.03 36.58 29.22 37.27 31.45 36.33 / -

STL, NeRV , f -NeRV2 39.73 36.30 38.29 42.03 36.64 29.25 37.35 31.65 36.40 / -
STL, NeRV , f -NeRV3 42.75 37.65 42.05 42.36 40.01 34.21 40.15 36.15 39.41 / -

Training time and Decoding FPS. We train and test two baselines (NeRV, ESMER) with f -NeRV2
using one GPU (TITAN V, 12G) with a single batch size to investigate the computational expenses
and decoding FPS on the UVG8 dataset, as shown in Table 14. In STL, NeRV with f -NeRV2 costs
more computational times than NeRV. In VCL, memory buffer-based methods, i.e., ESMER, cost
more training time since they replay the memory buffer in sequential training. On the other hand,
architecture-based methods, i.e., PFNR, provide parameter-efficient, faster, forget-free solutions in
training while cost computation expenses in the decoding process. Considering these limitations and
advantages, we would find a more parameter-efficient FSO algorithm in future work.

Table 14: Training time and Decoding FPS with Fourier Subnueral Operator (FSO) layer (f -NeRV2) (detailed
in Table 7) on UVG8 Video Sessions

Method Training time [hours] Decoding FPS

STL, NeRV Chen et al. (2021a)∗ 13.10 56.88
STL, NeRV, f -NeRV2 25.66 31.72

ESMER Sarfraz et al. (2023)∗ 101.71 56.93
PFNR, f -NeRV2 31.66 31.55

Video Generation. We prepared some results of video generation as shown in Figure 7. At the
human recognition level, approximately 30 PSNR provides a little bit of blurred generated images as
shown in WSN’s PSNR(29.26); if the PSNR score is greater than 30, we hardly distinguish the quality
of sequential neural implicit representations (city session). Thus, our objective is to maintain the
sequential neural implicit representation of the 30 PSNR score. We have achieved this target PSNR
score on the UVG17 dataset. We also show the quantized and encoded PFNR’s video generation
results Figure 8. We demonstrate that a compressed sparse solution in FP8 (PFNR with c = 30.0%,
f -NeRV2) generates video representations sequentially without a significant quality drop. The results
of the FP4 showed that the compressed model can not create image pixels in detail.

A.6 LAYER-WISE REPRESENTATIONS

To investigate the property of FSO, we prepare the layer-wise representations, as shown in Figure 9.
The representations of PFNR (f -NeRV3) focus on textures rather than objects at the NeRV3 layer in
the video session of bosphorus. In the video session of bee, PFNR (f -NeRV3) also tends to capture
local textures broadly at the NeRV3 layer. This behavior of f -NeRV3 leads to better generalization
at final prediction than others, such as WSN and PFNR (f -NeRV2). Moreover, we conducted an
ablation study to inspect the best sparsity of f -NeRV3, as shown in Figure 10. Specifically, the
performances of PFNR, c=50.0% depend on the sparsity of f -NeRV3. We observed that f -NeRV3
with c=50.0% was the best sparsity.

A.7 CURRENT LIMITATIONS AND FUTURE WORK

Since the parameters of FSO depend on the input/output feature map size, in this task, the deeper the
FSO layer, the larger the parameters increase. Nevertheless, we found the most parameter-efficient
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t=0 t=1 t=2

WSN (34.37, PSNR)

PFNR, f -NeRV2 (35.84, PSNR)

PFNR, f -NeRV3 (39.24, PSNR)

WSN (29.26, PSNR)

PFNR, f -NeRV2 (31.24, PSNR)

PFNR, f -NeRV3 (34.05, PSNR)

Figure 7: PFNR’s Video Generation (from t=0 to t=2) with c = 30.0% on the UVG17 dataset.

FSO structure through layer-wise inspection and layer sparsity to describe the best neural implicit
representations. In future work, we will design a more parameter-efficient FSO layer in continual
tasks such as neural implicit representation and task/class incremental learnings.

A.8 BROADER IMPACTS

As the most popular media format nowadays, videos are generally viewed as frames of sequences.
Unlike that, our proposed PFNR is a novel way to represent sequential videos as a function of video
session and time, parameterized by the neural network firstly in Fourier space, which is more efficient
and might be used in many video-related tasks, such as sequential video compression, sequential
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2.city 3.beauty 7.bee

PFNR (35.84, PSNR), (32.97, PSNR), (36.01, PSNR) in FP32.

PFNR (35.84, PSNR), (32.97, PSNR), (36.01, PSNR) in FP16.

PFNR (35.81, PSNR), (32.95, PSNR), (35.82, PSNR) in FP8.

PFNR (27.43, PSNR), (24.65, PSNR), (16.24, PSNR) in FP4.

Figure 8: PFNR’s Qunatizationed and Compresssed Video Generation (t=0) with c = 30.0%, f -
NeRV2 on the UVG17 dataset. Note that PFNR’s prediction in FP32, 16, 8, and 4.

Table 15: PSNR results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7) on
UVG17 Video Sessions with average PSNR, Backward Transfer (BWT) of PSNR, Model Capacity (CAP). Note
that ∗ denotes our reproduced results.

Method Video Sessions Avg. PSNR
BWT CAP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

STL, NeRV Chen et al. (2021a)∗ 39.66 44.89 36.28 41.13 38.14 31.53 42.03 34.74 36.58 36.85 29.22 31.81 37.27 34.18 31.45 38.41 43.86 36.94 / - 1700.00 %

EWC Kirkpatrick et al. (2017)∗ 11.15 9.21 12.71 11.40 15.58 9.25 7.06 12.96 6.34 10.31 9.55 13.39 5.76 8.67 10.93 10.92 28.29 11.38 / -16.13 100.00 %
iCaRL Rebuffi et al. (2017)∗ 24.31 28.25 22.19 22.74 22.84 16.55 29.37 17.92 16.65 27.43 13.64 16.42 24.02 21.60 19.40 18.60 26.46 21.67 / -6.23 100.00 %
ESMER Sarfraz et al. (2023)∗ 30.77 26.33 22.79 21.35 23.76 13.64 28.25 15.22 16.71 23.78 13.35 15.23 18.21 19.22 24.59 20.61 22.42 20.95 / -15.23 100.00 %

WSN∗, c = 10.0 % 27.68 31.31 30.29 31.63 28.66 22.57 31.62 22.04 21.05 32.71 17.85 20.09 27.07 23.84 22.98 20.50 28.56 25.91 / 0.0 53.25 %
WSN∗, c = 30.0 % 31.50 34.37 31.00 32.38 29.26 23.08 31.96 22.64 22.07 33.48 18.34 20.45 27.21 24.33 23.09 21.23 29.13 26.80 / 0.0 91.10 %
WSN∗, c = 50.0 % 34.02 34.93 31.04 31.74 28.95 23.07 31.26 22.32 21.93 33.35 18.22 20.34 26.88 24.22 22.72 21.30 28.86 26.77 / 0.0 97.23 %
WSN∗, c = 70.0 % 35.64 34.36 30.26 30.27 27.99 22.55 29.88 21.46 20.79 32.37 17.63 20.00 26.68 23.79 22.34 20.69 28.68 26.20 / 0.0 99.01 %

PFNR, c = 10.0 %, f -NeRV2 28.31 33.57 31.92 33.67 29.98 23.99 34.39 24.8 23.94 35.08 19.70 22.03 29.56 26.57 24.79 24.10 31.35 28.10 / 0.0 59.58 %
PFNR, c = 30.0 %, f -NeRV2 32.01 35.84 32.97 35.17 31.24 24.82 36.01 25.85 24.83 35.76 20.50 22.79 30.40 27.37 25.52 25.40 32.70 29.36 / 0.0 100.01 %
PFNR, c = 50.0 %, f -NeRV2 34.49 37.13 33.21 35.50 30.87 24.72 34.36 24.79 24.73 35.65 20.33 22.65 29.78 27.05 25.18 25.18 32.39 29.29 / 0.0 105.33 %
PFNR, c = 70.0 %, f -NeRV2 36.02 36.50 32.09 32.15 28.67 23.35 30.63 22.86 23.18 34.90 19.08 21.30 27.87 25.86 24.12 23.47 30.34 27.79 / 0.0 112.33 %

MTL (upper-bound) 32.39 34.35 31.45 34.03 30.70 24.53 37.13 27.83 23.80 34.69 20.77 22.37 32.71 28.00 25.89 26.40 33.16 29.42 / - 100.00 %

video denoising, complex sequential physical modeling (Li et al., 2020a;b; Kovachki et al., 2021; Tran
et al., 2021), and so on. Hopefully, this can save bandwidth and fasten media streaming, enriching
entertainment potential. Unfortunately, like many advances in deep learning for videos, this approach
could be used for various purposes beyond our control.
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Table 16: MS-SSIM results with Fourier Subnueral Operator (FSO) layer (f -NeRV∗) (detailed in Table 7)
on UVG17 Video Sessions with average MS-SSIM and Backward Transfer (BWT) of MS-SSIM. Note that ∗
denotes our reproduced results.

Method Video Sessions Avg. MS-SSIM
BWT1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

STL, NeRV∗ Chen et al. (2021a) 0.99 0.99 0.95 0.98 0.98 0.96 0.99 0.98 0.97 0.95 0.96 0.96 0.98 0.98 0.96 0.99 0.99 0.97 / -

EWC Kirkpatrick et al. (2017)∗ 0.26 0.24 0.44 0.24 0.40 0.29 0.15 0.17 0.26 0.26 0.17 0.34 0.04 0.30 0.33 0.31 0.91 0.30 / -0.55
iCaRL Rebuffi et al. (2017)∗ 0.74 0.88 0.67 0.67 0.64 0.48 0.91 0.53 0.37 0.82 0.35 0.53 0.75 0.70 0.61 0.60 0.87 0.65 / -0.20
ESMER Sarfraz et al. (2023)∗ 0.85 0.86 0.64 0.63 0.66 0.46 0.89 0.51 0.42 0.79 0.30 0.51 0.43 0.68 0.82 0.6 0.63 0.62 / -0.37

WSN∗, c = 10.0 % 0.90 0.94 0.88 0.92 0.87 0.75 0.96 0.74 0.69 0.91 0.57 0.72 0.86 0.80 0.74 0.69 0.92 0.82 / 0.0
WSN∗, c = 30.0 % 0.96 0.97 0.89 0.93 0.88 0.77 0.97 0.77 0.73 0.91 0.60 0.74 0.86 0.81 0.76 0.72 0.93 0.84 / 0.0
WSN∗, c = 50.0 % 0.98 0.97 0.89 0.92 0.88 0.77 0.96 0.75 0.73 0.91 0.60 0.74 0.85 0.80 0.75 0.73 0.92 0.83 / 0.0
WSN∗, c = 70.0 % 0.98 0.97 0.88 0.91 0.85 0.75 0.95 0.70 0.68 0.91 0.55 0.72 0.85 0.80 0.73 0.70 0.92 0.82 / 0.0

PFNR, c = 10.0 %, f -NeRV2 0.92 0.97 0.90 0.94 0.90 0.81 0.98 0.86 0.79 0.93 0.69 0.79 0.91 0.87 0.82 0.84 0.96 0.88 / 0.0
PFNR, c = 30.0 %, f -NeRV2 0.97 0.98 0.92 0.95 0.92 0.84 0.98 0.88 0.82 0.93 0.73 0.82 0.92 0.89 0.84 0.87 0.97 0.90 / 0.0
PFNR, c = 50.0 %, f -NeRV2 0.98 0.99 0.92 0.95 0.92 0.83 0.98 0.86 0.81 0.93 0.72 0.82 0.91 0.88 0.84 0.87 0.97 0.89 / 0.0
PFNR, c = 70.0 %, f -NeRV2 0.99 0.98 0.91 0.93 0.87 0.78 0.96 0.77 0.77 0.93 0.66 0.77 0.89 0.85 0.80 0.82 0.95 0.86 / 0.0

PFNR, c = 10.0 %, f -NeRV3 0.96 0.99 0.92 0.96 0.94 0.86 0.99 0.94 0.82 0.93 0.76 0.83 0.93 0.92 0.87 0.90 0.98 0.91 / 0.0
PFNR, c = 30.0 %, f -NeRV3 0.98 0.99 0.93 0.97 0.96 0.91 0.99 0.96 0.87 0.94 0.84 0.87 0.94 0.94 0.90 0.94 0.98 0.94 / 0.0
PFNR, c = 50.0 %, f -NeRV3 0.99 0.99 0.93 0.97 0.96 0.91 0.99 0.95 0.87 0.94 0.83 0.88 0.94 0.94 0.9 0.95 0.98 0.94 / 0.0
PFNR, c = 70.0 %, f -NeRV3 0.99 0.99 0.93 0.96 0.93 0.87 0.98 0.90 0.81 0.93 0.76 0.83 0.93 0.92 0.87 0.91 0.97 0.91 / 0.0

MTL (upper-bound) 0.97 0.97 0.90 0.94 0.91 0.82 0.99 0.92 0.80 0.92 0.75 0.81 0.94 0.90 0.85 0.89 0.97 0.90 / -

NeRV3 NeRV4 NeRV5 NeRV6 Head

WSN, c=50.0%

PFNR, c=50.0%, f -NeRV2

PFNR, c=50.0%, f -NeRV3

Figure 9: PFNR’s Representations of NeRV Blocks with c = 50.0% on the UVG17 dataset.
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NeRV3 NeRV4 NeRV5 NeRV6 Head

PFNR, c=50.0%, sparsity of f -NeRV3=0.5%.

PFNR, c=50.0%, sparsity of f -NeRV3=2.5%.

PFNR, c=50.0%, sparsity of f -NeRV3=5.0%.

PFNR, c=50.0%, sparsity of f -NeRV3=15.0%.

PFNR, c=50.0%, sparsity of f -NeRV3=25.0%.

PFNR, c=50.0%, sparsity of f -NeRV3=50.0%.

Figure 10: Various sparsity of f -NeRV3 ranging from 0.05 % (top row) to 50.0 % (bottom row) on
the UVG17 dataset.

A.10 PUBLIC CODES OF OUR PFNR

We provide the core parts of PFNR to understand better. Please refer to the attached file. We will
provide all training and inference codes soon.
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Table 17: PFNR (f -NeRV2) of Quantization + Compression on the UVG17 Video Sessions with average
PSNR/MS-SSIM and Backward Transfer (BTW). Note that bit is the bit length used to represent parameter
value.

Method Video Sessions Avg. * /
BWT1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

c = 10.0%, PSNR

bit=4 17.73 30.45 30.74 30.56 26.15 23.29 23.16 19.75 23.80 26.19 19.53 20.36 24.99 26.28 24.61 23.86 29.95 24.79 / -0.80
bit=8 28.21 33.56 31.92 33.66 29.97 23.98 34.35 24.78 23.95 35.07 19.70 22.02 29.57 26.58 24.79 24.09 31.34 28.09 / -0.01
bit=16 28.31 33.57 31.92 33.67 29.98 23.99 34.39 24.80 23.94 35.08 19.70 22.03 29.56 26.57 24.79 24.10 31.35 28.10 / 0.00
bit=32 28.31 33.57 31.92 33.67 29.98 23.99 34.39 24.80 23.94 35.08 19.70 22.03 29.56 26.57 24.79 24.10 31.35 28.10 / 0.00

MS-SSIM

bit=4 0.60 0.94 0.90 0.93 0.87 0.80 0.89 0.73 0.79 0.89 0.69 0.76 0.87 0.86 0.82 0.83 0.95 0.83 / -0.02
bit=8 0.92 0.97 0.90 0.94 0.90 0.81 0.98 0.86 0.79 0.93 0.69 0.79 0.91 0.87 0.82 0.84 0.96 0.88 / 0.00
bit=16 0.92 0.97 0.90 0.94 0.90 0.81 0.98 0.86 0.79 0.93 0.69 0.79 0.91 0.87 0.82 0.84 0.96 0.88 / 0.00
bit=32 0.92 0.97 0.90 0.94 0.90 0.81 0.98 0.86 0.79 0.93 0.69 0.79 0.91 0.87 0.82 0.84 0.96 0.88 / 0.00

c = 30.0%, PSNR

bit=4 10.96 27.43 24.65 25.04 24.05 22.92 16.24 23.08 23.91 33.51 20.10 22.47 28.79 26.58 24.94 24.87 31.61 24.19 / -2.13
bit=8 31.72 35.81 32.95 35.11 31.22 24.81 35.82 25.84 24.84 35.76 20.49 22.79 30.40 27.37 25.52 25.40 32.69 29.33 / -0.02
bit=16 32.01 35.84 32.97 35.17 31.24 24.82 36.01 25.85 24.83 35.76 20.50 22.79 30.40 27.37 25.52 25.40 32.70 29.36 / 0.00
bit=32 32.01 35.84 32.97 35.17 31.24 24.82 36.01 25.85 24.83 35.76 20.50 22.79 30.40 27.37 25.52 25.40 32.70 29.36 / 0.00

MS-SSIM

bit=4 0.47 0.92 0.85 0.91 0.84 0.81 0.74 0.82 0.80 0.93 0.72 0.81 0.91 0.88 0.83 0.86 0.96 0.83 / -0.04
bit=8 0.97 0.98 0.92 0.95 0.92 0.84 0.98 0.88 0.82 0.93 0.73 0.82 0.92 0.89 0.84 0.87 0.97 0.90 / 0.00
bit=16 0.97 0.98 0.92 0.95 0.92 0.84 0.98 0.88 0.82 0.93 0.73 0.82 0.92 0.89 0.84 0.87 0.97 0.90 / 0.00
bit=32 0.97 0.98 0.92 0.95 0.92 0.84 0.98 0.88 0.82 0.93 0.73 0.82 0.92 0.89 0.84 0.87 0.97 0.90 / 0.00

c = 50.0%, PSNR

bit=4 7.19 23.92 20.83 24.71 24.77 21.91 28.55 23.03 23.33 32.96 19.22 21.80 25.86 22.00 23.85 22.82 29.59 22.92 / -3.91
bit=8 34.03 37.08 33.20 35.47 30.86 24.71 34.34 24.78 24.73 35.64 20.33 22.65 29.78 27.04 25.17 25.17 32.39 29.26 / -0.03
bit=16 34.49 37.13 33.21 35.50 30.87 24.72 34.36 24.79 24.73 35.65 20.33 22.65 29.78 27.05 25.18 25.18 32.39 29.29 / 0.00
bit=32 34.49 37.13 33.21 35.50 30.87 24.72 34.36 24.79 24.73 35.65 20.33 22.65 29.78 27.05 25.18 25.18 32.39 29.29 / 0.00

MS-SSIM

bit=4 0.25 0.87 0.79 0.87 0.85 0.78 0.95 0.81 0.79 0.92 0.68 0.78 0.88 0.80 0.81 0.82 0.94 0.80 / -0.07
bit=8 0.98 0.99 0.92 0.95 0.92 0.83 0.98 0.86 0.81 0.93 0.72 0.82 0.91 0.88 0.84 0.87 0.97 0.89 / 0.00
bit=16 0.98 0.99 0.92 0.95 0.92 0.83 0.98 0.86 0.81 0.93 0.72 0.82 0.91 0.88 0.84 0.87 0.97 0.89 / 0.00
bit=32 0.98 0.99 0.92 0.95 0.92 0.83 0.98 0.86 0.81 0.93 0.72 0.82 0.91 0.88 0.84 0.87 0.97 0.89 / 0.00

c = 70.0%, PSNR

bit=4 7.05 15.54 16.27 18.14 25.63 21.95 24.75 20.50 20.97 17.84 18.34 19.18 23.49 14.20 22.55 22.04 17.19 19.15/ -3.48
bit=8 35.52 36.43 32.08 32.14 28.66 23.35 30.61 22.86 23.18 34.89 19.08 21.29 21.86 25.86 24.13 23.47 30.30 27.75 / -0.03
bit=16 36.02 36.50 32.09 32.15 28.67 23.35 30.63 22.86 23.18 34.90 19.08 21.30 27.87 25.86 24.12 23.47 30.34 27.79 / 0.00
bit=32 36.02 36.50 32.09 32.15 28.67 23.35 30.63 22.86 23.18 34.90 19.08 21.30 27.87 25.86 24.12 23.47 30.34 27.79 / 0.00

MS-SSIM

bit=4 0.28 0.56 0.68 0.76 0.82 0.74 0.88 0.69 0.71 0.75 0.61 0.71 0.79 0.55 0.75 0.78 0.88 0.70 / -0.08
bit=8 0.98 0.98 0.91 0.93 0.87 0.78 0.96 0.77 0.77 0.93 0.65 0.77 0.89 0.85 0.80 0.82 0.95 0.86 / 0.00
bit=16 0.99 0.98 0.91 0.93 0.87 0.78 0.96 0.77 0.77 0.93 0.66 0.77 0.89 0.85 0.80 0.82 0.95 0.86 / 0.00
bit=32 0.99 0.98 0.91 0.93 0.87 0.78 0.96 0.77 0.77 0.93 0.66 0.77 0.89 0.85 0.80 0.82 0.95 0.86 / 0.00
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