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ABSTRACT

Recent advances in Text-to-Speech (TTS) and Voice-Conversion (VC) using gen-
erative Artificial Intelligence (AI) technology have made it possible to generate
high-quality and realistic human-like audio. This introduces significant chal-
lenges to distinguishing AI-synthesized speech from the authentic human voice
and could raise potential issues of misuse for malicious purposes such as im-
personation and fraud, spreading misinformation, deepfakes, and scams. How-
ever, existing detection techniques for AI-synthesized audio have not kept pace
and often exhibit poor generalization across diverse datasets. In this paper, we
introduce SONAR, a synthetic AI-Audio Detection Framework and Benchmark,
aiming to provide a comprehensive evaluation for distinguishing cutting-edge AI-
synthesized auditory content. SONAR includes a novel evaluation dataset sourced
from 9 diverse audio synthesis platforms, including leading TTS providers and
state-of-the-art TTS models. It is the first framework to uniformly benchmark
AI-audio detection across both traditional and foundation model-based deepfake
detection systems. Through extensive experiments, (1) we reveal the general-
ization limitations of existing detection methods and demonstrate that founda-
tion models exhibit stronger generalization capabilities, which can be attributed
to their model size and the scale and quality of pretraining data. (2) Our eval-
uation of the generalization across languages suggests that speech foundation
models demonstrate robust cross-lingual generalization capabilities, maintaining
strong performance across diverse languages despite being fine-tuned solely on
English speech data. This finding also suggests that the primary challenges in
audio deepfake detection are more closely tied to the realism and quality of syn-
thetic audio rather than language-specific characteristics. (3) We also explore the
effectiveness and efficiency of few-shot fine-tuning in improving generalization,
highlighting its potential for tailored applications, such as personalized detection
systems for specific entities or individuals. Code and dataset are available at
https://anonymous.4open.science/r/SONAR

1 INTRODUCTION

Recent advances in Text-to-Speech (TTS) and Voice-Conversion (VC) using Artificial Intelligence
(AI) technology have made it possible to generate high-quality and realistic human-like audio effi-
ciently (Vyas et al., 2023; Ye et al., 2024; Casanova et al., 2022; Wang et al., 2023). This introduces
significant challenges in distinguishing AI-synthesized speech from the authentic human voice and
could raise potential misuse for malicious purposes such as impersonation and fraud, spreading mis-
information, and scams. For example, a deep fake AI voice of the US President Joe Biden was
recently utilized in robocalls to advise them against voting1, demonstrating how deepfakes can sig-
nificantly manipulate public opinions and influence presidential elections. In response to such risks,
the US Federal Communications Commission (FCC) now deems robot calls for election as illegal,
which underscores the urgent need for enhanced detection of AI-synthesized audio.

While TTS models are advancing rapidly, AI-synthesized audio detection techniques are not keep-
ing pace. First, previous studies (Müller et al., 2022; Zang et al., 2024) have highlighted the lack of

1https://www.cnn.com/2024/01/22/politics/fake-joe-biden-robocall/index.
html
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generalization and robustness in these detection methods. Second, existing detection models (Jung
et al., 2022; Zang et al., 2024; Tak et al., 2021b;a; Lavrentyeva et al., 2019) often take advantage
of different audio features and evaluation datasets, complicating the comparison of their detection
effectiveness. Third, a comprehensive evaluation to determine the effectiveness of these detection
methods against the latest TTS models has not been conducted. This gap in research leaves a signif-
icant challenge in developing reliable detection techniques that can effectively counter the growing
sophistication of AI-generated audio.

To address the aforementioned research gap and explore the strengths and limitations of existing AI-
synthesized audio detection methods, especially those with increasingly advanced TTS models, we
present a synthetic AI-Audio Detection Framework and Benchmark, coined as SONAR. This frame-
work aims to provide a comprehensive evaluation for distinguishing state-of-the-art AI-synthesized
auditory content. Our study benchmarks the state-of-the-art fake audio detection models using a
newly collected fake audio dataset that includes a variety of synthetic speech audios sourced from
diverse cutting-edge TTS providers and TTS models. We further investigate the potential of enhanc-
ing the generalization capabilities of these detection models from different perspectives. The main
contributions of our work can be summarized as follows.

• We introduce a novel evaluation dataset specifically designed for audio deepfake detection.
This dataset is sourced from 9 diverse audio synthesis platforms, including those from lead-
ing TTS service providers and state-of-the-art TTS models. To the best of our knowledge,
this dataset is by far the largest collection of fake audio generated by the latest TTS models.

• SONAR is the first comprehensive framework to benchmark AI-audio detection uniformly
across advanced TTS models. It covers 5 state-of-the-art traditional and 6 foundation-
model-based audio deepfake detection models.

• Leveraging SONAR, we conduct extensive experiments to analyze the generalizability lim-
itations of current detection methods. Our findings reveal that foundation models demon-
strate stronger generalization capabilities than traditional models. We further explore fac-
tors that may contribute to this improved generalization, such as model size and the scale
and quality of pre-training data.

• Our evaluation of the generalization across languages suggests that speech foundation mod-
els demonstrate robust cross-lingual generalization capabilities, maintaining strong perfor-
mance across diverse languages despite being fine-tuned solely on English speech data.
This finding also suggests that the primary challenges in audio deepfake detection are more
closely tied to the realism and quality of synthetic audio rather than language-specific char-
acteristics.

• We further explore the potential of few-shot fine-tuning to enhance the generalization of
detection models. Our empirical results demonstrate the effectiveness and efficiency of this
approach, highlighting its potential for tailored applications, such as personalized detection
systems for specific entities or individuals.

2 EVALUATION DATASET GENERALIZATION AND COLLECTION

Leveraging a set of diverse and high-quality speech data synthesis APIs and models, we create
an evaluation dataset for synthetic AI-audio detection. Our approach incorporates two strategies:
data generation and data collection. Our dataset includes AI-generated speech and audio from nine
distinct sources. We perform speech data generation using one cutting-edge TTS service provider,
OpenAI, and two open-sourced APIs, xTTS (Casanova et al., 2024) and AudioGen (Kreuk et al.,
2022). For speech data collection, we leverage six state-of-the-art TTS models including Seed-
TTS (Anastassiou et al., 2024), VALL-E (Wang et al., 2023), PromptTTS2 (Leng et al., 2023),
NaturalSpeech3 (Ju et al., 2024), VoiceBox (Le et al., 2024), FlashSpeech (Ye et al., 2024). Table 1
presents the details of our dataset generated by different audio generation models. We next detail
our methods of generating and collecting these datasets.

Data generation. Our dataset generation involves OpenAI, xTTS, and AudioGen. Specifically,
OpenAI currently provides voice choices from 6 different speakers. Using ChatGPT,we generate
100 different text prompts of varying lengths for each speaker, resulting in a total of 600 synthetic
speech audios. xTTS supports synthetic speech generation given text prompts and reference speech.

2
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Figure 1: Overview of SONAR. Left: Audio deepfake data generation and collection. Right: Benchmark
evaluation.

We select 6 speakers from the LibriTTS dataset (Zen et al., 2019) as the reference speech and also
generate 600 text prompts with ChatGPT for each speaker, resulting in 600 synthetic speech audios.
To evaluate whether speech detection models can generalize to AI-synthesized environmental sound,
we also include a subset consisting of AI-synthesized environmental sound. AudioGen can generate
the corresponding environmental sound given a textual description of the acoustic scene. With
AudioGen, we use ChatGPT to generate 100 text descriptions of the environment and background
and obtain 100 AI-synthesized environmental sounds. Figure 1 (left) illustrates the data generation
and collection process.

Data collection. To evaluate the effectiveness of various detection systems against the state-of-the-
art TTS models, we also collect fake speech audio from Seed-TTS, VALL-E, PromptTTS2, Natu-
ralSpeech3, VoiceBox, and FlashSpeech. Seed-TTS provides a test dataset2 consisting of fake audio
samples generated by it. Due to the unavailability of pre-trained weights of the other 5 models, we
extract the synthesized speech data directly from their demo pages. Specifically, speech audios from
VALL-E include variations in emotions and acoustic environment. PromptTTS2 presents fake audio
samples with various attributes such as gender, speed, pitch, volume, and timbre. NaturalSpeech3
also includes fake audio samples generated with various attributes such as speeds and emotions and
contains fake speech audio samples obtained with voice conversion. VoiceBox provides fake au-
dio samples that feature cross-lingual and expressive audio styles. FlashSpeech includes a set of
high-quality fake audios obtained both from speech generation and voice conversion.

To summarize, leveraging the outlined details, we generate and collect a comprehensive evaluation
dataset, encompassing a total of 2274 AI-synthesized audio samples produced by various TTS mod-
els. To the best of our knowledge, our dataset is by far the largest collection of fake audio generated
by the latest TTS models. Note our motivation for collecting this dataset is for evaluation purposes.
Additionally, we only include fake audio samples in this dataset since genuine audio samples can be

2https://github.com/BytedanceSpeech/seed-tts-eval

Table 1: Overview of our dataset with fake audios generated by various models. AudioGen lacks speaker and
language information as it focuses on environmental sounds. The trainset sizes for OpenAI and Seed-TTS are
unavailable due to the use of proprietary data. * denotes the samples that are directly collected from their demo
page or provided test set due to the unavailability of their model checkpoints.

Model Samples Avg duration (s) Avg. pitch (Hz) Std. pitch (Hz) Languages Trainset size(H) Year
PromptTTS2* 25 9.86 126.49 46.27 English 44K 2023

NaturalSpeech3* 32 5.25 143.86 53.94 English 60K 2024
VALL-E* 95 4.86 133.41 56.54 English 60K 2023

VoiceBox* 104 10.28 114.09 37.89 English, German, French, 60K 2023Portuguese, Polish, Spanish
FlashSpeech* 118 7.57 129.30 54.77 English 44.5K 2024

AudioGen 100 5.00 199.45 72.94 - 7K 2022
xTTS 600 5.67 164.67 95.20 English 2.7K 2023

Seed-TTS* 600 4.91 117.28 36.85 English, Mandarin - 2024
OpenAI 600 4.11 126.89 54.89 English - 2024

3
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easily collected from various sources (e.g., internet, self-recording, publicly available datasets, etc.).
However, for convenience of evaluation, we also provide an equal number of real speech audio data
sampled from the LibriTTS (Zen et al., 2019) clean-test set. We believe the collected dataset can
serve as a valuable asset for evaluating existing audio deepfake detection models.

3 BENCHMARKING AI-AUDIO DETECTION MODELS

In this section, we first detail the model, dataset, and evaluation metrics setup for benchmarking.
Then, we present the results of evaluating detection models on existing audio deepfake datasets to
assess their generalizability across datasets. We next benchmark their detection performance on our
proposed dataset and provide analysis for potential model generalization improvement.

3.1 BENCHMARKING SETUP

Model architectures. SONAR incorporates 11 models, including 5 state-of-the-art traditional au-
dio deepfake detection models featuring various levels of input feature abstraction and 6 foundation
models. Specifically, for the former, SONAR includes (1) AASIST (Jung et al., 2022), which pro-
cesses raw waveform directly and utilizes graph neural networks and incorporates spectro-temporal
attention mechanisms. (2) RawGAT-ST (Tak et al., 2021a), which employs spectral and temporal
sub-graphs along with a graph pooling strategy. (3) RawNet2 (Tak et al., 2021b), which is a hy-
brid model combining CNN and GRU.(4) Spectrogram(Spec.)+ResNet (Zang et al., 2024), which
transforms the audio to linear spectrogram using a 512-point Fast Fourier Transform (FFT) with a
hop size of 10 ms. The spectrogram is then inputted into ResNet18 (He et al., 2016). (5) LFCC-
LCNN (Lavrentyeva et al., 2019), which converts audio into Linear-Frequency Cepstral Coefficients
(LFCC) for input into a CNN model. Specifically, 60-dimensional LFCCs are extracted from each
utterance frame, with frame length set to 20ms and hop size 10ms. It extracts speech embedding
directly from raw audio. These models collectively cover a broad spectrum of feature types and
architectures, facilitating a detailed examination of their performance in deepfake audio detection
applications. For foundation models, SONAR includes (1) Wave2Vec2 (Baevski et al., 2020), which
is pre-trained on 53k hours of unlabeled speech data. (2) Wave2Vec2BERT (Barrault et al., 2023),
which is pre-trained on 4.5M hours of unlabeled speech data covering more than 143 languages. (3)
HuBERT (Hsu et al., 2021), which is pretrained-on 60k hours of speech data. (4) CLAP (Elizalde
et al., 2023), who is trained on a variety of audio-text pairs. (5) Whisper-small (Radford et al.,
2023), and (6) Whisper-large (Radford et al., 2023). Both Whispers are pre-trained on 680K hours
of speech data covering 96 languages.

Public datasets for training and testing. We consider five benchmark datasets for deepfake au-
dio detection model training and testing as they are commonly used in the literature (Kawa et al.,
2022b;a). Wavefake (Frank & Schönherr, 2021) collects deepfake audios from six vocoder archi-
tectures, including MelGAN (Kumar et al., 2019), FullBand-MelGAN, MultiBand-MelGAN (Yang
et al., 2021), HiFi-GAN (Kong et al., 2020a), Parallel WaveGAN (Yamamoto et al., 2020), and
WaveGlow (Prenger et al., 2019). It consists of approximately 196 hours of generated audio
files derived from the LJSPEECH (Ito & Johnson, 2017) dataset. Similar to wavefake, LibriSe-
Voc (Sun et al., 2023) collects deepfake audios from six state-of-the-art neural vocoders including
WaveNet(Van Den Oord et al., 2016), WaveRNN (Kalchbrenner et al., 2018), Mel-GAN (Yang
et al., 2021), Parallel WaveGAN (Yamamoto et al., 2020), WaveGrad (Chen et al., 2020a) and Dif-
fWave (Kong et al., 2020b) to generate speech samples derived from the widely used LibriTTS
speech corpus (Zen et al., 2019), which is often utilized in text-to-speech research. Specifically,
it consists of a total of 208.74 hours of synthesized samples. In-the-wild (Müller et al., 2022)
comprises genuine and deepfake audio recordings of 58 politicians and other public figures gath-
ered from publicly accessible sources, including social networks and video streaming platforms.
MLAAD (Müller et al., 2024) consists of fake audios created using 82 TTS models, covering 38
different languages. We use this dataset to evaluate the cross-lingual generalization of different
detection models. To further evaluate generalization capabilities on voice-converted audio, we uti-
lize a subset of the ASVSpoof2019 development set (Wang et al., 2020), which contains synthetic
speech generated through voice conversion techniques. All input audios are resampled to a 16kHz
sampling rate and converted into raw waveforms consisting of 64,000 samples (approximately 4

4
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Table 2: Generalization across existing audio deepfake datasets. All models are trained/finetuned on the
Wavefake training set. Green and orange indicate the best and second-best performance, respectively.

Model Wavefake LibriSeVoc In-the-wild
Accuracy AUROC EER(%) Accuracy AUROC EER(%) Accuracy AUROC EER(%)

LFCC-LCNN 0.9984 0.9999 0.153 0.7429 0.8239 25.71 0.5 0.4786 99.2
Spec.+ResNet 0.9924 0.9924 0.076 0.7577 0.8495 24.233 0.4685 0.4723 53.148

RawNet2 0.9416 0.9592 5.839 0.5119 0.5332 48.807 0.5321 0.5393 46.792
RawGATST 0.9988 0.9999 0.115 0.8307 0.9203 16.925 0.6418 0.7015 35.816

AASIST 0.9992 0.9999 0.076 0.886 0.9534 11.397 0.7272 0.7975 27.277
CLAP 0.9996 0.9999 0.038 0.8296 0.9019 24.763 0.3013 0.2252 69.871

Whisper-small 0.9935 0.9997 0.649 0.9345 0.9837 6.551 0.821 0.9025 17.899
Whisper-large 0.9962 0.9992 0.381 0.9572 0.9901 4.279 0.8848 0.9552 11.518
Wave2Vec2 0.9874 0.9987 1.259 0.9705 0.9953 2.953 0.8733 0.9323 12.669
HuBERT 0.9931 0.9996 0.687 0.986 0.9991 1.401 0.9164 0.9653 8.362

Wave2Vec2BERT 0.9996 0.9999 0.038 0.9902 0.9991 0.984 0.9232 0.979 7.676

seconds). Audios longer than 4 seconds are randomly trimmed, while those shorter than 4 seconds
are repeated and padded to meet the 4-second duration.

For LibriSeVoc, we follow the official train-validation-test splits, which are approximately 60%,
20%, and 20%, respectively. For Wavefake, we partition the data generated by each vocoder into
training, validation, and testing subsets at ratios of 70%, 10%, and 20%, respectively. To address
the class imbalance and mitigate potential evaluation bias, we further downsample LibriSeVoc and
WaveFake test datasets, and In-the-Wild datasets, resulting in a balanced dataset with a real-to-fake
ratio of 1:1.

Evaluation metrics. To provide a comprehensive evaluation of the detection performance of audio
deepfake models, we adopt (1) Equal Error Rate (EER), which is defined as the point on the ROC
curve, where the false positive rate (FPR) and false negative rate (FNR) are equal and is commonly
used to assess the performance of binary classifications tasks, with lower values indicating better
detection performance. (2) Accuracy evaluates the overall correctness of the detection model’s pre-
dictions and is defined as the ratio of correctly predicted data to the total data. To ensure consistency
with the EER and provide more intuitive results, we set the threshold for accuracy at the EER point,
meaning the accuracy reflects the model’s performance when the FPR equals the FNR. (3) AUROC
(Area Under the Receiver Operating Characteristic) provides a measure of the model’s ability to dis-
tinguish between classes across different decision thresholds, providing a more comprehensive view
of its discriminative power across varying conditions. An AUROC score of 1.0 indicates perfect
classification, while a score of 0.5 indicates performance no better than random guessing.

Note that the test datasets are class-balanced, and the accuracy score is calculated using the EER
threshold. Thus, we omit F1, precision, and recall scores from our evaluation results in the paper,
though SONAR provides these metrics as well.

3.2 RESULTS AND ANALYSIS

3.2.1 HOW WELL CAN DETECTION MODELS GENERALIZE ACROSS DATASETS?

We first train all models on Wavefake training dataset and then evaluate the models on its own test
set, LibriSeVoc test set, and In-the-wild dataset. Table 2 presents the evaluation results. Particularly,
we make the following interesting observations.

Speech foundation models exhibit stronger generalizability. As shown in Table 2, when eval-
uated on the test set of Wavefake, all models demonstrate near-perfect performance across the
three metrics. This can be attributed to the similarity between the test set and the training data.
However, when tested on the LibriSeVoc and In-the-wild datasets, models such as LFCC-LCNN,
Spec.+ResNet, RawNet2, RawGATST, and AASIST struggle to generalize effectively. This perfor-
mance gap indicates significant overfitting to the training data, despite these models being specif-
ically designed for audio deepfake detection tasks. In contrast, speech foundation models consis-
tently display stronger generalizability. Notably, Wave2Vec2BERT achieves the highest generaliz-
ability, which may be attributed to its large-scale and diverse pretraining data. Pretrained on 4.5
million hours of unlabeled audio in more than 143 languages, Wave2Vec2BERT benefits from both
scale and diversity. This suggests that a well-designed self-supervised model trained on diverse
speech data can extract general and discriminative features, making it more applicable across dif-
ferent datasets for audio deepfake detection. It is important to note that CLAP, unlike other speech
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Table 3: Evaluation on SONAR dataset. Green and orange indicate the best and second-best performance,
respectively.

(a) Accuracy (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 0.5200 0.7500 0.6211 0.8462 0.7034 0.4600 0.7433 0.3058 0.5000 0.6055
Spec.+ResNet 0.5600 0.5000 0.5684 0.5481 0.6356 0.6800 0.8450 0.4167 0.6783 0.6036

RawNet2 0.6800 0.3125 0.4211 0.5385 0.4915 0.2600 0.6533 0.3733 0.3500 0.4534
RawGATST 0.8000 0.5312 0.6842 0.8173 0.5424 0.2400 0.6567 0.5833 0.4900 0.5939

AASIST 0.8400 0.5312 0.7789 0.8750 0.6610 0.6900 0.7300 0.6567 0.5150 0.6975
CLAP 0.5600 0.4688 0.6421 0.5288 0.6017 0.2500 0.4800 0.4000 0.3233 0.4727

Whisper-small 0.8800 0.5625 0.7158 0.7404 0.5678 0.8000 0.8050 0.5983 0.1883 0.6509
Whisper-large 1.000 0.6562 0.7895 0.7885 0.7288 0.8400 0.9033 0.5933 0.2900 0.7322
Wave2Vec2 0.9600 0.6875 0.8210 0.9327 0.8136 0.9900 0.7333 0.8683 0.5175 0.8138
HuBERT 1.0000 0.7500 0.9158 0.9712 0.9407 1.0000 0.8767 0.8900 0.5658 0.8789

Wave2Vec2BERT 1.0000 0.9062 0.9474 0.9712 0.9237 0.9700 0.9867 0.6017 0.7833 0.8989

(b) AUROC (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 0.5696 0.7666 0.6967 0.9106 0.7945 0.4559 0.8163 0.2452 0.0967 0.5947
Spec.+ResNet 0.6064 0.4941 0.6217 0.5858 0.6891 0.7293 0.9205 0.4003 0.7450 0.6436

RawNet2 0.6944 0.2422 0.3695 0.6210 0.5203 0.3030 0.7210 0.3120 0.2940 0.4530
RawGATST 0.8704 0.5439 0.7490 0.8989 0.5742 0.2050 0.7317 0.6065 0.4795 0.6288

AASIST 0.9248 0.6172 0.8479 0.9433 0.7485 0.7466 0.8265 0.6893 0.5259 0.7633
CLAP 0.5712 0.4434 0.7223 0.5155 0.6533 0.1777 0.5114 0.3544 0.2407 0.4655

Whisper-small 0.9776 0.5762 0.8050 0.8400 0.6446 0.8284 0.8915 0.6326 0.108 0.7004
Whisper-large 1.0000 0.6992 0.9063 0.8552 0.7933 0.8926 0.9690 0.6558 0.2327 0.7782
Wave2Vec2 0.9952 0.7515 0.8751 0.9674 0.8438 0.9987 0.7931 0.9205 0.4881 0.8482
HuBERT 1.0000 0.8174 0.9719 0.9953 0.9871 1.0000 0.9496 0.9531 0.5585 0.9148

Wave2Vec2BERT 1.0000 0.9658 0.9860 0.9906 0.9666 0.9826 0.9980 0.6165 0.8607 0.9290

(c) EER(%) (↓).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 48.000 25.000 37.895 15.385 29.661 54.000 25.667 69.5 99.333 44.938
Spec.+ResNet 44.000 50.000 43.158 45.192 36.441 32.000 15.500 58.333 32.167 39.643

RawNet2 32.000 68.750 57.895 46.154 50.848 74.000 34.667 62.667 65.000 54.665
RawGATST 20.000 46.875 31.580 18.269 45.763 76.000 34.330 41.667 51.000 40.609

AASIST 16.000 46.875 22.105 12.500 33.898 31.000 27.000 34.333 48.500 30.246
CLAP 44.000 53.125 35.789 47.115 39.831 75.000 52.000 60.000 67.667 52.725

Whisper-small 12.000 43.750 28.421 25.962 43.220 20.000 19.500 40.167 81.167 34.910
Whisper-large 0.000 34.375 21.053 21.154 27.119 16.000 9.667 40.667 71.000 26.782
Wave2Vec2 4.000 31.250 17.895 6.731 18.644 1.000 26.667 13.167 48.333 18.632
HuBERT 0.000 25.000 8.421 2.885 5.932 0.000 12.333 11.000 43.500 12.119

Wave2Vec2BERT 0.000 9.375 5.263 2.885 7.627 3.000 1.333 39.833 21.667 10.109

foundation models, does not generalize well across datasets. This is likely due to its primary focus
on environmental audio data during pretraining, resulting in the extraction of irrelevant features for
speech audio. This observation underscores that not all foundation models are equally suited for
audio deepfake detection tasks.

Generalizability may increase with model size. In Table 2, it can be observed that Whisper-large
always outperforms Whisper-small across all three datasets. In particular, on the LibriSeVoc test set,
Whisper-large achieves accuracy, AUROC, and EER of 0.9572, 0.9901, 4.279%, respectively, which
improves by 2.27%, 0.64%, and 2.272%, than that of Whisper-small. This trend is more evident in
the In-the-wild dataset, which is closer to real-world scenarios since this dataset consists of speech
data sourced from the internet. Specifically, Whisper-large achieves accuracy, AUROC, and EER of
0.8848, 0.9552, and 11.518%, respectively, which improves by 6.381%, 5.27%, and 6.381%, than
that of Whisper-small. Further investigation will be made in Section 3.2.3

3.2.2 RESULTS ON SONAR DATASET

We further evaluate all detection models on the proposed dataset. Table 3a, Table 3b, and Table 3c
present the accuracy, AUROC, and EER of different detection models on our proposed SONAR
dataset as described in Sec 2.

Speech foundation models can better generalize on the SONAR dataset, but still not good
enough. As presented in Table 3a, speech foundation models again exhibit better generalizabil-
ity on the fake audio samples generated by the latest TTS models. For instance, AASIST achieves
0.6975 average accuracy across audios generated by cutting-edge TTS models, which is the best per-
formance among the traditional detection models. In contrast, speech foundation models Whisper-
large, Wave2Vec2, HuBERT, and Wave2Vec2BERT achieve an average accuracy of 0.7322, 0.788,
0.8789, and 0.8989, respectively, which is higher than AASIST by 3.47%, 9.05%, 18.14%, and
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20.14%, respectively. More specifically, even though Wave2Vec2BERT and HuBERT are only fine-
tuned on Wavefake dataset, for PromptTTS2, VALL-E, VoiceBox, FalshSpeech, AudioGen, and
xTTS, Wave2Vec2BERT can reach accuracies of 1.0, 0.9062, 0.9474, 0.9712, 0.9237, 0.97, and
0.9867, respectively, and HuBERT can achieve 1.0, 0.9158, 0.9712, 0.9407, 1.0 0.8767, and 0.89,
respectively, demonstrating their potential capability of extract more distinguishable features com-
pared to other models. It is also worth noting that Wave2Vec2BERT achieves an accuracy of 0.9062
on NaturalSpeech3, while all other models can only reach that ≤ 0.75.

It is still challenging for detection models to correctly classify synthesized audio samples, es-
pecially those generated by the most advanced TTS service providers. While Wave2Vec2BERT
achieves an overall average accuracy of 0.8989, it only reaches 0.6017 on Seed-TTS and 0.7833 on
OpenAI. A similar pattern is also evident with HuBERT, Wave2Vec2, Whisper-large, and Whisper-
small, which achieve just 0.5658, 0.4342, 0.29, and 0.1883 accuracy on OpenAI, respectively. This
performance disparity is likely due to OpenAI and Seed-TTS having more advanced model archi-
tectures and being trained on proprietary, self-collected data, leading to higher-quality and more
realistic speech generation. We will explore potential strategies to enhance their detection perfor-
mance in Section 3.2.4. Overall, these results not only indicate that no single model consistently
outperforms across all datasets but also underscore the ongoing difficulty in detecting synthesized
audio from cutting-edge TTS systems, especially those developed by the most advanced TTS ser-
vice providers. This highlights a huge gap between the rapid evolution of TTS technologies and
the effectiveness of current audio deepfake detection methods, emphasizing the urgent need for the
development of more robust and reliable detection algorithms.

Additionally, it is noteworthy that, compared to speech foundation models, the accuracy of all
five traditional detection models on the AudioGen dataset, which consists of synthesized envi-
ronmental sounds, remains relatively low. Specifically, LFCC-LCNN, Spec.+ResNet, RawNet2,
RawGATST, and AASIST achieve accuracies of 0.46, 0.68, 0.26, 0.24, and 0.69, respectively. In
contrast, Whisper-small, Whisper-large, Wave2Vec2, HuBERT, and Wave2VecBERT attain signifi-
cantly higher accuracies of 0.8, 0.84, 0.99, 1.0, and 0.97, respectively. This discrepancy may be due
to traditional detection models being trained exclusively on speech data, which limits their general-
ization to audio from different distributions. In comparison, foundation models demonstrate greater
robustness to out-of-distribution audio samples. An exception to this is CLAP, which is an audio
foundation model pre-trained on a variety of environmental audio-text pairs and only achieves an
accuracy of 0.25 on AudioGen. Similar to previous results, it’s possibly due to the fact that its
full-weight fine-tuning on speech data may have compromised its ability to effectively recognize
environmental sounds, resulting in poor performance.

3.2.3 CAN GENERALIZABILITY INCREASE WITH MODEL SIZE?

Table 4: Whisper model sizes.

Model #Params
Whisper-tiny 39M
Whisper-base 74M
Whisper-small 244M

Whisper-medium 769M
Whisper-large 1550M

Building on the observation that Whisper-large consistently
outperforms Whisper-small, we extend our analysis with
controlled experiments on the entire Whisper model fam-
ily. Specifically, the Whisper family comprises five differ-
ent model sizes: Whisper-tiny, Whisper-base, Whisper-small,
Whisper-medium, and Whisper-large. Table 4 presents the
number of model parameters of them. Specifically, each model
is fine-tuned on the Wavefake training dataset using the same
hyperparameters. Our results show that as model size in-
creases, the generalizability of the models improves as well.

Table 5 presents the detection performance of the Whisper models across the Wavefake, LibriSeVoc,
and In-the-wild datasets. First, Whisper-tiny, despite its smaller size, still outperforms or achieves
comparable detection performance to traditional detection models (recall Table 2) on the LibriSeVoc
test set. This again validates the finding that foundation models exhibit stronger generalizability for
audio deepfake detection tasks, even in their smallest configurations.

Second, as the model size increases from Whisper-tiny to Whisper-large, both accuracy and AUROC
improve significantly across the LibriSeVoc and In-the-wild datasets. Whisper-large achieves an
accuracy of 95.72% and an AUROC of 0.9901 on LibriSeVoc, surpassing Whisper-tiny by 10.07%
in accuracy. A more evident pattern can be observed on the In-the-wild dataset, where Whisper-
large outperforms Whisper-tiny by 38.48% in accuracy. Furthermore, the Equal Error Rate (EER)
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Table 5: Generalization across existing audio deepfake datasets. All Whisper models are trained/finetuned on
the Wavefake training set. Green and orange indicate the best and second-best performance, respectively.

Model Wavefake LibriSeVoc In-the-wild
Accuracy AUROC EER(%) Accuracy AUROC EER(%) Accuracy AUROC EER(%)

Whisper-tiny 0.9839 0.9985 1.603 0.8557 0.9307 14.426 0.498 0.5 50.203
Whisper-base 0.9908 0.9996 0.916 0.9163 0.9734 8.368 0.7398 0.8124 26.024
Whisper-small 0.9935 0.9997 0.649 0.9345 0.9837 6.551 0.821 0.9025 17.899

Whisper-medium 0.9962 0.9999 0.381 0.944 0.985 5.604 0.8572 0.9288 14.277
Whisper-large 0.9962 0.9992 0.381 0.9572 0.9901 4.279 0.8848 0.9552 11.518

Table 6: Evaluation on SONAR dataset. Green and orange indicate the best and second-best performance,
respectively.

(a) Accuracy (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
Whisper-tiny 0.8000 0.3438 0.6947 0.6442 0.4661 0.73 0.6517 0.5067 0.0833 0.5467
Whisper-base 0.8400 0.4375 0.6947 0.6731 0.6017 0.6800 0.6550 0.4800 0.1117 0.5749
Whisper-small 0.8800 0.5625 0.7158 0.7404 0.5678 0.8000 0.8050 0.5983 0.1883 0.6509

Whisper-medium 0.96 0.6250 0.7895 0.8077 0.7119 0.8000 0.8400 0.5517 0.2183 0.7005
Whisper-large 1.000 0.6562 0.7895 0.7885 0.7288 0.8400 0.9033 0.5933 0.2900 0.7322

(b) AUROC (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
Whisper-tiny 0.9136 0.2998 0.7436 0.7144 0.4886 0.7660 0.7239 0.5033 0.0454 0.5776
Whisper-base 0.9296 0.4326 0.7512 0.7482 0.6548 0.7505 0.7167 0.5152 0.041 0.6155
Whisper-small 0.9776 0.5762 0.8050 0.8400 0.6446 0.8284 0.8915 0.6326 0.108 0.7004

Whisper-medium 0.9984 0.6279 0.886 0.8578 0.7950 0.8640 0.9215 0.5858 0.1567 0.7437
Whisper-large 1.0000 0.6992 0.9063 0.8552 0.7933 0.8926 0.969 0.6558 0.2327 0.7782

(c) EER(%) (↓).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
Whisper-tiny 20.000 65.625 30.526 35.577 53.390 27.000 34.833 49.333 91.667 45.328
Whisper-base 16.000 56.250 30.526 32.692 36.831 32.000 34.500 52.000 88.833 42.811
Whisper-small 12.000 43.750 28.421 25.962 43.220 20.000 19.500 40.667 81.167 34.965

Whisper-medium 4.000 37.500 21.053 19.231 28.814 20.000 16.000 44.833 78.167 29.955
Whisper-large 0.000 34.375 21.053 21.154 27.119 16.000 9.667 40.167 71.000 26.726

decreases as the model size increases, indicating that larger models are not only more accurate but
also better at minimizing both false positives and false negatives.

We also evaluate the Whisper family on the proposed SONAR dataset. Table 6a, Table 6b, Table 6c
present the corresponding Accuracy, AUROC, and EER(%). A similar trend can also be observed. In
Table 6a, the accuracy of the Whisper models shows a clear upward trend as the model size increases
from Whisper-tiny to Whisper-large. Whisper-tiny achieves an average accuracy of 0.5467, while
Whisper-large reaches the highest average accuracy of 0.7322. Notably, Whisper-large performs best
on almost all datasets, particularly with TTS models such as PromptTTS2, NaturalSpeech3, VALL-
E, and OpenAI, highlighting its better generalizability. Additionally, Whisper-large’s performance
is higher on challenging datasets like Seed-TTS and OpenAI, which are known for their high-quality
synthesis. The smaller models (e.g., Whisper-tiny and Whisper-base), on the other hand, struggle to
generalize effectively, particularly on datasets such as OpenAI, where the accuracy drops to 0.0833
for Whisper-tiny.

The results highlight the scalability of the Whisper models: larger models demonstrate better gen-
eralization across diverse test sets, underscoring the importance of model capacity in tackling chal-
lenging out-of-distribution data, such as audio generated by advanced TTS models.

3.2.4 ON THE EFFECTIVENESS AND EFFICIENCY OF FEW-SHOT FINE-TUNING TO IMPROVE
GENERALIZATION

Despite the challenges in generalizing across different datasets, we investigate whether there ex-
ist efficient solutions that can enhance models’ detection performance on those challenging subsets
from SONAR dataset. To this end, we conduct a case study on Wave2Vec2BERT and HuBERT, as
these models perform relatively poorly on the OpenAI and SeedTTS datasets but demonstrate com-
petitive performance on other subsets. Specifically, we generate 100 additional fake audio samples
using the OpenAI TTS API and randomly select another 100 fake audio samples from the SeedTTS
test set for few-shot fine-tuning. Our study yields several interesting findings.
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(a) (b) (c) (d)

Figure 2: Performance of few-shot fine-tuning for Wave2Vec2BERT and HuBERT with a vary-
ing number of few-shot audio samples from OpenAI and Seed-TTS, respectively. (a) Fine-tune
Wave2Vec2BERT on OpenAI. (b) Fine-tune HuBERT on OpenAI; (c) Fine-tune Wave2Vec2BERT
on Seed-TTS; and (d) Fine-tune HuBERT on Seed-TTS.

Figures 2a and 2b present the results of fine-tuning Wave2Vec2BERT and HuBERT using vary-
ing numbers of samples from OpenAI. Before fine-tuning, Wave2Vec2BERT and HuBERT only
achieve accuracies of 0.7833 and 0.5658, respectively. Notably, with only 10 shots of fake speech
data, Wave2Vec2BERT reaches an accuracy of approximately 0.97, while HuBERT’s accuracy in-
creases significantly to approximately 0.85. Importantly, the models’ generalization to other datasets
remains unchanged, demonstrating the effectiveness and efficiency of few-shot fine-tuning. How-
ever, as the number of fine-tuning samples increases, HuBERT’s test accuracy on the WaveFake test
set shows a declining trend, which is also observed for Wave2Vec2BERT.

It is important to note, however, that the efficiency and effectiveness of few-shot fine-tuning may
vary across different datasets. As illustrated in Figures 2c and 2d, which depict the fine-tuning results
for Wave2Vec2BERT and HuBERT on Seed-TTS, the improvement in accuracy is less pronounced
compared to the results on the OpenAI dataset. While the accuracy of both Wave2Vec2BERT and
HuBERT does improve on Seed-TTS, the gains are not as significant as those observed for the Ope-
nAI dataset. Additionally, the detection performance on other datasets decreases more noticeably
when fine-tuning on Seed-TTS compared to OpenAI.

These findings suggest that the effectiveness of few-shot fine-tuning may depend on the specific
characteristics of the dataset. Moreover, this also highlights its potential for tailored applications,
such as personalized detection systems for a specific entity or individual, to enable more customized
and practical applications.

3.2.5 HOW WELL CAN DETECTION MODELS GENERALIZE ACROSS LANGUAGES?

Table 7: Generalization of different models across
languages.

Model Accuracy AUROC EER (%)
LFCC-LCNN 0.6986 0.7661 30.1447
Spec.+ResNet 0.6001 0.6310 39.9947

RawNet2 0.4538 0.4379 54.6237
RawGATST 0.8061 0.8762 19.3921

AASIST 0.8461 0.9157 15.3868
CLAP 0.5136 0.5125 48.6395

Whisper-small 0.8276 0.9033 17.2395
Whisper-large 0.8325 0.9081 16.7474
Wave2Vec2 0.9139 0.9387 8.5947
HuBERT 0.9320 0.9745 6.7974

Wave2Vec2BERT 0.9901 0.9950 0.9921

To evaluate the cross-lingual generalization ca-
pabilities of detection models, we further con-
duct experiments on the MLAAD dataset (Müller
et al., 2024), which encompasses 38 diverse lan-
guages. Table 7 presents the average perfor-
mance metrics across all languages, with de-
tailed language-specific results provided in Ta-
bles 10, 11, and 12 in the Appendix. Our anal-
ysis reveals several significant findings regarding
model generalization across languages.

Foundation models demonstrate remarkable
cross-lingual generalization capabilities, de-
spite being fine-tuned exclusively on English
speech data. From Table 7, it can be observed
that Wave2Vec2BERT achieves exceptional performance with an accuracy of 0.9901, AUROC of
0.9950, and EER of 0.9921%. Similarly, HuBERT and Wave2Vec2 also show strong performance,
with accuracies of 0.9320 and 0.9139, respectively. This robust cross-lingual generalization may
be attributed to The diverse multilingual pretraining data these models are exposed to during their
self-supervised learning phase. Their ability to learn language-agnostic speech representations that
capture fundamental acoustic properties relevant to deepfake detection.
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In contrast, traditional detection models show varying degrees of success in cross-lingual general-
ization. AASIST and RawGATST achieve respectable average accuracies of 0.846 and 0.806 on
MLAAD, respectively. However, their performance significantly degrades on the SONAR dataset
(accuracies of 0.6975 and 0.5939, as shown in Table 3a). The disparity in performance between
MLAAD (containing primarily open-source TTS-generated audio) and SONAR provides crucial in-
sights. Foundation models maintain relatively consistent performance across both datasets, while
traditional detection models show significant degradation on SONAR. This observation suggests
that the primary challenges in audio deepfake detection are more closely tied to the realism
and quality of synthetic audio rather than language-specific characteristics.

4 DISCUSSION

AI-synthetized audio detection methods must be evaluated on diverse and advanced bench-
marks. In our evaluation using the proposed dataset, most models perform well on standard TTS
tools but suffer significant degradation when tested on the fake audios generated by the most ad-
vanced tool such as Voice Engine released by OpenAI. Therefore, we advocate for future research
in audio deepfake detection to prioritize benchmarking against the latest and most advanced TTS
technologies, which will lead to more robust and reliable detectors, as relying on high detection
rates from outdated tools may create a false sense of generalization. Additionally, there is an urgent
need to develop larger-scale training datasets comprising fake audio generated by cutting-edge TTS
models to keep pace with rapid advancements in TTS technology and mitigate associated risks.

Limitations and future work. While our primary goal in proposing this dataset is to facilitate
comprehensive evaluation, it remains relatively small in size and is primarily focused on English. A
more in-depth analysis of detection performance across different languages and gender representa-
tions is crucial for a more comprehensive evaluation. These aspects are essential for future research
to enhance the dataset’s applicability and generalizability. For future work, we also plan to: (1)
incorporate additional AI-audio detection models, including those targeting advanced audio editing
techniques designed to bypass detection systems; (2) explore innovative methods to further improve
generalizability; and (3) address realistic challenges and risks in deploying the proposed method in
real-world scenarios, such as evaluating the robustness of models against common or adversarial
corruptions. These efforts will contribute to the development of more effective strategies to combat
AI-generated audio threats.

Data license considerations.. Since our dataset is sourced from various models, each may be sub-
ject to distinct distribution licenses and usage restrictions. Throughout the data collection process,
we strictly adhered to all relevant usage policies. The dataset is made accessible either directly
through the provided link or indirectly via the original sources. To account for the evolving nature
of these policies, we are committed to keeping the published dataset fully compliant with the latest
regulations. Additionally, we will reference the usage policies of the respective API providers to
inform users about any potential restrictions.

5 CONCLUSION

In this paper, we presented SONAR, a framework providing a comprehensive evaluation for dis-
tinguishing state-of-the-art AI-synthesized auditory content. SONAR introduces a novel evaluation
dataset sourced from 9 diverse audio synthesis platforms, including leading TTS service providers
and state-of-the-art TTS models. To the best of our knowledge, SONAR is the first platform that pro-
vides uniform, comprehensive, informative, and extensible evaluation of deepfake audio detection
models. Leveraging SONAR, we conducted extensive experiments to analyze the generalizability
limitations of current detection methods. We found that speech foundation models demonstrate
stronger generalization capabilities across datasets and languages, given their massive model size
scale and pertaining data. We also suggest that the primary challenges in audio deepfake detec-
tion are more closely tied to the realism and quality of synthetic audio rather than language-specific
characteristics. In addition, we further explored the potential of few-shot fine-tuning to improve gen-
eralization and demonstrated its efficiency and effectiveness. We envision that SONAR will serve as
a valuable benchmark to facilitate research in AI-audio detection and highlight directions for further
improvement.
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jafari, Joshua Meyer, Reuben Morais, Samuel Olayemi, et al. Xtts: a massively multilingual
zero-shot text-to-speech model. arXiv preprint arXiv:2406.04904, 2024.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020a.

Tianxiang Chen, Avrosh Kumar, Parav Nagarsheth, Ganesh Sivaraman, and Elie Khoury. General-
ization of audio deepfake detection. In Odyssey, pp. 132–137, 2020b.

Erica Cooper, Cheng-I Lai, Yusuke Yasuda, Fuming Fang, Xin Wang, Nanxin Chen, and Junichi
Yamagishi. Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embed-
dings. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6184–6188, 2020.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning au-
dio concepts from natural language supervision. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5, 2023.

Joel Frank and Lea Schönherr. Wavefake: A data set to facilitate audio deepfake detection. arXiv
preprint arXiv:2111.02813, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Keith Ito and Linda Johnson. The lj speech dataset. https://keithito.com/
LJ-Speech-Dataset/, 2017.

Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong
Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with factor-
ized codec and diffusion models. arXiv preprint arXiv:2403.03100, 2024.

Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-Jin
Yu, and Nicholas Evans. Aasist: Audio anti-spoofing using integrated spectro-temporal graph
attention networks. In IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 6367–6371, 2022.

11

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In International Conference on Machine Learning, pp. 2410–2419. PMLR, 2018.

Piotr Kawa, Marcin Plata, and Piotr Syga. Attack agnostic dataset: Towards generalization and
stabilization of audio deepfake detection. arXiv preprint arXiv:2206.13979, 2022a.

Piotr Kawa, Marcin Plata, and Piotr Syga. Specrnet: Towards faster and more accessible audio deep-
fake detection. In EEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 792–799. IEEE, 2022b.

Piotr Kawa, Marcin Plata, Michał Czuba, Piotr Szymański, and Piotr Syga. Improved deepfake
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A APPENDIX

A.1 RELATED WORK

Text-to-Speech synthesis. Human voice synthesis is a significant challenge in the field of AI. State-
of-the-art TTS synthesis approaches such as VALLE (Wang et al., 2023), AudioBox (Vyas et al.,
2023), VoiceBox (Le et al., 2024), NaturalSpeech3 (Wang et al., 2023), and YourTTS (Casanova
et al., 2022) have demonstrated the possibility of generating high-quality, human-realistic audio
with generative models trained on large datasets. Current TTS models can be classified into two pri-
mary categories: cascaded and end-to-end methods. Cascaded TTS models (Shen et al., 2018; Ren
et al., 2019; Li et al., 2019) typically employ a pipeline involving an acoustic model and a vocoder
utilizing mel spectrograms as intermediary representations. To address the limitations associated
with vocoders, end-to-end TTS models (Kim et al., 2021; Liu et al., 2022) have been developed to
jointly optimize both the acoustic model and vocoder. In practical applications, it is preferable to
customize TTS systems to generate speech in any voice with limited accessible data. Consequently,
there is increasing interest in zero-shot multi-speaker TTS techniques (Cooper et al., 2020; Casanova
et al., 2022; Ye et al., 2024).

AI-synthesized audio detection. Recent advancements in AI technology have significantly en-
hanced the ability to generate high-quality and realistic audio, calling for an urgent need for more
robust and reliable detection methods. Several datasets have been developed to support research
in this area. The ASVspoof challenges (Wu et al., 2017; Wang et al., 2020; Nautsch et al., 2021;
Todisco et al., 2019; Liu et al., 2023) are among the most notable, offering comprehensive datasets
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that cover a variety of attack vectors, including replay attacks, voice conversion, and directly syn-
thesized audio. These resources aim to facilitate thorough evaluations of countermeasures against
various spoofing techniques. In addition, newer datasets such as WaveFake (Frank & Schönherr,
2021) and LibriSeVoc (Sun et al., 2023) provide fake audio samples generated with state-of-the-
art vocoders, offering diverse distributions to enhance the development of deepfake audio detection
systems. By comparison, the In-the-Wild dataset (Zang et al., 2024) targets real-world applications
by collecting deepfake audios from publicly accessible sources, capturing the complexity and diver-
sity of manipulations encountered in everyday environments. Similarly, the SingFake dataset (Zang
et al., 2024) focuses on the detection of synthetic singing voices, presenting unique challenges due
to the musical content and variation in vocal expressions. Müller et al. (2024) presents MLAAD
dataset, which consists of fake audios created using 82 TTS models, covering 38 different lan-
guages. These datasets are crucial for developing and testing next-generation AI-synthesized audio
detection systems, pushing the boundaries of what is achievable in identifying and mitigating the
threats posed by advanced audio synthesis technologies.

Building upon these datasets, a significant body of research has focused on distinguishing AI-
generated audio from genuine audio by designing advanced model architectures (Tak et al., 2021b;
Lavrentyeva et al., 2019; Jung et al., 2022; Tak et al., 2021a) tailored for extracting different levels
of representations of speech data for audio deepfake detection. Additionally, recent works (Wang &
Yamagishi, 2021; Tak et al., 2022; Kawa et al., 2023) have leveraged speech foundation models for
audio deepfake detection tasks. For instance, Wang & Yamagishi (2021) and Tak et al. (2022) fine-
tune Wav2Vec2 (Baevski et al., 2020) models on the ASVspoof dataset, while Kawa et al. (2023)
uses Whisper as a front-end to extract audio features and trains various detection models based on
these features, achieving state-of-the-art detection performance on the corresponding test datasets.
However, none of these models have been evaluated on audio generated by the latest text-to-speech
(TTS) models, leaving a gap in understanding their effectiveness against the most recent advance-
ments in synthetic audio generation.

Several recent work has also focused on benchmarking audio deepfake detection models, though
with varying scope and limitations. Alali & Theodorakopoulos (2024) provides an overview of
TTS, VC, and PF methods but lacks empirical validation, while Chen et al. (2020b) limits their
evaluation to the ASVSpoof2019 dataset(Wang et al., 2020). Yan et al. (2024) constructs a bilingual
dataset and evaluates several detection models, but part of their data generated by commercial APIs
raises data license issues. Similar to SONAR, a concurrent work (Xie et al., 2024) collected samples
from web demos of advanced TTS models but evaluated only two detection methods. Similarly, Li
et al. (2024) benchmarks three foundation models on open-source TTS-generated data and studies
the potential threats posed by audio perturbations.

In contrast, SONAR offers several key advantages: (1) it provides comprehensive empirical eval-
uation of both traditional detection models and foundation models, including those not previously
explored; (2) it incorporates a diverse range of audio sources, from web demos to compliant com-
mercial APIs, while ensuring adherence to usage policies; (3) it examines the impact of model archi-
tecture, training data, and few-shot fine-tuning on detection performance; and (4) it reveals critical
insights about the trade-off between fine-tuning effectiveness and model generalization. These con-
tributions make SONAR a more extensive and systematic benchmark for audio deepfake detection.

A.2 BROAD IMPACTS

Societal Risks. The rapid advancement of AI-Generated Content (AIGC) in audio and speech poses
significant societal risks as it becomes more prevalent in audio and speech generation. As our work
in benchmarking AI-synthesized audio detection demonstrates, the line between AI-generated audio
and human speech is increasingly blurring, making it difficult for individuals to distinguish between
synthetic and authentic voices. This raises serious concerns about spreading misinformation and
fabricating narratives. AI-generated speeches could be used to impersonate public figures, spread
false information, or even incite unrest by delivering provocative messages that appear authentic.
For example, deepfake audios of political figures can be created to falsely represent their opinions
or statements, potentially influencing public perception and affecting democratic processes.
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Table 8: Hyperparemeters

config value

optimizer Adam
optimizer momentum β1 = 0.9, β2 = 0.999

weight decay 1e-4
epochs 40

warmup epochs 0
scheduler cosine decay

Moreover, these technologies could be exploited to damage reputations or cause legal issues for indi-
viduals or organizations through fake endorsements or harmful statements. It is crucial for academia
and industry to develop robust detection methods and ethical guidelines to prevent misuse of this
technology and to educate the public about its capabilities and associated risks.

Positive Impacts. On the positive side, AI-synthesized audio/speech has the potential to revolu-
tionize content creation in various sectors, including education, entertainment, and accessibility. In
education, AI-synthesized audios and speeches enables production of customized content that meets
diverse learning needs and languages, improving access and inclusivity. For entertainment, they can
offer novel experiences by generating dynamic dialogues in games or virtual reality, enriching user
engagement and creativity.

Furthermore, AI-synthesized audios and speeches also enhances accessibility by producing speech
in various languages or dialects, bridging communication gaps and making information more ac-
cessible to non-native speakers or those with liabilities. Additionally, the technology can help pre-
serve lesser-spoken languages and dialects at risk of extinction by creating archives of AI-generated
speeches and narratives.

In conclusion, while AI-synthesized audios and speeches offer exciting opportunities for content
creation and accessibility, it is essential to address the ethical and societal challenges associated
with its use. Collaborative efforts among researchers, developers, and policymakers are crucial to
leveraging AI-synthesized audio and speech benefits responsibly while mitigating its risks, ensuring
the technology serves to enhance human communication and creativity positively and responsibly.

A.3 IMPLEMENTATION DETAILS

Table 8 presents the hyperparameters for training AASIST, RawNet2, RawGAT-ST, LCNN, and
Spec.+ResNet. We train AASIST, RawNet2, and RawGAT-ST with a learning rate of 0.0001 and
LCNN and Spec.+ResNet with a learning rate of 0.0003. The batch size for AASIST, RawNet2,
RawGAT-ST, LCNN, and Spec.+ResNet are 64, 256, 32, 512, and 256, respectively. All input
audios are resampled to a 16kHz sampling rate and converted into raw waveforms consisting of
64,000 samples (approximately 4 seconds). Audios longer than 4 seconds are randomly trimmed,
while those shorter than 4 seconds are repeated and padded to meet the 4-second duration.

For the foundation models, two linear layers are added after the encoder’s output, with the hidden
layer dimension matching the dimension of the encoder’s output. We fine-tune all foundation models
on the Wavefake training dataset for 3 epochs using the Adam optimizer with a learning rate of
0.00001 and a weight decay of 0.0005.

For few-shot fine-tuning, models are fine-tuned for 30 epochs with a learning rate of 0.00001 and a
weight decay of 0.00005.

A.4 EVALUATION OF THE MODELS’ ROBUSTNESS AGAINST AUDIO CORRUPTIONS

We further evaluate the robustness of various models on the WaveFake test set. Specifically, we
tested models under MP3 compression at different bitrates and varying levels of signal-to-noise
ratio (SNR) for background noise. Figure 3a and Figure 3b present the results.

Consistent with our findings on generalizability, foundation models demonstrate greater robustness
to these types of corruption despite not encountering them during training. In contrast, traditional
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(a) Evaluation of different detection models’ robustness against MP3 compression at different bitrates.

(b) Evaluation of the models’ robustness against background noise at varying levels of signal-to-noise
(SNR).

Figure 3: Evaluation of different detection models’ robustness against speech encoding corruption
(MP3) and background noise corruption.

models experience significant performance degradation in terms of accuracy and AUROC, particu-
larly when the audios are subjected to more severe levels of corruption.

A.5 RESULTS ON AUDIOS GENERATED BY VOICE CONVERSION

In addition to fake audios generated by various TTS models, we also evaluate the models’ detection
performance on audios generated by Voice Conversion (VC) technology. Specifically, we evaluate
different models on the VC subset from the ASVSpoof2019 dataset (Wang et al., 2020). Table 9
presents the results. It can be observed that foundation models continue to generalize well on VC
tasks, whereas traditional detection models experience a significant performance drop.

A.6 RESULTS ON DIFFERENT TRAINING DATASET

To investigate the impact of training dataset, we further adopt ASVspoof2019 (Wang et al., 2020)
training set to train/finetune different detection models/foundation models. Table 13 presents the
evaluation results of models trained/finetuned on the ASVSpoof2019 dataset across different public
datasets, while Table 14 presents their evaluation on the SONAR dataset. Table 15 presents the
evaluation results of models trained/finetuned on the combination of ASVSpoof2019 and Wavefake
dataset, while Table 16 provides their evaluation on SONAR dataset.

The results demonstrate that models only trained/finetuned on ASVSpoof2019 have worse detection
performances, which is also echoed by the results in (Li et al., 2024). Compared with models only
trained on ASVSpoof2019, the combination of Wavefake can further improve models’ generalizabil-
ity. However, models suffer from degradation in their detection performance compared with only
trained/finetuned on Wavefake dataset (the results in the paper). We attribute this to the quality of
the training data. The audio data in ASVSpoof2019 are generated by TTS/VC models before 2019.

We also advocate that, with the rapid development of TTS technologies, we need to adapt the training
dataset distribution to higher-quality fake audios to improve the generalization of these detection
models to develop better countermeasures.
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Table 9: Evaluation on Voice Conversion subset from ASVSpoof2019.

Model Accuracy(↑) AUROC(↑) EER (%)(↓)
LFCC-LCNN 0.623 0.667 37.44
ResNet Spec. 0.660 0.714 34.05

RawNet2 0.430 0.391 58.72
RawGATST 0.671 0.738 32.86

AASIST 0.764 0.841 23.52
CLAP 0.494 0.495 50.30

Whisper-small 0.994 1.000 0.56
Whisper-large 0.931 0.978 6.93

Wave2Vec 0.883 0.952 11.64
HuBERT 0.971 0.994 2.87

Wave2VecBERT 0.974 0.995 2.58

Table 10: Accuracy (↑) of different detection models across languages.

Language LFCC ResNet Raw Raw AASIST CLAP Whisper Whisper Wave2Vec2 HuBERT Wave2Vec2
LCNN Spec. Net2 GATST small large BERT

Romanian 0.747 0.702 0.498 0.808 0.848 0.511 0.744 0.737 0.955 0.875 0.998
Croatian 0.960 0.823 0.403 0.973 0.970 0.424 0.946 0.973 0.999 0.977 0.999
Dutch 0.675 0.558 0.524 0.769 0.844 0.520 0.816 0.789 0.780 0.944 0.993

Latvian 0.579 0.761 0.417 0.979 0.976 0.537 0.906 0.921 1.000 0.981 1.000
Ukrainian 0.651 0.624 0.445 0.800 0.822 0.491 0.752 0.750 0.982 0.935 0.998

Irish 0.767 0.584 0.539 0.858 0.894 0.456 0.896 0.900 0.975 0.941 0.997
Polish 0.644 0.581 0.528 0.825 0.871 0.523 0.813 0.822 0.941 0.941 0.998

Lithuanian 0.780 0.723 0.582 0.944 0.970 0.468 0.756 0.732 1.000 0.956 0.999
Chinese 0.537 0.546 0.438 0.664 0.736 0.405 0.794 0.779 0.814 0.943 0.998
Greek 0.769 0.508 0.482 0.862 0.879 0.421 0.850 0.879 0.981 0.939 0.995

German 0.691 0.695 0.424 0.804 0.843 0.640 0.773 0.775 0.915 0.914 0.995
Turkish 0.758 0.578 0.432 0.779 0.820 0.562 0.867 0.840 0.809 0.952 0.996
Russian 0.631 0.540 0.386 0.646 0.728 0.567 0.719 0.701 0.941 0.915 0.992
Arabic 0.748 0.548 0.510 0.758 0.832 0.534 0.856 0.845 0.815 0.958 0.998
Spanish 0.606 0.548 0.440 0.772 0.860 0.542 0.687 0.690 0.930 0.915 0.995
Estonian 0.712 0.579 0.445 0.875 0.904 0.388 0.891 0.900 0.989 0.932 0.998

Thai 0.643 0.381 0.473 0.807 0.851 0.464 0.805 0.871 0.983 0.929 0.996
Bulgarian 0.705 0.583 0.462 0.849 0.892 0.505 0.867 0.877 0.994 0.936 0.998

Vietnamese 0.764 0.582 0.518 0.760 0.826 0.545 0.935 0.937 0.959 0.985 1.000
Maltese 0.777 0.563 0.482 0.871 0.904 0.411 0.896 0.910 0.990 0.937 0.997
Persian 0.480 0.621 0.327 0.819 0.713 0.712 0.899 0.914 0.991 0.939 0.998
English 0.547 0.663 0.478 0.683 0.740 0.445 0.711 0.675 0.599 0.891 0.776

Turkman 0.697 0.399 0.454 0.815 0.854 0.520 0.851 0.880 0.990 0.924 0.998
Hungarian 0.657 0.584 0.440 0.719 0.791 0.507 0.764 0.767 0.807 0.896 0.994
Swedish 0.709 0.593 0.337 0.827 0.904 0.451 0.889 0.890 0.983 0.934 0.997
Japanese 0.707 0.518 0.500 0.764 0.826 0.462 0.857 0.840 0.808 0.940 0.996
Bengali 0.589 0.594 0.523 0.606 0.632 0.518 0.556 0.640 0.690 0.729 0.958
Italian 0.514 0.565 0.488 0.806 0.843 0.508 0.874 0.874 0.968 0.943 0.998
Finnish 0.691 0.583 0.450 0.735 0.780 0.545 0.767 0.744 0.880 0.931 0.996
Hindi 0.727 0.578 0.491 0.768 0.838 0.528 0.857 0.877 0.817 0.957 0.998

Swahili 0.820 0.746 0.558 0.895 0.876 0.759 0.807 0.841 0.982 0.914 0.996
Slovak 0.724 0.605 0.345 0.886 0.907 0.453 0.893 0.898 0.994 0.938 0.997
Danish 0.791 0.626 0.352 0.886 0.907 0.593 0.897 0.912 0.989 0.938 0.998
French 0.652 0.575 0.400 0.796 0.838 0.598 0.764 0.764 0.971 0.916 0.996

Portuguese 0.730 0.599 0.467 0.749 0.807 0.562 0.844 0.841 0.788 0.957 0.996
Korean 0.748 0.546 0.464 0.761 0.836 0.536 0.866 0.888 0.882 0.953 0.998

Slovenian 0.874 0.765 0.291 0.951 0.944 0.408 0.917 0.927 0.995 0.965 0.996
Czech 0.744 0.635 0.450 0.762 0.847 0.498 0.867 0.836 0.847 0.947 0.997

Average 0.699 0.600 0.454 0.806 0.846 0.514 0.828 0.833 0.914 0.932 0.990
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Table 11: AUROC (↑) of different detection models across languages.

Language LFCC ResNet Raw Raw AASIST CLAP Whisper Whisper Wave2Vec HuBERT Wave2Vec
LCNN Spec. Net2 GATST small large BERT

Romanian 0.836 0.750 0.545 0.902 0.937 0.490 0.835 0.839 0.969 0.942 1.000
Croatian 0.994 0.892 0.340 0.998 0.997 0.377 0.987 0.994 1.000 0.997 1.000
Dutch 0.747 0.572 0.518 0.853 0.920 0.533 0.901 0.875 0.841 0.985 0.999

Latvian 0.627 0.818 0.372 0.999 0.998 0.521 0.970 0.970 1.000 0.996 1.000
Ukrainian 0.713 0.664 0.450 0.885 0.895 0.474 0.846 0.852 0.995 0.977 1.000

Irish 0.839 0.613 0.573 0.929 0.958 0.434 0.958 0.966 0.984 0.983 1.000
Polish 0.709 0.600 0.541 0.899 0.938 0.533 0.905 0.915 0.961 0.982 1.000

Lithuanian 0.869 0.773 0.565 0.991 0.997 0.430 0.842 0.812 1.000 0.991 1.000
Chinese 0.525 0.599 0.409 0.703 0.764 0.378 0.874 0.867 0.866 0.983 1.000
Greek 0.856 0.488 0.468 0.929 0.949 0.400 0.931 0.945 0.992 0.979 0.999

German 0.781 0.749 0.394 0.874 0.911 0.676 0.864 0.872 0.942 0.970 1.000
Turkish 0.844 0.637 0.388 0.861 0.911 0.596 0.943 0.919 0.868 0.989 1.000
Russian 0.664 0.570 0.334 0.713 0.809 0.571 0.807 0.798 0.957 0.968 1.000
Arabic 0.840 0.573 0.528 0.841 0.911 0.555 0.932 0.915 0.869 0.988 1.000
Spanish 0.656 0.586 0.415 0.854 0.934 0.535 0.788 0.787 0.948 0.962 0.999
Estonian 0.787 0.601 0.405 0.942 0.967 0.365 0.955 0.961 0.997 0.983 1.000

Thai 0.714 0.337 0.448 0.880 0.927 0.425 0.902 0.950 0.992 0.969 1.000
Bulgarian 0.772 0.579 0.450 0.925 0.957 0.493 0.942 0.949 1.000 0.986 1.000

Vietnamese 0.855 0.621 0.539 0.849 0.909 0.574 0.984 0.987 0.974 0.999 1.000
Maltese 0.859 0.575 0.490 0.941 0.966 0.397 0.959 0.978 0.998 0.986 1.000
Persian 0.484 0.706 0.223 0.880 0.811 0.740 0.958 0.975 0.997 0.964 1.000
English 0.573 0.725 0.472 0.735 0.810 0.418 0.786 0.763 0.650 0.933 0.825

Turkman 0.775 0.337 0.442 0.886 0.932 0.510 0.927 0.954 0.998 0.972 1.000
Hungarian 0.720 0.628 0.407 0.828 0.893 0.516 0.846 0.862 0.853 0.955 1.000
Swedish 0.773 0.593 0.330 0.896 0.956 0.434 0.955 0.955 0.992 0.982 1.000
Japanese 0.797 0.532 0.520 0.855 0.917 0.445 0.938 0.923 0.861 0.985 1.000
Bengali 0.643 0.637 0.522 0.630 0.681 0.553 0.632 0.741 0.770 0.820 0.991
Italian 0.542 0.598 0.470 0.891 0.917 0.503 0.949 0.949 0.978 0.981 1.000
Finnish 0.774 0.599 0.400 0.829 0.894 0.601 0.857 0.824 0.914 0.977 1.000
Hindi 0.807 0.594 0.504 0.847 0.920 0.544 0.939 0.953 0.875 0.989 1.000

Swahili 0.908 0.805 0.620 0.955 0.937 0.822 0.883 0.904 0.993 0.966 1.000
Slovak 0.811 0.617 0.309 0.947 0.967 0.436 0.961 0.971 0.999 0.985 1.000
Danish 0.873 0.667 0.307 0.955 0.954 0.593 0.961 0.977 0.997 0.984 1.000
French 0.713 0.615 0.361 0.884 0.916 0.638 0.835 0.849 0.978 0.967 0.999

Portuguese 0.821 0.650 0.460 0.831 0.899 0.560 0.924 0.904 0.851 0.989 1.000
Korean 0.835 0.557 0.469 0.843 0.920 0.543 0.941 0.955 0.915 0.989 1.000

Slovenian 0.948 0.846 0.224 0.990 0.992 0.354 0.972 0.977 1.000 0.991 1.000
Czech 0.828 0.676 0.428 0.849 0.929 0.505 0.940 0.919 0.899 0.990 1.000

Average 0.766 0.631 0.438 0.876 0.916 0.513 0.903 0.908 0.939 0.975 0.995
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Table 12: EER (%) (↓) of different detection models across languages.

Language LFCC ResNet Raw Raw AASIST CLAP Whisper Whisper Wave2Vec HuBERT Wave2Vec
LCNN Spec. Net2 GATST small large BERT

Romanian 25.30 29.80 50.20 19.20 15.20 48.90 25.60 26.30 4.50 1.25 0.20
Croatian 4.00 17.70 59.70 2.70 3.00 57.60 5.40 2.70 0.10 2.30 0.10
Dutch 32.50 44.20 47.60 23.10 15.60 48.00 18.40 21.10 21.90 5.60 0.70

Latvian 42.10 23.90 58.30 2.10 2.40 46.30 9.40 7.90 0.00 1.90 0.00
Ukrainian 34.90 37.60 55.50 20.00 17.80 50.90 24.80 25.00 1.80 6.50 0.20

Irish 23.30 41.60 46.10 14.20 10.60 54.40 10.40 10.00 2.50 5.90 0.30
Polish 35.60 41.90 47.20 17.50 12.90 47.70 18.70 17.80 5.90 5.90 0.20

Lithuanian 22.00 27.70 41.80 5.60 3.00 53.20 24.40 26.80 0.00 4.40 0.10
Chinese 46.30 45.40 56.20 33.60 26.40 59.50 20.60 22.10 18.60 5.70 0.20
Greek 23.10 49.20 51.80 13.80 12.10 57.90 15.00 12.10 1.90 6.10 0.50

German 30.90 30.50 57.60 19.60 15.70 36.00 22.70 22.50 8.50 8.60 0.50
Turkish 24.20 42.20 56.80 22.10 18.00 43.80 13.30 16.00 19.10 4.80 0.40
Russian 36.90 46.00 61.40 35.40 27.20 43.30 28.10 29.90 5.90 8.50 0.80
Arabic 25.20 45.20 49.00 24.20 16.80 46.60 14.40 15.50 18.50 4.20 0.20
Spanish 39.40 45.20 56.00 22.80 14.00 45.80 31.30 31.00 7.00 8.50 0.50
Estonian 28.80 42.10 55.50 12.50 9.60 61.20 10.90 10.00 1.10 6.80 0.20

Thai 35.70 61.90 52.70 19.30 14.90 53.60 19.50 12.90 1.70 7.10 0.40
Bulgarian 29.50 41.70 53.80 15.10 10.80 49.50 13.30 12.30 0.60 6.40 0.20

Vietnamese 23.60 41.80 48.20 24.00 17.40 45.50 6.50 6.30 4.10 1.50 0.00
Maltese 22.30 43.70 51.80 12.90 9.60 58.90 10.40 9.00 1.00 6.30 0.30
Persian 52.00 37.90 67.30 18.10 28.70 28.80 10.10 8.60 0.90 6.10 0.20
English 45.30 33.70 52.20 31.70 26.00 55.50 28.90 32.50 40.10 10.90 2.24

Turkman 30.30 60.10 54.60 18.50 14.60 48.00 14.90 12.00 1.00 7.60 0.20
Hungarian 34.30 41.60 56.00 28.10 20.90 49.30 23.60 23.30 19.30 10.40 0.60
Swedish 29.10 40.70 66.30 17.30 9.60 54.90 11.10 11.00 1.70 6.60 0.30
Japanese 29.30 48.20 50.00 23.60 17.40 53.80 14.30 16.00 19.20 6.00 0.40
Bengali 41.10 40.60 47.70 39.40 36.80 48.20 44.40 36.00 30.90 27.10 4.20
Italian 48.60 43.50 51.20 19.40 15.70 49.20 12.60 12.60 3.20 5.70 0.20
Finnish 30.90 41.70 55.00 26.50 22.00 45.50 23.30 25.60 12.00 6.90 0.40
Hindi 27.30 42.20 50.90 23.20 16.20 47.20 14.30 12.30 18.30 4.30 0.20

Swahili 18.00 25.40 44.20 10.50 12.40 24.10 19.30 15.90 1.80 8.60 0.40
Slovak 27.60 39.50 65.50 11.40 9.30 54.70 10.70 10.20 0.60 6.20 0.30
Danish 20.90 37.40 64.80 11.40 9.30 40.70 10.30 8.80 1.10 6.20 0.20
French 34.80 42.50 60.00 20.40 16.20 40.20 23.60 23.60 2.90 8.40 0.40

Portuguese 27.00 40.10 53.30 25.10 19.30 43.80 15.60 15.90 21.30 4.30 0.40
Korean 25.20 45.40 53.60 23.90 16.40 46.40 13.40 11.20 11.80 4.70 0.20

Slovenian 12.60 23.50 70.90 4.90 5.60 59.20 8.30 7.30 0.50 3.50 0.40
Czech 25.60 36.50 55.00 23.80 15.30 50.20 13.30 16.40 15.30 5.30 0.30

Average 30.14 40.00 54.62 19.39 15.39 48.64 17.24 16.75 8.59 6.80 0.99

Table 13: Generalization across existing audio deepfake datasets. All models are trained/finetuned
on the ASVSpoof2019 training set.

Model ASVSpoof2019 Wavefake Libri In the wild
Acc AUROC EER(%) Acc AUROC EER(%) Acc AUROC EER(%) Acc AUROC EER(%)

LFCC-LCNN 0.9474 0.9861 5.2620 0.5660 0.5975 43.3970 0.6225 0.6780 37.7510 0.4803 0.4635 51.9719
ResNet Spec. 0.8831 0.9447 11.6930 0.4798 0.4701 52.0230 0.5150 0.5122 48.5040 0.4091 0.3968 59.0890

RawNet2 0.8697 0.9358 13.0250 0.5218 0.5332 47.8200 0.5437 0.5653 45.6267 0.5070 0.5084 49.2980
RawGATST 0.9618 0.9924 3.8210 0.5359 0.5592 46.4120 0.6058 0.6562 39.4170 0.6352 0.6912 36.4760

AASIST 0.9523 0.9891 0.9834 0.5252 0.5371 47.4810 0.5854 0.6182 41.4620 0.5997 0.6284 40.0300
CLAP 0.9169 0.9775 8.3070 0.5920 0.6351 40.8015 0.5717 0.6031 42.8247 0.7042 0.7837 29.5785

Whisper-small 0.9914 0.9995 0.8566 0.7786 0.8570 22.1370 0.8175 0.8947 18.2510 0.8078 0.8872 19.2200
Whisper-large 0.9923 0.9996 0.7322 0.7886 0.8630 21.3380 0.8347 0.9128 15.6820 0.8263 0.9006 16.6520

Wave2Vec 0.9770 0.9945 2.2978 0.7115 0.7735 28.8550 0.8012 0.8802 19.8788 0.7910 0.8543 20.8954
HuBERT 0.9788 0.9946 2.1210 0.6424 0.6883 35.7634 0.7993 0.8812 20.0682 0.7288 0.7868 27.1158

Wave2VecBERT 0.9958 0.9998 0.4215 0.8149 0.9055 18.5114 0.9379 98.025 6.2100 0.9366 0.9778 6.3389

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 14: Evaluation on SONAR dataset. Models are only trained/finetuned on ASVSpoof2019 training set.
(a) Accuracy (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 0.5200 0.5625 0.5263 0.4135 0.5508 0.8900 0.6317 0.5333 0.7367 0.5960
ResNet Spec. 0.5200 0.6875 0.5263 0.4327 0.6102 0.8900 0.4933 0.5083 0.5233 0.5770

RawNet2 0.5600 0.5625 0.6000 0.4519 0.5339 0.5200 0.5517 0.4933 0.6333 0.5450
RawGATST 0.6400 0.5625 0.5684 0.4615 0.5000 0.9500 0.7533 0.5450 0.6183 0.6220

AASIST 0.6800 0.7188 0.6632 0.3462 0.5508 0.8200 0.5133 0.6250 0.7033 0.6250
CLAP 0.4800 0.5938 0.7474 0.5000 0.3475 0.3300 0.7100 0.5400 0.6500 0.5440

Whisper-small 0.9200 0.7812 0.7158 0.6058 0.4831 0.6100 0.7183 0.6383 0.4150 0.6540
Whisper-large 0.9300 0.7942 0.7635 0.6221 0.5368 0.7280 0.7546 0.6127 0.4430 0.6870

Wave2Vec 0.7600 0.7188 0.6842 0.8077 0.5508 0.9900 0.6483 0.8633 0.6633 0.7430
HuBERT 0.8800 0.7812 0.6842 0.8077 0.6102 1.0000 0.6117 0.8300 0.4500 0.7390

Wave2VecBERT 1.0000 0.8750 0.8316 0.8077 0.5763 0.9500 0.9317 0.6400 0.4517 0.7850

(b) AUROC (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 0.5552 0.6016 0.5491 0.4054 0.5184 0.9438 0.6841 0.5587 0.8049 0.6250
ResNet Spec. 0.5472 0.6973 0.5436 0.4555 0.6436 0.9308 0.4735 0.5429 0.5472 0.5980

RawNet2 0.6144 0.6406 0.5833 0.4384 0.5214 0.5526 0.5842 0.5049 0.6611 0.5670
RawGATST 0.6544 0.6191 0.5804 0.4296 0.4898 0.9641 0.8140 0.5813 0.6588 0.6440

AASIST 0.7584 0.7256 0.7165 0.2999 0.5985 0.8491 0.5189 0.6473 0.7671 0.6530
CLAP 0.4912 0.6895 0.8120 0.5252 0.2826 0.3074 0.7701 0.5657 0.7277 0.5750

Whisper-small 0.9520 0.8896 0.7420 0.6630 0.4844 0.6710 0.7812 0.7056 0.3924 0.6980
Whisper-large 0.9628 0.9011 0.8127 0.6938 0.5763 1.0000 0.7035 0.6765 0.4528 0.7530

Wave2Vec 0.8304 0.8037 0.7485 0.8805 0.5826 0.9999 0.6766 0.9404 0.7070 0.7970
HuBERT 0.9424 0.9043 0.7485 0.8992 0.6431 1.0000 0.6759 0.9080 0.4664 0.7990

Wave2VecBERT 1.0000 0.9248 0.8693 0.8828 0.6319 0.9796 0.9812 0.6825 0.4252 0.8200

(c) EER(%) (↓).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 48.0000 43.7500 47.3684 58.6538 44.9153 11.0000 36.8333 46.6667 23.3333 40.0580
ResNet Spec. 48.0000 31.2500 47.3684 56.7308 38.9831 11.0000 50.6667 49.1667 47.6667 42.3150

RawNet2 44.0000 43.7500 40.0000 54.8077 46.6102 48.0000 44.8333 50.6667 36.6667 45.4820
RawGATST 36.0000 43.7500 43.1579 53.8462 50.0000 5.0000 24.6667 45.5000 38.1667 37.7880

AASIST 32.0000 28.1250 33.6842 65.3846 44.9153 18.0000 48.6667 37.5000 29.6667 37.5490
CLAP 52.0000 40.6250 25.2632 50.0000 65.2542 67.0000 29.0000 46.0000 35.0000 45.5710

Whisper-small 8.0000 21.8750 28.4211 39.4231 51.6949 39.0000 28.1667 36.4667 58.5000 34.6160
Whisper-large 7.0000 20.5830 23.6590 37.7920 46.3280 27.2210 24.5450 38.7330 55.7360 31.2890

Wave2Vec 24.0000 28.1250 31.5789 19.2308 44.9153 1.0000 35.1667 13.6667 33.6667 25.7060
HuBERT 12.0000 21.8750 31.5789 19.2308 38.9831 0.0000 38.8333 17.0000 55.0000 26.0560

Wave2VecBERT 0.0000 12.5000 16.8421 19.2308 42.3729 5.0000 6.8333 36.0000 54.8333 21.5120

Table 15: Generalization across existing audio deepfake datasets. All models are trained/finetuned
on the combination of ASVSpoof2019 and Wavefake training set.

Model ASVSpoof2019 Wavefake Libri In the wild
Acc AUROC EER(%) Acc AUROC EER(%) Acc AUROC EER(%) Acc AUROC EER(%)

LFCC-LCNN 0.9414 0.9841 5.8600 0.5000 0.7474 37.7480 0.6797 0.7474 32.0330 0.5000 0.7474 37.7480
ResNet Spec. 0.8942 0.9506 10.5778 0.5691 0.6089 43.2443 0.5687 0.5842 43.1280 0.4135 0.3967 58.6490

RawNet2 0.8851 0.9482 11.4890 0.5811 0.6324 42.1370 0.6134 0.6606 38.6590 0.5267 0.5362 47.3340
RawGATST 0.9616 0.9918 3.8340 0.5256 0.5447 47.4430 0.6024 0.6409 39.7577 0.6315 0.6771 36.8480

AASIST 0.9615 0.9921 3.8480 0.5385 0.5527 46.1450 0.6073 0.6516 39.2650 0.6418 0.7010 35.8160
CLAP 0.9065 0.9675 9.3540 0.6912 0.7761 30.7630 0.6838 0.7494 31.6170 0.6206 0.6682 37.9400

Whisper-small 0.9812 0.9986 1.8760 0.9340 0.9821 6.6030 0.9175 0.9763 8.2540 0.8626 0.9380 13.7440
Whisper-large 0.9889 0.9994 1.2580 0.9422 0.9953 5.2270 0.9369 0.9892 6.3220 0.8823 0.9540 11.6520

Wave2Vec 0.9772 0.9955 2.2840 0.6336 0.6857 36.6410 0.9667 0.9941 3.3332 0.8512 0.9258 14.8780
HuBERT 0.9917 0.9995 0.8294 0.8996 0.9599 9.8092 0.9864 0.9986 1.3631 0.9345 0.9821 6.5504

Wave2VecBERT 0.9562 0.9869 4.3640 0.6815 0.7488 31.8700 0.9814 0.9910 1.8554 0.9308 0.9622 6.9228
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Table 16: Evaluation on SONAR dataset. Models are trained/finetuned on the combination of ASVSpoof2019
and Wavefake training set.

(a) Accuracy (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 0.5600 0.7500 0.7895 0.5865 0.7627 0.8300 0.7167 0.4167 0.6233 0.6710
ResNet Spec. 0.6800 0.6875 0.6105 0.5769 0.6864 0.9100 0.5617 0.5667 0.6500 0.6590

RawNet2 0.6000 0.5625 0.6421 0.4327 0.6017 0.8700 0.6683 0.4583 0.6633 0.6110
RawGATST 0.7200 0.6522 0.7324 0.4458 0.5822 0.9800 0.7782 0.5211 0.6745 0.6760

AASIST 0.7300 0.6413 0.7667 0.5023 0.6136 0.8900 0.6852 0.6285 0.6322 0.6770
CLAP 0.6400 0.8125 0.7579 0.3365 0.4661 0.7600 0.6317 0.3400 0.7567 0.6110

Whisper-small 0.9600 0.7500 0.7474 0.7404 0.4407 0.9000 0.8050 0.6300 0.3533 0.7030
Whisper-large 0.9800 0.7700 0.7893 0.7822 0.5883 0.9600 0.8411 0.6216 0.4688 0.7560

Wave2Vec 0.9200 0.7188 0.7684 0.9038 0.6059 0.9400 0.6558 0.8742 0.6642 0.7830
HuBERT 1.0000 0.8125 0.8842 0.9615 0.7966 1.0000 0.8417 0.9067 0.7150 0.8800

Wave2VecBERT 1.0000 0.6250 0.7789 0.8846 0.6017 0.9800 0.9483 0.5558 0.4917 0.7630

(b) AUROC (↑).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 0.6352 0.8604 0.8565 0.5699 0.8652 0.8743 0.7839 0.3889 0.6553 0.7210
ResNet Spec. 0.7424 0.7090 0.6463 0.5734 0.7512 0.9646 0.5701 0.5734 0.6963 0.6920

RawNet2 0.6368 0.5898 0.6757 0.3922 0.6994 0.9141 0.7351 0.4560 0.7082 0.6450
RawGATST 0.7458 0.6824 0.7793 0.4755 0.6011 0.9899 0.8043 0.5547 0.7073 0.7040

AASIST 0.7589 0.6797 0.7968 0.5218 0.6468 0.9344 0.7322 0.6706 0.6842 0.7140
CLAP 0.7216 0.9287 0.8250 0.3201 0.4497 0.8285 0.6924 0.3018 0.8247 0.6550

Whisper-small 0.9872 0.7803 0.7835 0.8159 0.4326 0.9159 0.8862 0.6771 0.2886 0.7300
Whisper-large 0.9924 0.8021 0.8568 0.8327 0.6283 0.9878 0.9218 0.6638 0.5107 0.8000

Wave2Vec 0.9664 0.7095 0.8351 0.9524 0.6439 0.9729 0.7113 0.9218 0.7290 0.8270
HuBERT 1.0000 0.8970 0.9155 0.9899 0.8477 1.0000 0.9197 0.9604 0.8169 0.9270

Wave2VecBERT 1.0000 0.6890 0.8632 0.9251 0.6239 0.9800 0.9665 0.5729 0.5289 0.7940

(c) EER(%) (↓).

Model PromptTTS2 NaturalSpeech3 VALL-E VoiceBox FlashSpeech AudioGen xTTS Seed-TTS OpenAI Average
LFCC-LCNN 44.0000 25.0000 21.0526 41.3462 23.7288 17.0000 28.3333 58.3333 37.6667 32.9400
ResNet Spec. 32.0000 31.2500 38.9470 42.3080 31.3560 9.0000 43.8330 43.3330 35.0000 34.1140

RawNet2 40.0000 43.7500 35.7895 56.7308 39.8305 13.0000 33.1667 54.1667 33.6667 38.9000
RawGATST 28.0000 34.7810 26.7633 55.4284 41.7860 2.0000 22.1833 47.8966 32.5000 32.3710

AASIST 27.0000 35.8720 23.3330 49.7712 38.6422 11.0000 31.4890 37.1550 36.7880 32.3390
CLAP 36.0000 18.7500 24.2105 66.3462 53.3898 24.0000 36.8333 66.0000 24.3333 38.8740

Whisper-small 4.0000 25.0000 25.2632 25.9615 55.9322 10.0000 19.5000 37.0000 64.6670 29.7030
Whisper-large 2.0000 23.0000 21.0732 21.7865 41.1744 4.0000 15.8943 37.8445 53.1270 24.4330

Wave2Vec 8.0000 28.1250 23.1579 9.6154 39.8305 6.0000 34.5000 12.6667 33.5000 21.7110
HuBERT 0.0000 18.7500 11.5789 3.8462 20.3390 0.0000 15.8333 9.3333 28.5000 12.0200

Wave2VecBERT 0.0000 37.5000 22.1053 11.5385 39.8305 2.0000 5.1667 44.5000 50.8333 23.7190
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