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Abstract

Constrained Markov decision processes (CMDPs) are a common way to model
safety constraints in reinforcement learning. State-of-the-art methods for efficiently
solving CMDPs are based on primal-dual algorithms. For these algorithms, all
currently known regret bounds allow for error cancellations — one can compensate
for a constraint violation in one round with a strict constraint satisfaction in another.
This makes the online learning process unsafe since it only guarantees safety for
the final (mixture) policy but not during learning. As Efroni et al. (2020) pointed
out, it is an open question whether primal-dual algorithms can provably achieve
sublinear regret if we do not allow error cancellations. In this paper, we give the
first affirmative answer. We first generalize a result on last-iterate convergence of
regularized primal-dual schemes to CMDPs with multiple constraints. Building
upon this insight, we propose a model-based primal-dual algorithm to learn in an
unknown CMDP. We prove that our algorithm achieves sublinear regret without
error cancellations.

1 Introduction
Classical reinforcement learning (RL, Sutton and Barto, 2018) aims to solve sequential decision-
making problems under uncertainty. It involves learning a policy while interacting with an unknown
Markov decision process (MDP, Bellman, 1957). However, in many real-world situations, RL
algorithms need to solve the task while respecting certain safety constraints. For example, in
autonomous driving and drone navigation, we must avoid collisions and adhere to traffic rules to
ensure safe behavior (Brunke et al., 2022). Such safety requirements are commonly described by
constrained Markov decision processes (CMDPs, Altman, 1999). In CMDPs, the goal is to maximize
the expected cumulative reward while subject to multiple safety constraints, each modeled by a
different expected cumulative reward signal that needs to lie above a respective threshold. We
consider the finite-horizon setting, in which an algorithm chooses a policy in each episode, plays
it for one episode, and observes the random transitions, rewards, and constraint rewards along its
trajectory.

In the literature, there are three standard approaches for finding an optimal policy in a known CMDP:
linear programming (LP, Altman, 1999), primal-dual (Paternain et al., 2022), and dual algorithms
(Paternain et al., 2019). If the CMDP is unknown, a common approach to handle the uncertainty is the
classical paradigm of optimism in the face of uncertainty (Auer et al., 2008). In their influential paper,
Efroni et al. (2020) established comprehensive regret guarantees for all three types of optimistic
algorithms in the online setup. In practice, especially primal-dual algorithms are preferred due to
their high computational efficiency and flexibility for policy parameterization, thereby scaling to
high-dimensional problems (Chow et al., 2017; Achiam et al., 2017; Tessler et al., 2018). Thus, it is
important to rigorously understand the fundamental properties of this algorithm class. Indeed, there
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has been a large number of studies on primal-dual (and dual) approaches for CMDPs (Ding et al., 2020,
2022b; Liu et al., 2021a; Ding and Jovanović, 2022; Ghosh et al., 2022; Ding and Lavaei, 2022; Qiu
et al., 2020; Liu et al., 2021b; Bai et al., 2022, to list just a few) since the work of Efroni et al. (2020).

However, unlike for LP-based algorithms, the known bounds for primal-dual (and dual) algorithms
suffer from the fundamental limitation pointed out by Efroni et al. (2020, Section 2.2): they concern
a weaker, less safe notion of regret. More precisely, the known guarantees bound the sum of
the suboptimalities and the sum of the constraint violations across episodes, where one episode
corresponds to one round of learning. However, a policy can have a negative constraint violation
(by being very safe but obtaining a lower return than an optimal safe policy) or a positive constraint
violation (by being unsafe but obtaining a higher return than an optimal safe policy). Thus, terms
from these two cases can cancel each other out when summing the violations across episodes, a
phenomenon referred to as error cancellations (Efroni et al., 2020). An algorithm with sublinear weak
regret may heavily violate safety constraints during learning. For example, if the policies alternate
between the two cases above in every other episode, the algorithm may even obtain zero regret despite
being unsafe every second episode. This weak notion of regret falls short of capturing safety in a
setup with no simulator and where the algorithm must adhere to constraints during learning. In fact,
these cancellations are not a weakness in the analysis but rather due to oscillations of the underlying
optimization method, which converges on average but not in the last-iterate (Efroni et al., 2020; Beck,
2017). Indeed, these oscillations are observed in practice (Stooke et al., 2020; Moskovitz et al., 2023).

We thus consider a stronger notion of regret that concerns the sum of the positive parts of the error
terms instead. This regret does not allow for error cancellations, and we refer to it as strong regret.
The results of this paper address the research question pointed out by Efroni et al. (2020):

Can we design an efficient primal-dual algorithm that achieves sublinear strong regret in an
unknown CMDP?

We provide the first affirmative answer for tabular finite-horizon CMDPs. Specifically, we introduce
a regularization framework inspired by the recent work of Ding et al. (2023) and derive guarantees
in the online setup for a primal-dual algorithm that arises from this formulation.

Contributions Our main contributions are the following:

• We first prove non-asymptotic policy last-iterate convergence (Definition 4.1) of a regularized
primal-dual scheme for CMDPs despite the inherent non-concavity, assuming access to
a value function oracle (Section 4). Our guarantee generalizes previous results for the
strictly easier problem of CMDPs with only a single constraint. This is the first analysis that
establishes last-iterate convergence of primal-dual algorithms in arbitrary CMDPs.

• Combining this regularized primal-dual scheme with optimistic exploration, we propose an
improved model-based primal-dual algorithm (Algorithm 1) for online learning in CMDPs
(Section 5). Our algorithm requires no prior knowledge of the CMDP and maintains
value-optimism for the regularized problem.

• Finally, we establish that our algorithm achieves sublinear strong regret when learning an
unknown CMDP (Section 5.2). This is the first primal-dual algorithm achieving a sublinear
regret guarantee without allowing error cancellations, providing the first answer to the open
question posed by Efroni et al. (2020).

The latter is relevant due to the efficiency and practical importance of primal-dual algorithms, which
are often preferred over LP-based algorithms in large-scale applications. Additionally, we provide
numerical evaluations of our algorithm in simple environments. We illustrate that it exhibits sublinear
regret when safety during learning is concerned, while the unregularized algorithm does not. We
conclude that error cancellations are not merely a hypothetical issue of existing algorithms but bear
practical relevance.

1.1 Related Work
Since Efroni et al. (2020) analyzed the vanilla primal-dual (and dual) algorithm, their analysis has been
extended in various works, both for the case of an unknown or known CMDP (Ding et al., 2020, 2022b;
Liu et al., 2021a; Ding and Jovanović, 2022; Ghosh et al., 2022; Ding and Lavaei, 2022; Qiu et al.,
2020; Liu et al., 2021b; Bai et al., 2022). As Calvo-Fullana et al. (2023) pointed out, even the works as-
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suming full knowledge of the CMDP only establish convergence of the averaged iterates. Hence, none
of the mentioned works provides a guarantee for the strong regret or is easily amendable to obtain one.

Very recently, Ding et al. (2023) were the first to provide a last-iterate convergence analysis for a
primal-dual algorithm in a known discounted infinite-horizon CMDP closely related to our algorithm.
However, their analysis is limited to the case of a single constraint, which is non-trivial to generalize
to multiple constraints (Section 4). Moreover, the authors left it as an open question whether the
algorithm can be generalized to achieve last-iterate convergence in the online setup, when the CMDP
is unknown (Section 5). In addition, our analysis holds for an algorithm with closed-form updates
(Equations (6) and (7)), while their algorithm involves Bregman projections for technical reasons
(Lemma 4.1).

Prior, Moskovitz et al. (2023) showed last-iterate convergence of a primal-dual scheme, but their
analysis concerns a hypothetical algorithm whose implicit updates do not allow efficient implementa-
tion. Li et al. (2021) provided a dual (not primal-dual) algorithm based on regularization like ours but
only proved convergence for a history-weighted mixture policy2 in a known CMDP. Similarly, Ying
et al. (2022) derived a dual algorithm with last-iterate convergence but left it open whether an online
version is possible.

Müller et al. (2023) were the first to prove a sublinear regret guarantee without error cancellations
for a dual algorithm in the online setup. However, their algorithm, which is based on the augmented
Lagrangian method, lacks the desired computational efficiency. Very recently, Ghosh et al. (2024)
proposed a different primal-dual algorithm to achieve sublinear strong regret, but their algorithm re-
quires an exponential runtime to enjoy this guarantee. We refer to Appendix B for further comparison
with prior results.

2 Problem Formulation
Notation For n ∈ N, we use [n] to refer to the set of integers {1, . . . , n}. For a finite set X , we
denote the probability simplex over X as ∆(X) = {v ∈ [0, 1]X |

∑
x∈X vx = 1}. For a ∈ R, we

set [a]+ := max{0, a} to be the positive part of a. ∥b∥ denotes the ℓ2-norm of a vector b ∈ Rn.
Õ-notation refers to asymptotics up to poly-log factors.

Constrained MDPs A finite-horizon CMDP with state and action spaces S , A (with finite cardinal-
ities S and A) and horizon H > 0 is defined by a tuple M = (S,A, H, p, r,u, c). Every episode
consists of H steps and starts from an initial state s1 ∈ S.3 At every step h, ph(s′|s, a) denotes
the probability of transitioning to state s′ if the current state and action are s and a. Moreover,
rh : S × A → [0, 1], (s, a) 7→ rh(s, a) denotes the reward function at step h ∈ [H]. Similarly,
uh : S × A → [0, 1]I , (s, a) 7→ uh(s, a) = (u1,h(s, a), . . . , uI,h(s, a))

T ∈ [0, 1]I refers to the I
constraint reward functions, and c ∈ [0, H]I are the respective thresholds ci for the i-th constraint
(i ∈ [I]). The algorithm interacts with the CMDP by playing a policy π ∈ Π, where

Π :=

{
(π1, . . . , πH)

∣∣∣∣ ∀h ∀s ∈ S : πh(·|s) ∈ ∆(A)

}
.

For any π ∈ Π, we consider the Markov process given by ah ∼ πh(·|sh), sh+1 ∼ ph(·|sh, ah) for
h = 1, . . . ,H . For any function r′ : [H]×S ×A → R, (h, s, a) 7→ r′h(s, a), every (s, h) ∈ S × [H]
and π ∈ Π, consider the value functions

Qπr′,h(s, a) := Eπ

[
H∑

h′=h

r′h′(sh′ , ah′)

∣∣∣∣ sh = s, ah = a

]
, V πr′,h(s) := ⟨Qπr′,h(s, ·), πh(·|s)⟩.

For notational convenience, we drop the indices for the step and state if we refer to h = 1 and s1 and
write V πr′ = V πr′,1(s1). In the CMDP setting, we are interested in solving the following optimization
problem:

max
π∈Π

V πr s.t. V πui
≥ ci (∀i ∈ [I]), (1)

and we fix an optimal solution π⋆ ∈ Π for Equation (1). Among all policies that are feasible with
respect to the I safety constraints V πui

≥ ci, the goal is to find one that maximizes V πr .

2By mixture policy we refer to a policy randomly drawn from all policy iterates.
3It is straightforward to extend this to any initial distribution µ.
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We consider the stochastic reward setting, in which the algorithm observes rewards sampled from
random variables Rh(s, a) ∈ [0, 1] and Uh(s, a) ∈ [0, 1]I such that E[Rh(s, a)] = rh(s, a) and
E[Ui,h(s, a)] = ui,h(s, a) for all i ∈ [I] when taking action a in state s at step h. Throughout, we
make the following assumption, which is standard in the context of CMDPs (Altman, 1999; Efroni
et al., 2020; Li et al., 2021; Ying et al., 2022; Ding et al., 2022c; Paternain et al., 2022; Ding et al.,
2023).

Assumption 2.1 (Slater policy). There exists π̄ ∈ Π and ξ ∈ RI>0 such that V π̄ui
≥ ci + ξi for all

i ∈ [I]. Set the Slater gap

Ξ := min
i∈[I]

ξi.

This assumption asserts that there exists a policy that strictly satisfies the constraints.

Problem Formulation The algorithm interacts with the unknown CMDP over a fixed number of
K > 0 episodes. Prior to every episode k ∈ [K], the algorithm selects a policy πk ∈ Π and plays it
for one run of the CMDP. The goal is to simultaneously minimize its two strong regrets:

R(K; r) :=
∑
k∈[K]

[
V π

⋆

r − V πk
r

]
+
, (Objective)

R(K;u) := max
i∈[I]

∑
k∈[K]

[
ci − V πk

ui

]
+
. (Constraints)

Only when a policy has a suboptimal objective or violates the constraints, this counts to the respective
regret. All existing works on primal-dual (and dual) algorithms (e.g., Liu et al., 2021b; Efroni et al.,
2020; Bai et al., 2022; Ding et al., 2022a,c) only prove sublinear guarantees on a weaker notion:

Rweak(K; r) :=
∑
k∈[K]

(
V π

⋆

r − V πk
r

)
, Rweak(K;u) := max

i∈[I]

∑
k∈[K]

(
ci − V πk

ui

)
.

The weak regrets allow for the aforementioned error cancellations as positive and negative terms
count toward each of the regrets. Even if they are sublinear in K (in fact, even if they are zero), the
algorithm may continue compensating for a constraint violation in one episode with strict constraint
satisfaction in another. On the other hand, a sublinear bound on the stronger notion of regret
guarantees that the algorithm achieves a low constraint violation in most episodes (see Section 5.3).
This is crucial for many practical applications where we do not have access to a simulator, but we
have to learn our optimal policy in an online fashion. In the example of navigating an autonomous
vehicle or drone, one would want to avoid crossing the boundaries of a specified track in each episode
during learning. It is not helpful to compensate for crashing the vehicle into a wall by driving overly
safely in the next episode. However, from a theoretical perspective, it is strictly more challenging to
provide a guarantee for the strong regret than for the weaker notion.4

3 Primal-Dual Scheme
Vanilla Scheme Primal-dual algorithms arise from the equivalent Lagrangian formulation (Altman,
1999) of Equation (1):

max
π∈Π

min
λ∈RI

≥0

L(π,λ), (2)

where

L(π,λ) := V πr +
∑
i∈[I]

λi(V
π
ui

− ci) = V πr+λT (u−H−1c)

is the Lagrangian. Paternain et al. (2019) showed that CMDPs exhibit strong duality, by which
Equation (2) is equivalent to finding a saddle point (π⋆,λ⋆) of the Lagrangian. Primal-dual algorithms

4For practical purposes, one may consider the strong regret only for the constraint violations and the weak
one for the objective. We refer to Appendix G for a discussion of the differences. However, this relaxation does
not improve our theoretical results.
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solve this saddle point problem via iterated play between two no-regret dynamics for π and λ.
Typically, as considered by Efroni et al. (2020) in the regret minimization setting,

πk+1,h(a|s) ∝ πk,h(a|s) exp
(
ηQπk

r+λT
ku,h

(s, a)
)
, (3)

λk+1 =projΛ (λk − η(V πk
u − c)) , (4)

where projΛ refers to the projection onto a predefined Λ = [0, λmax]
I , which amounts to truncating

the coordinates. We refer to Equations (3) and (4) as vanilla primal-dual scheme. The mixture policy
of the iterates is guaranteed to converge to an optimal solution pair of the min-max problem. However,
the last iterate is not guaranteed to converge. Instead, the method oscillates around an optimal
solution, which results in the weak regret bounds of previous primal-dual algorithms (Section 6).

Regularized Scheme The key idea of the regularization is to induce strict concavity in the primal
variable (to be precise, in the state-action occupancy measure dπh(s, a) := Pπ[sh = s, ah = a] and
not in the policy) and strong convexity in the dual variable λ. This enables us to establish convergence
to the unique solution of the regularized problem. We then show how to retrieve an error bound for
the original, unregularized problem by carefully choosing the amount of regularization.

For τ > 0, we define the regularized Lagrangian Lτ : Π× RI → R as

Lτ (π,λ) := L(π,λ) + τ

(
H(π) +

1

2
∥λ∥2

)
,

where H(π) := −Eπ[
∑H
h=1 log(πh(ah|sh))] is the entropy of a policy π. Then, consider the

following regularized CMDP problem:

max
π∈Π

min
λ∈Λ

Lτ (π,λ), (5)

The domain of the dual variable λ is now a compact set Λ := [0, λmax]
I , with λmax ≥ HΞ−1 to be

specified (crucially, we will choose it depending on the number of episodes K). Thanks to strong
duality of the unregularized problem, any saddle point (π⋆,λ⋆) of L satisfies ∥λ⋆∥ ≤ HΞ−1 (e.g.,
Ying et al. (2022) for infinite horizon), which will allow us to constrain the dual variable as above.
We denote the regularized primal and dual optimizers as follows:

π⋆τ = argmax
π∈Π

min
λ∈Λ

Lτ (π,λ), λ⋆τ = argmin
λ∈Λ

max
π∈Π

Lτ (π,λ).

Regularization preserves strong duality (Appendix C), by which we are equivalently looking for a
saddle point (π⋆τ ,λ

⋆
τ ) of the regularized Lagrangian Lτ . Ding et al. (2023) proposed to perform the

ascent-descent scheme in Equations (3) and (4) on Lτ rather than L in the discounted infinite-horizon
setting given a value function oracle:

πk+1,h(a|s) ∝πk,h(a|s) exp
(
ηQπk

r+λT
ku+τψk,h

(s, a)
)
, (6)

λk+1 =projΛ ((1− ητ)λk − η(V πk
u − c)) , (7)

where ψk,h(s, a) := − log(πk,h(a|s)). We refer to Equations (6) and (7) as regularized primal-
dual scheme. In fact, our scheme above is a simplification of Ding et al. (2023)’s algorithm, since
their policy update would read πk+1,h(·|s) = argmaxπh(·|s)∈∆̂(A)⟨πh(·|s), Q

πk

r+λT
ku+τψk,h

(s, ·)⟩ −
1
ηKL(πh(·|s)||πk,h(·|s)), where ∆̂(A) := {πh(·|s) ∈ ∆(A) | ∀a ∈ A : πh(a|s) ≥ ε0/A} for some
ε0 > 0 is a restricted probability simplex for technical reasons stemming from the analysis. While
this update can be performed via Bregman projections (Orabona, 2019) of the KL divergence onto
∆̂(A), this requires solving a convex program at every iteration k of the scheme. In contrast, our
scheme admits a closed form of the policy update in Equation (6) due to our modified analysis (see
discussion of Lemma 4.1).

4 Last-Iterate Convergence
In this section, we prove last-iterate convergence of the regularized primal-dual scheme (Equations (6)
and (7)) with an exact value function oracle (e.g., via policy evaluation if the true model is known)
for an arbitrary number of constraints. We define last-iterate convergence as follows.
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Definition 4.1 (Last-iterate convergence). A method producing policy iterates πk ∈ Π (k = 1, 2, . . . )
is last-iterate convergent if

V π
⋆

r − V πk
r → 0 and [ci − V πk

ui
]+ → 0 (∀i ∈ [I])

as k → ∞.

The main technical challenges we overcome to show last-iterate convergence are: (a) to prove
ascent properties for the primal update (Equation (6)), which optimizes a nonconcave objective
with surrogate gradients Qπk

r+λT
ku+τψk,h

(s, a) that are unbounded in general; and (b) to bound all
unregularized constraint violations of the last iterate πk in the presence of more than one constraint.
We provide all proofs for this section in Appendix D.

Regularized Optimizers Our first step is to show that the iterates (πk,λk) converge to the regularized
optimizers (π⋆τ ,λ

⋆
τ ). Indeed, we formalize this by showing that the potential function

Φk :=
∑
s,h

Pπ⋆
τ
[sh = s]KLk,h(s) +

1

2
∥λ⋆τ − λk∥2

approaches zero, if we choose the regularization parameter τ and the step size η sufficiently small.
Here, KLk,h(s) := KL(π⋆τ,h(·|s), πk,h(·|s)) refers to the Kullback-Leibler divergence between the
optimal and the k-th policy, and Pπ⋆

τ
refers to the probability distribution under policy π⋆τ .

Lemma 4.1 (Regularized convergence). Let η, τ < 1 and λmax ≥ HΞ−1. The iterates in Equa-
tions (6) and (7) satisfy

Φk+1 ≤ (1− ητ)kΦ1 + Õ
(
ητ−1Cη,τ,Λ

)
,

where Cη,τ,Λ = λ2maxH
3A1/2I2 exp (ηH (1 + λmaxI + log(A))) + I (H + τλmax)

2.

Despite the exponential term, we can control the factor Cη,τ,Λ to be constant of order
poly(A,H, I,Ξ−1) by choosing η < (HλmaxI log(A))

−1. For the remaining part, η and
τ need to be traded off to have fast linear convergence (1 − ητ)kΦ1 and a small bias term
ητ−1Cη,τ,Λ simultaneously. Ding et al. (2023) showed a similar result with a different constant
Cη,τ for their update rule that constrains the policies to the restricted probability simplex
∆̂(A) := {πh(·|s) ∈ ∆(A) | ∀a ∈ A : πh(a|s) ≥ ε0/A} by solving a convex problem in
every iteration. They introduce this restriction as their proof requires a uniform bound of
Qπk

r+λT
ku+τψk,h

(s, a) and thus of τψk,h = −τ log(πk,h(s, a)), which may be unbounded outside

of ∆̂(A). Our modified proof overcomes this challenge by leveraging a mirror descent (MD) lemma
with local norms rather than the standard online MD lemma (Orabona, 2019). While the standard
norm of the regularized Q-values may be unbounded outside of ∆̂(A), we are able to bound their
local norms to arrive at Lemma 4.1, even though our policy updates (Equation (6)) are not restricted
to ∆̂(A) and thus closed-form. We refer to Appendix D for the proof.

Unregularized Error Bounds While the bound in Lemma 4.1 depends on the choice of η < 1, τ < 1
and λmax ≥ HΞ−1, we show that it is possible though not obvious to choose them (depending on
the desired approximation) such that Φk decays to zero. Prior to this, we show that this will allow us
to upper-bound both the constraint violation and the objective suboptimality in the original problem.

Lemma 4.2 (Error bounds). For any sequence (πk)k∈[K],[
V π

⋆

r − V πk
r

]
+
≤H3/2(2Φk)

1/2 + τH log(A),

max
i∈[I]

[
ci − V πk

ui

]
+
≤H3/2(2Φk)

1/2 + τλmax + λ−1
max

(
H2Ξ−1 + τH log(A)

)
.

A similar result was provided by Ding et al. (2023) for the case of a single constraint (I = 1).
Generalizing this is technically challenging as the standard way of showing that approximate saddle
points have small constraint violation (Beck, 2017, Theorem 3.60) does not apply in the case of
regularized saddle points. Simultaneously, the technique of Ding et al. (2023, Corollary 1) leverages
the fact that only one constraint is present. We overcome this by choosing the domain Λ = [0, λmax]

I

larger than standard primal-dual algorithms, making it possible to extract bounds on the individual
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constraint violations from the approximate saddle points. See Appendix D for the proof. This novel
approach yields the rather uncommon inverse dependency on the diameter of Λ in Lemma 4.2, which
needs to be chosen such that both terms τλmax and λ−1

max are O(ε) to obtain an ε-close solution.

Lemma 4.2 tells us that we can bound the objective suboptimality and all constraint violations by
controlling the terms ∝ (Φk)

1/2 via Lemma 4.1, and the remaining terms by appropriately choosing
the regularization and domain diameter, in terms of ε.

Last-Iterate Convergence We are now ready to establish last-iterate convergence to the unregularized
optimal policy of the regularized primal-dual scheme.

Theorem 4.1 (Last-iterate convergence). Let ε ∈ (0, 1). Then, with appropriate choices of η ∝ ε6,
τ ∝ ε2, λmax ∝ ε−1, for k = Ω(poly(A,H, I,Ξ−1) · ε−10) we have[

V π
⋆

r − V πk
r

]
+
≤ ε,

[
ci − V πk

ui

]
+
≤ ε (∀i ∈ [I]).

Here, we only highlight the explicit dependency on the desired approximation. The dependency on
the CMDP size is (low-degree) polynomial and detailed in Appendix D. The only problem-dependent
constant in this bound is the Slater gap Ξ, which is shared by all primal-dual analyses of our
knowledge. While the provided rate is slow and may be improved in the future, all other known rates
of primal-dual algorithms for CMDPs with arbitrary constraints (I > 1) only hold for the averaged
and not the last iterate. More importantly, the technique leading to this result will allow us to achieve
sublinear strong regret in the following section.

5 Online Setup
Recall the regularized primal-dual scheme from Equations (6) and (7). In our online learning setup,
the true value functions are not known as we are learning the unknown CMDP. Thus, we are required
to explore the CMDP and respect safety during exploration. Replacing the value functions by
optimistic estimates (Shani et al., 2020; Auer et al., 2008) allows us to turn the primal-dual scheme
into an online learning algorithm for finite-horizon CMDPs (see Algorithm 1). Importantly, we
need to be optimistic with respect to the regularization term τH(π) too, rather than just the classical
mixture value V π

r+λT
ku

. The main technical challenge is to incorporate the model uncertainty into our
primal-dual analysis from Section 4.

5.1 Optimistic Model

For all s, a, h and k ∈ [K], let nk−1,h(s, a) :=
∑k−1
l=1 1{slh=s, a

l
h=a}

count the number of times that
the state-action pair (s, a) has been visited at step h before episode k. Here, (slh, alh) denotes the
state-action pair visited at step h in episode l. First, we compute the empirical averages of the reward
and transition probabilities as follows:

r̄k−1,h(s, a) :=

∑k−1
l=1 R

l
h(s, a)1{slh=s, a

l
h=a}

nk−1,h(s, a) ∨ 1
, ūk−1,i,h(s, a) :=

∑k−1
l=1 U

l
i,h(s, a)1{slh=s, a

l
h=a}

nk−1,h(s, a) ∨ 1
,

p̄k−1,h(s
′|s, a) :=

∑k−1
l=1 1{slh=s, a

l
h=a, s

l
h+1=s

′}

nk−1,h(s, a) ∨ 1
, (8)

where a ∨ b := max{a, b} and 1A is the indicator function of an event A. We consider optimistic
estimates

r̂k,h(s, a) :=r̄k−1,h(s, a) + bk−1,h(s, a),

ûk,i,h(s, a) :=ūk−1,i,h(s, a) + bk−1,h(s, a), (9)

ψ̂k,h(s, a) :=− log(πk,h(a|s)) + bpk−1,h(s, a) log(A),

p̂k,h(s
′|s, a) :=p̄k−1,h(s

′|s, a),

where bk−1,h(s, a) = brk−1,h(s, a) + bpk−1,h(s, a), and for any δ ∈ (0, 1), we specify the correct
values for

brk−1,h(s, a) = O

(√
log (SAHIKδ−1)

nk−1,h(s, a) ∨ 1

)
, bpk−1,h(s, a) = O

(
H

√
S + log (SAHKδ−1)

nk−1,h(s, a) ∨ 1

)
,

7



Algorithm 1 Regularized Primal-Dual Algorithm with Optimistic Exploration
Require: Λ = [0, λmax]

I , stepsize η > 0, regularization parameter τ > 0, number of episodes K,
initial policy π1,h(a|s) = 1/A (∀s, a, h), λ1 := 0 ∈ RI

for k = 1, . . . ,K do
Update r̂k, ûk, p̂k, ψ̂k via Equation (9).

Truncated policy evaluation (Algorithm 2) w.r.t. ẑk (Equation (10)) and ûk:

Q̂kẑk(·), V̂
k
ûk

:=EVAL(πk, λk, r̂k, ûk, ψ̂k, p̂k).

Update primal variables for all h, s, a: πk+1,h(a|s) ∝ πk,h(a|s) exp
(
ηQ̂kh,ẑk(s, a)

)
.

Update dual variables: λk+1 = projΛ
(
(1− ητ)λk − η(V̂ k

ûk
− c)

)
.

Play πk for one episode, update r̄k, ūk, ḡk, p̄k via Equation (8).

in Appendix E to obtain our regret guarantees with probability at least 1− δ. The optimistic model
guarantees that, with high probability, the obtained value functions overestimate the true ones and
simultaneously allows us to control the estimation error. While optimistic exploration is standard, we
here also take the entropy term in the objective into account via ψ̂k. Let

ẑk := r̂k + λTk ûk + τψ̂k (10)

be the optimistic reward function mimicking the π-dependency of the regularized Lagrangian at
(πk, λk). Consider the truncated value functions (h, s, a) 7→ Q̂kẑk,h(s, a) and V̂ k

ûk
= V̂ k

ûk,1
(s1) that

we compute via truncated policy evaluation (by dynamic programming) of πk with respect to the
optimistic model. We refer to Algorithm 2 in Appendix E, where we also establish the relevant
properties of the model.

Algorithm Combining the truncated policy estimation under our learned model with the regularized
primal-dual scheme (Equations (6) and (7)) yields Algorithm 1. The computational cost of the
algorithm amounts to evaluating a policy O(I) times per episode, which matches the complexity
of standard primal-dual algorithms and is more efficient than running dual or LP-based algorithms.
Projecting onto Λ is immediate since Λ is a product of intervals.

5.2 Regret Analysis
We now provide the key steps of our regret analysis, showing that Algorithm 1 indeed achieves
sublinear strong regret for both the constraint violations and the objective. We defer all proofs for
this section to Appendix F.

Lemma 5.1 (Regularized convergence). Let η, τ < 1 and λmax ≥ HΞ−1. With probability at least
1− δ, the iterates of Algorithm 1 satisfy

Φk+1 ≤(1− ητ)kΦ1 + Õ

(
ητ−1Cη,τ,Λ + ηλmax

(
ISA1/2H2k1/2 + IS3/2AH2

))
,

where Cη,τ,Λ is the same constant as in Lemma 4.1.

Here, we use Õ-notation for asymptotics up to polylogarithmic factors in S, A, H , I , K, Ξ−1, and
δ−1. This result is similar to our Lemma 4.1, but now we obtain an additional term corresponding to
the model uncertainty (estimation error), which we control when choosing the step size η.

Regret Bound In a final step, we can leverage Lemma 4.2 to turn Lemma 5.1 into a sublinear regret
bound for Algorithm 1, when summing up the error terms and choosing η, τ , and λmax ≥ HΞ−1

optimally depending on K given our bounds. This yields our main result.

Theorem 5.1 (Regret bound). Let τ = K−1/7, η = (H2I)−1ΞK−5/7, λmax = HΞ−1K1/14.
Then with probability at least 1− δ, Algorithm 1 obtains a strong regret of

R(K; r) ≤ CrK
0.93, R(K;u) ≤ CuK

0.93,

where Cr, Cu = poly(S,A,H, I,Ξ−1, log(1/δ), log(K)) and K is the number of episodes.
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Here, we only highlight the leading term in K. The dependency on the CMDP parameters is (low-
degree) polynomial and detailed in Appendix F. Again, Ξ is the only problem-dependent constant
(and unavoidable). We remark that our proof of Theorem 5.1, in fact, shows last-iterate convergence
in the online setup, which is strictly stronger than a regret bound in general.

Our strong regret bound of Õ(K0.93) is less tight than the Õ(K1/2) that the vanilla primal-dual
algorithm achieves for the weak regret, for which there exist well-known lower bounds (Jin et al.,
2018; Domingues et al., 2021). Nevertheless, Algorithm 1 is the first primal-dual algorithm for
CMDPs provably achieving sublinear strong regret. It is thus the first algorithm of its kind for which
we can guarantee that it cannot keep violating constraints indefinitely. While LP-based approaches
achieve strong regret of Õ(K1/2), most modern (deep) safe RL algorithms for CMDPs follow primal-
dual schemes (Chow et al., 2017; Tessler et al., 2018; Stooke et al., 2020). We believe that it might
be possible to tighten our analysis, although this will require novel ideas. Indeed, our numerical
evaluations show that the parameter choices in Theorem 5.1 are overly pessimistic.

5.3 Strong vs. Weak Regret and Safety at any Time
We allude to the strong regret several times by saying that a sublinear bound guarantees safety during
learning or in most episodes. As our algorithm does not guarantee safety in every episode, one may
wonder in which sense safety during learning is formally guaranteed by the strong regret compared
to the weak one. Indeed, this is an important theme in CMDPs. In an unknown CMDP, there is no
way to explore it without constraint violations unless further assumptions are made (as the constraint
rewards ui and transitions P are unknown, we cannot know that an action is unsafe without trying
at least once). However, this is a limitation of the CMDP model with exploration rather than our
algorithm. We can thus only argue about safety in most episodes.

(Strict) Safety in Most Episodes Unlike any previous primal-dual algorithm, our method guarantees
that for any fixed ε > 0, the fraction of episodes in which our policy is not ε-safe vanishes to 0 as the
number of episodes K grows. Not being ε-safe here means to violate at least one constraint by at
least ε. We make this formal in the following remark.

Remark 5.1. Fix ε > 0 and suppose R(K;u) ≤ Õ(Kα) for some α ∈ (0, 1). Then there exist at
most Õ(Kα/ε) episodes with a constraint violation of at least ε. In other words, only a small fraction
Õ(Kα−1/ε) = o(1) of the iterates is not ε-safe. In comparison, this is by no means guaranteed by a
sublinear bound on Rweak(K;u).

Hence, our algorithm is approximately safe in most episodes, while being safe in every episode is
not possible by design. This is a remarkable result since previous works on primal-dual algorithms
can only guarantee safety of the average policy and not in most of the episodes (such algorithms
can be fully unsafe in, e.g., half of the episodes). Furthermore, ε-safety can be strengthened by a
simple reduction to ensure strict safety in most episodes. This is possible by increasing the true
constraint thresholds by a small shift of ε = O(K(α−1)/2) to be more conservative and applying our
results. For the formal details of this reduction, see, e.g., Appendix C.4 in Ding et al. (2023). We thus
established that the fraction of unsafe episodes is vanishing (in terms of K).

6 Simulation
We perform numerical simulations of our algorithm and compare it to its unregularized counterpart
(Efroni et al., 2020). We find that the vanilla primal-dual algorithm can suffer linear strong regret
while our regularized counterpart does not, illustrating that error cancellations are not merely a
hypothetical issue. We provide further details in Appendix G.

Baselines and Environment We compare our regularized primal-dual algorithm (Algorithm 1) to
the vanilla primal-dual algorithm of Efroni et al. (2020), which corresponds to Equations (3) and (4)
with optimistic exploration. We test each algorithm for the same total number (6) of hyperparameter
configurations and report the best results for each. We consider a randomly generated CMDP with
deterministic rewards and unknown transitions. We draw the reward function r, constraint thresholds
c, and transitions p uniformly at random. In order for oscillations (and thus error cancellations) to
occur, the objective must be conflicting with the constraints (Moskovitz et al., 2023), as they can
otherwise easily be satisfied. However, by concentration of measure, two random vectors in high
dimension are nearly orthogonal with high probability (Blum et al., 2020). Uniformly sampling the
constraints would thus not yield interesting CMDPs, which is why we invoke a negative correlation
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Figure 1: Constraint violation and objective suboptimality of the vanilla primal-dual algorithm (Efroni
et al., 2020, cf. Equations (3) and (4)) and our regularized version (Algorithm 1). We present the
values of the individual policies in each episode while learning the CMDP.
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(b) Weak regrets
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Figure 2: Vanilla primal-dual algorithm and our regularized version (Algorithm 1). Figure 2a shows
the strong regret; Figure 2b shows the weak regret. The weak regret regarding the objective can be
negative when the iterates are superoptimal but unsafe on average. Y-axes differ across plots.

between reward and constraint function. We sample the constraint function as (1− r) + βζ, where
ζ ∈ RHSA is Gaussian with zero mean and identity covariance matrix. We consider S = A = H = 5,
β = 0.1, and focus on the case of one constraint for visualization purposes.

Results The constraint violation and suboptimality of the iterates in each episode show the oscillatory
behavior of the vanilla primal-dual algorithm as opposed to ours (Figure 1). While the on-average
errors across episodes are sublinear, the vanilla algorithm keeps violating the constraints indefinitely
as the number of episodes grows. In comparison, the oscillations of the regularized method are
dampened, thus allowing it to converge to an optimal safe policy.

With respect to the weak regret, the vanilla algorithm performs better (Figure 2b, even constant for the
suboptimality). However, with respect to the strong regret, the regularized algorithm outperforms the
unregularized one, as it achieves sublinear regret without allowing for error cancellations (Figure 2a).
While the strong regrets for the vanilla algorithm may look sublinear, a second look at its iterates
(Figure 1) reveals that its regret will indeed grow linearly due to the persisting oscillations. This
confirms our key point that a sublinear bound on the weak regret is not informative whenever we do
not allow compensating for an unsafe episode with a safe one. The vanilla algorithm will suffer linear
strong regret even with a potentially better learning rate scheduling. We observed that the learning
rate influences the oscillation frequency: With a larger learning rate, the vanilla method oscillates
faster. However, changing the learning rate does not dampen the oscillation magnitude. Hence, the
strong regret is still linear. Indeed, we observe a change of magnitude only via the regularization
parameter rather than the learning rate.

7 Conclusion
In this paper, we gave the first answer to the open question of Efroni et al. (2020) whether primal-
dual algorithms can achieve sublinear strong regret in finite-horizon CMDPs. While our answer is
affirmative, it remains open in how far it is possible to lower the gap to the desired Õ(K1/2) regret
bound. We hope that our first analysis inspires further research on truly no-regret learning in CMDPs,
including improvements in the analysis of our algorithm, incorporating function approximation,
algorithms for the infinite-horizon average reward setup, and showing provable benefits of related
approaches such as optimistic gradients.
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A Summary of Notation

The following table summarizes our general CMDP notation.

State space S, with cardinality S

Action space A, with cardinality A

# of constraints I

Time horizon H

Transition probability ph(s
′|s, a) = P [sh+1 = s′ | sh = s, ah = a]

Initial state s1 ∈ S

Slater gap of π̄ Ξ = mini∈[I](V
π̄
ui

− ci)

Number of episodes K

Objective reward Random variable Rh(s, a) ∈ [0, 1], with E[Rh(s, a)] = rh(s, a)

Constraint rewards Random variable Ui,h(s, a) with E[Ui,h(s, a)] = ui,h(s, a)

Constraint thresholds c ∈ RI , with ci ∈ [0, H]

Constraint functions gi,h(s, a) = ui,h(s, a)− 1
H ci

Policy π ∈ Π with (h, s, a) 7→ πh(a|s) (non-stationary)

Value functions V πr′,h(s) = Eπ[
∑H
h′=h r

′
h′(sh′ , ah′) | sh = s]

(shorthand) V πr′ = V πr′,1(s1)

(vector-valued) V π
u′ = (V πu′

1
, . . . , V πu′

I
)T ∈ RI

Q-values Qπr′,h(s, a) = Eπ[
∑H
h′=h r

′
h′(sh′ , ah′) | sh = s, ah = a]

Occupancy measures dπh(s, a) = Pπ[sh = s, ah = a]

dπh(s) = Pπ[sh = s]

Lagrangian L(π,λ) = V πr +
∑
i∈[I] λi(V

π
ui

− ci) = V πr+λT g

Optimal policy π⋆ ∈ argmaxπ∈Π minλ∈RI
≥0

L(π,λ)

Dual optimizer λ⋆ ∈ argminλ∈RI
≥0

maxπ∈Π L(π,λ)

Confidence level 1− δ

Objective regret R(K; r) =
∑
k∈[K]

[
V π

⋆

r − V πk
r

]
+

Constraint regret R(K;u) = maxi∈[I]

∑
k∈[K]

[
ci − V πk

ui

]
+

14



The following table summarizes the notation specific to the algorithm.

Step size η > 0 (hyperparameter)

Regularization parameter τ > 0 (hyperparameter)

Dual threshold λmax > 0 (hyperparameter)

Dual domain Λ = [0, λmax]
I

Entropy H(π) = −Eπ
[∑H

h=1 log(πh(ah|sh))
]

Regularized Lagrangian Lτ (π,λ) = V πr +
∑
i∈[I] λi(V

π
ui

− ci) + τ
(
H(π) + 1

2∥λ∥
2
)

Regularized optimal policy π⋆τ ∈ argmaxπ∈Π minλ∈Λ Lτ (π,λ)

Regularized dual optimizer λ⋆τ ∈ argminλ∈Λ maxπ∈Π Lτ (π,λ)

Auxiliary function ψk,h(s, a) = − log(πk,h(a|s))

KL divergence KL(q, q′) =
∑
a∈A q(a) log

(
q(a)
q′(a)

)
(q, q′ ∈ ∆(A))

KLk,h(s) = KL(π⋆τ,h(·|s), πk,h(·|s))

KLk =
∑
h

∑
s d

π⋆
τ

h (s)KLk,h(s)

Potential function Φk = KLk + 1
2 ∥λ

⋆
τ − λk∥2 (k ≥ 1)

Visitation counter nk−1,h(s, a) =
∑k−1
l=1 1{slh=s, a

l
h=a}

Averages r̄k−1,h(s, a), ūk−1,h(s, a), p̄k−1,h(s
′|s, a)

Exploration bonuses bk−1,h(s, a) = brk−1,h(s, a) + bpk−1,h(s, a)

Optimistic estimates r̂k, ûk, ĝk = ûk − 1
H c, ψ̂k, p̂k

Regularized reward function zk = r + λTk u+ τψk, ẑk = r̂k + λTk ûk + τψ̂k

Success event G

Truncated value functions Q̂kẑk,h(s, a) = Q̂kr̂k,h(s, a) +
∑
i λk,iQ̂

k
ûk,i,h

(s, a)

+τQ̂k
ψ̂k,h

(s, a)

V̂ kẑk,h(s) =
〈
πk,h(·|s), Q̂kẑk,h(s, ·)

〉

B Extended Related Work
In this section, we review further related work and provide a technical comparison with prior works.

Constrained MDPs Efroni et al. (2020) provided the first regret analysis for LP-based (OPTLP),
primal-dual (OPTPRIMALDUAL), and dual algorithms (OPTDUAL). OPTLP achieves the optimal
strong regret of Õ(K1/2), yet most modern CMDP algorithms are based on primal-dual schemes
rather than LP. OPTPRIMALDUAL is akin to our Algorithm 1 but without regularization. It guarantees
a weak regret of Õ(K1/2) but no bound on the strong regret, which is left as an open question that
we addressed in Section 5. The same holds regarding the guarantees for OPTDUAL, for which the
question about strong regret bounds is still unanswered.

Since Efroni et al. (2020) analyzed the vanilla primal-dual (and dual) algorithm, their analysis has
been extended in various works, both for the case of an unknown or known CMDP. Specifically, the
algorithms have been extended to natural policy gradient methods with policy parameterization (Ding
et al., 2020, 2022b; Liu et al., 2021a), function approximation in the linear MDP setup (Ding and
Jovanović, 2022; Ghosh et al., 2022), CMDPs with time-varying characteristics (Ding and Lavaei,
2022; Qiu et al., 2020), and have even been shown to achieve bounded on-average constraint violation
(Liu et al., 2021b; Bai et al., 2022). However, all these works only established convergence of the
averaged iterates or a sublinear weak regret. In practice, recent works do show empirical success
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(using optimistic gradients (Moskovitz et al., 2023) and PID control (Stooke et al., 2020)) but without
the desired theoretical guarantees.

Comparison with Prior Results Ding et al. (2023) analyzed two algorithms, RPG-PD and OPG-PD,
for last-iterate convergence assuming a value function oracle. RPG-PD follows the same scheme
as our Equations (6) and (7). However, the analysis is tailored for a single constraint. It is not
straightforward (as far as we know) how Corollary 1 in Ding et al. (2023) can be extended to multiple
constraints (which we achieve in Section 4). Our Lemma 4.2 generalizes the analysis to deal with
multiple constraints. However this extensions leads to a worse iteration complexity in Theorem 4.1 of
O(ε−10) rather than Õ(ε−6). In addition to this, Ding et al. (2023)’s policy update differs from ours
in that it does not allow a closed-form solution but requires projection onto a restricted probability
simplex for technical reasons (see discussion of Lemma 4.1, providing an analysis for our closed-form
updates).

Moreover, Ding et al. (2023) left it as an open question whether the algorithm can be generalized to
achieve last-iterate convergence in the online setup, when the CMDP is unknown; we addressed this
point in Section 5.

The other algorithm of Ding et al. (2023), OPG-PD, is based on optimistic gradient updates and
requires the restrictive assumption that the optimal state-visitation distribution (i.e., occupancy
measure) is unique and introduces an extra problem-dependent constant. Moreover, it assumes a
uniform lower bound on the state-visitation frequency in the discounted infinite-horizon setting, an
assumption that cannot be guaranteed in the finite-horizon setting.

Moskovitz et al. (2023) showed last-iterate convergence of a primal-dual scheme using optimistic
gradient updates given a known CMDP, but their analysis concerns an algorithm operating over
occupancy measures rather than policies (different from the practical implementation). Its implicit
updates are constrained over the set of occupancy measures (i.e., the Bellman flow polytope), making
them at least as computationally expensive as solving the CMDP directly via an LP in the first place.

Calvo-Fullana et al. (2023) considered a rather different approach to overcome the problem that
CMDPs cannot be modeled by a single (mixture) reward weighted by Lagrange multipliers (sometimes
referred to as scalarization fallacy). They proposed a state-augmentation technique that addresses
this related problem without guaranteeing last-iterate convergence.

Ghosh et al. (2024) proposed a rather different model-free primal-dual algorithm for the lin-
ear MDP setting. Their algorithm achieves Õ(K1/2) strong regret if it is allowed to take
Ω(dH−1K1.5H+0.5 log(A)H) computational steps in every episode. This is needed because their
algorithm searches for an optimal dual variable in each episode by making incremental steps of
η = 1/(dH−1K1.5H log(A)H), potentially until reaching K1/2 (see their Algorithm 1). In our work,
we focus on polynomial-time algorithms that achieve a strong regret guarantee.

Dual Algorithms Li et al. (2021) provided a dual (not primal-dual) algorithm based on the same
regularization scheme as ours but considered an accelerated dual update and only proved convergence
for a history-weighted mixture policy in a known CMDP. Similarly, Ying et al. (2022) derived a dual
(not primal-dual) algorithm with last-iterate convergence but left it open if a sample-based version
is possible. Moreover, their analysis covers the discounted infinite-horizon setting and requires a
uniform lower bound on the state-visitation frequency, an assumption that cannot be guaranteed in
the finite-horizon setting.

Constrained Bandits In the simpler bandit setup where there is only a single state, there are mainly
three setups in the literature: Knapsack bandits (Agrawal and Devanur, 2016; Badanidiyuru et al.,
2018) consider reward maximization over time as long a some global budget is not used up yet.
Conservative bandits (Wu et al., 2016; Kazerouni et al., 2017) concern algorithms whose cumulative
reward performs sufficiently well relative to some pre-defined baseline policy. Finally, there is a line
of research on stage-wise constrained bandits (Amani et al., 2019; Pacchiano et al., 2021), which
require algorithms that obtain a reward and a cost associated with an action, where the latter should
stay below a threshold in each round. While these settings may inspire related research in CMDPs,
they are rather different from ours: They consider hard thresholds in the single-state setup, while
exploration in CMDPs is generally stateful and commonly aims at simultaneous minimization of
reward and constraint regrets.
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C Properties of the Lagrangian Formulation
The results in this section are not novel by themselves, but we re-establish them here for finite-horizon
CMDPs for completeness. We refer to Appendix I for the relevant convex optimization background.
To view the CMDP as a convex optimization problem, we will express it via the common notion of
occupancy measures (Borkar, 1988).

Definition C.1. The state-action occupancy measure dπ of a policy π for a CMDP M is defined as

dπh(s, a) := E
[
1{sh=s,ah=a} | s1; p, π

]
= P [sh = s, ah = a | s1; p, π],

for s ∈ S, a ∈ A, h ∈ [H]. We denote the stacked vector of these values as dπ ∈ RHSA, with the
element at index (h, s, a) being dπh(s, a). Similarly, we define

dπh(s) := P [sh = s | s1; p, π] =
∑
a

dπh(s, a)

for s ∈ S.

We can now define

Q(p) :=
{
dπ ∈ RHSA | π ∈ Π

}
as the state-action occupancy measure polytope. Note that Q(p) is indeed a polytope (Puterman,
2014). Moreover, we have a surjective map π 7→ dπ between Π andQ(p), for which we can explicitly
compute an element in the pre-image of d ∈ Q(p) via πh(a|s) = dh(s, a)/(

∑
a′ dh(s, a

′)).

We can stack the expected rewards rh(s, a) and constraint rewards ui,h(s, a) in the same way
as dπh(s, a) to obtain vectors r ∈ RHSA and ui ∈ RHSA. Note that we then have V πr =∑
h,s,a d

π
h(s, a)rh(s, a) = rTdπ by linearity of expectation. Similarly, for all i ∈ [I], we have

V πui
= uTi d

π . Moreover, if we stack U = (ui)i∈[I] ∈ RI×HSA and c = (ci)i∈[I] ∈ RI as

U :=

uT1
...

uTI

 , c :=

c1...
cI

 ,

we obtain V π
u = Udπ ∈ [0, H]I for the vector of the constraint value functions. We can thus write

π∗ ∈ argmax
π∈Π

V πr s.t. V πui
≥ ci (∀i ∈ [I])

equivalently as

dπ
⋆

∈ arg max
dπ∈Q(p)

rTdπ s.t. Udπ ≥ c, (11)

where ≥ is understood element-wise. This is a linear program (LP). In particular, by compactness of
the state-action occupancy polytope, there exists an optimal solution π∗ as we assume feasibility.

Lemma C.1 (Strong duality CMDP (Paternain et al., 2019)). We have

max
π∈Π

min
λ∈RI

≥0

L(π,λ) = min
λ∈RI

≥0

max
π∈Π

L(π,λ),

and both optima are attained.

Proof. Note that, under Assumption 2.1, we can view Equation (1) as the convex optimization
problem in Equation (11) over Q(p) that satisfies all parts of Assumption I.1 from Appendix I.2.
Indeed,

(a) X := Q(p) is a polytope and thus convex

(b) the objective f(·) := −rT (·) is affine and thus convex

(c) the constraints gi(·) := ci − uTi (·) are affine and thus convex

(d) by Assumption 2.1, Equation (11) is feasible, and thus its optimum is attained (since the
domain is compact and the objective continuous)
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(e) a Slater point exists by Assumption 2.1, namely dπ̄

(f) all dual problems have an optimal solution since the domain X is compact and the objective
f(·) + λTg(·) is continuous,

where Q(p) ⊂ RHSA, r ∈ RHSA and ui ∈ RSAH are defined as above. The claim now readily
follows from Theorem I.1.

Lemma C.2 (e.g., Ying et al. (2022)). We have ∥λ⋆∥1 ≤ H
Ξ ,

Proof. As in the proof of Lemma C.1, under Assumption 2.1, we can view the CMDP problem
as a convex optimization problem in the occupancy measure, in the same setup as Appendix I.2.
Specifically, we have V πr = rTdπ and V π

u = Udπ. Then, set X = Q(p), x̄ = dπ̄, f(·) = −rT (·)
and gi(·) = ci − uTi (·). Plugging this into Theorem I.3 indeed yields

∥λ⋆∥1 ≤ V π
⋆

r − V π̄r
mini∈[I](V π̄ui

− ci)
≤ H

Ξ
.

Lemma C.3 (Saddle point CMDP). Let π ∈ Π and λ ∈ RI≥0. Then

L(π,λ⋆) ≤ L(π⋆,λ⋆) ≤ L(π⋆,λ).

Proof. By Lemma C.1, this immediately follows from Lemma I.2 in Appendix I.1.

Lemma C.4 (Strong duality regularized CMDP (Ding et al., 2023)). We have

max
π∈Π

min
λ∈Λ

Lτ (π,λ) = min
λ∈Λ

max
π∈Π

Lτ (π,λ),

and both primal and dual optimum are attained.

Proof. For all π ∈ Π, λ ∈ Λ, we have

Lτ (π,λ) =V πr+λT g + τ

(
H(π) +

1

2
∥λ∥2

)
=
∑
s,a,h

(rh(s, a) +
∑
i

λigi,h(s, a))d
π
h(s, a)

+ τ

−
∑
s,a,h

dπh(s, a) log

(
dπh(s, a)∑
a′ d

π
h(s, a

′)

)
+

1

2
∥λ∥2


=:Loccτ (dπ,λ),

where gi,h(s, a) = ui,h(s, a) − 1
H ci and where we used the definition of the occupancy measures

and the polytope Q(p). Consider the problem

max
d∈Q(p)

min
λ∈Λ

Loccτ (d,λ). (12)

For any π ∈ Π that is optimal for Equation (5), dπ is also optimal for Equation (12). Conversely,
for every d ∈ Q(p) that is optimal for Equation (12), we have that any π given by πh(a|s) :=

dh(s,a)∑
a′∈A dh(s,a′)

for s with
∑
a′∈A dh(s, a) > 0, and arbitrary otherwise, is optimal for Equation (2).

Note that Loccτ is continuous. We further claim that Loccτ is 1-strongly convex in λ ∈ Λ and concave
in d ∈ Q(p). Indeed, while the former claim is immediate, we can see the latter via the log-sum
inequality (e.g., Cover (1999, Theorem 2.7.1)) with n = 2: For non-negative ai, bi,

−

(∑
i=1

ai

)
log

(∑
i=1 ai∑
i=1 bi

)
≥ −

∑
i=1

ai log

(
ai
bi

)
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and equality if and only if ai/bi is the same for all i. Only considering the nonlinear term in Lτ (λ, ·),
for d1,d2 ∈ Q(p) and α ∈ (0, 1) we have

−
∑
s,a,h

(αd1,h(s, a) + (1− α)d2,h(s, a)) log

(
αd1,h(s, a) + (1− α)d2,h(s, a)∑

a′ (αd1,h(s, a
′) + (1− α)d2,h(s, a′))

)

=
∑
s,a,h

− (αd1,h(s, a) + (1− α)d2,h(s, a)) log

(
αd1,h(s, a) + (1− α)d2,h(s, a)∑

a′ αd1,h(s, a
′) +

∑
a′(1− α)d2,h(s, a′)

)

≥
∑
s,a,h

−αd1,h(s, a) log
(

αd1,h(s, a)∑
a′ αd1,h(s, a

′)

)

+
∑
s,a,h

−(1− α)d2,h(s, a) log

(
(1− α)d2,h(s, a)∑
a′(1− α)d2,h(s, a′)

)

=− α
∑
s,a,h

d1,h(s, a) log

(
d1,h(s, a)∑
a′ d1,h(s, a

′)

)

− (1− α)
∑
s,a,h

d2,h(s, a) log

(
d2,h(s, a)∑
a′ d2,h(s, a

′)

)
.

with equality if and only if d1,h(s,a)∑
a′ d1,h(s,a′)

=
d2,h(s,a)∑
a′ d2,h(s,a′)

for all s, h. By Lemma I.1, we thus have

max
d∈Q(p)

min
λ∈Λ

Loccτ (d,λ) = min
λ∈Λ

max
d∈Q(p)

Loccτ (d,λ),

and primal and dual optimizers exist. This implies the same for the original problem Equation (2) by
converting the occupancy measures back into policies via πh(a|s) = dh(s, a)/(

∑
a′ dh(s, a

′)).

Lemma C.5 (Saddle point regularized CMDP). Let π ∈ Π and λ ∈ Λ. Then

Lτ (π,λ⋆τ ) ≤ Lτ (π⋆τ ,λ⋆τ ) ≤ Lτ (π⋆τ ,λ).

Proof. By Lemma C.4, this follows from Lemma I.2.

Lemma C.6. Let π ∈ Π and λ ∈ Λ. Then

V πr+(λ⋆
τ )

T g − τH(π⋆τ ) ≤ V
π⋆
τ

r+(λ⋆
τ )

T g
≤ V

π⋆
τ

r+λT g
+
τ

2
∥λ∥2 ,

where g = u− 1
H c.

Proof. Plugging the definition of Lτ into Lemma C.5 proves the claim, after using that H(π) ≥ 0

and ∥λ∥2 ≥ 0.

D Last-Iterate Convergence
In this section, we provide the proofs for all results in Section 4, resulting in the proof of last-iterate
convergence of the regularized primal-dual scheme (Equations (6) and (7)).

We first establish the convergence of the aforementioned potential function Φk.

Lemma 4.1 (Regularized convergence). Let η, τ < 1 and λmax ≥ HΞ−1. The iterates in Equa-
tions (6) and (7) satisfy

Φk+1 ≤ (1− ητ)kΦ1 + Õ
(
ητ−1Cη,τ,Λ

)
,

where Cη,τ,Λ = λ2maxH
3A1/2I2 exp (ηH (1 + λmaxI + log(A))) + I (H + τλmax)

2.
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Proof. We first decompose the k-th primal-dual gap as follows:

Lτ (π⋆τ ,λk)− Lτ (πk,λ⋆τ ) = Lτ (π⋆τ ,λk)− Lτ (πk,λk)︸ ︷︷ ︸
(i)

+Lτ (πk,λk)− Lτ (πk,λ⋆τ )︸ ︷︷ ︸
(ii)

. (13)

We first bound term (i):

(i) =Lτ (π⋆τ ,λk)− Lτ (πk,λk)

=V
π⋆
τ

r+λT
k g

− V πk

r+λT
k g

(as dπh(s, a) = dπh(s)πh(a|s), and cancel ∥λk∥2)

− τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(π⋆τ,h(a|s)) + τ
∑
s,a,h

dπk

h (s)πk,h(a|s) log(πk,h(a|s))

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

(since ψk,h(s, a) = − log(πk,h(a|s)))

+ τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(πk,h(a|s))− τ
∑
s,a,h

dπk

h (s)πk,h(a|s) log(πk,h(a|s))

− τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(π⋆τ,h(a|s)) + τ
∑
s,a,h

dπk

h (s)πk,h(a|s) log(πk,h(a|s))

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

+ τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(πk,h(a|s))

− τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(π⋆τ,h(a|s))

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

− τ
∑
s,h

d
π⋆
τ

h (s)
∑
a

π⋆τ,h(a|s) log
(
π⋆τ,h(a|s)
πk,h(a|s)

)
=V

π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

− τ
∑
s,h

d
π⋆
τ

h (s)KLk,h(s)

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

− τKLk

=V
π⋆
τ

r+λT
k u+τψk

− V πk

r+λT
k u+τψk

− τKLk (as g = u− 1
H c)

=V
π⋆
τ

zk − V πk
zk

− τKLk

=
∑
s,h

d
π⋆
τ

h (s)
〈
Qπk

zk,h
(s, ·), π⋆τ,h(·|s)− πk,h(·|s)

〉
− τKLk (by Lemma H.1)

Note that for all s, h,〈
Qπk

zk,h
(s, ·), π⋆τ,h(·|s)− πk,h(·|s)

〉
≤KLk,h(s)− KLk+1,h(s)

η
+
η

2

∑
a

πk,h(a|s) exp
(
Qπk

zk,h
(s, a)

)
Qπk

zk,h
(s, a)2 (Lemma I.6)

≤KLk,h(s)− KLk+1,h(s)

η
(Lemma E.11)

+
η

2
A1/2 exp (ηH (1 + λmaxI + τ log(A)))

(
2H2 (1 + Iλmax + τ log(A))

2
+ 2τ2(64/e2)

)
=

KLk,h(s)− KLk+1,h(s)

η
+
η

2

1

H
Dη,τ,Λ,

with

Dη,τ,Λ = HA1/2 exp (ηH (1 + λmaxI + τ log(A)))
(
2H2 (1 + Iλmax + τ log(A))

2
+ 2τ2(64/e2)

)
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and where we were able to apply Lemma I.6 by Lemma I.9 and since Qπk

z,h(s, a) ≥ 0. Hence,∑
s,h

d
π⋆
τ

h (s)
〈
Qπk

zk,h
(s, ·), π⋆τ,h(·|s)− πk,h(·|s)

〉
≤
∑
s,h

d
π⋆
τ

h (s)

(
KLk,h(s)− KLk+1,h(s)

η
+
η

2

1

H
Dη,τ,Λ

)
=

KLk − KLk+1

η
+
η

2
Dη,τ,Λ.

Plugging in, we thus find

(i) = V
π⋆
τ

zk − V πk
zk

− τKLk ≤KLk − KLk+1

η
+
η

2
Dη,τ,Λ − τKLk =

(1− ητ)KLk − KLk+1

η
+
η

2
Dη,τ,Λ.

(14)

We now bound term (ii):

(ii) =Lτ (πk,λk)− Lτ (πk,λ⋆τ )

=V πk

r+λT
k g

− V πk

r+(λ⋆
τ )

T g
+
τ

2
∥λk∥2 −

τ

2
∥λ⋆τ∥

2 (cancel H(πk))

=
∑
i

(λk,i − λ⋆τ,i)V
πk
gi +

τ

2
∥λk∥2 −

τ

2
∥λ⋆τ∥

2

=
∑
i

(λk,i − λ⋆τ,i)(V
πk
ui

− ci + τλk,i)−
τ

2
∥λk − λ⋆τ∥

2

≤∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2

∥∥V πk
uk

− c+ τλk
∥∥2 (Lemma I.8)

≤∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2
D′
τ,Λ, (Lemma E.11)

with D′
τ,Λ = I(H + τλmax)

2 and where we were able to apply Lemma I.8 by Lemma I.9. Plugging
in, we find

(ii) =
∑
i

(λk,i − λ⋆τ,i)(V
πk
ui

− ci + τλk,i)−
τ

2
∥λk − λ⋆τ∥

2

≤∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2
D′
τ,Λ − τ

2
∥λk − λ⋆τ∥

2

=
(1− ητ) ∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2
D′
τ,Λ. (15)

From Lemma C.3 (with π = πk, λ = λk), we have 0 ≤ Lτ (π⋆τ ,λk)−Lτ (πk,λ⋆τ ). Moreover, recall
Φk = KLk + 1

2 ∥λk − λ⋆τ∥
2, thus by Equations (14) and (15),

Φk+1 =KLk+1 +
1

2
∥λk+1 − λ⋆τ∥

2

≤(1− ητ)KLk +
η2

2
Dη,τ,Λ − η(i) + (1− ητ)

∥λk − λ⋆τ∥
2

2
+
η2

2
D′
τ,Λ − η(ii)

(Equations (14) and (15))

≤(1− ητ)Φk + η2(Dη,τ,Λ +D′
τ,Λ)− η ((i) + (ii)) (Def. Φk)

≤(1− ητ)Φk + η2(Dη,τ,Λ +D′
τ,Λ)− η (Lτ (π⋆τ ,λk)− Lτ (πk,λ⋆τ )) (Equation (13))

≤(1− ητ)Φk + η2(Dη,τ,Λ +D′
τ,Λ). (as Lτ (π⋆τ ,λk)− Lτ (πk,λ⋆τ ) ≥ 0)

Finally, the claimed bound follows by noting that

Dη,τ,Λ +D′
τ,Λ

=HA1/2 exp (ηH (1 + λmaxI + τ log(A)))
(
2H2 (1 + Iλmax + τ log(A))

2
+ 2τ2(64/e2)

)
+ I(H + τλmax)

2

≤Õ
(
λ2maxH

3A1/2I2 exp (ηH (1 + λmaxI + log(A))) + I(H + τλmax)
2
)
,

as τ ≤ 1 and λmax ≥ HΞ−1 ≥ 1.
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We can use the following result to turn the convergence of the potential function into an error bound.
We will then choose the optimal values for λmax, τ , and η.

Lemma 4.2 (Error bounds). For any sequence (πk)k∈[K],[
V π

⋆

r − V πk
r

]
+
≤H3/2(2Φk)

1/2 + τH log(A),

max
i∈[I]

[
ci − V πk

ui

]
+
≤H3/2(2Φk)

1/2 + τλmax + λ−1
max

(
H2Ξ−1 + τH log(A)

)
.

Proof. (1) We bound the objective optimality gap. First, decompose it as

V π
⋆

r − V πk
r = V π

⋆

r − V
π⋆
τ

r︸ ︷︷ ︸
(i)

+V
π⋆
τ

r − V πk
r︸ ︷︷ ︸

(ii)

. (16)

We bound (ii) as follows:

(ii) =V
π⋆
τ

r − V πk
r

=
∑
s,a,h

d
π⋆
τ

h (s)
(
π⋆τ,h(a|s)− πk,h(a|s)

)
Qπk

r,h(s, a) (Lemma H.1)

≤H
∑
s,h

d
π⋆
τ

h (s)
∥∥π⋆τ,h(·|s)− πk,h(·|s)

∥∥
1

≤H
∑
s,h

d
π⋆
τ

h (s)
√
2KLk,h(s) (by Pinsker’s)

≤H2

√
2
∑
s,h

1

H
d
π⋆
τ

h (s)KLk,h(s) (by Jensen’s)

=H3/2
√
2KLk.

We next bound term (i). By Lemma C.6 with π = π⋆ we have

V π
⋆

r − τH(π⋆τ ) ≤ V
π⋆
τ

r +
∑
i

λ⋆τ,i

(
V
π⋆
τ

gi − V π
⋆

gi

)
.

By Lemma C.6 with λ = 0 we have ∑
i

λ⋆τ,iV
π⋆
τ

gi ≤ 0.

Moreover, V π
⋆

gi ≥ 0 by feasibility and λ⋆τ,i ≥ 0. Combing these inequalities, we find

(i) =V π
⋆

r − V
π⋆
τ

r ≤ τH(π⋆τ ) ≤ τH log(A), (17)

which concludes the proof for the objective optimality gap.

(2) Let i ∈ [I]. We now bound the i-th constraint violation. First, decompose it as

ci − V πk
ui

= −V πk
gi = −V π

⋆
τ

gi︸ ︷︷ ︸
(iii)

+V
π⋆
τ

gi − V πk
gi︸ ︷︷ ︸

(iv)

(18)

We first bound (iv). The same calculation as for the objective optimality gap (1) shows

(iv) =V
π⋆
τ

gi − V πk
gi ≤ H3/2

√
2KLk. (19)

We next bound term (iii). Recall Λ = [0, λmax]
I . Lemma C.6 with π = π⋆ and λ ∈ Λ as

λj :=

{
0 (j ̸= i)

λmax (j = i)
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yields

V π
⋆

r +
∑
j

λ⋆τ,jV
π⋆

gj ≤V π
⋆
τ

r + λmaxV
π⋆
τ

gi +
τ

2
λ2max + τH(π⋆τ )

From Lemma C.3 (with π = π⋆τ ) we get

V
π⋆
τ

r − V π
⋆

r ≤
∑
j

λ⋆j

(
V π

⋆

gj − V
π⋆
τ

gj

)
.

Adding the two previous inequalities and canceling terms, we get

0 ≤
∑
j

λ⋆τ,jV
π⋆

gj ≤λmaxV
π⋆
τ

gi +
τ

2
λ2max +

∑
j

λ⋆j

(
V π

⋆

gj − V
π⋆
τ

gj

)
+ τH(π⋆τ ),

where the first inequality holds since 0 ≤ V π
⋆

gj by feasibility and λ⋆τ ≥ 0. Rearranging this shows

−V π
⋆
τ

gi ≤τ
2
λmax +

1

λmax

∑
j

λ⋆j

(
V π

⋆

gj − V
π⋆
τ

gj

)
+

1

λmax
τH(π⋆τ )

=
τ

2
λmax +

1

λmax

∑
j

λ⋆j

(
V π

⋆

uj
− V

π⋆
τ

uj

)
+

1

λmax
τH(π⋆τ ) (g = u− 1

H c)

≤τ
2
λmax +

1

λmax
∥λ⋆∥1H +

1

λmax
τH(π⋆τ ) (Hölder’s)

≤τ
2
λmax +

1

λmax

(
H2

Ξ
+ τH(π⋆τ )

)
(Lemma C.2)

≤τ
2
λmax +

1

λmax

(
H2

Ξ
+ τH log(A)

)
.

Finally, we are ready to prove last-iterate convergence by combining the previous two lemmas.

Theorem 4.1 (Last-iterate convergence). Let ε ∈ (0, 1). Then, with appropriate choices of η ∝ ε6,
τ ∝ ε2, λmax ∝ ε−1, for k = Ω(poly(A,H, I,Ξ−1) · ε−10) we have[

V π
⋆

r − V πk
r

]
+
≤ ε,

[
ci − V πk

ui

]
+
≤ ε (∀i ∈ [I]).

Proof. The bound follows from Lemma 4.1 and Lemma 4.2. We choose τ = ε2, η =
(H2I log(A))−1Ξε6, λmax = H

Ξ ε
−1 ≥ H

Ξ . Set ∆r(k) :=
[
V π

⋆

r − V πk
r

]
+

and ∆gi(k) :=[
−V πk

gi

]
+

.

We first consider the suboptimality for the reward. Plugging Lemma 4.1 into Lemma 4.2 we find,
using

√
a+ b ≤

√
a+

√
b and 1 + x ≤ exp(x),

∆r(k) ≤H3/2Φ
1/2
1 exp (−ητk/2) (a)

+H3/2
(η
τ

)1/2
Õ(C

1/2
η,τ,Λ) (b)

+ τH log(A). (c)

For (b), note that, using the definitions of η, τ , λmax (and taking
√
·, and τ < 1)

C
1/2
η,τ,Λ ≤λmaxH3/2A1/4I exp (ηH (1 + λmaxI + log(A)) /2) + I1/2(H + τλmax)

≤λmaxH3/2A1/4I exp (2) + I1/2(H + τλmax)

=ε−1 ·H5/2A1/4IΞ−1 exp (2) + I1/2H + I1/2ε2HΞ−1ε−1)

≲ε−1 ·H5/2A1/4IΞ−1.
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Since (η
τ

)1/2
= (H2I log(A))−1/2Ξ1/2ε(6−2)/2 = (H2I log(A))−1/2Ξ1/2ε2,

we thus have

(b) = H3/2
(η
τ

)1/2
Cη,τ,Λ ≲ H3I1/2A1/4Ξ−1/2ε = poly(A,H, I,Ξ−1) · ε.

Similarly,
(c) = τH log(A) = H log(A)ε2.

For (a), using the standard inequality e−x ≤ 1− x/2 (if 0 ≤ x ≤ 1) with x := ητ/2, we first find
exp(−ητl/2) ≤ (1− ητ/4)l

and hence,

(a) = H3/2Φ
1/2
1 exp (−ητk/2) ≤H3/2Φ

1/2
1 · 1

k

k∑
l=1

exp (−ητl/2)

≤H3/2Φ
1/2
1 · 1

k

k∑
l=1

(1− ητ/4)l

≤H3/2Φ
1/2
1 · 1

k

∞∑
l=1

(1− ητ/4)l

=H3/2Φ
1/2
1 · 1

k

4

ητ

=H3/2Φ
1/2
1

1

k

4

(H2I log(A))−1Ξε6ε2

=4H7/2IΞ−1 log(A)
1

k
Φ

1/2
1 ε−8.

Furthermore, since π1 plays actions uniformly at random and λ1 = 0, we have Φ1/2
1 ≤ (H log(A) +

1
2Iλ

2
max)

1/2 ≤ H1/2 log(A)1/2 + I1/2λmax = H1/2 log(A)1/2 + I1/2HΞ−1ε−1. Hence, the
calculation above shows

(a) ≤4H7/2IΞ−1 log(A)
1

k
(H1/2 log(A)1/2 + I1/2HΞ−1ε−1)ε−8 ≤ poly(A,H, I,Ξ−1)ε

for k = Ω(ε−10). Hence, summing up terms (a) to (c) and choosing k = Ω(poly(A,H, I,Ξ−1)ε−10)
yields the bound for the objective.

Next, we consider the regret for the constraints. Plugging Lemma 4.1 into Lemma 4.2 we find, using√
a+ b ≤

√
a+

√
b,

∆ui
(k) ≤H3/2Φ

1/2
1 exp (−ητk/2) (a’)

+H3/2
(η
τ

)1/2
Õ(C

1/2
η,τ,Λ) (b’)

+ τλmax +
1

λmax
H2Ξ−1 (c’)

+
1

λmax
τH log(A). (d’)

Note that terms (a’), (b’) are identical to (a), (b). Moreover, for (d’) we have

(d′) =
1

λmax
τ log(A) =ΞH−1 log(A)ε3.

Finally, for (c’), we have

(c′) =τλmax +
1

λmax
H2Ξ−1

=ε2 ·HΞ−1ε−1 +H−1Ξε ·H2Ξ−1

=H(1 + Ξ−1)ε.

Thus, summing up (a’) to (d’) and choosing k = Ω(poly(A,H, I,Ξ−1)ε−10) yields the bound for
the constraints.
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E Properties of the Optimistic Model
In this section, we establish important properties of the model Algorithm 1 builds.

E.1 Building the Model
First, we describe the exact model and how we perform policy evaluation.

We follow Shani et al. (2020) for the optimistic exploration, but we also take the I constraint functions
u into account rather than just the reward function r. We also need to pay special attention to the
auxiliary term ψk.

For all s, a, h and k ∈ [K], let nk−1,h(s, a) :=
∑k−1
l=1 1{slh=s, a

l
h=a}

count the number of times that
the state-action pair (s, a) has been visited at step h before episode k. Here, (slh, alh) denotes the
state-action pair visited at step h in episode l. First, we compute the empirical averages of the reward
and transition probabilities as follows:

r̄k−1,h(s, a) :=

∑k−1
l=1 R

l
h(s, a)1{slh=s, a

l
h=a}

nk−1,h(s, a) ∨ 1
,

ūk−1,i,h(s, a) :=

∑k−1
l=1 U

l
i,h(s, a)1{slh=s, a

l
h=a}

nk−1,h(s, a) ∨ 1
(∀i ∈ [I]),

p̄k−1,h(s
′|s, a) :=

∑k−1
l=1 1{slh=s, a

l
h=a, s

l
h+1=s

′}

nk−1,h(s, a) ∨ 1
,

where a ∨ b := max{a, b}. We consider optimistic estimates r̂k, ûk, p̂k:
r̂k,h(s, a) := r̄k−1,h(s, a) + bk−1,h(s, a),

ûk,i,h(s, a) := ūk−1,i,h(s, a) + bk−1,h(s, a) (∀i ∈ [I]),

p̂k,h(s
′|s, a) := p̄k−1,h(s

′|s, a),
with the bonuses bk−1,h(s, a) = brk−1,h(s, a) + bpk−1,h(s, a) specified below. For ψk, we take5

ψ̂k,h(s, a) := ψk,h(s, a) + bpk−1,h(s, a) log(A).

For notational convenience, we write

zk := r + λTk u+ τψk, ẑk := r̂k + λTk ûk + τψ̂k

for the reward function mimicking the π-dependency of the regularized Lagrangian at (πk,λk).

For any δ ∈ (0, 1), we specify the correct bonuses to obtain our regret guarantees with probability at
least 1− δ:

bk−1,h(s, a) :=b
r
k−1,h(s, a) + bpk−1,h(s, a),

where

brk−1,h(s, a) :=

√√√√ 1
2 log

(
2SAH(I+1)K

δ′

)
nk−1,h(s, a) ∨ 1

, bpk−1,h(s, a) := H

√
2S + 2 log

(
SAHK
δ′

)
nk−1,h(s, a) ∨ 1

.

For ψk, recall

ψ̂k,h(s, a) := ψk,h(s, a) + bpk−1,h(s, a) log(A).

We define the truncated value functions6

Q̂kẑk,h(s, a) :=Q̂
k
r̂k,h

(s, a) +
∑
i

λk,iQ̂
k
ûk,i,h

(s, a) + τQ̂k
ψ̂k,h

(s, a), (20)

V̂ kẑk,h(s) :=
〈
πk,h(·|s), Q̂kẑk,h(s, ·)

〉
, (21)

5In other words, there is no bonus for the function, only for the transitions. This is because ψk is known in
episode k, and so the only uncertainty in the corresponding value function is due to estimating the transitions p.
Note that the extra log(A) factor corrects for the fact that ψk is not a function to [0, 1].

6Importantly, note that this is the definition of Q̂kẑk,h(s, a), rather than running truncated policy evaluation
on zk.
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where we compute Q̂kr̂k,h(s, a), Q̂
k
ûk,i,h

(s, a), Q̂k
ψ̂k,h

(s, a) via truncated policy evaluation with
respect to the estimated model, see Algorithm 2.

Algorithm 2 EVAL (Truncated Policy Evaluation)

Initialize V̂ kr̂k,H+1(s) = V̂ kûk,i,H+1(s) = V̂ k
ψ̂k,H+1

(s) = 0 (for s ∈ S)
for h = H, . . . , 1 do

for (s, a) ∈ S ×A do
Truncated DP step:

Q̂kr̂k,h(s, a) := min
{
H − h+ 1, r̂k,h(s, a) +

〈
p̂k,h(·|s, a), V̂ kr̂k,h+1(·)

〉}
Q̂kûk,i,h(s, a) := min

{
H − h+ 1, ûk,i,h(s, a) +

〈
p̂k,h(·|s, a), V̂ kûk,i,h+1(·)

〉}
(∀i ∈ [I])

Q̂kψ̂k,h
(s, a) := min

{
ψk,h(s, a) + (H − h+ 1) log(A), ψ̂k,h(s, a) +

〈
p̂k,h(·|s, a), V̂ kψ̂k,h+1(·)

〉}
Retrieve V -function:

V̂ kr̂k,h(s) :=
〈
πk,h(·|s), Q̂kr̂k,h(s, ·)

〉
V̂ kûk,i,h(s) :=

〈
πk,h(·|s), Q̂kûk,i,h(s, ·)

〉
(∀i ∈ [I])

V̂ kψ̂k,h
(s) :=

〈
πk,h(·|s), Q̂kψ̂k,h

(s, ·)
〉

return Q̂kẑk (·) := Q̂kr̂k (·) +
∑
i λk,iQ̂

k
ûk,i

(·) + τQ̂k
ψ̂k

(·), and (V̂ kûk,i
(s1, 1))i

The main reason for truncating during the otherwise standard policy evaluation algorithm is the need
for a bonus-independent upper bound on the surrogate value functions so that Lemma E.10 holds.7
Clearly, the truncated value functions are all lower bounded by zero and upper bounded by the actual
value functions under the estimated model. Finally, note that these truncated value functions need not
correspond to the true value function of a policy in some MDP.

Recall the truncated value functions from Algorithm 2 in Appendix E.1. Note that due to the separate
definition of Q̂kẑk,h(s, a) and the updates in Algorithm 2, for all s ∈ S, h ∈ [H],

V̂ kẑk,h(s) =
〈
πk,h(·|s), Q̂kẑk,h(s, ·)

〉
(by def.)

=

〈
πk,h(·|s), Q̂kr̂k,h(s, a) +

∑
i

λk,iQ̂
k
ûk,i,h

(s, a) + τQ̂k
ψ̂k,h

(s, a)

〉
(by def.)

=
〈
πk,h(·|s), Q̂kr̂k,h(s, a)

〉
+
∑
i

λk,i

〈
πk,h(·|s), Q̂kûk,i,h

(s, a)
〉

+ τ
〈
πk,h(·|s), Q̂kψ̂k,h

(s, a)
〉

=V̂ kr̂k,h(s) +
∑
i

λk,iV̂
k
ûk,i,h

(s) + τ V̂ k
ψ̂k,h

(s). (22)

Similarly, by linearity of expectation

V πk

zk,h
(s) = V πk

rk,h
(s) +

∑
i

λk,iV
πk

uk,i,h
(s) + τV πk

ψk,h
(s) (23)

for the true value functions.

E.2 Properties of the Model
We are now ready to establish the properties of the model. In particular, we will show that it is
optimistic with respect to the value function and prove bounds on the estimation error during the
learning procedure.

7In fact, truncation is only required for the update of π, and for the update of λ, we can use either truncated
or exact values.
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Success Event We will condition our regret analysis on a success event G, which we formally
define below. Fix δ > 0, and construct the estimated model as in Appendix E.1. G ensures that
(a) the optimistic reward estimates are in fact optimistic and (b) the true transitions are close to the
estimated ones, i.e.:

r ≤r̂k,
ui ≤ûk,i (∀i ∈ [I]),

∥ph(·|s, a)− p̄k−1,h(·|s, a)∥1H ≤bpk−1,h(s, a) (∀s, a, h),

for every episode k ∈ [K]. Formally, with δ′ := δ/3, define the failure events

F rk :=
{
∃s, a, h : |rh(s, a)− r̄k−1,h(s, a)| ≥ brk−1,h(s, a)

}
,

Fuk :=
{
∃i, s, a, h : |ui,h(s, a)− ūk−1,i,h(s, a)| ≥ brk−1,h(s, a)

}
,

F pk :=
{
∃s, a, h : ∥ph(·|s, a)− p̄k−1,h(·|s, a)∥1H ≥ bpk−1,h(s, a)

}
,

Fnk :=

∃s, a, h : nk−1,h(s, a) ≤
1

2

∑
j<k

d
πj

h (s, a)−H log

(
SAH

δ′

) ,

where dπj

h (s, a) refers to the occupancy measure (Appendix C), and

F r :=

(
K⋃
k=1

F rk

)⋃(
K⋃
k=1

Fuk

)
,

F p :=

K⋃
k=1

F pk ,

Fn :=

K⋃
k=1

Fnk .

We define the success event G as the complement of F r ∪ F p ∪ Fn, i.e.

G := F r ∪ F p ∪ Fn.

We now show that this event holds with high probability. The proof of this theorem relies on standard
concentration bounds (specifically, Hoeffding for the rewards and L1-concentration for the transitions)
and a union bound over all involved indices.

Lemma E.1 (Success event). Let δ > 0 and define the bonuses accordingly. Suppose that for all
k ∈ [K], in episode k, policy πk is played. Then P [G] ≥ 1− δ.

Proof. By Hoeffding’s for any possible realization of nk−1,h(s, a) (and total probability), we have
P [F r] ≤ δ′ after union bound over all indices s, a, h and all episodes k. For nk−1,h(s, a) = 0 the
bound holds trivially.

By the L1 concentration bound of Weissman et al. (2003, Theorem 2.1), for any possible realization
of nk−1,h(s, a) (and total probability), we have P [F p] ≤ δ′ after union bound over all indices s, a, h
and all episodes k. For nk−1,h(s, a) = 0 the bound holds trivially.

By Dann et al. (2017, Corollary E.4), we also have P [Fn] ≤ δ′.

We conclude by union bound over the three events.

Decomposition via Extended Value Difference Lemma The following lemma allows us to
decompose the instantaneous regret into three terms that we will bound separately.
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Lemma E.2 (Decomposition via simulation lemma). We have the following decomposition:

V
π⋆
τ

zk − V πk
zk

=V̂ kẑk − V πk
zk

(a)

+
∑
h

E
[〈
Q̂kẑk,h(sh, ·), π

⋆
τ,h(·|sh)− πk,h(·|sh)

〉 ∣∣∣∣ s1, π⋆τ , p] (b)

+
∑
h

E
[
−Q̂kẑk,h(sh, ah) + zk,h(sh, ah) +

〈
ph(·|sh, ah), V̂ kzk,h+1(·)

〉 ∣∣∣∣ s1, π⋆τ , p] . (c)

Proof. First, expand

V
π⋆
τ

zk − V πk
zk

=
(
V̂ kẑk − V πk

zk

)
+
(
V
π⋆
τ

zk − V̂ kẑk

)
.

Then apply Lemma H.2 to π = πk, π′ = π⋆τ and M = (S,A, p̂k, ẑk), M ′ = (S,A, p, zk) to the
second term (after multiplying both sides by −1).

General On-Policy Bounds The following two results are standard and will allow us to bound
the estimation errors during learning. Consider the setup in which policy πk is derived based on the
previous episodes 1, . . . , k − 1, and then played in episode k. Recall that for all s, a, h and k ∈ [K],
nk−1,h(s, a) :=

∑k−1
l=1 1{slh=s, a

l
h=a}

counts the visits of state-action pair (s, a) at step h before
episode k. We write ≲ for asymptotic inequality up to polylogarithmic terms.

Note that in the following two lemmas, the exponent of H is different from the one in the referenced
proofs. This is because the referenced works consider the case of stationary transition probabilities,
whereas we consider non-stationary dynamics. See Shani et al. (2020, Lemmas 18, 19).

Lemma E.3 (Lemma 36, Efroni et al. (2020)). Suppose for all s, a, h, k ∈ [K], we have

nk−1,h(s, a) >
1

2

∑
j<k

d
πj

h (s, a)−H log

(
SAH

δ′

)
.

Then for all K ′ ≤ K

K′∑
k′=1

H∑
h=1

E

 1√
nk′−1,h(sk

′
h , a

k′
h )

| Fk′−1

 ≤ Õ(
√
SAH2K ′ + SAH),

where Fk′−1 is the σ-algebra induced by all random variables up to and including episode k′ − 1.

Proof. We refer to Efroni et al. (2019, Lemma 38) for a proof of the statement.

Lemma E.4 (Lemma 37, Efroni et al. (2020)). Suppose for all s, a, h, k ∈ [K], we have

nk−1,h(s, a) >
1

2

∑
j<k

d
πj

h (s, a)−H log

(
SAH

δ′

)
.

Then for all K ′ ≤ K

K′∑
k′=1

H∑
h=1

E
[

1

nk′−1,h(sk
′
h , a

k′
h )

| Fk′−1

]
≤ Õ(SAH2),

where Fk′−1 is the σ-algebra induced by all random variables up to and including episode k′ − 1.

Proof. We refer to Zanette and Brunskill (2019, Lemma 13) for a proof of the statement.
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Estimation Error (On-Policy Error Bounds) We next prove bounds on the estimation error
obtained while learning the model.

Lemma E.5 (Estimation error r̂, û). Conditioned on G, for every K ′ ∈ [K], we have

K′∑
k=1

(
V̂ kr̂k − V πk

r

)
≤Õ

(√
S2AH4K ′ + S3/2AH2

)
,

K′∑
k=1

(
V̂ kûk,i

− V πk
ui

)
≤Õ

(√
S2AH4K ′ + S3/2AH2

)
(∀i ∈ [I]).

Proof. By Lemma H.2 (with π = π′ = πk and M = (S,A, p̂k, ẑk), M ′ = (S,A, p, zk)), we have
according to the truncated policy evaluation (Algorithm 2),

V̂ kr̂k − V πk
r

=

H∑
h=1

E
[
Q̂kr̂k,h(sh, ah)− rh(sh, ah)−

〈
ph(·|sh, ah), V̂ kr̂k,h+1(·)

〉 ∣∣∣∣ s1, πk, p]

≤
H∑
h=1

E
[
r̂k,h(sh, ah)− rh(sh, ah)

∣∣∣∣ s1, πk, p]

+

H∑
h=1

E
[〈
p̂k,h(·|sh, ah)− ph(·|sh, ah), V̂ kr̂k,h+1(·)

〉 ∣∣∣∣ s1, πk, p]

=

H∑
h=1

E
[
r̄k−1,h(sh, ah) + brk−1,h(sh, ah)− rh(sh, ah)

∣∣∣∣ s1, πk, p]

+

H∑
h=1

E
[
bpk−1,h(sh, ah) +

〈
p̂k,h(·|sh, ah)− ph(·|sh, ah), V̂ kr̂k,h+1(·)

〉 ∣∣∣∣ s1, πk, p] .
Since G occurs, we have r̄k−1,h(sh, ah)− rh(sh, ah) ≤ brk−1,h(sh, ah). Moreover,

〈
p̂k,h(·|sh, ah)− ph(·|sh, ah), V̂ kr̂k,h+1(·)

〉
≤∥p̂k,h(·|sh, ah)− ph(·|sh, ah)∥1

∥∥∥V̂ kr̂k,h+1(·)
∥∥∥
∞

≤∥p̂k,h(·|sh, ah)− ph(·|sh, ah)∥1H
≤bpk−1,h(sh, ah)

by Hölder’s, the truncation in the policy evaluation, and since G occurs. Plugging this into the
inequality above,

V̂ kr̂k − V πk
r ≤

H∑
h=1

E
[
2brk−1,h(sh, ah)

∣∣∣∣ s1, πk, p]

+

H∑
h=1

E
[
2bpk−1,h(sh, ah)

∣∣∣∣ s1, πk, p] .
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Recalling the definition of brk−1,h(s, a) ≲ 1√
nk−1,h(s,a)∨1

, bpk−1,h(s, a) ≲ H
√
S√

nk−1,h(s,a)∨1
and

summing up, we thus find

K′∑
k=1

(
V̂ kr̂k − V πk

r

)
≲H

√
S

K′∑
k=1

H∑
h=1

E

[
1√

nk−1,h(sh, ah) ∨ 1

∣∣∣∣ s1, πk, p
]

=H
√
S

K′∑
k=1

H∑
h=1

E

 1√
nk−1,h(skh, a

k
h) ∨ 1

∣∣∣∣ Fk−1

 (play πk)

≲H
√
S
(√

SAH2K ′ + SAH
)

(Lemma E.3)

=
√
S2AH4K ′ + S3/2AH2

where we used that we play πk in episode k and Lemma E.3, which applies since G occurs.

The proof for ui (i ∈ [I]) is identical.

Lemma E.6 (Estimation error ψ̂). Conditioned on G, for every K ′ ∈ [K], we have

K′∑
k=1

(
V̂ k
ψ̂k

− V πk

ψk

)
≤Õ

(√
S2AH4K ′ + S3/2AH2

)
.

Proof. By Lemma H.2 (with π = π′ = πk and M = (S,A, p̂k, ẑk), M ′ = (S,A, p, zk)), we have
according to the truncated policy evaluation,

V̂ kr̂k − V πk
r

=

H∑
h=1

E
[
Q̂k
ψ̂k,h

(sh, ah)− ψk,h(sh, ah)−
〈
ph(·|sh, ah), V̂ kψ̂k,h+1

(·)
〉 ∣∣∣∣ s1, πk, p]

≤
H∑
h=1

E
[
ψ̂k,h(sh, ah)− ψk,h(sh, ah)

∣∣∣∣ s1, πk, p]

+

H∑
h=1

E
[〈
p̂k,h(·|sh, ah)− ph(·|sh, ah), V̂ kψ̂k,h+1

(·)
〉 ∣∣∣∣ s1, πk, p]

=

H∑
h=1

E
[
ψk,h(sh, ah)− ψk,h(sh, ah)

∣∣∣∣ s1, πk, p]

+

H∑
h=1

E
[
bpk−1,h(sh, ah) log(A) +

〈
p̂k,h(·|sh, ah)− ph(·|sh, ah), V̂ kψ̂k,h+1

(·)
〉 ∣∣∣∣ s1, πk, p] .

Since G occurs, we have 〈
p̂k,h(·|sh, ah)− ph(·|sh, ah), V̂ kψ̂k,h+1

(·)
〉

≤∥p̂k,h(·|sh, ah)− ph(·|sh, ah)∥1
∥∥∥V̂ k

ψ̂k,h+1
(·)
∥∥∥
∞

≤∥p̂k,h(·|sh, ah)− ph(·|sh, ah)∥1H log(A)

≤bpk−1,h(sh, ah) log(A)

by Hölder’s, the truncation in the policy evaluation, and since G occurs. Plugging this into the
inequality above,

V̂ k
ψ̂k

− V πk

ψk
≤

H∑
h=1

E
[
2bpk−1,h(sh, ah) log(A)

∣∣∣∣ s1, πk, p]
and the rest of the proof follows exactly as in the proof of Lemma E.5, with an extra log(A) factor.
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The following lemma allows us to control the total estimation error (a) from the optimistic model.
Roughly speaking, it guarantees that the estimates are not too optimistic.

Lemma E.7 (Estimation error with regularization). Conditioned on G, for every K ′ ∈ [K], we have
(if τ ≤ 1)

K′∑
k=1

(
V̂ kẑk − V πk

zk

)
≲ (2 + Iλmax)

(√
S2AH4K ′ + S3/2AH2

)
.

Proof. By Equations (20), (22) and (23), conditioned on G,

K′∑
k=1

(
V̂ kẑk − V πk

zk

)

=

K′∑
k=1

(
V̂ kr̂k − V πk

r

)
+

I∑
i=1

λk(i)

K′∑
k=1

(
V̂ kûk,i

− V πk
ui

)
+ τ

K′∑
k=1

(
V̂ k
ψ̂k

− V πk

ψk

)
≲(1 + Iλmax + τ)

(√
S2AH4K ′ + S3/2AH2

)
,

and τ ≤ 1. The last inequality holds due to Lemmas E.5 and E.6.

Per-State Optimism In the following, we show per-state optimism for the optimistic model.

Lemma E.8 (State optimism r̂, û). Conditioned on the success event G, for all s, a, h, and k ∈ [K],

−Q̂kr̂k,h(s, a) + rh(s, a) +
〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
≤0,

−Q̂kûk,i,h
(s, a) + uk,i,h(s, a) +

〈
ph(·|s, a), V̂ kûk,i,h+1(·)

〉
≤0 (i ∈ [I])

Proof. For r̂k, by Algorithm 2 we have

Q̂kr̂k,h(s, a)

=min
{
H − h+ 1, r̂k,h(s, a) +

〈
p̂k,h(·|s, a), V̂ kr̂k,h+1(·)

〉}
=min

{
H − h+ 1,

r̄k−1,h(s, a) + brk−1,h(s, a) +
〈
p̂k,h(·|s, a), V̂ kr̂k,h+1(·)

〉
+ bpk−1,h(s, a)

}
≥min

{
1, r̄k−1,h(s, a) + brk−1,h(s, a)

}
+min

{
H − h,

〈
p̂k,h(·|s, a), V̂ kr̂k,h+1(·)

〉
+ bpk−1,h(s, a)

}
,
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where we used min {a+ b, c+ d} ≥ min {a, c}+min {b, d}. Thus

− Q̂kr̂k,h(s, a) + rh(s, a) +
〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
≤−min

{
1, r̄k−1,h(s, a) + brk−1,h(s, a)

}
+ rh(s, a)

−min
{
H − h,

〈
p̂k,h(·|s, a), V̂ kr̂k,h+1(·)

〉
+ bpk−1,h(s, a)

}
+
〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
=−min

{
1− rh(s, a), r̄k−1,h(s, a)− rh(s, a) + brk−1,h(s, a)

}
−min

{
H − h−

〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
,〈

p̂k,h(·|s, a)− ph(·|s, a), V̂ kr̂k,h+1(·)
〉
+ bpk−1,h(s, a)

}
=max

{
rh(s, a)− 1︸ ︷︷ ︸

(a)

, −r̄k−1,h(s, a) + rh(s, a)− brk−1,h(s, a)︸ ︷︷ ︸
(b)

}

+max

{
−(H − h) +

〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
︸ ︷︷ ︸

(c)

,

−
〈
p̂k,h(·|s, a)− ph(·|s, a), V̂ kr̂k,h+1(·)

〉
− bpk−1,h(s, a)︸ ︷︷ ︸

(d)

}
.

Now, for each of the four terms appearing in the maxima, conditioned on G, we have

(a) = rh(s, a)− 1 ≤0

by boundedness of the reward functions,

(b) = −r̄k,h(s, a) + rh(s, a)− brk−1,h(s, a) ≤0

since G occurs,

(c) = −(H − h) +
〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
≤ −(H − h) + 1 · (H − (h+ 1) + 1) = 0

by Hölder’s and the truncation of our evaluation procedure, and finally

(d) =−
〈
p̂k,h(·|s, a)− ph(·|s, a), V̂ kr̂k,h+1(·)

〉
− bpk−1,h(s, a)

≤∥p̂k,h(·|s, a)− ph(·|s, a)∥1 · (H − (h+ 1) + 1)− bpk−1,h(s, a)

≤∥p̂k,h(·|s, a)− ph(·|s, a)∥1 ·H − bpk−1,h(s, a) ≤ 0

by Hölder’s, the truncation of our evaluation procedure, since p̂k = p̄k−1, and since G occurs. We
are thus taking the minimum of non-positive terms, which shows

−Q̂kr̂k,h(s, a) + rh(s, a) +
〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
≤ 0.

The proof for ûk,i (i ∈ [I]) is identical.

Lemma E.9 (State optimism ψ̂). Conditioned on the success event G, for all s, a, h, and k ∈ [K],

−Q̂k
ψ̂k,h

(s, a) + ψk,h(s, a) +
〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉
≤ 0.

Proof. For ψ̂k,h(s, a) = ψk,h(s, a) + bpk−1,h(s, a) log(A), from Algorithm 2 we have

Q̂k
ψ̂k,h

(s, a)

=min
{
ψk,h(s, a) + (H − h+ 1) log(A), ψ̂k,h(s, a) +

〈
p̂k,h(·|s, a), V̂ kψ̂k,h+1

(·)
〉}

=ψk,h(s, a)

+ min
{
(H − h+ 1) log(A), bpk−1,h(s, a) log(A) +

〈
p̂k,h(·|s, a), V̂ kψk,h+1(·)

〉}
.
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Thus

− Q̂k
ψ̂k,h

(s, a) + ψk,h(s, a) +
〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉

=−min
{
(H − h+ 1) log(A), bpk−1,h(s, a) log(A) +

〈
p̂k,h(·|s, a), V̂ kψ̂k,h+1

(·)
〉}

+
〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉

=−min

{
(H − h+ 1) log(A)−

〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉
,

bpk−1,h(s, a) log(A) +
〈
p̂k,h(·|s, a)− ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉}

=+max

{
−(H − h+ 1) log(A) +

〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉

︸ ︷︷ ︸
=:(a)

,

−bpk−1,h(s, a) log(A)−
〈
p̂k,h(·|s, a)− ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉

︸ ︷︷ ︸
=:(b)

}
.

For (a), first note that by the truncation in the policy evaluation (Algorithm 2)

V̂ k
ψ̂k,h+1

(s) =
〈
πk,h+1(·|s), Q̂kψ̂k,h+1

(s, ·)
〉

(by definition)

≤
∑
a

πk,h+1(a|s) · ψk,h+1(s, a)

+
∑
a

πk,h+1(a|s) · (H − (h+ 1) + 1) log(A) (truncated update)

≤ log(A) +
∑
a

πk,h+1(a|s) · (H − h) log(A)

≤(H − h+ 1) log(A). (24)

Hence

(a) =− (H − h+ 1) log(A) +
〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉

≤− (H − h+ 1) log(A) + (H − h+ 1) log(A)

=0

by Hölder’s and Equation (24). For (b),

(b) =− bpk−1,h(s, a) log(A)−
〈
p̂k,h(·|s, a)− ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉

≤− bpk−1,h(s, a) log(A) + ∥p̂k,h(·|s, a)− ph(·|s, a)∥1 · (H − h+ 1) log(A)

≤− bpk−1,h(s, a) log(A) + ∥p̂k,h(·|s, a)− ph(·|s, a)∥1 ·H log(A)

≤0

by Hölder’s, and since p̂k = p̄k−1 and G occurs.

Finally, the following lemma shows that we can discard term (c) in Lemma E.2. It guarantees that for
every state, an optimistic Bellman-type inequality holds.

Lemma E.10 (State optimism ẑ). Conditioned on the success event G,

−Q̂kẑk,h(s, a) + zk,h(s, a) +
〈
ph(·|s, a), V̂ kẑk,h+1(·)

〉
≤ 0.
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Proof. By Equations (20) and (22), conditioned on G,

− Q̂kẑk,h(s, a) + zk,h(s, a) +
〈
ph(·|s, a), V̂ kẑk,h+1(·)

〉
=− Q̂kr̂k,h(s, a) + rk,h(s, a) +

〈
ph(·|s, a), V̂ kr̂k,h+1(·)

〉
∑
i

λk,i

(
−Q̂kûk,i,h

(s, a) + uk,i,h(s, a) +
〈
ph(·|s, a), V̂ kûk,i,h+1(·)

〉)
τ
(
−Q̂k

ψ̂k,h
(s, a) + ψk,h(s, a) +

〈
ph(·|s, a), V̂ kψ̂k,h+1

(·)
〉)

≤0,

where the last inequality holds due to Lemmas E.8 and E.9 and since all λk,i ≥ 0.

Value Function Bounds In the following, we bound the regularized value functions, which allows
us to apply descent properties of the regularized primal-dual algorithm. Recall that g = u− 1

H c.

Lemma E.11 (Value function bounds). For any s, a, h, we have

0 ≤ Qπk

r+λT
k u+τψk,h

(s, a) ≤− τ log(πk,h(a|s)) +H(1 + Iλmax + τ log(A)) (25)

Moreover, for any s, a, h,∑
a

πk,h(a|s) exp
(
ηQπk

r+λT
k u+τψk,h

(s, a)
)
Qπk

r+λT
k u+τψk,h

(s, a)2

≤
√
A exp (ηH (1 + λmaxI + τ log(A)))

(
2H2 (1 + Iλmax + τ log(A))

2
+ 2τ2(64/e2)

)
and ∥∥V πk

g + τλk
∥∥ ≤

√
I (H + τλmax)

Proof. We prove the first inequality. Non-negativity is immediate. Moreover, for all s, a,

Qπk

r+λT
k u+τψk,h

(s, a) =

∣∣∣∣∣Qπk

r,h(s, a) +
∑
i

λk,iQ
πk

ui,h
(s, a) + τQπk

ψk,h
(s, a)

∣∣∣∣∣
≤
∣∣∣Qπk

r,h(s, a)
∣∣∣+∑

i

λk,i

∣∣∣Qπk

ui,h
(s, a)

∣∣∣+ τ
∣∣∣Qπk

ψk,h
(s, a)

∣∣∣
≤H + IλmaxH + τEπk

[
H∑

h′=h

− log(πk,h′(ah′ |sh′)) | sh = s, ah = a

]
.

We finish by bounding

Eπk

[
H∑

h′=h

− log(πk,h′(ah′ |sh′))

∣∣∣∣ sh = s, ah = a

]

=− log(πk,h(a|s)) + Eπk

[
H∑

h′=h+1

− log(πk,h′(ah′ |sh′))

∣∣∣∣ ah = a, sh = s

]

=− log(πk,h(a|s)) + Eπk

[
H∑

h′=h+1

− log(πk,h′(ah′ |sh′))

∣∣∣∣ sh+1 ∼ ph(·|s, a)

]
=− log(πk,h(a|s)) +

∑
h′=h+1

∑
s′

dπk

sh+1∼ph(·|s,a),h′(s
′)
∑
a′

−πk,h′(a′|s′) log(πk,h′(a′|s′))

≤− log(πk,h(a|s)) +
∑

h′=h+1

∑
s′

dπk

sh+1∼ph(·|s,a),h′(s
′) log(A)

=− log(πk,h(a|s)) +
∑

h′=h+1

log(A)

≤− log(πk,h(a|s)) +H log(A),
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where we used the standard bound on the entropy in the third to last step, and we are considering
unnormalized occupancy measures throughout.

For the second inequality, first note that (using (a+ b)2 ≤ 2a2 + 2b2)

Qπk

r+λT
k u+τψk,h

(s, a)2 ≤ 2H2 (1 + Iλmax + τ log(A))
2︸ ︷︷ ︸

=:C1

+2τ2 log2
(

1

πk,h(a|s)

)
.

Moreover, using Equation (25) we have

πk,h(a|s) exp
(
ηQπk

r+λT
k u+τψk,h

(s, a)
)

≤πk,h(a|s)1−ητ exp (ηH (1 + λmaxI + τ log(A)))︸ ︷︷ ︸
=:C2

We thus find, if ητ ≤ 1/4 < 1/2 (which is easily satisfied since we choose η, τ small),∑
a

πk,h(a|s) exp
(
ηQπk

r+λT
k u+τψk,h

(s, a)
)
· C1

≤
∑
a

πk,h(a|s)1−ητ · C2 · C1

≤
∑
a

πk,h(a|s)1/2 · C2 · C1

≤

(∑
a

πk,h(a|s)

)1/2 (
AC2

2 · C2
1

)1/2
=
√
AC1C2,

where the last inequality is Cauchy-Schwarz, and∑
a

πk,h(a|s) exp
(
ηQπk

r+λT
k u+τψk,h

(s, a)
)
· 2τ2 log2

(
1

πk,h(a|s)

)
≤
∑
a

πk,h(a|s)1−ητ · C2 · 2τ2 log2
(

1

πk,h(a|s)

)
≤
∑
a

πk,h(a|s)1/2 · C2 · 2τ2πk(a|s, h)1/4 log2
(

1

πk,h(a|s)

)
≤
∑
a

πk,h(a|s)1/2 · C2 · 2τ2(64/e2)

≤
√
AC2 · 2τ2(64/e2),

where we used the fact that q1/4 log2(1/q) ≤ 64/e2 for q ∈ (0, 1), and Cauchy-Schwarz in the same
manner as before. Adding up the previous two terms and plugging in the definitions of the constants
yields the second inequality.

For the third inequality, we find (recalling that gh(s, a) ∈ [−1, 1]I )∥∥V πk
g + τλk

∥∥ ≤
∥∥V πk

g

∥∥+ τ ∥λk∥

≤
√
IH + τ

√
Iλmax,

concluding the proof.

Lemma E.12 (Truncated value function bounds). For all s, a, h, we have

0 ≤ Q̂kẑk,h(s, a) ≤ −τ log(πk,h(a|s)) +H(1 + Iλmax + τ log(A)) (26)
and ∑

a

πk,h(a|s) exp
(
ηQ̂kẑk,h(s, a)

)
Q̂kẑk,h(s, a)

2

≤
√
A exp (ηH (1 + λmaxI + τ log(A)))

(
2H2 (1 + Iλmax + τ log(A))

2
+ 2τ2(64/e2)

)
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and ∥∥∥V̂ k
ûk

− c+ τλk

∥∥∥ ≤
√
I (H + τλmax)

Proof. Since the truncated value functions are bounded between 0 and the true value functions, the
statement follows from Lemma E.11.

F Regret Analysis

In this section, we provide all proofs of the result from Section 5, leading to a regret bound of the
regularized primal-dual algorithm (Algorithm 1).

We write ≲ for asymptotic inequality up to polylogarithmic terms. First, we note that the primal-dual
updates indeed correspond to mirror descent updates.

Observation F.1. The closed-form expressions in Algorithm 1 are solutions to

max
πh(·|s)∈∆(A)

(∑
a∈A

πh(a|s)Q̂kẑk,h(s, a)−
1

η
KL(πh(·|s), πk,h(·|s))

)
,

min
λ∈Λ

(
λT
(
V̂ k
ûk

− c+ τλk

)
+

1

2η
∥λ− λk∥2

)
,

respectively.

This means that both the primal and dual variables are updated via mirror descent with different
regularizers. Hence, we can make use of the descent lemmas for online mirror descent (we refer to
Lemmas I.5 and I.8 in Appendix I.3). However, the value functions that serve as (surrogate) gradients
are only estimates. Thus, the convergence proof for the potential function Φk that measures the
distance from (πk,λk) to (π⋆τ ,λ

⋆
τ ) needs to take the estimation errors into account.

Lemma 5.1 (Regularized convergence). Let η, τ < 1 and λmax ≥ HΞ−1. With probability at least
1− δ, the iterates of Algorithm 1 satisfy

Φk+1 ≤(1− ητ)kΦ1 + Õ

(
ητ−1Cη,τ,Λ + ηλmax

(
ISA1/2H2k1/2 + IS3/2AH2

))
,

where Cη,τ,Λ is the same constant as in Lemma 4.1.

Proof. Condition on G, which occurs with probability at least 1 − δ by Lemma E.1. We first
decompose the k-th primal-dual gap as follows:

Lτ (π⋆τ ,λk)− Lτ (πk,λ⋆τ ) = Lτ (π⋆τ ,λk)− Lτ (πk,λk)︸ ︷︷ ︸
(i)

+Lτ (πk,λk)− Lτ (πk,λ⋆τ )︸ ︷︷ ︸
(ii)

. (27)
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We first bound term (i):

(i) =Lτ (π⋆τ ,λk)− Lτ (πk,λk)

=V
π⋆
τ

r+λT
k g

− V πk

r+λT
k g

(as dπh(s, a) = dπh(s)πh(a|s), and cancel ∥λk∥2)

− τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(π⋆τ,h(a|s)) + τ
∑
s,a,h

dπk

h (s)πk,h(a|s) log(πk,h(a|s))

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

(since ψk,h(s, a) = − log(πk,h(a|s)))

+ τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(πk,h(a|s))− τ
∑
s,a,h

dπk

h (s)πk,h(a|s) log(πk,h(a|s))

− τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(π⋆τ,h(a|s)) + τ
∑
s,a,h

dπk

h (s)πk,h(a|s) log(πk,h(a|s))

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

+ τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(πk,h(a|s))

− τ
∑
s,a,h

d
π⋆
τ

h (s)π⋆τ,h(a|s) log(π⋆τ,h(a|s))

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

− τ
∑
s,h

d
π⋆
τ

h (s)
∑
a

π⋆τ,h(a|s) log
(
π⋆τ,h(a|s)
πk,h(a|s)

)
=V

π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

− τ
∑
s,h

d
π⋆
τ

h (s)KLk,h(s)

=V
π⋆
τ

r+λT
k g+τψk

− V πk

r+λT
k g+τψk

− τKLk

=V
π⋆
τ

r+λT
k u+τψk

− V πk

r+λT
k u+τψk

− τKLk (as g = u− 1
H c)

=V
π⋆
τ

zk − V πk
zk

− τKLk

Now by Lemma E.2, we have

V
π⋆
τ

zk − V πk
zk

=(V̂ kẑk − V πk
zk

) (a)

+
∑
h

E
[〈
Q̂kẑk,h(sh, ·), π

⋆
τ,h(·|sh)− πk,h(·|sh)

〉 ∣∣∣∣ s1, π⋆τ , p] (b)

+
∑
h

E
[
−Q̂kẑk,h(sh, ah) + zk,h(sh, ah) +

〈
ph(·|sh, ah), V̂ πk

ẑk,h+1(·)
〉 ∣∣∣∣ s1, π⋆τ , p] (c)

We leave term (a) as is and will sum over k later. For term (b), note that for all s, h,〈
Q̂kẑk,h(s, ·), π

⋆
τ,h(·|s)− πk,h(·|s)

〉
≤KLk,h(s)− KLk+1,h(s)

η
+
η

2

∑
a

πk,h(a|s) exp
(
Q̂kẑk,h(s, a)

)
Q̂kẑk,h(s, a)

2 (Lemma I.6)

≤KLk,h(s)− KLk+1,h(s)

η
+
η

2

1

H
Dη,τ,Λ, (Lemma E.12)

with

Dη,τ,Λ = HA1/2 exp (ηH (1 + λmaxI + τ log(A)))
(
2H2 (1 + Iλmax + τ log(A))

2
+ 2τ2(64/e2)

)
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and where we were able to apply Lemma I.6 by Observation F.1 and since Q̂kẑk,h(s, a) ≥ 0. Hence,∑
h

E
[〈
Q̂kẑk,h(sh, ·), π

⋆
τ,h(·|sh)− πk,h(·|sh)

〉 ∣∣∣∣ s1, π⋆τ , p] =∑
s,h

d
π⋆
τ

h (s)
〈
Q̂kẑk,h(s, ·), π

⋆
τ,h(·|s)− πk,h(·|s)

〉
≤
∑
s,h

d
π⋆
τ

h (s)

(
KLk,h(s)− KLk+1,h(s)

η
+
η

2

1

H
Dη,τ,Λ

)
=

KLk − KLk+1

η
+
η

2
Dη,τ,Λ.

Term (c) is ≤ 0 by Lemma E.10, which applies since G occurs. Plugging in, we thus find

(i) =V
π⋆
τ

zk − V πk
zk

− τKLk

≤(V̂ kẑk − V πk
zk

) +
KLk − KLk+1

η
+
η

2
Dη,τ,Λ + 0− τKLk

=(V̂ kẑk − V πk
zk

) +
(1− ητ)KLk − KLk+1

η
+
η

2
Dη,τ,Λ. (28)

We now bound term (ii):

(ii) =Lτ (πk,λk)− Lτ (πk,λ⋆τ )

=V πk

r+λT
k g

− V πk

r+(λ⋆
τ )

T g
+
τ

2
∥λk∥2 −

τ

2
∥λ⋆τ∥

2 (cancel H(πk))

=
∑
i

(λk,i − λ⋆τ,i)V
πk
gi +

τ

2
∥λk∥2 −

τ

2
∥λ⋆τ∥

2

=
∑
i

(λk,i − λ⋆τ,i)(V
πk
ui

− ci + τλk,i)−
τ

2
∥λk − λ⋆τ∥

2

=
∑
i

(λk,i − λ⋆τ,i)(V̂
k
ûk,i

− ci + τλk,i) (a)∑
i

(λk,i − λ⋆τ,i)(V
πk
ui

− V̂ kûk,i
) (b)

− τ

2
∥λk − λ⋆τ∥

2

To bound (a), we note that∑
i

(λk,i − λ⋆τ,i)(V̂
k
ûk,i

− ci + τλk,i)

≤∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2

∥∥∥V̂ k
ûk

− c+ τλk

∥∥∥2 (Lemma I.8)

≤∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2
D′
τ,Λ, (Lemma E.12)

with D′
τ,Λ = I(H + τλmax)

2 and where we were able to apply Lemma I.8 by Observation F.1. We
can bound (b) via ∑

i

(λk,i − λ⋆τ,i)(V
πk
ui

− V̂ kûk,i
) ≤

∑
i

λmax

∣∣∣V̂ kûk,i
− V πk

ui

∣∣∣ .
Plugging in, we find

(ii) =
∑
i

(λk,i − λ⋆τ,i)(V
πk
ui

− ci + τλk,i)−
τ

2
∥λk − λ⋆τ∥

2

≤∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2
D′
τ,Λ +

∑
i

λmax

∣∣∣V̂ kûk,i
− V πk

ui

∣∣∣− τ

2
∥λk − λ⋆τ∥

2

=
(1− ητ) ∥λ⋆τ − λk∥2 − ∥λ⋆τ − λk+1∥2

2η
+
η

2
D′
τ,Λ +

∑
i

λmax

∣∣∣V̂ kûk,i
− V πk

ui

∣∣∣ . (29)
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Before proceeding, note that conditioned on G, we have

V̂ kûk,i
− V πk

ui
≥0,

V̂ kẑk − V πk
zk

≥0,

by Lemmas E.8 and E.10, respectively. Hence, we can treat these differences and their absolute
values interchangeably in what follows.

From Lemma C.3 (with π = πk, λ = λk), we have 0 ≤ Lτ (π⋆τ ,λk)−Lτ (πk,λ⋆τ ). Moreover, recall
Φk = KLk + 1

2 ∥λk − λ⋆τ∥
2, thus by Equations (28) and (29),

Φk+1 =KLk+1 +
1

2
∥λk+1 − λ⋆τ∥

2

≤(1− ητ)KLk +
η2

2
Dη,τ,Λ + η(V̂ kẑk − V πk

zk
)− η(i) (Equations (28) and (29))

+ (1− ητ)
∥λk − λ⋆τ∥

2

2
+
η2

2
D′
τ,Λ + η

∑
i

λmax

∣∣∣V̂ kûk,i
− V πk

ui

∣∣∣− η(ii)

≤(1− ητ)Φk + η2(Dη,τ,Λ +D′
τ,Λ)

+ η(V̂ kẑk − V πk
zk

) + η
∑
i

λmax

∣∣∣V̂ kûk,i
− V πk

ui

∣∣∣ (Def. Φk)

− η ((i) + (ii))

≤(1− ητ)Φk + η2(Dη,τ,Λ +D′
τ,Λ)

+ η(V̂ kẑk − V πk
zk

) + η
∑
i

λmax

∣∣∣V̂ πk

ûk,i
− V πk

ui

∣∣∣
− η (Lτ (π⋆τ ,λk)− Lτ (πk,λ⋆τ )) (Equation (27))

≤(1− ητ)Φk + η2(Dη,τ,Λ +D′
τ,Λ) (as Lτ (π⋆τ ,λk)− Lτ (πk,λ⋆τ ) ≥ 0)

+ η(V̂ kẑk − V πk
zk

) + η
∑
i

λmax

∣∣∣V̂ kûk,i
− V πk

ui

∣∣∣ .
By induction and geometric series bound we find

Φk+1 ≤(1− ητ)kΦ1 +

k∑
k′=1

(1− ητ)k+1−k′η2(Dη,τ,Λ +D′
τ,Λ)

+

k∑
k′=1

(1− ητ)k+1−k′
(
η(V̂ k

′
zk′ − V πk′

zk′ ) + η
∑
i

λmax

∣∣∣V̂ k′ûk′,i
− V πk′

ui

∣∣∣)

≤(1− ητ)kΦ1 +
1

ητ
η2(Dη,τ,Λ +D′

τ,Λ)

+ η

k∑
k′=1

(
(V̂ k

′
ẑk′ − V πk′

zk
) +

∑
i

λmax

∣∣∣V̂ k′ûk′,i
− V πk′

ui

∣∣∣)
≤(1− ητ)kΦ1 +

η

τ
(Dη,τ,Λ +D′

τ,Λ)

+ Õ
(
η ((2 + Iλmax) + Iλmax)

(√
S2AH4k + S3/2AH2

))
,

where we used Lemmas E.5 and E.7 (which apply sinceG occurs) in the final step. Finally, noting that
Dη,τ,Λ +D′

τ,Λ ≤ Õ(Cη,τ,Λ) (see Theorem 4.1) and invoking λmax ≥ 1 concludes the proof.

Invoking Lemma 4.2, we can leverage the convergence of the potential function to show a sublinear
regret bound for Algorithm 1.

Theorem 5.1 (Regret bound). Let τ = K−1/7, η = (H2I)−1ΞK−5/7, λmax = HΞ−1K1/14.
Then with probability at least 1− δ, Algorithm 1 obtains a strong regret of

R(K; r) ≤ CrK
0.93, R(K;u) ≤ CuK

0.93,

where Cr, Cu = poly(S,A,H, I,Ξ−1, log(1/δ), log(K)) and K is the number of episodes.
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Proof. The bound follows from Lemma 5.1 and Lemma 4.2.

Set ∆r(k) :=
[
V π

⋆

r − V πk
r

]
+

and ∆gi(k) :=
[
−V πk

gi

]
+

. Condition on the success event G, which
happens with probability at least 1− δ by Lemma E.1.

We first consider the regret for the reward. Plugging Lemma 5.1 into Lemma 4.2 we find, using√
a+ b ≤

√
a+

√
b and 1 + x ≤ exp(x),

∆r(k) ≲H
3/2Φ

1/2
1 exp (−ητk/2) (a)

+H3/2
(η
τ

)1/2
C

1/2
η,τ,Λ (b)

+H3/2
(
ηλmaxISA

1/2H2k1/2
)1/2

(c)

+H3/2
(
ηλmaxS

3/2AH2
)1/2

(d)

+ τH log(A). (e)

We first show that we can ignore terms (b), (d), and (e) since they are o(K−13/14). For (b), note that,
using the definitions of η, τ , λmax (and taking

√
·, and τ < 1)

C
1/2
η,τ,Λ ≤λmaxH3/2A1/4I · exp ((ηH (1 + λmaxI + log(A)))/2) + I1/2 (H + τλmax)

≲λmaxH
3/2A1/4I · exp

(
(HI)−1ΞK−5/7

(
1 +

H

Ξ
K1/14I + log(A)

))
+ I1/2

(
H +HΞ−1K−1/14

)
≲λmaxH

3/2A5/4I · exp(2) + I1/2
(
H +HΞ−1K−1/14

)
≲H5/2A5/4IΞ−1K1/14.

Since (η
τ

)1/2
= (H2I)−1/2Ξ1/2K(−5/7+1/7)/2 = (H2I)−1/2Ξ1/2K−2/7,

we thus have

(b) = H3/2
(η
τ

)1/2
C

1/2
η,τ,Λ ≤ poly(A,H, I,Ξ−1)K−3/14.

Hence, when summing (b) over k = 1, . . . ,K, it only contributes o(K−13/14) to the regret. Similarly,

(d) =H3/2
(
ηλmaxS

3/2AH2
)1/2

≤ H3/2
(
S3/2AH2

)1/2
K−(9/2)/14,

(e) =τH log(A) = K−1/7H log(A).

Hence, when summing (d) and (e) over k = 1, . . . ,K, they only contribute o(K−13/14) to the regret.
We now turn to terms (a) and (c). For (a), using the standard inequality e−x ≤ 1−x/2 (if 0 ≤ x ≤ 1)
with x := ητ/2, we first find

exp(−ητk/2) ≤ (1− ητ/4)k

and hence, (after summing (a) over k = 1, . . . ,K)
K∑
k=1

H3/2Φ
1/2
1 exp (−ητk/2) ≤H3/2Φ

1/2
1

K∑
k=1

(1− ητ/4)k

≤H3/2Φ
1/2
1

∞∑
k=1

(1− ητ/4)k

=H3/2Φ
1/2
1

4

ητ

=H3/2Φ
1/2
1

4

(H2I)−1ΞK−5/7K−1/7

=4H7/2IΞ−1Φ
1/2
1 K12/14.
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Furthermore, since π1 plays actions uniformly at random and λ1 = 0, we have Φ1/2
1 ≤ (H log(A) +

1
2Iλ

2
max)

1/2 ≤ H1/2 log(A)1/2 + I1/2λmax = H1/2 log(A)1/2 + I1/2HΞ−1K1/14. Hence, the
calculation above shows

(a) ≤4H7/2IΞ−1
(
H1/2 log(A)1/2 + I1/2HΞ−1K1/14

)
K12/14

≤4H4IΞ−1 log(A)1/2K12/14 + 4H9/2IΞ−2I1/2K13/14.

For (c), we find (after summing over k = 1, . . . ,K)
K∑
k=1

H3/2
(
ηλmaxISA

1/2H2k1/2
)1/2

=

K∑
k=1

H3/2
(
(H2I)−1ΞK−5/7HΞ−1K1/14ISA1/2H2k1/2

)1/2
≤K ·H3/2

(
(H2I)−1ΞK−5/7HΞ−1K1/14ISA1/2H2K1/2

)1/2
=H3/2

(
(H2I)−1ΞHΞ−1ISA1/2H2

)1/2
K1+(−5/7+1/14+1/2)/2

=H3/2
(
SA1/2H

)1/2
K13/14

=H2S1/2A1/4K13/14.

Hence, summing up terms (a) to (e) over k = 1, . . . ,K indeed yields the bound for the objective
(using 13/14 ≃ 0.93):

R(K; r) ≲
(
H9/2IΞ−2I1/2 +H2S1/2A1/4

)
K0.93.

Next, we consider the regret for the constraints. Plugging Lemma 5.1 into Lemma 4.2 we find, using√
a+ b ≤

√
a+

√
b,

∆ui
(k) ≲H3/2Φ

1/2
1 exp (−ητk/2) (a’)

+H3/2
(η
τ

)1/2
C

1/2
η,τ,Λ (b’)

+H3/2
(
ηλmaxISA

1/2H2k1/2
)1/2

(c’)

+H3/2
(
ηλmaxS

3/2AH2
)1/2

(d’)

+ τλmax +
1

λmax
H2Ξ−1 (e’)

+
1

λmax
τH log(A). (f’)

Note that terms (a’), (b’), (c’), (d’) are identical to (a), (b), (c), (d). Summed up, they thus correspond
to the same regret as the one for the reward. Moreover, for (f’) we have

(f ′) =
1

λmax
τ log(A) =ΞH−1 log(A)K−3/14,

and thus, we can ignore (f’) when summing from k = 1, . . . ,K. Finally, for (e’), we have

(e′) =τλmax +
1

λmax
H2Ξ−1

=K−1/7 ·HΞ−1K1/14 +H−1ΞK−1/14 ·H2Ξ−1

=H(1 + Ξ−1)K−1/14.

Thus, summing up (a’) to (f’) from k = 1 to K yields the regret for the constraints (using 13/14 ≃
0.93):

R(K;u) ≲
(
H9/2IΞ−2I1/2 +H2S1/2A1/4 +H(1 + Ξ−1)

)
K0.93.
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G Examples and Simulation
In this section, we expand on the description provided in Section 6.

G.1 Examples
In this section, we provide examples to highlight crucial differences between the strong regret R and
the weak regret Rweak.

A Minimal Example Consider the case in which an agent repeatedly has the option between three
different investment strategies (o1, o2, o3). Each of them yields a respective reward (r1, r2, r3) =
(1/5, 1, 3/5). There is an initial cost (u1, u2, u3) = (9/10, 1/10, 5/10) associated with each option,
which must not exceed the budget c = 1/2 of the agent. If the budget is exceeded, the agent will be
in debt, and a larger debt is associated with a higher risk. Clearly, we can model this scenario as an
optimization problem maxx∈∆([3])

∑
i∈[3] xiri, subject to

∑
i∈[3] xiri ≤ c, where x describes the

distribution of investments in the respective strategies. We can equivalently model this problem as a
CMDP with one state s1, horizon H = 1 and three actions A = [3] (i.e., a constrained bandit), in
which r1(s1, a) = ra, u1(s1, a) = 1− ua (a ∈ [3]) and c = 1− c. Here, o1 is highly profitable but
too risky, o2 is less profitable but safe, and o3 is a compromise between both. Note that R(K,u)
now measures the total amount of debt the algorithm accumulated during K episodes. A strategy
A that always plays o3 will have a total debt of 0 since o3 does not violate the constraint. On the
other hand, a strategy B that plays o1 and o2 in an alternating fashion will have a total debt of K/5,
which is linear in K, despite having a weak regret of 0 due to the aforementioned cancellations. Both
strategies, A and B, have the same accumulated objective. This simple example, which does not even
require an unknown environment, illustrates why weak regret cannot be the right notion of safety
during learning. We point to Calvo-Fullana et al. (2023); Moskovitz et al. (2023); Stooke et al. (2020)
for other examples exhibiting similar behavior.

A Slight Relaxation For practical purposes, one may consider the strong regret only for the
constraint violations and the weak one for the objective. The reasoning behind this possible relaxation
is that we may tolerate superoptimal performance with respect to the reward (when the algorithm
violates the constraints) while we still do not tolerate additive negative constraint violations (as
discussed). For example, an agent maximizing a wealth function may be allowed to obtain a higher
return than any safe method, adding a negative term to the objective regret. In this case, we may
want to allow compensating suboptimal returns by superoptimal ones, while we do not want to allow
compensating unsafe strategies by strictly safe ones. However, this relaxation does not improve our
theoretical results in their current form. It remains open whether, under this relaxation, stronger
results are possible to obtain.

We argue that despite the possible relaxation, it is sensible to require the strong regret for both the
violation and the objective, as done in this paper, which is also what Efroni et al. (2020) referred to.
Indeed, one can think of settings in which one gets paid out the return of an episode only up until
the limit that would be attainable subject to the constraints. For instance, if there is an illegal set of
options, the controller of the environment may decide to pay out only so much as attainable when
they are not being used (but may not know whether the illegal actions have, in fact, been used). In
other words, the return is Wk = min{V πk

r , V π
⋆

r }. Hence, per-episode regret would be

V π
⋆

r −Wk = V π
⋆

r −min{V πk
r , V π

⋆

r } = [V π
⋆

r − V πk
r ]+,

which is exactly the strong regret of the episode.

G.2 Experiment Details
In this section, we report all details of the parameters, environments, and hardware used for our
simulations.

Comparison with Guarantee With the theoretically derived stepsize η, regularization τ , and explo-
ration from Theorem 5.1, we need many episodes to observe a benefit, due to the slowly vanishing gap
between regularized and unregularized problem. Setting hyperparameters empirically, we observe a
better regret than the theory suggests. Therefore, the plots in this section refer to the empirical choice.

Hyperparameters For the vanilla algorithms, we run for K = 4000 episodes for each step size
η ∈ {0.05, 0.075, 0.1, 0.125, 0.15, 0.2}, which we observed to be a reasonable range across CMDPs
when fixing the number of episodes. Similarly, for the regularized algorithms, we perform the
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same parameter search across all pairs of step size η ∈ {0.05, 0.1, 0.2} and regularization parameter
τ ∈ {0.01, 0.02}, totaling a number of six hyperparameter configurations as well. We always set
λmax = 6, which did not play a role in our simulations as long as it was chosen sufficiently large.
We use exploration bonuses 0.08 · nh(s, a)−1/2. For each hyperparameter configuration, we sample
n = 5 independent runs with K episodes, obtain the regret curves and plot their average. For each
algorithm, we then report the result for the best hyperparameter configuration in hindsight (with
respect to the strong regrets).

Environment As described, we sample the rewards r uniformly at random and the constraints as
c = (1− r) + βζ, for a Gaussian vector η ∈ RHSA and β = 0.1. We sample an environment with
S = A = H = 5 according to the procedure above. Throughout seeds (and other CMDP sizes),
this led to CMDPs in which the oscillations of the iterates and error cancellations can be observed.
As argued, sampling constraints and rewards fully independently does not provide CMDPs that are
interesting test beds. Indeed, unlike in random CMDPs, in real-life situations, we often observe goals
that are explicitly conflicting with safety constraints, as otherwise, there is no need to encode them
via a CMDP. For instance, consider a vehicle that aims to arrive fast but not go over the speed limit or
cross the sidewalk. The latter would be the fastest option, but it conflicts with the constraint. In other
words, the constraint and the reward function are negatively correlated.

All simulations were performed on a MacBook Pro 2.8 GHz Quad-Core Intel Core i7. We provide
the code in the supplementary material. For all experiments, we set the seed to 123.

H Difference Lemmas
In the following, we recap the well-known performance difference and value difference lemma.

Lemma H.1 (Performance difference lemma). For all π, π′ ∈ Π and all r′ : S ×A → R, we have

V πr′ − V π
′

r′ =Eπ

[
H∑
h=1

∑
a

Qπ
′
r′,h(sh, a) (πh(a|sh)− π′

h(a|sh))

]

=

H∑
h=1

∑
s

dπh(s)
∑
a

Qπ
′
r′,h(s, a) (πh(a|s)− π′

h(a|s))

=

H∑
h=1

∑
s

dπh(s)⟨Qπ
′
r′,h(s, ·), πh(·|s)− π′

h(·|s)⟩.

Proof. See Cai et al. (2020, Lemma 3.2) for the first equality. The second equality follows since
we consider unnormalized occupancy measures. The third equality holds by definition of the inner
product.

From Shani et al. (2020, Lemma 1):

Lemma H.2 (Extended value difference lemma (aka simulation lemma)). Let π, π′ be policies and
M = (S,A, p, r), M ′ = (S,A, p′, r′) be MDPs. Let Q̂Mh (s, a) be an approximation of the value

function Qp,πr,h (s, a). Let V̂Mh (s) :=
〈
Q̂Mh (s, ·), πh(·|s)

〉
. Then

V̂M (s1, 1)− V p
′,π′

r′,1 (s1)

=

H∑
h=1

E
[〈
Q̂Mh (sh, ·), πh(·|sh)− π′

h(·|sh)
〉 ∣∣∣∣ s1; p′, π′

]

+

H∑
h=1

E
[
Q̂Mh (sh, ah)− r′h(s, a)−

〈
p′h(·|sh, ah), V̂Mh+1(·)

〉 ∣∣∣∣ s1; p′, π′
]
,

where V p
′,π′

r′,1 (s1) is the value function of π′ in M ′.

Note that Q̂ need not correspond to a true value function under some model.
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I Convex Optimization Background
In this section, we review fundamental results from the optimization literature. All of these results
are standard, and we include them for completeness. They are not novel by themselves nor specific to
the sections in which we make use of them.

I.1 Convex Min-Max Optimization
While the following results from min-max optimization are commonly used, we establish them here
for our setup (both for completeness and due to the lack of a unifying resource for our case).

Setup Let X ⊂ Rdx , Y ⊂ Rdy be (nonempty) compact convex sets and let f : X × Y → R be a
continuous and convex-concave function. Set f̄ : X → R, f̄(x) := maxy∈Y f(x, y), and f : Y → R,
f(y) := minx∈X f(x, y), which both exist by continuity of f on a compact domain.

Lemma I.1 (Existence minimax points). We have

inf
x∈X

max
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y), (30)

and the maximum and minimum are attained, i.e., there exist x⋆ ∈ X , y⋆ ∈ Y such that

f̄(x⋆) = inf
x∈X

max
y∈Y

f(x, y), (31)

f(y⋆) = sup
y∈Y

min
x∈X

f(x, y). (32)

Proof. The first equality holds due to Sion’s Minimax Theorem (Sion, 1958). Note that the second
part of the lemma is not immediate from Sion-like statements.

We shall prove that f̄ is continuous. By compactness of X , this implies the existence of x⋆. By
symmetry, this also settles the existence of y⋆ (by repeating the argument for −f ). Thus, let x ∈ X
and consider a sequence (xk)k in X such that xk → x. We aim to show that f̄(xk) → f̄(x), which
would conclude the proof.

Let y ∈ argmaxy′∈Y f(x, y), which exists by continuity. Then, for every k we have

f̄(xk) = max
y′∈Y

f(xk, y
′) ≥ f(xk, y) → f(x, y).

Taking lim infk on both sides yields

lim inf
k
f̄(xk) ≥ f(x, y) = f̄(x). (33)

Assume by contradiction that lim supk f̄(xk) > f̄(x). Then we can pick δ > 0 such
that lim supk f̄(xk) ≥ f̄(x) + δ. Thus we can pick a subsequence xn(k) and yn(k) ∈
argmaxy′∈Y f(xn(k), y

′) such that for all k,

f̄(xn(k)) ≥ f̄(x) + δ/2 ≥ f(x, yn(k)) + δ/2. (34)

Since Y is compact, by further picking a subsequence if needed, we can WLOG assume that there
exists ỹ ∈ Y such that yn(k) → ỹ. Then by Equation (34),

f(xn(k), yn(k)) =f̄(xn(k)) ≥ f(x, yn(k)) + δ/2.

Taking k → ∞ and using continuity of f yields the contradiction f(x, ỹ) ≥ f(x, ỹ) + δ/2. We
therefore must have lim supk f̄(xk) ≤ f̄(x) ≤ lim infk f̄(xk), proving f̄(xk) → f̄(x). Thus, f̄ is
indeed continuous.

General Setup The statements in this paragraph all concern the following more general setup
(dropping convex-concavity and boundedness of the domain). As we showed in the previous
paragraph, all assertions made here hold in the continuous, convex-concave compactly constrained
setup.

Let X ⊂ Rdx , Y ⊂ Rdy be (nonempty) closed sets and let f : X × Y → R be a continuous
function. Consider f̄ : X → R ∪ {±∞}, f̄(x) := maxy∈Y f(x, y) and f : Y → R ∪ {±∞},
f(y) := minx∈X f(x, y).
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Lemma I.2 (Min-max to saddle point). Let

x⋆ ∈ argmin
x∈X

max
y∈Y

f(x, y),

y⋆ ∈ argmax
y∈Y

min
x∈X

f(x, y),

and assume f̄(x⋆) = f(y⋆). Then (x⋆, y⋆) is a saddle point, i.e., for all x ∈ X , y ∈ Y , we have

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆).

Proof. We have

f(x⋆, y) ≤ max
y′∈Y

f(x⋆, y′) = f̄(x⋆) = f(y⋆) = min
x′∈X

f(x′, y⋆) ≤ f(x⋆, y⋆),

proving the first inequality, and for the second, we have

f(x, y⋆) ≥ min
x′∈X

f(x′, y⋆) = f(y⋆) = f̄(x⋆) = max
y′∈Y

f(x⋆, y′) ≥ f(x⋆, y⋆).

Note that this proof does not require convexity or compactness.

Lemma I.3 (Saddle point to min-max). Let (x⋆, y⋆) be a saddle point, i.e., for all x ∈ X , y ∈ Y , we
have

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆).

Then

x⋆ ∈ argmin
x∈X

max
y∈Y

f(x, y),

y⋆ ∈ argmax
y∈Y

min
x∈X

f(x, y).

Proof. We first note that the assertion implies maxy′ f(x
⋆, y′) ≤ minx′∈X f(x

′, y⋆). Hence

f̄(x⋆) = max
y′

f(x⋆, y′) ≤ min
x′∈X

f(x′, y⋆) ≤ min
x′∈X

max
y′∈Y

f(x′, y′),

showing the claim for x⋆. For y⋆, we note that similarly,

f(y⋆) = min
x′∈X

f(x′, y⋆) ≥ max
y′∈Y

f(x⋆, y′) ≥ max
y′∈Y

min
x′∈X

f(x′, y′),

concluding the proof.

Note that this proof does not require convexity or compactness.

Lemma I.4 (Invariance of saddle points). Let

x⋆ ∈ argmin
x∈X

max
y∈Y

f(x, y),

y⋆ ∈ argmax
y∈Y

min
x∈X

f(x, y),

and assume f̄(x⋆) = f(y⋆). Consider closed sets X ′ ⊂ X , Y ′ ⊂ Y . If (x⋆, y⋆) ∈ X ′ × Y ′, then

x⋆ ∈ arg min
x∈X ′

max
y∈Y′

f(x, y),

y⋆ ∈ argmax
y∈Y′

min
x∈X ′

f(x, y).

Proof. By Lemma I.2 (which applies since f̄(x⋆) = f(y⋆)), (x⋆, y⋆) is a saddle point for the
minmax problem with domain X × Y . Thus, since y⋆ ∈ Y ′ ⊂ Y , we have f(x⋆, y⋆) =
maxy∈Y f(x

⋆, y) = maxy∈Y′ f(x⋆, y). Moreover, since X ′ ⊂ X and y⋆ ∈ Y ′, we have f(x⋆, y⋆) =
minx∈X f(x, y

⋆) ≤ minx∈X ′ f(x, y⋆) ≤ minx∈X ′ maxy∈Y′ f(x, y). Hence maxy∈Y′ f(x⋆, y) ≤
minx∈X ′ maxy∈Y′ f(x, y), proving

x⋆ ∈ arg min
x∈X ′

max
y∈Y′

f(x, y).

The proof for y⋆ follows by repeating the argument for −f .

Note that this proof does not require convexity or compactness.
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I.2 Constrained Convex Optimization
We state some well-known results from constrained convex optimization that will be useful. The
results are standard, and we refer, for example, to the work by Beck (2017).

Consider the (primal) optimization problem

f∗ := min f(x)

s.t. g(x) ≤ 0 (35)
x ∈ X

with the following assumptions.

Assumption I.1 (Assumption 8.41, Beck (2017)). In Equation (35),

(a) X ⊂ Rn is convex

(b) f : Rn → R is convex

(c) g(·) := (g1(·), . . . , gm(·))T with gi : Rn → R convex

(d) Equation (35) has a finite optimal value f∗, which is attained by exactly the elements of
X∗ ̸= ∅

(e) There exists x̄ ∈ X such that g(x̄) < 0

(f) For all λ ∈ Rm≥0, minx∈X(f(x) + λT g(x)) has an optimal solution

In this setup, we define the dual objective as

q(λ) := min
x∈X

(
f(x) + λT g(x)

)
,

where L : Rn × Rm → R, L(x;λ) := f(x) + λT g(x) is the Lagrangian of the problem in Equa-
tion (35). The dual problem is then defined as

q∗ := max q(λ)

s.t. λ ≥ 0.

In this setup, we have the following results connecting the primal and the dual problem.

Theorem I.1 (Theorem A.1, Beck (2017)). Under Assumption I.1, strong duality holds in the
following sense: We have

f∗ = q∗

and the optimal solution of the dual problem is attained, with the set of optimal solutions Λ∗ ̸= ∅.

Proof. Proposition 6.4.4 of Bertsekas et al. (2003) gives a proof of the more general Theorem A.1 of
Beck (2017). We remark that if we assume affine constraints g and X being a polytope, then we can
drop assumption (e) (Beck, 2017, Theorem A.1).

Theorem I.2. Suppose Assumption I.1 holds. Let x∗ ∈ X∗, λ∗ ∈ Λ∗ and x ∈ X . Then

f(x)− f(x∗) + (λ∗)T g(x) ≥ 0.

Proof. We have

f(x) =f(x) + (λ∗)T g(x)− (λ∗)T g(x)

≥q(λ∗)− (λ∗)T g(x) (definition of q(·))
=f(x∗)− (λ∗)T g(x) (since by Theorem I.1, q∗ = f∗)

and rearranging this proves the claim. Again, we see that we can drop assumption (e) if we consider
affine constraints g and a polytope X .

Theorem I.3. Under Assumption I.1, for all λ∗ ∈ Λ∗ and x̄ as in (e), we have

∥λ∗∥ ≤ ∥λ∗∥1 ≤ f(x̄)− f∗

mini∈[m](−gi(x̄))
.
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Proof. The first relation holds since λ∗ ≥ 0. We show the second relation as follows (cf. Beck (2017,
Theorem 8.42)). We have

f(x∗) =q(λ∗) (Theorem I.1)

≤f(x̄) + (λ∗)T g(x̄) (definition of q(·))
≤f(x̄) + ∥λ∗∥1 max

i∈[m]
gi(x̄) (since λ∗ ≥ 0)

=f(x̄)− ∥λ∗∥1 min
i∈[m]

(−gi(x̄))

and rearranging this proves the claim. We remark that for this theorem, we do need assumption (e),
even in the affine case.

I.3 Online Mirror Descent
Setup In the following, we consider a convex set X ⊂ Rd and a non-empty closed convex set
V ⊂ X . Let ψ : X → R be proper, closed, and strictly convex on V . Let Bψ : X × int (X) → R be
the Bregman divergence associated with ψ. Define ∥x∥A :=

√
xTAx. Assume that

lim
λ→0

(∇ψ(x+ λ(y − x)))
T
(y − x) = −∞ (∀x ∈ bdry(X), y ∈ int (X)), or (36)

V ⊂ int (X) . (37)

Consider the following descent lemma using local norms.

Lemma I.5 (MD descent lemma, Orabona (2019) Lemma 6.16). Suppose ψ is twice differentiable,
with positive definite Hessian in the interior of its domain. Assume

x̃ ∈ arg min
x̄∈X

gT x̄+
1

η
Bψ(x̄, x), (38)

x′ ∈ argmin
x̄∈V

gT x̄+
1

η
Bψ(x̄, x) (39)

exist. Then, for all x⋆ ∈ V , there exist z on the line segment8 between x and x′, and z′ on the line
segment between x and x̃ such that

ηgT (x− x⋆) ≤ Bψ(x
⋆, x)−Bψ(x

⋆, x′) +
η2

2
min

{
∥g∥2(∇2ψ(z))−1 , ∥g∥2(∇2ψ(z))−1

}
.

We get the following descent lemma for exponentiated Q-ascent.

Lemma I.6. Let V := ∆ ([d]), and g ∈ Rd≥0 =: X . Then x̃ := argmaxx̄∈X g
T x̄− 1

ηKL(x̄, x) and
argmaxx̄∈V g

T x̄− 1
ηKL(x̄, x) exist and are unique. Moreover, if g only has non-negative entries,

then for all x⋆ ∈ V we have

gT (x⋆ − x) ≤ KL(x⋆, x)− KL(x⋆, x′)
η

+
η

2

d∑
i=1

x̃ig
2
i .

Proof. Note that the negative entropy ψ(x) =
∑
i xi log(xi) is strictly convex and twice differen-

tiable and satisfies Equation (36), as a short calculation reveals. Moreover, for p, q ∈ V , we have
Bψ(p, q) = KL(p, q) (Orabona, 2019, Example 6.4). Existence and uniqueness are discussed in
Orabona (2019).

Maximizing gT x̄− 1
ηKL(x̄, x) is equivalent to minimizing (−g)T x̄+ 1

ηKL(x̄, x), allowing us to apply
Lemma I.5. Note that for z ∈ RI>0, ∇2ψ(z) = diag(1/z1, . . . , 1/zd). Thus, ∥−g∥(∇2ψ(z))−1 =∑
i zig

2
i . Moreover, we have x̃i = x exp (−η(−gi)) ≥ xi (Orabona, 2019), since gi ≥ 0, and thus

8The line segment between two vectors is the convex hull of the set containing those two vectors.
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by Lemma I.5, we can pick z′ ≤ x̃ (componentwise) such that

gT (x⋆ − x) =(−g)T (x− x⋆)

≤KL(x⋆, x)− KL(x⋆, x′)
η

+
η

2

d∑
i=1

z′ig
2
i

≤KL(x⋆, x)− KL(x⋆, x′)
η

+
η

2

d∑
i=1

x̃ig
2
i .

Lemma I.7 (MD descent lemma, cf. Orabona (2019) Lemma 6.9). Let x ∈ V , g ∈ Rd, and η > 0.
Assume further that ψ is µ-strongly convex w.r.t. some norm ∥·∥Rd in V . Then,

x′ = argmin
x̄∈V

gT x̄+
1

η
Bψ(x̄, x) (40)

exists and is unique. Moreover, for all x⋆ ∈ V , the following inequality holds:

ηgT (x− x⋆) ≤ Bψ(x
⋆, x)−Bψ(x

⋆, x′) +
η2

2µ
∥g∥2∗ ,

where ∥·∥∗ is the dual norm associated with ∥·∥Rd .

We can deduce the descent lemma for projected gradient descent.

Lemma I.8 (Descent lemma PGD). Let x ∈ V , g ∈ Rd, and η > 0. Then x′ := argminx̄∈V x̄
T g +

1
2η ∥x̄− x∥2 exists and is unique. Moreover, for all x⋆ ∈ V we have

gT (x− x⋆) ≤ ∥x⋆ − x∥2 − ∥x⋆ − x′∥2

η
+
η

2
∥g∥2 .

Proof. Note that ψ(x) = 1
2 ∥x∥

2 is 1-strongly convex w.r.t. the L2 norm. Moreover, for a, b ∈ V ,
we have Bψ(a, b) = 1

2 ∥a− b∥2 (Orabona, 2019, Example 6.4). Since the L2 norm is its own dual
norm, applying Lemma I.7 to the minimization of gT x̄+ 1

2η ∥x̄− x∥2 yields the claim.

Finally, the following lemma shows that the updates of the algorithms indeed fall into the category of
(online) mirror descent.

Lemma I.9 (Orabona (2019)). Consider a compact set Y ⊂ RI with y ∈ Y , and let x ∈ ∆([d]) for
some d ∈ Z≥1. Then, the closed-form expressions

x′i = xi =
xi exp (ηgi)∑

i′∈[d] xi′ exp (ηxi′)
(i ∈ [d]),

y′ = projY (y − ηg) ,

are the unique solutions to

max
x̄∈∆([d])

x̄T g − 1

η
KL(x̄, x),

min
ȳ∈Y

ȳT g +
1

2η
∥ȳ − y∥2 ,

respectively.

Proof. For the primal variable, the derivation of exponentiated gradient is standard, see, e.g., Orabona
(2019, Section 6.6).

For the dual variable, the derivation of projected gradient descent simply follows from the first-order
optimality criterion and convexity of the objective.
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