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Abstract

In recent years, many researchers have proposed new models for synaptic plasticity
in the brain based on principles of machine learning. The central motivation has
been the development of learning algorithms that are able to learn difficult tasks
while qualifying as “biologically plausible”. However, the concept of a biologically
plausible learning algorithm is only heuristically defined as an algorithm that
is potentially implementable by biological neural networks. Further, claims that
neural circuits could implement any given algorithm typically rest on an amorphous
concept of “locality” (both in space and time). As a result, it is unclear what many
proposed local learning algorithms actually predict biologically, and which of
these are consequently good candidates for experimental investigation. Here, we
address this lack of clarity by proposing formal and operational definitions of
locality. Specifically, we define different classes of locality, each of which makes
clear what quantities cannot be included in a learning rule if an algorithm is to
qualify as local with respect to a given (biological) constraint. We subsequently use
this framework to distill testable predictions from various classes of biologically
plausible synaptic plasticity models that are robust to arbitrary choices about neural
network architecture. Therefore, our framework can be used to guide claims of
biological plausibility and to identify potential means of experimentally falsifying
a proposed learning algorithm for the brain.

1 Introduction

Over the last several decades, computational neuroscience researchers have proposed a variety of
“biologically plausible” models of synaptic plasticity that seek to provide normative accounts of
a variety of learning processes in the brain—these models aim to explain how modifications of
cellular properties such as excitability and synaptic strengths can improve performance on a variety
of important tasks for an organism, using only the information “locally” available to a real neuron in
the brain. However, there is no consensus on what “biologically plausible” really means. This is due
to a lack of any precise definition of locality, with individual studies adopting different, architecture-
specific heuristics that are often not explicitly articulated; further, at an experimental level, the precise
quantities available to neurons for computing synaptic updates are still up for debate [1, 2], and likely
vary across cell types [3, 4, 5] and brain regions [6, 7, 8, 9, 10].
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As an example, some studies postulate that global neuromodulatory signals containing reward
information could be available at individual synapses, in addition to the more traditional pre- and
post-synaptic information typically required for Hebbian plasticity [11, 12, 1]. Within this broad
class, individual studies differ in their assumptions about this reward information (e.g. is it completely
global [13] or potentially distinct for different layers or regions [14]) and in the precise details about
the pre- and post-synaptic signals available (e.g. is it spike-timing [15] that is available or spike-rate
[16]?). Furthermore, there are many more signals that could theoretically be available at synapses:
for example, other studies propose that individual pyramidal neurons could receive detailed error (or
target) feedback information at their apical dendrites [17, 18, 19, 2] which can be used for learning.
Previous work has taxonomized different normative plasticity models according to these feedback
signals [20]. Within this space of normative plasticity models, it can be difficult to identify which
features of a given model constitute necessary, testable predictions that can be used for experimental
verification—i.e., if this information were not available at a synapse, learning with the given algorithm
would be impossible—and which features are due to arbitrary choices that may vary with more or
less realistic neural network architectures.

As a consequence of these heterogeneous conceptions of locality and given the advancements in the
field, it is arguably necessary to develop a clear and precise way to identify what variables synapses
should have access to in a learning algorithm, whenever claims of locality are made. In this paper, we
focus on formalizing this process. Our central contributions are as follows:

1. We develop an architecture-independent formal framework for locality that we term Sp-
locality, which requires one to precisely specify the set of variables that synapses are
assumed to have access to within a model: different choices of allowed variables for the
set S produce different classes of locality. Importantly, this definition can be used for any
learning algorithm applied to any stochastic neural network.

2. We use our framework to group existing plasticity models into different locality classes.
Intriguingly, we find that many different algorithms derive their locality from similar
principles, even though they belong to different locality classes.

3. We show that our different locality classes make different experimental predictions, which
makes it possible to identify which algorithms can be cleanly distinguished experimentally
and which cannot.

2 Formalizing notions of locality

Our ultimate goal is a formal definition of locality that makes it easy to identify which variables are
locally available to synapses in a learning algorithm within any specific model architecture. However,
this can be challenging. For example, when we consider a single-compartment neuron model it seems
reasonable to assume that the postsynaptic voltage is locally available to synapses. In contrast, in a
multi-compartment model, voltages can be different in each compartment, and synapses likely only
have access to voltages within nearby compartments. Ideally, we would avoid a definition that simply
requires us to list all of the variables that must be made available to the synapse, as that would carry
little conceptual weight. However, we will begin by taking this approach, as it will help us to build
the groundwork for a more conceptually useful definition in what follows.

Notation. We have X as a random vector in RNX denoting network variables (e.g. voltage, spike-
rate, inputs, etc.), and Θ as a random vector in RNΘ denoting network parameters (e.g. synaptic
weights, spike threshold, etc.). We combine these as Z = [X,Θ]—the concatenation of the two
vectors. We will use Z ∼ p(Z) to denote a random vector with support Ω ⊆ RNΘ+NX , but will
also overload this notation to indicate a vector subject to either universal or existential quantification
(e.g. ∃Z s.t. df(Z)

dZ = 0) or a dummy variable in an expectation (e.g. Ep(Z) [Z] = µ). We will
use the subscript “̸= i” to denote removal of the ith element of a vector; for example Z̸=i =
[Z1, . . . ,Zi−1,Zi+1, . . . ,ZNX+NΘ

]⊤, and will occasionally use the more general notation Z ̸=ν ,
where ν is a set of indices, to denote the vector with the associated set of elements removed.

2.1 S-locality: graph-specific locality based on a predefined set of available variables

We begin with a definition of locality that formalizes the concept of a set of variables, Sk ⊆ Z, to
which the kth synapse can have access in order to compute synaptic updates (e.g. some neural voltages,
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reward signals, etc.). We then consider the set of these sets across all synapses, S = {S1, . . . ,SNΘ
}.

This inspires the following definition:
Definition 2.1. Given parameters Θ ∈ RNΘ , random variables X ∼ p(X|Θ) ∈ RNX , and
function f(·) : RNX+NΘ → RNΘ , the update function f(Z) is S-local with respect to some set
S = {Sk : Sk ⊆ Z} if and only if ∀k, i:

∃Z ∈ Ω s.t.
∂fk(Z)

∂Zi
̸= 0 ⇒ Zi ∈ Sk. (1)

In short, S-locality requires that if parameter update fk(Z) has a direct dependence on Zi, then Zi

must be included in the set Sk of “allowed” variables for that parameter. For example, in the classic
approach to locality in a neural network, for any synapse Wij ∈ Θ, we might set Sij = {ri, rj} ⊆ Z,
allowing any S-local parameter update under this definition to use pre- (rj) and post-synaptic (ri)
firing rate information, and nothing else. If we wanted to allow a third factor such as a global
neuromodulatory signal, R, to project to diffusely to every synapse in the network, as in reward-
modulated synaptic plasticity rules, we might take Sij = {ri, rj , R}. In this manner, for any model
architecture, we can manually construct a set Sij that defines our notion of locality for each synapse.

While our definition is intuitive and flexible, it is cumbersome: for every parameter we have to
explicitly define which variables are local. This means that S-locality is architecture-specific,
requiring an evaluation of which Sk is an acceptable set of variables for each synapse’s update rule.
For example, if we switched from a single- to a multi-compartment model, we would now have to
modify Sij to accept only the voltage of the compartment where the synapse is located. Ideally, our
definition would make it obvious whether a learning rule is local in both models without having to
redefine the list of which variables are local. To do that, we will use the structure of the distribution
p(X,Θ) to construct a definition of locality that captures intuitions across network architectures.

2.2 p-locality

Despite its ability to concretely define locality for any model, S-locality is architecture-specific and
cumbersome: in this section, we will develop an alternative operationalized notion of locality, called
p-locality (where p stands for “probability"). Our idea is to formulate locality in terms of adjacency
in the computational graph underlying network dynamics. To do this we will leverage conditional
dependencies in the joint distribution p(X,Θ) to generate an architecture-general concept of locality3.
This is considerably more useful as both a conceptual tool and organizing principle for normative
synaptic plasticity models. However, we will still call on S-locality later to formulate our final locality
definition: Sp-locality.

Further, it is important to note that for this definition, as with S-locality, we do not restrict the
functional form of parameter updates fk(·)—we only restrict which variables they are allowed to
depend on. This is in contrast to previous, complementary work which has focused on defining
allowable local computations and memory complexity constraints for ‘biologically plausible’ learning
algorithms [21]. Our decision not to restrict fk(·) enables us to abstract away the details of ‘allowed’
subcellular computations, and will consequently enable us to make much more general statements
about the locality properties of normative plasticity algorithms as a whole, without having to focus
on the specifics of particular models of neural dynamics.
Definition 2.2. p-locality: Consider a probability distribution p(Z) over network activity variables
and parameters, and an update function f : RNX+NΘ → RNΘ , mapping variables and parameters
to parameter updates. Assume that ∂p(Zi|Z ̸=i)

∂Θk
and ∂fk(Z)

∂Zi
exist for all Z ∈ Ω and i, k indices. The

update function f(Z) is local with respect to p (p-local) if and only if ∀k, i:

∃ Z ∈ Ω s.t.
∂fk(Z)

∂Zi
̸= 0 ⇒ Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2
]
̸= 0. (2)

To unpack this definition and render it more intuitive, as with S-locality, ∂fk(Z)
∂Zi

indicates a test to
see whether the kth index of f has a direct dependence on a particular variable Zi—we assume

3We define dynamics in terms of probability distributions because many canonical normative plasticity
models are stochastic; deterministic computation graphs are a limit case of our approach.
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Figure 1: Common neural network graphical models and the permissible parameter updates for
a synapse Wij under p-locality. a. Feedforward neural networks can be described as DAGs, so
variables that are not children or coparents of Wij are excluded from parameter updates under
p-locality (by Property 2.1). b. For fixed weights in a dynamic neural network like a recurrent neural
network (RNN), p-locality excludes variables that are not children and coparents of Wij for all
time points (also by Property 2.1). c. For an undirected graphical model like a Boltzmann machine,
variables that are not neighbors of Wij are excluded under p-locality (by Property 2.2).

that fk(·) is differentiable primarily for simplicity, and differentiable approximations can always be
substituted in practice if fk(·) happens to not be differentiable. If there is a dependency, then we
want that associated random variable Zi to be considered local to Θk. To measure this, we have
selected the Fisher Information of p(Zi|Z ̸=i) with respect to Θk. This measurement quantifies direct
influence. For example, if Zi is a neuron downstream of neuron Zj , and Θk is a synapse onto Zj ,
then by conditioning on Zj , Θk is no longer able to have any effect on the conditional probability
distribution of Zi through its influence on Zj . In other words, the statistical influence of Θk on Zi

is mediated through the influence of Zj on Zi, and thus it is indirect. By conditioning on Zj , we
seal off one pathway of indirect influence. By conditioning on all Z ̸=i, we seal off all pathways of
indirect influence, which makes ∂ log p(Zi|Z̸=i)

∂Θk
= 0 for all Z.

It is worth stressing that p(Z) = p(X|Θ)p(Θ) is a joint distribution over both X and Θ, even though
most algorithms operate only on the conditional distribution p(X|Θ). As a consequence, the marginal
probability that we place on p(Θ) can be a free choice, which is useful for clarifying the assumptions
in the model. For example, we will typically assume that synapses do not have any marginalized
dependence on one another, i.e. p(Θ) =

∏
k p(Θk).

2.3 Properties of p-locality

Having defined p-locality, we can now talk about its interesting properties, which will give intuitions
for how it functions and which will figure prominently in our proofs of algorithms’ locality. While any
p-local update could also technically be reformulated as a S-local rule, by taking the set S to be the
set allowed under p-locality, the conciseness of p-locality and its convenient mathematical properties
will prove to be its principal benefits over S-locality. For proofs of these properties, see Appendices
A-C. To see the power and generality of p-locality as a definition, we first provide two properties that
show how one can immediately make statements about the locality of a learning algorithm by simply
inspecting graphs associated with the model. Assume all quantities are defined as in Definition 2.2
and that, for certain properties, the joint density satisfies mild regularity constraints (see Appendix
C.1). For the first two properties we further assume that p(Z) is strictly positive (see Appendix B).
Then we have the following:

Property 2.1. Assume Gd is a Directed Acyclic Graph (DAG) for p. If ∂fk(Z)
∂Zi

̸= 0 for Zi that is not
a parent, co-parent, or child of Θk in Gd, then f is not p-local.

Property 2.2. Assume that G defines an Undirected Graph (UG) for p. If ∂fk(Z)
∂Zi

̸= 0 for Zi that is
not a neighbour of Θk in G, then f is not p-local.

By these properties, as long as the conditional dependencies of p(Z) can be summarized by an UG
or DAG (two classes which subsume many modern neural network architectures, see Figure 1 for
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examples), we can identify many of the variables disallowed by p-locality. Therefore, for such a
network, we can decide whether p-locality conforms to intuitions about biological plausibility as
easily as we can for a hand-crafted set of allowed variables under S-locality; for most practical neural
network architectures, we will see below that p-locality does behave intuitively. Thus, with p-locality
we have a definition of locality that does not require an exhaustive list of the variables available to a
synapse, but rather, which relies on the implicit computational structure of the model (i.e. p(Z)).
Property 2.3. For any function b : RNX+NΘ → RNΘ defined such that bk(Z) = hk(fk(Z), gk(Z)),
where f(Z) and g(Z) are p-local and hk is differentiable, b(Z) is also p-local.

This demonstrates that p-local functions can be arbitrarily combined without the combination losing
the p-local property. It also shows that p-locality places no restrictions on the functional form of
parameter updates, so long as they are exclusively functions of variables allowed under p-locality.
Property 2.4. For any function f(·) : RNX+NΘ → RNΘ , there exists a probability distribution p(Z)
such that the random variable f(Z) with Z ∼ p(Z) is p-local.

This is intended as a cautionary note: unless p defines a neural network-like probability distribution,
p-locality does not necessarily conform to intuitions about biological locality (see Appendix F for
examples). That f(Z) is p-local for some probability distribution says nothing about a function f(Z);
p-locality only becomes informative when we narrow our focus to probability distributions with
biological relevance.

The following properties will turn out to be extremely important in Section 3: all algorithms that we
survey below with provable p-locality properties will involve the score function or the derivative of
the unnormalized energy function.

Property 2.5. The derivative of the log joint distribution ∂ log p(X,Θ)
∂Θ is p-local.

Property 2.6. For a probability distribution given by p(Z) = 1
Z exp (−E(Z)), where Z is a

normalizing constant, the expression ∂
∂ΘE(Z) is p-local.

Property 2.7. If the parameter marginal distribution factorizes as p(Θ) =
∏

k p(Θk), i.e. the
parameters are independent from one another, then the score function ∂ log p(X|Θ)

∂Θ is p-local.

Property 2.8. For a mixture distribution p12(Z, γ) = p1(Z)
γp2(Z)

1−γp(γ) for some binary variable
γ ∈ {0, 1} with nonzero probabilities, if f(Z) is p1-local (or equivalently p2-local), then f(Z) is
p12-local.

Intuitively, this feature holds because mixture distributions introduce more dependencies between pa-
rameters Θ and random variables X. Therefore, p-locality under a mixture of probability distributions
is more permissive than p-locality under any single one of its constituent probability distributions.

2.4 A simple motivating example

To make our definition of p-locality more concrete, we will now explore how it functions for a common
network architecture. Consider a simplified linear-nonlinear feedforward neuron model with L layers
of neurons r(l) (X =

[
r(1), ..., r(L)

]
) connected by synaptic weights W(l) (Θ =

[
W1, ...,W(L)

]
),

with additive Gaussian noise at each layer. Conditioned on our feedforward weight matrices and
stimuli s, the probability distribution of neural firing rates is given by:

p(r|s,W) =

L∏
l=1

Nl∏
i=1

p(r
(l)
i |r(l−1),W(l)) (3)

p(r
(l)
i |r(l−1),W(l)) ∼ N (h(W

(l)
i: r

(l−1)), σ2), (4)

where for notational simplicity we have taken r(0) = s, h(·) is a pointwise nonlinearity, and W
(l)
i:

corresponds to the ith row of W(l). As discussed above, most algorithms operate on the conditional
distribution, p(X|Θ), so we only define a prior over parameters for the purposes of assessing p-
locality. To ensure that our joint distribution is a directed graphical model, and to ensure that we
have no dependencies between parameters, we will assume that the parameters for the network are
all independently distributed, i.e. p(W) =

∏
i,j,l p(W

(l)
ij ), where W

(l)
ij is the synapse between
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Figure 2: Different versions of Sp-locality. a. Rp-locality functions as p-locality, but also allows
synapses to use rewards R for parameter updates, corresponding to an additional diffuse neuromodula-
tory signal. b. γpmd-locality allows synapses to use pm-local variables and pd-local variables, as well
as the global gating variable γ. For the Wake-Sleep algorithm, a γpmd-local probability distribution
could correspond to a network of pyramidal neurons receiving pm-related synapses in their apical
compartments (orange) and pd-related synapses in their basal compartments. The variable γ controls
whether pd or pm synapses affect cellular dynamics. c. Backpropagation and its approximations are
eip-local, which functions like p-locality, except it additionally permits a neuron-specific error signal
to be used for parameter updates. Typically, e is constructed by sequentially propagating error signals
backwards through a feedforward network.

postsynaptic neuron i and presynaptic neuron j in layer l. To make our choice of conditional
probability distribution more concrete (see Figure 1a), we can see that neural firing rates for this
model can be sampled by:

r(l) = h(W(l)r(l−1)) + ση(l), (5)

where η(l) ∼ N (0, 1). This corresponds to an ordinary multilayer perceptron neural network with
noise added at every layer. We can use this model to get intuition for how this choice of probability
distribution p constrains the variables allowed for an update for a particular parameter W(l)

ij .

Now, our probability distribution corresponds to a directed graphical model with dependencies given
by Eq. 3, so by Property 2.1, we know that variables that are not parents, coparents, or children
of W(l)

ij violate p-locality if included in the parameter update for W(l)
ij . Figure 1 summarizes the

variables allowed under p-locality for such a DAG. W(l)
ij has no parents under our graphical model,

leaving only children and coparents. W(l)
ij has only one child, r(l)i , whose coparents are given by

W
(l)
ik s.t. k ̸= j (all other synapses onto r

(l)
i ), and r(l−1) (all presynaptic neurons).

This shows that updates for synapses in our simple feedforward network cannot depend on neurons
that are in layers > l or < l − 1 while maintaining p-locality. We also found that dependencies on
neurons within the postsynaptic layer l for indices k ̸= i were also not permissible. As a concrete
example, by Property 2.7, we found that the score function of p(X|Θ) is p-local if the parameters are
assumed to be independently distributed. Our example satisfies this criterion. Its score function is

given by: ∂ log p(r|s,W)

∂W
(l)
ij

=

(
r
(l)
i −h(V

(l)
i )

)
σ2 h′(V

(l)
i )r

(l−1)
j , where V

(l)
i = W

(l)
i: r

(l−1). By inspection,

this function only requires information about the post- and presynaptic neurons, as well as the
summed input to the postsynaptic neuron, Vi.

This simple example clearly outlines why p-locality aligns with expected notions of locality. More
importantly, the use of p-locality also has the benefit of generalizing cleanly to alternative network
architectures. For example, if we were to instead inspect a multilayer recurrent neural network (Figure
1b), we would see that for W(l)

ij the firing rates r(l)i (t) and all presynaptic neural firing rates would be

permissible for all time steps, because the activities at each timestep are children or coparents of W(l)
ij .

For another classical example of a biologically plausible probability distribution corresponding to an
UG (as in Figure 1c.), see Appendix D for a discussion of a linear continuous Boltzmann machine.
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2.5 Sp-locality

In almost all situations, a given class of plasticity algorithms will produce updates that are almost
p-local, in that synapses are required to have access to some small number of global state variables
that a biological system could in principle project diffusely throughout a network, but which would
not be allowed under generic p-locality (e.g. reward, which is usually produced far downstream of
any given synapse in a neural network). For this eventuality, we introduce a notion called Sp-locality,
which is best considered a hybrid of S-locality and p-locality.

Definition 2.3. Given parameters Θ ∈ RNΘ and random variables X ∈ RNX , concatenated as
Z = [X,Θ]⊤, and a function f(Z) : RNX+NΘ → RNΘ , the update function f(Z) is Sp-local
with respect to probability distribution p(Z) and some set S = {Sk : Sk ⊆ Z} if and only if ∀k
fk = hk(Sk, gk(Z)), where hk is an arbitrary function and gk(Z) is p-local.

The value of this definition is that it negotiates a compromise between the architecture-generality of
p-locality, and the flexibility of S-locality. Obviously if we take Sk = Z ∀k, all functions are S-local,
and likewise, if we define p sufficiently generally, all functions are p-local (Property 2.4). However,
if some class of optimization algorithms operating on a predefined probability distribution p are
provably guaranteed to produce parameter updates that are Sp-local for some small set S, then we
will have obtained a very concise description of the types of information required by that algorithm.

3 Applying Sp-locality to normative plasticity models

Given a probability distribution over a neural network states and parameters, p(X,Θ), which could
be experimentally motivated or even observed, it is natural to ask which learning algorithms respect
locality principles in the way parameter updates are made during learning. Alternatively, if we denote
an algorithm which operates on a probability distribution p(X,Θ) to output an update f(Z) by
A(p(X,Θ)) = f(Z), where f(Z) : RNX+NΘ → RNΘ , we can ask which probability distributions
p(X,Θ) and variable collections S leave f(Z) Sp-local. This is one way Sp-locality could potentially
facilitate experimentally testing biologically plausible learning models.

To demonstrate the utility of our approach, in this section we characterize the Sp-locality properties of
a wide variety of algorithms that have historically been used to produce normative models of synaptic
plasticity, as summarized in Table 1. Though our framework covers many algorithms, here we expand
on three prototypical algorithms in detail, focusing on features that are relevant for our discussion of
the algorithms’ locality properties. More algorithmic details as well as theorem proofs are provided
in Appendix E. Schematics depicting biological interpretations for the types of Sp-locality discussed
below are provided in Figure 2.

3.1 REINFORCE

REINFORCE [13], also known as policy gradient learning, produces reward-modulated Hebbian
parameter updates for neural networks [1] similar to the one discussed in Section 2.4. Here we
will show that REINFORCE is Rp-local, meaning that it is Sp-local where S = {Sk = R ∀k},
which assumes each synapse has access to a global scalar reward signal R that needs to be delivered
diffusely to all synapses in a network.

Theorem 3.1. If p(Θ) =
∏

k p(Θk), the REINFORCE estimator given by AR(p(R,X|Θ)) is
Rp-local.

As an example, consider the network defined by Eq. 3. The REINFORCE update for this network,
for a single sample of the network state r and reward R, is given by:

∆W
(l)
ij = R

∂ log p(r|s,W)

∂W
(l)
ij

= R

(
r
(l)
i − h(V

(l)
i )
)

σ2
h′(V

(l)
i )r

(l−1)
j , (6)

where again V
(l)
i = W

(l)
i: r

(l−1). This is just the scalar multiplication of the reward signal R with the
score function; because the score function is p-local, the full update is Rp-local (see Appendix E for
more detail).
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3.2 Wake-Sleep (WS)

Whereas REINFORCE has been used to model reinforcement learning in neural networks, the Wake-
Sleep algorithm has been used to model unsupervised learning [22]. It assumes that a neural network
has two modes of operation, controlled by a scalar variable γ that determines whether the network is in
inference mode (‘wake’, γ = 1) or in generative mode (‘sleep,’ γ = 0). In all, neural activity samples
are drawn from the mixture distribution given by pmd(r, γ|W,M) = pd(r|W)γpm(r|M)(1−γ)p(γ),
where p(γ) defines the probability of sampling from the wake phase (pd; d corresponds to ‘data’)
or the sleep phase (pm; m corresponds to ‘model’), and W corresponds to the feedforward weights
while M correspond to feedback weights. For conciseness, in all subsequent sections we will denote
the mixture distribution p1(Z)

γp2(Z)
1−γp(γ) by Mix (p1(Z), p2(Z)). As an example, building on

the feedforward network defined by Eq. 3 by adding a generative feedback pathway, we have neural
dynamics given by:

r(l) = γhw(W
(l)r(l−1)) + (1− γ)hs(M

(l)r(l+1)) + ση(l), (7)

where hw(·) corresponds to the ‘wake’ nonlinearity, and hs(·) corresponds to the ‘sleep’ nonlinearity.
Under this formulation, γ gates, for all neurons, whether activity is driven by the feedforward or
feedback pathways; there are several hypotheses for how this could be implemented at a neuronal
level, including global neuromodulatory or inhibitory gating of the apical and basal dendrites of
pyramidal neurons in the cortex [23] (Fig 2b).

The Wake-Sleep algorithm updates M to fit pm as a generative model of the network’s input data,
and updates W to fit pd to perform approximate inference with respect to that generative model, in a
manner similar to variational autoencoders (VAE) [24, 25]; unlike VAE training with backpropagation,
however, the Wake-Sleep algorithm is γpmd-local, meaning S = {Sk = γ ∀k} (see Appendix E for
the proof).

Theorem 3.2. If p(Θ,Θ(d)) =
(∏

k p(Θk)
)(∏

k p(Θ
(d)
k )
)
, the Wake-Sleep es-

timator given by AWS(pm(X|Θ), pd(X|Θ(d))) is γpmd-local, where pmd =
Mix

(
pm(X|Θ), pd(X|Θ(d))

)
p(Θ,Θ(d)).

As a concrete example, the Wake-Sleep parameter update for W(l)
ij for a single sample of the state r

from the network above is given by:

∆W
(l)
ij = (1− γ)

∂ log pd(r|s,W)

∂W
(l)
ij

= (1− γ)

(
r
(l)
i − hw(V

(l)
i )
)

σ2
h′
w(V

(l)
i )r

(l−1)
j , (8)

where V
(l)
i = W

(l)
i: r

(l−1); a similar update holds for M. Similar to REINFORCE, this parameter
update is only the combination of a scalar variable γ and the score function, and is consequently γpmd-
local (see Appendix E for the proof). Interestingly, Wake-Sleep is not the only algorithm to obey this
form of locality: several other normative plasticity models, including Boltzmann machine learning
[26], equilibrium propagation [27], and impression learning [23] have essentially the same p-locality
properties. However, some of these have additional requirements on the probability distribution that
make them less biologically plausible. For example, Boltzmann machine learning is γpmd-local
only for distributions that can be captured with energy-based models (which typically require weight
symmetry).

3.3 Backpropagation (BP) and its approximations

Here we provide a characterization of the locality of the backpropagation algorithm [28], which
as we will show using our definitions, is only a local algorithm with biologically implausible
assumptions [20]. This demonstration is primarily important because the Sp-locality properties
of several biologically plausible backpropagation approximations, including feedback alignment
[29], weight mirror [30], and Burstprop [31] satisfy a similar notion of Sp-locality, but using
more biologically realistic assumptions about S (see Table 1 and Appendix E). Derivations for the
backpropagation algorithm and its approximations require more stringent network assumptions (here
we assume a feedforward multilayer perceptron network as in Section 2.4), because the algorithm
itself is not well-defined for arbitrary probabilistic network architectures.
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Optimization Alg. Locality supported Architectural restrictions
REINFORCE Rp-local DAG

Maximum Likelihood Estimation pm-local DAG
Generalized EM pm-local DAG

Predictive Coding pm-local MAP (weight symmetry)
Wake-Sleep γpmd-local DAG

Impression learning γpmd-local DAG
Contrastive Divergence γpmd-local K-Step EBM (weight symmetry)

Equilibrium Propagation γpmd-local EBM (weight symmetry)
WTA-STDP pm-local WTA

Backpropagation e
(l)
i p-local MLP (weight transport)

Feedback alignment ê
(l)
i p-local MLP

Weight mirror ê
(l)
i p-local MLP

Burstprop ê
(l)
i p-local MLP

RTRL eJp-local RNN
e-prop eip-local RNN
RFLO êip-local RNN

FOLLOW p-local error-RNN

Table 1: Summarizing Sp-locality for classical learning algorithms. First column: the optimization
algorithm of interest. Second column: the variant of Sp-locality that we have proven in Appendix
E. Third column: the network architectures required for both the algorithm and our proofs to work.
DAG = Directed Acyclic graphical model, MAP = Maximum a posteriori gradient descent dynamics,
WTA = winner-take-all circuit, EBM = Energy-based model, MLP = Multilayer perceptron, RNN
= recurrent neural network, error-RNN = error-driven recurrent neural network. ‘K-Step’ refers to
the small, finite number of sampling steps required, as opposed to sampling from a steady-state
distribution or calculating an equilibrium, which are more time-intensive. Weight symmetry indicates
that symmetric recurrent connectivity is required for the original proposed algorithm. Weight transport
indicates that symmetric weights are required exclusively for error propagation.

Theorem 3.3. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. 3, the BP update for W(l)
ij with

a loss L(X), given by ABP (p(X|Θ),L(X)) is e(l)i p-local, where e
(l)
i = dL

dr̄i
. Similarly, the updates

for feedback alignment, weight mirror, and Burstprop are ê
(l)
i p-local, where ê

(l)
i is given by their

respective gradient approximations.

This notion of ê(l)i p-locality, where S = {S(l)
ij = ê

(l)
i ∀i, j, l}, includes more restrictive biological

assumptions than the one provided by Rp-locality and γpmd-locality, because it relies heavily on the
neuron-specific error ê(l)i , which must be then accounted for using physiological mechanisms. For
our network architecture given by Eq. 3, the functional form of all backpropagation approximations
listed in Table 1 is given by:

∆W
(l)
ij = −êih

′(V
(l)
i )r

(l−1)
j , (9)

where êi is an algorithm-specific approximation of dL
dr̄i

. Similar to γpmd-local algorithms, recent
work has suggested that this error signal could be propagated through networks by a top-down error
signal relayed to the apical dendrites of pyramidal neurons [31] (see Fig. 2c). Thus, these algorithms
make specific biological predictions, driven by the need for ê(l)i to be accessible to each synapse.

4 Discussion

We have constructed a formal definition of locality, Sp-locality, that combines set-based and prob-
abilistic graphical model-based formalisms (S-locality and p-locality, respectively). Our goal was
standardizing and operationalizing notions of locality, and we also demonstrated the usefulness of
these definitions in characterizing normative plasticity models. Notably, this approach enabled the
identification of distinct classes of Sp-locality (Table 1) which subsume learning algorithms spanning
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more than thirty years of research, from Boltzmann machines [26] to modern incarnations like equilib-
rium propagation [27]. Importantly, our framework can be applied to any neural network architecture,
incorporating networks that are recurrent [16, 32, 23, 27, 26, 33], spiking [34, 12], and multilayer
[29, 22, 30] into a single framework. This is thanks, in large part, to the architecture-generality
of p-locality, which abstracts away specific details of network models, defining locality instead in
terms of statistical dependencies—this makes our framework much more powerful than simpler
linguistic descriptions of locality. As we discuss in Appendix F, this abstraction comes at the cost of
requiring researchers to specify a distribution, p, that is grounded in biological constraints. We note
that for non-biological probability distributions the variables allowed to be “local” under p-locality
can violate standard intuitions; however, for standard neural networks like those discussed in Section
2.4 and Appendix D, p-locality behaves as one would expect, with “local” learning rules being those
that use pre- and postsynaptic activity.

Table 1 organizes existing normative plasticity models into distinct classes. The first locality class,
Rp-locality, requires individual synapses to have access to reward information; this class encompasses
many reward-modulated Hebbian plasticity models [1]. The second class, p(m)-locality, encompasses
predictive coding and its variations [33, 35], and aligns with more traditionally Hebbian plasticity
updates (often at the cost of unrealistic network architectures; see Table 1). The third class, γpmd-
locality, requires neural networks to have two distinct modes of operation (e.g. the ‘wake’ and ‘sleep’
modes in the Wake-Sleep algorithm) gated by a scalar global variable γ. Thus, γpmd-locality requires
synapses to have access to the value of γ to compute updates, and subsumes many algorithms that
require generative feedback pathways for learning [22, 23]. The final class of algorithms are ê

(l)
i p-

local for feedforward neural networks, where ê
(l)
i is a neuron-specific approximate error signal, and

includes feedback alignment [29], weight mirror [30], and Burstprop [31], as well as temporal variants
of these algorithms [36, 37]. These four categories—Rp-locality, p(m)-locality, γpmd-locality, and
ê
(l)
i -locality—subsume, to our knowledge, almost all existing normative plasticity models.

Because these plasticity models are sometimes only constructed for specific network architectures
(which may violate known facts about the brain), we also specify the broadest class of network
architectures for which we have successfully derived a model’s Sp-locality properties (proven in
Appendix E). As noted in Appendix F, ‘biological plausibility’ requires both network architectures
and parameter updates to be in line with existing experimental evidence, while Sp-locality provides
a formal framework for assessing only the latter of these two factors. We therefore stress that
Sp-locality properties are only relevant for neuroscience if they can be determined for biologically
plausible network architectures. As a consequence, classes of network architectures that encompass
a broad range of biologically plausible network models (such as DAGs) are desirable, whereas
algorithms that are only viable for implausible architectures (e.g. those that imply weight symmetry
or weight transport) are undesirable.

Interestingly, the distinct classes of locality also delineate distinct sets of experimentally testable
predictions for plasticity. Critically, Sp-locality abstracts away details that are not important for
testing predictions, and helps identify important features of learning algorithms. For example, the
REINFORCE (Eq. 6) and Wake-Sleep (Eq. 8) algorithms are equivalent with respect to the ‘p’ in
Sp-locality, which tells us that the set of allowed local variables under p-locality itself (e.g. pre- and
post-synaptic information) are not the best targets for experimental testing between these algorithms,
and instead the focus must be on the variables included in ‘S’ (a reward signal R versus a clamping
variable γ that switches the network between different modes of synaptic plasticity and neural
activity). Thus, by identifying whether plasticity is modulated by reward, neuron-specific error
teaching signals, transitions in network dynamics, or none of the above, one may narrow the space
of possible candidate plasticity models down to Rp-, ê(l)i -, γpmd-, or p(m)-locality, respectively.
These distinct phenomena are necessary features of the learning algorithms in question for any neural
network architecture used and are consequently good targets for experimental testing. In contrast,
other features of parameter updates are more about specific architectural choices, e.g. switching
from a rate-based network [16] to spiking [15], from feedforward [22] to recurrent [32], or single-
to multi-compartment [38]. Thus, beyond clarifying and categorizing the locality properties of
normative plasticity models, our hope is that our framework will also support experimental efforts to
differentiate between such models, helping the field to focus in on the most important predictions to
test experimentally.
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A Defining Markov locality and relating it to p-locality

To gain intuition for how p-locality functions, we will introduce another notion of locality, called
Markov locality, which will use the language of Markov blankets. We will prove that under relatively
relaxed conditions p-locality and Markov locality are equivalent. This will allow us to relate the
notion of locality to various graph structures commonly used to represent probability distributions,
and will be a key step in proving Properties 2.1 and 2.2.

We start by defining the Markov boundary, M(X,S), of a random variable X contained in a set of
random variables S, as a minimal set such that p(X|S) = p(X|M(X,S)). The Markov boundary
defines a minimal set of variables such that, conditioned on these variables, conditioning on no
additional random variables in S changes the probability of X [39]. Similarly, we define the Markov
blanket, M(X,S) for X in S as any set of variables such that conditioning on M(X,S), makes
X conditionally independent from all other variables [39]. In this way, the Markov boundary is a
Markov blanket but not all blankets are boundaries.
Definition A.1. Markov locality: Given probability distribution p(Z) and function f : RNX+NΘ →
RNΘ , the update function f(Z) is Markov-local with respect to the distribution p over Z if and only
if ∀ k:

∃ Z ∈ Ω s.t.
∂fk(Z)

∂Zi
̸= 0 ⇒ Zi ∈ M(Θk,Z). (A.1)

Markov locality requires that the set of variables used in the parameter update fk(Z) is a subset of
the Markov boundary of the parameter itself. A Markov boundary can be thought of as the set of
variables that ‘locally’ communicate with the parameter Θk, thus providing a natural measure of
locality.

Importantly, for Markov-locality to be of use, we would like the Markov boundaries of random
variables in the model of interest to be unique. Without this requirement there will be ambiguity,
for a given p, in terms of which updates are considered local and which are not. To guarantee
this, we ask that the conditional independence relationships implied by p satisfy four properties,
commonly referred to as graphoid properties [39, 40]. A sufficient condition for these to hold is that
the distribution have a strictly positive density (see Appendix for more details B). With this, and some
mild regularity assumptions, we can prove the following equivalence between Markov locality and
p-locality:
Theorem A.1. Assume all quantities are as in A.1, that the conditional independence relationships
implied by p(Z) satisfy the four graphoid properties given in Section B, and that mild regularity
assumptions are satisfied by the joint distribution (see Section C.1). Then Equation 2 holds if and
only if Equation A.1 also holds.

Proof. This proof relies on Lemma A.1, proved below.

We wish to prove Eq. 2 ⇐⇒ Eq. A.1. It suffices to show the following:

Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2
]
̸= 0 ⇐⇒ Zi ∈ M(Θk,Z) (A.2)

Using the contrapositive for the left and right implications separately shows that Equation A.2 is
equivalent to

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 ⇐⇒ Zi /∈ M(Θk,Z), (A.3)

which means that it suffices to prove Equation A.3 for the proof. Observe that

Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2
]
= 0 ⇐⇒ ∂ log p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω, (A.4)

which follows from the regularity assumptions. From here, the proof follows by Lemma A.1.
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Lemma A.1. Let X, Θ, Z, k and i, and p be defined as in Theorem A.1. Then

∂ log p(Zi|Z ̸=i)

∂Zk
= 0 ∀ Z ∈ Ω ⇐⇒ Zi /∈ M(Zk,Z) (A.5)

Proof. First, observe that

∂ log p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω

⇐⇒ ∂p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω (A.6)

by the chain rule. By applying the fundamental theorem of calculus to this derivative, which we can
do by the assumption of differentiability on R, we find that p(Zi|Z ̸=i) is constant w.r.t. Zk on Ω so
that

p(Zi|Z ̸=i) = p(Zi|Z̸=i)

∫
R
p(Zk|Z ̸={i,k})dZk (A.7)

=

∫
R
p(Zi,Zk|Z̸={i,k})dZk = p(Zi|Z ̸={i,k}) (A.8)

where we have also used that a probability distribution integrates to 1, and that p(Zk|Z̸={i,k}) will
be equal to zero outside Ω. Because Z ∈ Ω is arbitrary, from the above Zi is independent of
Zk given the other random variables in Z. Using Lemma B.1 (which we can do by assumption
of the graphoid properties), we see that if ∂ log p(Zi|Z̸=i)

∂Zk
= 0 ∀ Z ∈ Ω, by Eq. A.6 - A.8,

Zi /∈ M(Zk,Z). Conversely, if we start with the assumption that Zi /∈ M(Zk,Z), we immediately
get Zk /∈ M(Zi,Z), by Lemma B.1, and see that p(Zi|Z ̸=i) must not be a function of Zk for all Z;
thus, the derivative w.r.t. Zk is equal to zero for Z ∈ Ω. Applying Equation A.6 completes the proof.

B Notes on Probabilistic Graphical Models

In this section we compile several properties, definitions, and results on Markov boundaries and
Probabilistic Graphical Models (PGMs) that underlie Theorem A.1, and Properties 2.1 and 2.2. We
begin by setting up notation. Let us assume that we have a joint probability distribution, P , over a set
of random variables S, and that W , X , Y , Z ⊂ S, and U , V , T ∈ S. We use X ⊥⊥ Y |Z to mean
that the set of random variables X is independent of the set Y given set Z, and assume that the reader
is familiar with the notion of a directed graph, an undirected graph, and graph separation. If a set X
contains only a single random variable U then we abuse notation and write U in place of X .

The following four properties–known as the graphoid properties (or axioms–see e.g. [39, 40])–are
useful for getting well-behaved Markov boundaries and in assigning graphical representation to
probability distributions:

Definition B.1. Pseudo-graphoid properties:

• Symmetry: X ⊥⊥ Y |Z =⇒ Y ⊥⊥ X|Z

• Decomposition: X ⊥⊥ Y,W |Z =⇒ X ⊥⊥ Y |Z & X ⊥⊥ W |Z

• Weak union: X ⊥⊥ Y,W |Z =⇒ X ⊥⊥ Y |W,Z

• Intersection: X ⊥⊥ Y |Z,W & X ⊥⊥ W |Z, Y =⇒ X ⊥⊥ Y,W |Z
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Importantly, it is known that these properties are satisfied when we have a density p that is strictly
positive w.r.t. to its base product measure [40]. Here, measure is used in a measure theoretic sense;
e.g. we have assumed throughout the paper that the base measure is simply a product of a multi-
dimensional Lebesgue measure over Rk1 , for some k1, and a counting measure over Nk2 or some
subset of Nk2 , for some k2. Roughly speaking, this positivity property means that there are no purely
deterministic relationships between variables.

The key result that we use to guarantee that the Markov boundaries we discuss in the paper are
well-defined is given in [39]. We state a paraphrased and shortened version below for completeness:

Theorem B.1. Theorem 4, Chapter 3 in [39]: every P with conditional independence relations
satisfying the four pseudo-graphoid properties has a unique Markov boundary for each X .

We now add two more simple results on Markov boundaries, used in the proof of Theorem A.1:

Lemma B.1. If P has conditional independence relations satisfying the four pseudo-graphoid
properties we have:

• for every U, V ∈ S, U ∈ M(V, S) ⇐⇒ V ∈ M(U, S)

• for every U ∈ S, M(U, S) is contained in every Markov blanket of U .

These follow simply from the graphoid properties so we omit the proof.

Lastly, we make specific what we mean when we say that a graph is an undirected or directed
graphical model for a distribution.

Definition B.2. Let G be an undirected graph where each node corresponds to a random variable in
S. We say that G is an Undirected Graph (UG) for P if whenever X and Y are separated by Z in G,
X ⊥⊥ Y |Z is true under P . Note that this corresponds to the notion of I-map in [39].

Definition B.3. Let Gd be a directed graph with each vertex corresponding to a random variable in S.
We say that Gd is a Directed Graph for P if the variable under P corresponding to any node in the
graph is conditionally independent of all variables corresponding to nodes that are non-descendants
given the variables corresponding to parents. This is equivalent to Gd satisfying the Markov condition
described in Definition 1.9 of [41].

C Proofs for p-locality properties

For the first two properties we assume the requirements of Theorem A.1 are satisfied. For all
properties except 2.3, 2.4, and 2.8 we assume p satisfies mild regularity constraints (see Section C.1).

Property 2.1 Assume Gd is a Directed Acyclic Graph (DAG) for p. If ∂fk(Z)
∂Zi

̸= 0 for Zi that is not a
parent, co-parent, or child of Θk in Gd, then f is not p-local.

Proof. By Theorem A.1 we get that ∂fk(Z)
∂Zi

can only be non-zero on the unique Markov boundary
of Zi if it is p-local. By the definition of a DAG, the parents, co-parents, and children of Zi form a
Markov blanket for it (see e.g. [41] Th. 2.13). By Lemma B.1 the boundary is included in all Markov
blankets so ∂fk(Z)

∂Zi
can only be non-zero on some subset of the parents, co-parents, and children of

Zi.

Property 2.2 Assume that G defines an Undirected Graph (UG) for p. If ∂fk(Z)
∂Zi

̸= 0 for Zi that is
not a neighbour of Θk in G, then f is not p-local.

Proof. As above, by Theorem A.1 we get that ∂fk(Z)
∂Zi

can only be non-zero on the unique Markov
boundary of Zi if it is p-local. A UG for a distribution is an I-map for it, and conditioning on the
neighbours in an I-map renders a node independent from the other nodes in the graph by definition–
thus the neighbours form a Markov blanket. By Lemma B.1 the Markov boundary is included in
every blanket so ∂fk(Z)

∂Zi
can only be non-zero on some subset of the neighbours in the UG.
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Property 2.3 For any function b(Z) : RNX+NΘ → RNΘ defined such that bk(Z) =
hk(fk(Z), gk(Z)), where f and g are p-local and hk is differentiable, b(Z) is also p-local.

Proof. Suppose that ∂bk(Z)
∂Xi

̸= 0. We need to show that Ep

[(
∂ log p(Zi|Z ̸=i)

∂Θk

)2]
̸= 0. Knowing that

∂bk(Z)
∂Xi

̸= 0, we have:
∂hk(Z)

∂fk

∂fk(Z)

∂Zi
+

∂hk(Z)

∂gk

∂gk(Z)

∂Xi
̸= 0. (C.1)

This implies that either ∂fk(Z)
∂Zi

̸= 0 or ∂gk(Z)
∂Zi

̸= 0 (or both). No matter which is true, by virtue of the
p-locality of f and g, we have the consequence:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
̸= 0, (C.2)

which concludes our proof. This demonstrates that p-local functions can be more or less arbitrarily
combined without the combination losing the p-local property.

Property 2.4 For any function f(·) : RNX+NΘ → RNΘ , there exists a probability distribution p(Z)
such that the random variable f(Z) with Z ∼ p(Z) is p-local.

Proof. We can prove this property by construction. Take p({Xi :
∂f(X)
∂Xi

̸= 0}|Θ) = N (ΘTΘ, I),
i.e. the distribution of every variable contained within f has mean parameter dependence on all Θ
variables. The probability distributions for all other variables Z are otherwise unconstrained. Then
for all i such that ∂f(X)

∂Xi
̸= 0, we have:

Ep

[(
∂ log p(Xi|X ̸=i,Θ)

∂Θk

)2
]
= Ep

[(
∂ log p(Xi|Θ)

∂Θk

)2
]

(C.3)

= Ep

[(
− ∂

∂Θk

(Xi −ΘTΘ)2

2

)2
]

(C.4)

= Ep

[
2
(
(Xi −ΘTΘ)Θk

)2]
(C.5)

= 4Ep(Θ)

[
Θ2

kEp(Xi|Θ)

[(
Xi −ΘTΘ

)2]]
(C.6)

= 4Ep(Θ)

[
Θ2

k

]
̸= 0. (C.7)

Property 2.5 The derivative of the log joint distribution ∂ log p(X,Θ)
∂Θ is p-local.

Here, it’s more useful to work with the equivalent (contrapositive) requirement for p-locality, i.e., we
need to show ∀k, i:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 ⇒ ∂2 log p(X,Θ)

∂Zi∂Θk
= 0. (C.8)

Proof. First, we see that:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.9)

⇒ ∂ log p(Zi|Z ̸=i)

∂Θk
= 0 (C.10)

⇒ ∂2 log p(Zi|Z ̸=i)

∂Zi∂Θk
= 0, (C.11)
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where the first implication follows from the fact that the Fisher Information integral is effectively a
weighted sum of elements, each of which is ≥ 0. If the function on the right were nonzero for some
Z, then the Fisher Information would also be nonzero. Assuming that log p has differentiable partial
derivatives, we can interchange the order of differentiation, giving:

⇒∂2 log p(Zi|Z̸=i)

∂Θk∂Zi
= 0 (C.12)

⇒ ∂

∂Θk

[
∂

∂Zi
[log p(Zi|Z̸=i) + log p(Z ̸=i)]

]
= 0 (C.13)

⇒ ∂

∂Θk

[
∂

∂Zi
[log p(Z)]

]
= 0 (C.14)

⇒∂2 log p(Z)

∂Zi∂Θk
= 0, (C.15)

which concludes the proof.

Property 2.6 For a probability distribution given by p(Z) = 1
Z exp (−E(Z)), the expression

∂
∂ΘE(Z) is p-local.

Proof. The proof is almost identical to the proof for Property 2.5. From Property 2.5, we have that:

Ep

[(
∂ log p(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.16)

⇒ ∂2 log p(Z)

∂Zi∂Θk
= 0. (C.17)

Using our definition of p, we have:

⇒ −∂2 (E(Z) + logZ)

∂Zi∂Θk
= 0 (C.18)

⇒ ∂2E(Z)

∂Zi∂Θk
= 0, (C.19)

which concludes the proof.

Property 2.7 If the marginal parameter distribution factorizes as p(Θ) =
∏

k p(Θk), i.e. the
parameters are independent from one another, then the score function ∂ log p(X|Θ)

∂Θ is p-local.

Proof. Again, we make heavy use of Property 2.5, which states:

Ep

[(
∂ log p(Zi|Z̸=i,Θ)

∂Θk

)2
]
= 0 ⇒ ∂2 log p(Z)

∂Zi∂Θk
= 0. (C.20)

It is important to note that the left-hand equation only holds true if Zi ̸= Θk: under p-locality, an
update equation for parameter Θk can always include its own value. So for the remainder of the
proof we will assume that Zi ̸= Θk. Now, log(p(X|Θ)) = log p(Z)− log p(Θ). We also have:

∂2 log p(Θ)

∂Zi∂Θk
=

∂2
∑

k log p(Θk)

∂Zi∂Θk
= 0, (C.21)

where for the last equality we have used the assumption that Zi ̸= Θk. These two equations
collectively imply:

⇒ ∂2 log p(X|Θ)

∂Zi∂Θk
=

∂2 log p(Z)− log p(Θ)

∂Zi∂Θk
= 0, (C.22)

which concludes the proof.
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Property 2.8 For a mixture distribution p12(Z, γ) = p1(Z)
γp2(Z)

1−γp(γ) for some binary variable
γ ∈ {0, 1} with nonzero probabilities, if f(Z) is p1-local (or equivalently p2-local), then f(Z) is
p12-local.

Proof. We again work with the contrapositive definition of p-locality, observing that:

Ep12(Z,γ)

[(
∂ log p12(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.23)

⇒
∑

k∈{0,1}

p(γ = k)Epk(Z)

[(
∂ log pk(Zi|Z ̸=i)

∂Θk

)2
]
= 0 (C.24)

⇒ Ep1(X;Θ)

[(
∂ log p1(Zi|Z̸=i)

∂Θk

)2
]
= 0 (C.25)

⇒ fk(X)

∂Zi
= 0, (C.26)

where the third implication follows from the fact that if the sum of two nonnegative quantities is zero,
then both quantities are zero, and the final implication holds from the p1-locality of f(Z).

C.1 Regularity of Joint distribution

For several of these properties we enforce mild regularity constraints on the density. This is because
we want the integral of the squared score being equal to zero to imply that the score itself is equal
to zero. A sufficient condition for this is that the joint density function and partial derivatives w.r.t.
Θk ∀k are, for every fixed value of Z’s discrete elements, continuous functions of Z’s continuous
elements.

D Locality for a linear continuous Boltzmann machine

Consider the following example of a simplified linear recurrent neuron model with synaptic weight
matrices W. The joint distribution is given by:

p(r,W) =
1

Z
e−E(r,W) (D.1)

E(r,W) =

(
1

2τ
∥r∥22 −

1

2
rTWr+

1

2
∥W∥22

)
/σ2 (D.2)

=

 1

2τ

∑
i

r2i −
1

2

∑
ij

Wijrirj +
1

2

∑
ij

W2
ij

 /σ2, (D.3)

where W is assumed to be a symmetric matrix. To see why this probability distribution is relevant for
neuroscience, we first note that E is a linear, continuous analog of the Hopfield energy function, which
is also used for discrete-valued Boltzmann machines. There are two critical differences between
this probability distribution and the linear feedforward network explored in Section 2.4: first, this
distribution corresponds to the undirected graphical model shown in Figure 1c, as opposed to the
DAG shown in Figure 1a; second, the marginal distribution is not a free parameter that we can choose
with convenient factorization properties if we want our joint distribution to give us a version of
p-locality that corresponds with our concept of biological locality. For undirected graphical models,
one typically is required to define the joint distribution first, and compute conditional distributions
explicitly through Bayes theorem or approximate through some form of MCMC sampling. In our
case, we can see that p(r|W) corresponds to the steady-state distribution of a stochastic differential
equation using E to perform Langevin sampling:
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dri = −
[
∇ri(t)E(ri(t),W)σ2

]
dt+ σdBi(t) (D.4)

=

−1

τ
ri(t) +

∑
j

Wijrj(t)

 dt+ σdBi(t), (D.5)

where here Bi(t) corresponds to uncorrelated Brownian noise injected into the system. These
stochastic sampling dynamics correspond to a noisy linear recurrent network. Therefore, p(r|W)
corresponds to the steady-state stimulus response distribution of a linear recurrent network.

Let’s ask: for which neural indices k can we have ∂
∂rk

fWij
(r) ̸= 0 so that the function f is still

p-local? For f to remain p-local, we would need Ep

[(
∂ log p(rk|r̸=k,W)

∂Wij

)2]
̸= 0. For the definition

of p-locality to conform to our intuitions about biological locality, we would expect the only allowable
variables to be the pre- and postsynaptic neurons ri and rj—we will show that including any other
variable will violate p-locality. To see why, suppose k ̸= i, j. Note that we can decompose E as:

E(r,W) = Ek + E̸=k (D.6)

Ek =

 1

2τ
r2k − 1

2

∑
j

Wkjrkrj −
1

2

∑
j

Wjkrjrk

 /σ2 (D.7)

E̸=k =

 1

2τ

∑
i ̸=k

r2i −
1

2

∑
ij ̸=k

Wijrirj +
1

2

∑
ij

W2
ij

 /σ2. (D.8)

Under this decomposition, Ek has no dependency on Wij , and E ̸=k has no dependency on rk. Now
we’re in a position to demonstrate that for any choice of k such that k ̸= i, j, fWij

(r) cannot be
p-local.

p(rk|r̸=k,W) =
p(r|W)

p(r̸=k,W)
(D.9)

=
p(r|W)∫
p(r,W)drk

(D.10)

=
e−E∫
e−Edrk

(D.11)

=
e−(Ek+E ̸=k)

e−E ̸=k
∫
e−(Ek)drk

(D.12)

=
e−(Ek)∫
e−(Ek)drk

(D.13)

⇒ ∂

∂Wij
log p(rk|r̸=k,W) = 0 (D.14)

⇒ Ep

[(
∂ log p(rk|r̸=k,W)

∂Wij

)2
]
= 0. (D.15)

Because the conditional distribution has no dependency on Wij , then the Fisher Information is also
0, which concludes the demonstration: fWij is not p-local if it is a function of rk for k ̸= i, j. Of
course, this decomposition of E = Ek + E̸=k would not be possible if k = i or j. To summarize, for
our simple example, any parameter update for Wij that depends on the activity of any neuron rk
that is not the pre- or postsynaptic neuron (k ̸= i, j) cannot be p-local. Alternatively, since this is
an undirected graphical model, we can also inspect its corresponding graph (summarized in Figure
1c.). To verify that the graph in Figure 1c. corresponds to our network, observe that our probability
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distribution factorizes according the cliques of the graph [42] as follows:

p(r,W) =
1

Z
∏
i

ϕ(ri)
∏
ij

ϕ(Wij)
∏
ij

ϕ(ri, rj ,Wij) (D.16)

ϕ(ri) = exp

(
1

2τσ2
r2i

)
(D.17)

ϕ(Wij = exp

(
1

2σ2
W2

ij

)
(D.18)

ϕ(ri, rj ,Wij) = exp

(
− 1

2σ2
Wijrirj

)
. (D.19)

Looking at the graph, we can verify by inspection that the only neighbors of Wij are ri and rj ,
which confirms our detailed analysis by Property 2.2.

E Proofs of p-locality properties of normative plasticity algorithms

E.1 REINFORCE

Theorem E.1. If p(Θ) =
∏

k p(Θk), the REINFORCE estimator given by AR(p(R,X|Θ)) is
Rp-local.

Proof. The REINFORCE derivation proceeds as follows: suppose that we have some probabilistic
formulation of a neural network and incoming sensory stimuli p(X|Θ) and some probabilistic reward
function p(R|X) dependent on the stimuli and neural responses. We want to maximize expected
reward:

E[R] =

∫
Rp(R|X)p(X|Θ)dXdR. (E.1)

If we want to modify our parameters Θ in order to improve performance, we take steps in an
approximation of the direction of the gradient of the objective E[R].

∂

∂Θ
E[R] =

∂

∂Θ

∫
Rp(R|X)p(X|Θ)dXdR (E.2)

=

∫
Rp(R|X)

∂

∂Θ
p(X|Θ)dXdR (E.3)

=

∫
Rp(R|X)

∂

∂Θ
elog p(X|Θ)dXdR (E.4)

=

∫
Rp(R|X)

[
∂

∂Θ
log p(X|Θ)

]
p(X|Θ)dXdR (E.5)

≈ 1

K

K∑
k=1

R(k) ∂

∂Θ
log p(X(k)|Θ), (E.6)

where in this last step we have employed a Monte Carlo approximation of the expectation, where
R(k) and X(k) ∼ p(R,X). This update function: f(R,Z) = R × ∂

∂Θ log p(X|Θ) is not p-local
because we have ∂f(R,Z)/∂R ̸= 0, while ∂

∂Θp(R|X) = 0. However, as we know, this update is the
product of a score function with a marginal parameter distribution that we have assumed factorizes,
which we know to be p-local by Property 2.7, with a scalar reward R. In this case, one could
postulate that reward information is projected broadly to many synapses in the neural network via a
neuromodulatory pathway (Figure 2a). We see that f(R,X) = h(R, g(X)) if we take h(a, b) = a×b
and g(X) = ∂

∂Θ log p(X|Θ); we further see that g is p-local, and hence f(R,X) is by Definition
2.3 Rp-local.
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This might seem contrived, because any function is Sp-local for some sufficiently broad choice of
S. However, we have shown here that the REINFORCE algorithm is Rp-local for any choice of
p with a marginal parameter distribution that factorizes (an easy constraint to satisfy for directed
graphical model architectures). This means that we can make any of a huge variety of neural network
or probabilistic model choices and still have the REINFORCE algorithm obey the same notion of
locality, without having to modify our definition post-hoc.

E.2 Maximum Likelihood Estimation (MLE)

MLE is a highly popular machine learning method and the fundamental basis for several subsequent
normative plasticity algorithms. This algorithm involves fitting a model, pm(X|Θ), to an empirical
data distribution, pd(X).
Theorem E.2. If p(Θ) =

∏
k p(Θk), the MLE update given by AMLE(pm(X|Θ), pd(X)) is pm-

local.

Proof. We proceed by first deriving the MLE update function. The objective function for maximum
likelihood estimation is given by the KL divergence between an empirical data distribution, pd(X)
and a probabilistic model of the data pm(X|Θ). We have:

KL[pd(X)||pm(X|Θ)] = −
∫

log

(
pm(X|Θ)

pd(X)

)
pd(X)dX. (E.7)

We want to minimize this objective function, which we do by gradient descent:

AMLE(p(X), pm(X)) ∝ ∂

∂Θ

∫
log

(
pm(X|Θ)

pd(X)

)
pd(X)dX (E.8)

=

∫
∂

∂Θ
log (pm(X|Θ)) pd(X)dX (E.9)

≈ 1

K

K∑
k=0

∂

∂Θ
log (pm(Xk|Θ)) , (E.10)

where Xk ∼ pd(X), and in the last approximate equality we have used a Monte Carlo sampling
integral approximation. This update exclusively contains the score function of pm, so by Property
2.7, the update is pm-local.

E.3 Generalized EM (GEM)

MLE estimation runs into difficulties when attempting to fit latent variable models, (e.g. when
pm(Xo) =

∫
pm(Xo,Xh)dXh), where Xh are latent variables within the model distribution that

‘explain’ observed data Xo. Latent variable models are extraordinarily powerful, and appear in
computational neuroscience in a variety of forms, including but not limited to factor analysis, hidden
Markov models, and Kalman Filters [43]; for these models, we will take X = [Xo,Xh]. Instead of
performing explicit MLE, when fitting latent variable models one usually resorts to some variant of
the Expectation-Maximization (EM) algorithm [44]. Here, we show that a particular variant of the
EM algorithm, called Generalized EM (GEM) [45], is pm-local in the same way as MLE.

GEM gains computational benefits by substituting (by any of a variety of methods) an approximate
posterior distribution pd(Xh|Xo) for the true, but typically intractable, model posterior pm(Xh|Xo)
via minimizing a variational free energy [45]. However, GEM is not just a convenient model-fitting
algorithm: in subsequent sections, we will show that the pm-locality of GEM explains why several
popular normative plasticity algorithms produce biologically plausible updates.
Theorem E.3. If p(Θ) =

∏
k p(Θk), the GEM update given by AGEM (pm(X|Θ), pd(X)) is

pm-local.

Proof. Rather than minimize KL[pd(Xo)||pm(Xo|Θ)], the GEM algorithm minimizes an upper
bound (the variational free energy). Taking X = [Xo,Xh]:

KL[pd(Xo)||pm(Xo|Θ)] ≥ KL[pd(Xo)||pm(Xo|Θ)] + Epd(Xo) [KL[pd(Xh|Xo)||pm(Xh|Xo,Θ)]]

= KL[pd(X)||pm(X|Θ)], (E.11)
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where the inequality follows from the positivity of the KL divergence. Here, pd(Xh|X) is an
approximate inference distribution. Different choices of how this distribution is selected/optimized
can produce very different learning algorithms, with varying degrees of biological plausibility.
Obviously, the loss is minimized with respect to pd(Xh|X) if pd(Xh|X) = pm(Xh|X,Θ0) (where
Θ0 = Θ prior to optimization wrt Θ). This choice corresponds to GEM [45]. For now, we will not
concern ourselves with how pd(Xh|X) is selected–instead, we will focus on the locality properties
of gradient updates of this loss with respect to Θm.

Having packaged hidden and observed variables together (X = [Xo,Xh]), our derivation proceeds
exactly the same as for MLE:

AGEM (pm(X|Θ), pd(X)) ∝ − ∂

∂Θ
KL[pd(X)||pm(X|Θ)]

=
∂

∂Θ

∫
log

(
pm(X|Θ)

pd(X)

)
pd(X)dX

=

∫
∂

∂Θ
log (pm(X|Θ)) pd(X)dX

≈ 1

K

K∑
k=0

∂

∂Θ
log (pm(Xh,X|Θ)) , (E.12)

where as with the MLE update, Xk ∼ pm(X|Θ). This update is pm-local for the same reason that
the MLE update is.

E.4 Predictive Coding (PC)

As an additional note, if one takes the approximate posterior pd(Xh|Xo) to be given by:

pd(Xh|Xo) = argmin
pd(Xh|Xo)

KL[pd(X)||pm(X|Θ)] s.t. pd(Xh|Xo) ∼ δ(X̄h(Xo)), (E.13)

where δ(·) indicates a Dirac delta distribution and X̄h(Xo) indicates a set of observation-dependent
mean parameters, then we recover the predictive coding family of algorithms [35]. Typically, in this
context for a given observed stimulus Xo, pd(Xh|Xo) ∼ δ(X̄h(Xo)) is estimated by reparameteriza-
tion and gradient descent with respect to X̄h(Xo) (a mean parameter that is observation-dependent),
which—for clever choices of pm—loosely resembles the dynamics of a recurrent neural network
relaxing to a stimulus-conditioned equilibrium state [33]. After estimating X̄h(Xo), parameters Θ
are updated as in GEM. Therefore, the derivation above also applies to predictive coding algorithms,
which are consequently also pm-local.
Theorem E.4. If p(Θ) =

∏
k p(Θk), the PC update given by APC(pm(X|Θ), pd(X)) is pm-local.

E.5 Wake-Sleep

Unlike the previous three examples, which only require sampling from the pd distribution and only
calculate parameter updates according to the pm distribution, the Wake-Sleep algorithm parameterizes
both distributions and jointly samples from a mixture of the two distributions across its ‘wake’ and
‘sleep’ phases. As we will see, this will mean that the Wake-Sleep algorithm will end up being
γpmd-local, where γ is the binary variable that controls whether the system is in its ‘wake’ or ‘sleep’
phase.

Theorem E.5. If p(Θ,Θ(d)) =
(∏

k p(Θk)
)(∏

k p(Θ
(d)
k )
)
, the Wake-Sleep es-

timator given by AWS(pm(X|Θ), pd(X|Θ(d))) is γpmd-local, where pmd =
Mix

(
pm(X|Θ), pd(X|Θ(d))

)
p(Θ,Θ(d)).

Proof. Our updates use a similar loss to the GEM algorithm, namely we take:

AWS(pm(X|Θ), pd(X|Θ(d))) =
[
∆ΘWS ,∆Θ

(d)
WS

]
, (E.14)

where ∆ΘWS is given by:
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∆ΘWS ∝ − ∂

∂Θ
KL[pd(X|Θ(d))||pm(X|Θ)]

≈ 2

K

K∑
k=0

γk
∂

∂Θ
log (pm(Xh,X|Θ)) . (E.15)

Here, γk, X ∼ pmd(X, γ|Θ,Θ(d)), whereas for GEM, we sampled only from pd. Because each
term of this update is 0 if γk ̸= 1, this update is still an unbiased estimate of the gradient [46] and
is effectively equivalent to the GEM update, except that it allows the system to alternate between
sampling from pm and pd. This alternation is useful because it will allow also calculating parameter
updates for ∆Θ(d). For Θ(d), we optimize the reverse KL-divergence4; by a directly analogous
derivation to Eq. E.12, the update is given by:

∆Θ
(d)
WS ∝ − ∂

∂Θ(d)
KL[pm(X|Θ)||pd(X|Θ(d))]

≈ 2

K

K∑
k=0

(1− γk)
∂

∂Θ(d)
log
(
pd(X|Θ(d))

)
. (E.16)

Now, these updates contain the score function for both pm and pd, as well as the scalar mixture
variable γ. As a consequence, both updates are γpmd-local, via Properties 2.7 and 2.8 (slightly more
precisely, ∆Θ is γpm-local, and ∆Θ(d) is γpd-local).

E.6 Impression Learning (IL)

The impression learning parameter update [23] is closely related to the Wake-Sleep parameter
update, and is consequently also γpmd-local. What distinguishes IL from WS is the use of rapid
alternations in the gating signal γt within a single trial with T time steps. Here, X = [X0, ...,XT ],
γ = [γ0, ..., γt] and pmd(X|γ,Θ) =

∏T
t=0 pd(Xt|Xt−1,Θ)γtpm(Xt|Xt−1,Θ)1−γ is a mixture

distribution in which γt alternates between 0 and 1, sampling from either pm or pd at the time step t,
respectively.

Theorem E.6. If p(Θ) =
∏

k p(Θk), the impression learning estimator given by
AIL(pm(X|Θ), pd(X|Θ)) is γpmd-local, where pmd = Mix

(
pm(X|Θ), pd(X|Θ(d))

)
p(Θ).

Proof. Similar to WS, the update is given by:

∆ΘIL ∝
∫ [ T∑

t=0

∂

∂Θ
[(1− γt) log pd(Xt|Xt−1,Θ) + γtpm(Xt|Xt−1,Θ)]

]
pmd(X|γ,Θ)dX

(E.17)

≈
T∑

t=0

(1− γt)
∂

∂Θ
log pd(Xt|Xt−1,Θ) + γt

∂

∂Θ
pm(Xt|Xt−1,Θ), (E.18)

where in this last equality, X ∼ pmd(X), and we are performing a single-sample gradient approxima-
tion. It is worth noting that unlike in the Wake-Sleep algorithm, here γt is not a constant throughout
time. Instead, γt alternates between 0 and 1 with ‘phase duration’ K, i.e. γt+1 = 1 − γt if
mod (t,K) = 0, and γt+1 = γt otherwise. The IL update is the score function of pmd(X|1− γ,Θ),
which has identical dependencies to the score function of pmd(X|γ,Θ) (only a change from
γ → 1− γ has occurred). Therefore, if p(Θ) =

∏
k p(Θk), this parameter update is γpmd-local by

Property 2.7.

4A rigorous discussion of why this optimization process is sensible is beyond the scope of this manuscript.
See [22, 47] for more detail.
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E.7 Contrastive Divergence for Boltzmann machines (CD)

While the GEM learning update is provably pm-local, it is also predicated on the assumption that the
parameter marginal distribution factorizes as p(Θ) =

∏
k p(Θk), which as we note in Appendix D

can be difficult to ensure for even simple undirected graphical models. An extension of the GEM
algorithm, we can show that the CD algorithm is γpmd-local (as opposed to just pm-local) under less
restrictive assumptions. The cost of this is that CD learning usually requires costly MCMC sampling
from both the posterior distribution pm(Xh|Xo,Θ) and the full joint distribution pm(Xh,Xo|Θ).

Theorem E.7. The CD update given by ACD(pm(X|Θ), pd(X)) is γpmd-local, where pmd =
Mix (pm(X|Θ), pd(X)) p(Θ).

As mentioned above, for GEM the most natural choice for pd(Xh|X) is given by pm(Xh|X,Θ0).
As we demonstrated, parameter updates calculated according to this rule will be γpmd-local, but there
are two important caveats. First, for GEM to produce biologically plausible updates, we still need a
biological system that can sample from pm(Xh|X,Θ0). Second, it is important to remember that
we are only guaranteed that the score function is guaranteed to be p-local if the marginal parameter
probability distribution factorizes as p(Θ) =

∏
k p(Θk). For a DAG, it may be difficult to satisfy the

first condition without approximation (given by the Wake-Sleep algorithm, for instance), whereas
for an UG, it may be difficult to satisfy the second condition, as we saw in Section D. To make our
update γpmd-local for an undirected graphical model like the Boltzmann machine, we will require an
extra step that we outline here to use the energy function Property 2.6 rather than the score function
Property 2.7.

Having committed to working with an undirected graphical model, instead of sticking to the original
GEM update, here we break apart the probability distribution as:

ACD(pm(X|Θ), pd(X)) =

∫
∂

∂Θ
log (pm(X|Θ)) pd(X)dX (E.19)

=

∫
∂

∂Θ
[log (E(X,Θ))− logZ(Θ)] pd(X)dX (E.20)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX− ∂

∂Θ
logZ(Θ) (E.21)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX− 1

Z(Θ)

∫
∂

∂Θ
e−

E(X,Θ)

σ2 dX (E.22)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX+

1

Z(Θ)

∫
∂

∂Θ
E(X,Θ)e−E(X,Θ)dX

(E.23)

= −
∫

∂

∂Θ
E(X,Θ)pd(X)dX+

∫
∂

∂Θ
E(X,Θ)pm(X|Θ)dX

(E.24)

≈ 2

K

K∑
k=0

(−1)γk
∂

∂Θ
E(Xk,Θ), (E.25)

where Xk is sampled from pmd. Now, by Property 2.6 and Property 2.8, this update is γpmd-local.
This is the Boltzmann machine learning algorithm [26], where the clamped and unclamped phases are
alternated between stochastically [46]; for our previous linear Boltzmann example, in which X = r
and Θ = W, the derivative of the energy function (Eq. D.3) with respect to a parameter Wij is rirj ,
demonstrating that updates correspond to two phases of updates: one in which ro is clamped to a
data distribution given by pd(ro) for some ro ⊆ r and Hebbian updates are positive, contrasted with
an unclamped phase in which updates are negative. Note that for this model approximate sampling
from a posterior distribution pm(r̸=o|ro,W)pd(r0) is no more difficult than sampling from the joint
distribution: one simply holds ro fixed to an environmental data sample and performs Langevin
sampling on all other variables.
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E.8 Equilibrium Propagation (EP)

Though the derivation and setup of the equilibrium propagation algorithm [27] is very different from
Contrastive Divergence, the functional form of the derived update is very similar. While equilibrium
propagation typically operates on deterministic networks, here we will provide our derivation for the
stochastic version with an energy function defining a joint distribution over Θ and X (as in Section
D), which is somewhat more straightforward to fit into the p-locality framework.

Suppose that we have a probabilistic energy-based model whose energy function is given by:

E(Z, ϵ) = E0(Z) + ϵL(Z), (E.26)

where ϵ ∈ {0, β}, where β ≪ 1, where L(Z) is the loss function that the parameter updates are
optimizing. This can be thought of as a ‘soft-clamped’ system, in which nonzero ϵ pushes the system
towards slightly better performance. Intuitively, the EP parameter update attempts to change network
dynamics so that the unclamped system is nudged towards the slightly better performing soft-clamped
system. Then we have the following theorem:

Theorem E.8. The EP update given by AEP (p(X|Θ, γ)) is γpmd-local, where pmd =
Mix (p(X|Θ, ϵ = β), p(X|Θ, ϵ = 0)) p(Θ).

The parameter update for equilibrium propagation is given by:

∆ΘEP ∝ − 1

β

[
Eϵ=β

∂E(Z, ϵ)

∂Θ
− Eϵ=0

∂E(Z, ϵ)

∂Θ

]
(E.27)

≈ 2

β

K∑
k=0

(−1)ϵk/β
∂E(Zk, ϵk)

∂Θ
, (E.28)

where for the final equality we are using a sampling-based approximation in which we are sampling
from Xk ∼ p(X|Θ, ϵk), and ϵk/β ∼ Bernoulli(0.5). This is almost identical to the Contrastive
Divergence update, except that rather than clamping neural activities to a target output, they are
slightly biased towards better performance. Because this is the combination of the derivative of
the energy function with a mixture variable γ = ϵk/β, by Properties 2.6 and 2.8, this update is
γpmd-local where pmd = Mix (p(X|Θ, ϵ = β), p(X|Θ, ϵ = 0)) p(Θ).

E.9 Winner-take-all STDP

While Contrastive Divergence uses MCMC sampling to approximate the GEM update, Nessler et
al. [48] use a particular generative model for which the posterior can be analytically calculated and
resembles a simple winner-take-all neural circuit. Then, the authors derive their STDP parameter
update as an approximation to the GEM algorithm. Because of this, one might imagine that the
derived STDP update may, like the GEM algorithm, be pm-local. We will see below that this is the
case.

First, we define the generative model pm used in the paper:

pm(r, s|W) =
1

Z
e−E(r,s,W) (E.29)

E(r, s,W) = −

 N∑
i=0

riWi0 +

N∑
i=0

Ns∑
j=0

riWijsj

 , (E.30)

where Z is the normalizing constant and the r and s vectors contain binary random variables.
Furthermore, in the network only one neuron r is assumed to fire at any given time (ri ̸= 0 ⇔ rk =
0 ∀k ̸= i). The inference distribution, conditioned on a stimulus s can be calculated as follows:

pm(r|s,W) =
exp

(∑N
i=0 riWi0 +

∑N
i=0

∑Ns

j=0 riWijsj

)
∑N

i=0 exp
(
Wi0 +

∑Ns

j=0 Wijsj

) . (E.31)
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This probability distribution can be interpreted as a kind of winner-take-all computation, dominated
by the neuron with the greatest input current [48]. Samples from this distribution are used to compute
the weight updates:

∆Wij ∝ ri
(
csie

−Wij − 1
)

(E.32)

∆Wi0 ∝ rie
−Wi0 − 1, (E.33)

where c is a positive constant. We now prove the following theorem assessing the p-locality of this
distribution:

Theorem E.9. The STDP update given by ASTDP (p(X|Θ)) is γpm-local.

Proof. To see this, we first note that the gradient of the energy function E(r, s,W) with respect to
the parameters is pm-local by Property 2.6. Therefore, any variables contained within this will also
be permissible under pm-locality.

For Wij , we have:
∂E(r, s,W)

∂Wij
= −risj , (E.34)

so that we know ri and sj are permissible for ∆Wij under pm-locality; further, the value of a
parameter itself, Wij , is always allowed under pm-locality. These are the only variables on which
∆Wij depends, so this update is pm-local.

For Wi0, we have:
∂E(r, s,W)

∂Wi0
= −ri, (E.35)

so that we know ri is permissible for ∆Wi0. By the same reasoning, this update is also pm-local.
Since all updates are therefore pm-local, we may conclude that the full algorithm is pm-local.
However, this proof does not have the same level of generality as for the previous algorithms, because
the algorithm is only defined for a single winner-take-all network model.

E.10 Backpropagation

Theorem E.10. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. 3 (with X = r and Θ = W),
the BP update for W(l)

ij with a loss L(r), given by ABP (p(r|W),L(r)) is e(l)i p-local, where e
(l)
i =

dL
dr̄i

. Similarly, the updates for feedback alignment, weight mirror, and Burstprop are ê
(l)
i p-local,

where ê
(l)
i is given by their respective gradient approximations.

Proof. As a first step, for clarity purposes we will demonstrate that backpropagation [28], is not
p-local with respect to the simple feedforward neural network architecture we outlined above;
we will subsequently demonstrate that it and its approximations do satisfy a particular notion of
Sp-locality. For a scalar loss function L(rL) and a single parameter W(l)

ij , the backpropagation
gradient is given by the negative gradient of the loss with respect to the parameter of choice, using
the reparameterization trick [25, 24] to take for a single sample of {r(l)}l=0:L the mean (noiseless)
mapping from r(l−1) → r(l) to be r̄(l) = h(W(l)r(l−1)), so that by Eq. 5, we have r(l) = r̄(l)+ση(l).
By the chain rule, gradient descent gives:

∆W
(l)
ij ∝ −dL(r(L))

dr̄(L)

(
L∏

k=l

dr̄(k)(r(k−1))

dr̄(k−1)

)
dr̄(l)(W

(l)
ij )

dW
(l)
ij

. (E.36)

Based on our analysis in Section 2.4, this update function is clearly not p-local, because the update
depends on firing rates r(k) for k > l. However, while backpropagation is not in general p-local, any
algorithm can be Sp-local: for example, if we take S = Z, then by Definition 2.3, any parameter
update can contain any variable in the graphical model p(Z). Taking S = Z is inherently vacuous:
Sp-locality is only conceptually useful if we can cleanly reduce the number of variables included
in S for a broad set of biologically relevant neural architectures. Fortunately, for backpropagation
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operating on a feedforward neural network governed by Equation 5, we do not need to include every
variable in the network. By Equation E.36, we see for our example feedforward neural network that:

∆W
(l)
ij ∝ − dL

dr̄
(l)
i

dr̄
(l)
i

dW
(l)
ij

, (E.37)

where dL
dr̄

(l)
i

= dL(r(L))
dr̄(L)

(∏L
k=l+2

dr̄(k)(r(k−1))
dr̄(k−1)

)
dr̄(l+1)(r(l))

dr̄
(l)
i

is the derivative of the global loss func-

tion with respect to the individual mean neuron activation r̄
(l)
i . Interestingly, dr̄

(l)
i

dW
(l)
ij

—the derivative

of the mean parameter for neuron ri—is a function of only the parents of r(l), which are therefore
the coparents of W(l)

ij . To verify that this particular component of the weight update is p-local, we
can compare its dependencies to the score function, which is in this case p-local by Property 2.7. As
noted in Section 2.4, the score function is given by:

∂ log p(r|s,W)

∂W
(l)
ij

=

(
r
(l)
i − h(V

(l)
i )
)

σ2
h′(V

(l)
i )r

(l−1)
j , (E.38)

where V
(l)
i = W

(l)
i: r

(l−1). Because the score function is p-local, any variables that it depends on

are permissible for p-local updates. The score function depends on r
(l)
i and r(l−1), whereas dr̄

(l)
i

dW
(l)
ij

depends only on r(l−1). It follows that this function is also p-local.

As we already discussed, dL
dr̄

(l)
i

is not p-local because it depends on neurons downstream of r(l)i .

However, if we define an auxiliary random variable e
(l)
i = dL

dr̄
(l)
i

, we see that because it multiplies

e
(l)
i with a p-local function, W(l)

ij is e(l)i p-local.

Importantly, this does not mean that backpropagation is biologically plausible: this notion of locality
provides no clues as to how e

(l)
i could be calculated or approximated in the brain, and an explicit

calculation of gradients could not be possible due to the weight transport problem [20]. There are
many recent models that account for how e

(l)
i could be approximated by an approximate credit

assignment signal ê(l)i involving either random feedback synapses that project errors backwards
through the network (feedback alignment [29]) or feedback synapses that dynamically adjust through
local synaptic mechanisms so that ê(l)i provides an unbiased approximation (e.g. weight mirror
or Kolen-Pollack alignment [30], and BurstProp [31]). Each of these algorithms decomposes into
a nonlocal feedback term ê

(l)
i and a p-local term in exactly the same way, and are consequently

ê
(l)
i p-local.

E.11 Real Time Recurrent Learning (RTRL)

Consider an autonomous recurrent neural network whose directed acyclic graphical model is provided
by the following equations (we will ignore stimulus-dependence for notational simplicity):

p(r|W) = p(r(0))

T∏
t=1

N∏
i=1

p(ri(t)|r(t− 1),W) (E.39)

p(ri(t)|ri(t− 1),W) ∼ N (h(Wi:r(t− 1)), σ2), (E.40)

where p(r(0)) corresponds to some initial distribution of activity states. This probability distribution
of firing rates corresponds to the following neural sampling dynamics:

r(t) = h(Wr(t− 1)) + ση, (E.41)

where η ∼ N (0, 1). For this model, we have the following theorem:
Theorem E.11. If p(Θ) =

∏
k p(Θk) and p(X|Θ) is defined by Eq. E.39 (with X = r and Θ = W),

the RTRL update for Wij with a loss L(r(T )), given by ARTRL(p(r|W),L(r)) is eJp-local, where
e = ∂L(r(T )

∂r̄(T ) , and J = {J(t) = ∂r̄(t,r)
∂r̄(t−1,r)}.
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Proof. The directed graphical model corresponding to these dynamics is depicted in Figure 1b: as
with backpropagation, we will use the score function for our graphical model to identify permissible
variables. For a single synapse, the score function is given by:

∂ log p(r|W)

∂Wij
=

T∑
t=1

∂ log p(ri(t)|r(t− 1),W)

∂Wij
(E.42)

=

T∑
t=1

(ri(t)− h(Vi(t)))

σ2
h′(Vi(t))rj(t− 1), (E.43)

where Vi(t) = Wi:r(t− 1). Thus p-local parameter updates for Wij may include Wi:, ri(t) and
{rk(t− 1) : Wik ̸= 0} ∀t. We will now compare these allowed variables to the RTRL update. As
with backpropagation, we take r̄(t, r) = h(Wr(t − 1)), so that r(t) = r̄(t, r) + ση. The RTRL
update minimizes a loss L(r(T )) via the chain rule [49, 21]:

∆Wij ∝
∂L(r(T ))
∂r̄(T )

∂r̄(T, r)

∂Wij
(E.44)

∂r̄(t, r)

∂Wij
=

∂r̄(t, r)

∂r̄(t− 1, r)

∂r̄(t− 1, r)

∂Wij
+ g(r(t− 1)) (E.45)

g(r(t− 1))k =

{
h′(Vi(t))rj(t− 1) if i = k

0 otherwise.
(E.46)

this second equation provides a recursive update equation which can be stored online as a trial
progresses. The g(r(t− 1)) term is p-local, because it appears in Eq. E.43. However, ∂r̄(t,r)

∂r̄(t−1,r) , an
N ×N Jacobian matrix, is not p-local, since it depends on all neurons in the network r(t − 1) as
well as all parameters W—neurons that do not directly synapse onto neuron ri and weights Wkl for
k ̸= i are excluded from p-local updates by Property 2.1 according to the DAG defined by Eq. E.39.
Furthermore, as we have seen with backpropagation, in general the credit assignment signal ∂L(r(T ))

∂r̄(T )

is not p-local. Therefore, to characterize the Sp-locality of RTRL, we will have to proceed similarly
to backpropagation, and define auxiliary variables to include in the set S.

As with backpropagation, we define the auxiliary random variable e = ∂L(r(T ))
∂r̄(T ) . Because we have

found the Jacobians to also violate p-locality, we will also define the set of auxiliary variables
J = {J(t) = ∂r̄(t,r)

∂r̄(t−1,r)}. With these auxiliary variables, we can see that ∂r̄(t,r)
∂Wij

is Jp-local ∀t, and
consequently, the RTRL update is eJp-local.

This is, of course, not biologically plausible in any way. The set J allows the parameters to have
access to the state of the entire network, at all time points, even from neurons that do not have any
direct connections to the neuron whose synapse is being updated. Further, the entire error vector
e is required to compute the update. This is even less plausible than backpropagation, which only
required access to ei. However, the RTRL update is an important baseline for analyzing the locality
properties of other learning algorithms that are constructed as approximations of it, namely e-prop
and RFLO.

E.12 e-prop

Theorem E.12. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. E.39 (with X = r and
Θ = W), the e-prop update for Wij with a loss L(r(T )), given by Aep(p(r|W),L(r)) is eip-local,
where ei =

∂L(r(T )
∂r̄i(T ) .

Proof. For e-prop [37], we will also consider networks constructed according to Eq. E.39. The
update is almost identical to the RTRL update, but several terms will be discarded, allowing the
update to be eip-local, as opposed to the eJp-local update given by RTRL. The update is as follows:
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∆Wij ∝
∂L(r(T ))
∂r̄i(T )

∂r̃i(T, r)

∂Wij
(E.47)

∂r̃i(t, r)

∂Wij
= h′(Vi(t))Wii

∂r̃i(t− 1, r)

∂Wij
+ h′(Vi(t))rj(t− 1). (E.48)

This update combines the neuron-specific credit assignment signal ei with a local ‘eligibility trace’
∂r̃i(t,r)
∂Wij

which performs approximate credit assignment by filtering and summing coactivity between
neuron i and neuron j across timesteps. It is worth noting that the particular functional form of this
eligibility trace is determined by our simplified RNN dynamics (Eq. E.39), which causes coactivity
from previous timesteps to decay exponentially in proportion to the magnitude of the autapse Wii—
alternative neural network dynamics using continuous-time dynamics, or adaptive neural firing
thresholds may alter the functional form of the eligibility trace [37], but do not fundamentally alter
the p-locality properties of the update. Now, we only need to show that the eligibility trace is p-local.

As with RTRL, we can observe that h′(Vi(t)) and rj(t− 1) both appear in the score function for
our RNN (Eq. E.43) for all timesteps, as does Wii ⊂ Wi:. Because the score function is p-local,
we know that these variables are all allowed under p-locality. The eligibility trace only depends on
these terms, from both the current time step and, recursively, from previous timesteps. Therefore, the
eligibility trace is p-local. The e-prop update is a multiplication between ei and the eligibility trace,
so by Def. 2.3 the update is eip-local.

E.13 Random feedback local online learning (RFLO)

The RFLO update [36] is nearly identical to the e-prop update, except we replace ei with an
approximate credit assignment signal êi (which replaces symmetric feedback weights with random
connections, similar to Feedback Alignment).

The update is given by:

∆Wij ∝ êi
∂r̃i(T, r)

∂Wij
(E.49)

∂r̃i(t, r)

∂Wij
= h′(Vi(t))Wii

∂r̃i(t− 1, r)

∂Wij
+ h′(Vi(t))rj(t− 1). (E.50)

Following exactly the same reasoning as with e-prop, we may show that this update is êip-local.

Theorem E.13. If p(Θ) =
∏

k p(Θk) and p(X|Θ) is defined by Eq. E.39 (with X = r and Θ = W),
the RFLO update for Wij with a loss L(r(T )), given by ARFLO(p(r|W),L(r)) is êip-local, where
ei =

∂L(r(T )
∂r̄i(T ) .

E.14 Feedback-based Online Local Learning Of Weights (FOLLOW)

The FOLLOW algorithm [50] is defined in terms of a particular continuous-time LIF circuit with
postsynaptic potential kernels. For simplicity, we will focus our analysis on a linear version of the
same circuit, disregarding the dynamic postsynaptic potentials and input stimuli. Disregarding these
features does not affect the p-locality properties of the FOLLOW algorithm, but it would certainly
degrade its performance on tasks.

The network dynamics are given by:

r(t+∆t) = h(r(t), e(t)) + ση (E.51)

= (1− ∆t

τ
)r(t) +

1

τ

(
Wr(t) + kWfbe(t)

)
∆t+ ση, (E.52)

where Wfb is an N ×No random feedback weight matrix, k is a positive constant, and e(t) is an
No-dimensional error feedback vector delivered at every timestep, with No the number of output
dimensions. Because we are in continuous time, we will assume that η ∼ N (0,∆t).
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Similar to RTRL, we can write the probability distribution for the network as:

p(r|e,W) = p(r(0))
∏
t

N∏
i=1

p(ri(t+∆t)|r(t), e(t),W) (E.53)

p(ri(t+∆t)|r(t), e(t),W) ∼ N (h(r(t), e(t)), σ2∆t), (E.54)

where p(r(0)) is some initial distribution of firing rates. Further, we can assume that the distribution
of errors at timestep t+∆t has any arbitrary distribution p(e(t+∆t)|r(t)).
The update for weight Wij is given by:

∆Wij(t) ∝
(
Wfb

i: e(t)
)
rj(t). (E.55)

Therefore, only the postsynaptic error current and presynaptic input are necessary to update the
weights for a given synapse in this type of network. Below, we will show that this update is p-local.
Theorem E.14. If p(Θ) =

∏
k p(Θk) and p(X|Θ) is defined by Eq. E.53 (with X = {r, e} and

Θ = W), the FOLLOW update for Wij , given by AFW (p(r, e|W)) is p-local.

Proof. To see that this is true, we need only show that the variables included in ∆Wij are subsets of
the variables included in the score function ∂ log p(r,e|W)

∂Wij
. These variables are permissible for p-local

updates by Property 2.7. The score function is given by:

∂ log p(r, e|W)

∂Wij
=
∑
t

∂ log p(r(t+∆t)|r(t), e(t),W)

∂Wij
+
∑
t

∂ log p(e(t+∆t)|r(t))
∂Wij

(E.56)

=
∑
t

∂ log p(ri(t+∆t)|r(t), e(t),W)

∂Wij
(E.57)

=
∑
t

(
ri(t+∆t)− ri(t) +

∆t
τ

(
−ri(t) +Wi:r(t) + kWfb

i: e(t)
))

∆tσ2
rj(t).

(E.58)

Therefore, for weight ∆Wij , the permissible variables include: ri(t) ∀t, any rk(t) such that Wik ̸= 0

(∀t), any ek(t) such that Wfb
ik ̸= 0 (∀t), and the parameters Wi: and Wfb

i: . The parameter update
requires only rj(t) and Wfb

i: e(t), which is a subset of these permissible variables. Therefore, the
update is p-local.

F p-locality does not guarantee biological plausibility

It is very important to clarify the exact relationship between p-locality and biological plausibility.
Except for some network-wide variables that a theoretician may decide to allow through a particular
choice of Sp-locality, we have generally shown that p-locality is overly permissive, in that a particular
choice of p may allow parameter updates to include variables that an individual synapse may not
have access to. Furthermore, p-locality does not restrict the network architecture defined by p to
be biologically plausible. The best way to interpret p-locality is as follows: if p(X,Θ) defines a
biologically plausible architecture and an algorithm A is p(X,Θ)-local, then the parameter update
provided by A(p(X,Θ)) will be biologically plausible. There are many network architecture and
parameter update combinations that may be biologically plausible without being proven p-local (e.g.
explicit approximations to backpropagation [29, 30, 31]), as there are many combinations that are
p-local without being biologically plausible. Below, we will show two important instances in which
p-locality does not properly diagnose a combination of network architecture and parameter update as
biologically implausible.

F.1 Locality and architectural plausibility

The first example is pervasive in neural network models of the brain: networks frequently violate
Dale’s law, which states that neurons in a neural network are (for the most part [51]) either excitatory
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(outgoing weights are positive) or inhibitory (outgoing weights are negative), but not both. In fact, in
the simple network example we have provided (Section 2.4), neural firing rates are not constrained
to be strictly positive, and outgoing synaptic weights are not sign-constrained. For this biologically
implausible architecture, p-locality defines which variables are allowed to be included in individual
parameter updates in a way that is sensible (allowing only variables involving the postsynaptic firing
rate and the firing rates of all pre-synaptic neurons), but it says nothing about the aforementioned
implausibilities of the network architecture. Similarly, the linear Boltzmann machine example
provided in Appendix D does not constrain firing rates to be positive, and requires symmetric weights
(Wij = Wji), which could not satisfy Dale’s law while allowing connections between an inhibitory
neuron i and an excitatory neuron j (Wij > 0 while Wji < 0 ⇒ Wij ̸= Wji).

These examples illustrate an important fact: p-locality focuses on the plausibility of updates given an
architecture that has been predetermined to be acceptable. However, it is worth noting that if we were
to impose these additional constraints for the proposed networks, the accepted variables determined
by p-locality would not change.

F.2 Parameterizing probabilities with neural networks

Another important caveat when working with p-locality is that the random variables Z have to
correspond to the relevant biophysical quantities of interest, e.g. neural firing rates X and synaptic
weights Θ. If this is not the case, then p-locality can easily defy standard notions of biological
plausibility. For instance, if we define a probability distribution in terms of a 3-layer neural network:

p(X|Θ) ∼ N (r̄2(r̄1(r̄0(Θ))), σ2), (F.1)

Then the score function of this distribution is given by:

∂p(X|Θ)

∂Θ
=

d log p(X|Θ)

dr̄2
dr̄(2)

dr̄(1)
dr̄(1)

dr̄(0)
dr̄(0)

dΘ
. (F.2)

This equation depends on X, which is the output of the network, even though Θ parameterizes r̄(0).
Therefore, if the random variables had been defined in as in Section 2.4, then this update would not
be p-local. However, because it is the derivative of the score function, for any independent marginal
p(Θ), it is p-local for this choice of random variables. Therefore, it is important when working
with an algorithm such as Wake-Sleep or REINFORCE, that one chooses a conditional probability
distribution p(X|Θ) that captures biologically plausible dependencies. When this is not done, as in
[52, 53], the resulting updates have no correspondence to synaptic plasticity rules.

Note that this fact does not undermine the utility of p-locality as a concept. Our proofs for algorithms
in Appendix E apply for any p(X|Θ), as long as p(Θ) factorizes to

∏
i p(Θi). Therefore, algorithms

that have universal p-local properties will respect the variable dependencies implied by p(X|Θ)
whether this distribution is plausible or not, which means that the algorithms will respect variable
dependencies for all plausible network architectures.
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