
Published as a conference paper at COLM 2025

Contextualize-then-Aggregate: Circuits for In-Context Learn-
ing in Gemma-2 2B

Aleksandra Bakalova, Yana Veitsman, Xinting Huang & Michael Hahn
Saarland Informatics Campus, Saarland University
{abakalov, yanav, xhuang, mhahn}@lst.uni-saarland.de

Abstract

In-Context Learning (ICL) is an intriguing ability of large language mod-
els (LLMs). Despite a substantial amount of work on its behavioral as-
pects and how it emerges in miniature setups, it remains unclear which
mechanism assembles task information from the individual examples in
a few-shot prompt. We use causal interventions to identify information
flow in Gemma-2 2B for five naturalistic ICL tasks. We find that the model
infers task information using a two-step strategy we call contextualize-then-
aggregate: In the lower layers, the model builds up representations of indi-
vidual few-shot examples, which are contextualized by preceding examples
through connections between few-shot input and output tokens across the
sequence. In the higher layers, these representations are aggregated to
identify the task and prepare prediction of the next output. The importance
of the contextualization step differs between tasks, and it may become more
important in the presence of ambiguous examples. Overall, by providing
rigorous causal analysis, our results shed light on the mechanisms through
which ICL happens in language models. 1

1 Introduction

In-Context Learning (ICL) is an intriguing property of large language models and has
spurred a substantial amount of interest into how transformers are able to perform it
(e.g. Brown et al., 2020; Min et al., 2022; Garg et al., 2022; Akyürek et al., 2023; Cho et al.,
2025; Wang et al., 2023). Prior work in mechanistic interpretability has found function
vectors (Todd et al., 2024; Hendel et al., 2023): attention heads whose output encodes task
information, and which are causally responsible for the prediction of the response. However,
the circuit by which these vectors are assembled remains only partly understood. Recent
work has proposed that each few-shot example’s output token computes task information,
which is then aggregated by attention heads to predict the next output (Wang et al., 2023;
Cho et al., 2025; Kharlapenko et al., 2025), but this strategy has also been observed to leave
part of the models’ performance unexplained (Cho et al., 2025).

In this paper, we use causal interventions (e.g. Vig et al., 2020; Geiger et al., 2021; Meng et al.,
2022) to identify a circuit performing ICL on five naturalistic tasks formatted as few-shot
prompts (Capitalization, Country-Capital, Present-Past, Person-Sport, Copying) in Gemma-
2 2B (Team et al., 2024). We replicate the relevance of the aggregation step suggested by
prior work, but show that it explains only a portion of the model’s full performance. We use
causal interventions to identify information flow that recovers at least 90% of the model’s
performance. A key idea is to first identify a computation graph between the tokens in
a prompt (Figure 1). We find that the required graph differs between tasks: whereas the
simplest circuit is largely sufficient on some tasks, others require additional computation
paths. We find that the representations of few-shot examples later in the prompt are
contextualized by information from prior few-shot examples, particularly, the last preceding
few-shot example. Using causal interventions, we show that contextualization transports
information about the input and output spaces, and the task itself. In particular,

1https://github.com/lacoco-lab/icl_circuits

1

https://github.com/lacoco-lab/icl_circuits

Published as a conference paper at COLM 2025

Figure 1: An N-shot ICL prompt (here, N = 2), at the example of the Country-Capital task.
The green edges describe a AGGREGATION subcircuit that assembles information at each
few-shot example in parallel (xi → yi) and then aggregates these at tN+1. The blue edges
describe a CONTEXTUALIZATION subcircuit that contextualizes the representation of each
few-shot. A circuit involving both components recovers most of Gemma2-2B’s performance;
aggregating without contextualization leads to a breakdown in performance on this task.
See Figure 24 for other tasks.

• Aggregation edges generally move information about the task from individual
examples to the last token. In the Person-Sport task, they move information about
input/output spaces without regard to functional relationship.

• Contextualization edges generally move information about input/output spaces,
and sometimes the task.

Overall, our main contributions are to:

1. Obtain causally faithful information flow from the few-shot examples to the next-token
prediction, explaining ≥ 90% of the model’s performance.
A key idea here is to focus on position-level circuits, where information flows only
between a restricted subset of positions in a prompt, which is key to making the
resulting computation graph interpretable.

2. Establish the importance and function of a contextualization step that precedes aggregation.
This is distinct from prior proposals (Cho et al., 2025; Kharlapenko et al., 2025)
focusing on the aggregation step. Contextualization becomes even more important
in the presence of ambiguity (Section 3.3). Indeed, it is beneficial even in a synthetic
setup (Appendix A).

2 Background: Aggregation and Function Vectors

Prior work on the mechanics of ICL in LLMs provides a few robust insights. Multiple studies
document the existence of task vectors or function vectors (Hendel et al., 2023; Todd et al., 2024;
Song et al., 2025; Kharlapenko et al., 2025; Yin and Steinhardt, 2025): Several attention heads
at the last prompt token (in our case, tN+1) output vectors that, across ICL tasks, encode task
information. Erasing them prevents ICL; patching them elsewhere leads to execution of the
task. Todd et al. (2024) specifically operationalize Function Vector Heads as heads whose
activations, when patched from valid ICL prompts to shuffled uninformative prompts,
can most increase the likelihood of the desired target. Yin and Steinhardt (2025) find that
Function Vector Heads are more important to ICL than Induction Heads, hypothesized to
be key in prior work (Olsson et al., 2022; Crosbie and Shutova, 2024) (cf. also Bansal et al.
(2023)). However, it remains largely open what circuit assembles this information, and how
information is assembled from the different few-shot examples to these function vectors.

Kharlapenko et al. (2025) discover a sparse feature circuit in Gemma-2 2B, using sparse
autoencoder (SAE) features encoding task information (in few-shot examples) and features
that execute them (at tN+1). However, the circuit does not distinguish between inputs
and outputs for different few-shot examples, leaving open whether task information is

2

Published as a conference paper at COLM 2025

created independently at each example or whether the representations are dependent across
few-shot examples. Cho et al. (2025) suggest a different circuit: (1) assembling an encoding
of each few-shot example’s input and moving it to few-shot label position, (2) attending
to labels whose input is similar to the query, and copying these labels to the query. Their
experiments are restricted to semantic text classification (e.g., sentiment), in which few-shot
inputs typically are either semantically aligned or opposed. In addition, the arguments are
largely based on evaluating representational similarity and on supervised probing, which
does not establish that this mechanism is causally sufficient. While a causal intervention,
through zeroing out the relevant components, shows this mechanism is relevant to ICL
(Section 5.1 in Cho et al. (2025)), it leaves open if the mechanism alone can fully explain the
behavior, or whether it is only a part of the overall mechanism. Overall, while function vec-
tors play an important role for many ICL tasks, the information flow leading to aggregation
of task information across few-shot examples remains unclear. To foreshadow our results,
we show that, while parallel aggregation of per few-shot representations is important, the
overall circuit is task-dependent, and may require a variety of additional components which,
as we will show, contextualize the per few-shot representations on other few-shot examples.

3 Results

We focus on Gemma-2, especially its 2B version, but our methodology allows us to also
investigate larger variants (9B and 27B). We evaluated the model on tasks from Todd et al.
(2024), and determined five tasks on which the 2B model achieves high (between 88% and
100%) accuracy: Copying 2, Present-Past, Capitalization, Country-Capital, Person-Sport
(Figure 2).3 We decided to focus on tasks with high accuracy in order to obtain a clear signal,
as for these tasks there is a clear understanding of the input-output behavior exhibited by
the full model. We focused experiments on shorter (3-shot) and longer (10-shot) prompts.

Each of the five tasks has an input space X (e.g., arbitrary lowercase words for
Capitalization; countries for Country-Capital) and an output space Y (e.g., arbitrary
capitalized words for Capitalization; cities for Country-Capital), and defines a func-
tion f : X → Y (e.g., mapping countries to their capitals) (Appendix, Figure 25).
Each N-shot prompt then has the following structure: x1t1y1n1 . . . xNtNyNnN xN+1tN+1,
∀ i : xi ∈ X , yi ∈ Y , yi = f (xi), ti = \t, ni = \n.

3.1 Identifying Circuits

To localize the behavior of the model, we use patching, an approach widely adopted in the
literature (Wang et al., 2022; Hanna et al., 2023). With this technique, a model is viewed
as a computation graph with activations in different layers as nodes, and computations
between them as edges. We then ablate some of the edges in the graph, forcibly replacing
computation along a specific edge with the one computed on the counterfactual input.
Counterfactual inputs are designed to erase relevant information from the input while
leaving other information intact for localization of model behavior. For example, when
substituting "Berlin" with counterfactual "Paris", we isolate computations specific to the
city’s identity, not those activated by its category (city) or token-type (word). If ablating a set
of edges does not lead to a drop in the model’s performance, then the information unique to
the original input relative to the counterfactual input, which was transferred along these
edges, is not causal for the model’s prediction. This allows to discover circuits – subgraphs
of the full model’s computation graph explaining a major part of model performance on
a specific task. In contrast to the standard approach, we focus on the information flow
between positions in a prompt; consequently, we differentiate between activations of the
same heads at different positions. We keep nodes for xi and yi in different examples distinct,
which allows us to analyze the information flow between few-shot examples.4

2This is not included in Todd et al. (2024), but we added it due to its naturalness.
3We also evaluated six other models at the 2B/3B scale, finding that they overall underperformed

Gemma-2 2B at 10 shots on these tasks (Table 7), further motivating our focus on Gemma-2.
4This contrasts with Kharlapenko et al. (2025), who collapse all xi and yi nodes into one node each.

3

Published as a conference paper at COLM 2025

2B 9B 27B
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Capitalization

2B 9B 27B

Country-Capital

2B 9B 27B

Present-Past

2B 9B 27B

Person-Sport

2B 9B 27B

Copy

aggregation aggregation + contextualization
(xi yi, xN + 1 tN + 1, yi tN + 1) + (yi yi + 1, xi xi + 1)

aggregation + contextualization
(xi yi, xN + 1 tN + 1, yi tN + 1) + (yi yj) Chosen Circuit vanilla model

Figure 2: Accuracy of circuits (Gemma-2 2B, 9B, 27B). The AGGREGATION circuit under-
performs the full model by a large margin in some tasks. Contextualizing edges recover a
large part of the gap. Whereas the AGGREGATION already performs well in some tasks, we
note that the contextualizing edges become crucial when evaluating on a difficult subset
designed to be ambiguous between two tasks (Section 3.3).

We first discover a position-level circuit. Nodes are the positions in the prompt; edges are
directed arcs between them, representing the flow of information (Figure 1). Importantly,
in position-level circuits we collapse all edges across layers into a single edge. Ablating
such an edge means ablating all corresponding edges in every attention head and layer.
For illustration, x2 in a position-level circuit can only receive four incoming edges: from
x1, t1, y1, or n1. 5 Position-level circuits provide useful and interpretable upper bounds
on information flow, though they do not distinguish between computations happening in
different layers. We treated all tokens within a few-shot input xi or output yi together, as
the number of tokens varies between few-shot examples. As positions, we distinguish the
few-shot inputs xi and outputs yi and the separators within (ti) and between (ni) examples;
though ni play no role in any of the identified circuits.

Patching Methodology To identify circuits, we define a simple class of counterfactual
inputs where all few-shot inputs and outputs (including the query xN+1) are replaced with
random words (Appendix H). The corrupted prompts still contain the same separators,
and maintain the overall number of tokens of each xi/yi (Appendix H, Figure 22). When
we ablate an edge from position A to position B, the key (K) and value (V) activations of A
when queried by B are replaced with activations computed on a corrupted prompt. The
K/V activations of A when queried by other positions, as well as Q activation of B remain
clean (Appendix H, Figure 28). This patching is applied simultaneously at each layer and
head. We define the output of a circuit on an input prompt by greedily decoding a response
yN+1 until a separator is generated, while ablating all edges outside the circuit.6

AGGREGATION Circuit: Computing representations at each example and aggregate
Based on prior work, we first hypothesized a minimal circuit consisting of edges between
few-shot inputs and outputs (xi → yi), from few-shot outputs to the last separator (yi →
tN+1), and also from the query to the last separator (xN+1 → tN+1).7 We dub this the
AGGREGATION circuit, as it allows each few-shot to assemble its own representation based
on (xi, yi) in parallel, and then allows tN+1 to make its prediction based on both the query
and the set of few-shot examples (green edges in Figure 1). This is the primary mechanism
suggested by prior work (Cho et al., 2025; Wang et al., 2023; Kharlapenko et al., 2025). We
evaluated the degree to which this subcircuit is sufficient for task performance.8 For this,

5The edges from/to bos/eos tokens are always ablated (Appendix E).
6We do, however, retain edges supporting the autoregressive prediction of the answer (xN+1 →

yN+1 and tN+1 → yN+1) (Appendix E).
7We also always include all edges from one position to itself, and never ablate these Appendix E).
8While Cho et al. (2025) showed zeroing out these edges to hurt model performance, establishing

that they do play a role, their method does not show sufficiency of the subcircuit. Interestingly, Cho
et al. (2025) propose that xi and yi are connected via ti, whereas we find a direct connection is largely
sufficient, simplifying the resulting circuit. We note that Cho et al. (2025) found that performance
suffers when zeroing out xi → ti or ti → yi and hypothesized that these edges transport information
about xi. However, they did not verify that these edges provide information about xi (rather than,
e.g., about the presence of a prompt template). In contrast, our patching methodology allows us to

4

Published as a conference paper at COLM 2025

we ablated all edges other than those in this minimal circuit. With this ablation, the model
achieves ≥ 85% of the full accuracy on three tasks, but shows a huge drop (< 60% of full
model) on Capitalization and Country-Capital (Figure 2). This confirms that the mechanism
is causally important, but insufficient for overall explaining model behavior.

CONTEXTUALIZATION Subcircuit: Edges between different few-shot examples We next
investigated which edges are needed beyond the AGGREGATION subcircuit, aiming to find
a small circuit recovering ≥ 90% of the accuracy of the full model. We call all the edges in
this circuit except those in the AGGREGATION subcircuit a CONTEXTUALIZATION subcircuit.
Specifically, the CONTEXTUALIZATION subcircuit comprises edges that contextualize the
representation of (xi, yi) using prior few-shot examples (xj, yj), where j < i. These edges
connect nodes A → B, with A ∈ {xj, yj|j < i} and B ∈ {xi, yi} for i ≤ N. Note that the
exact edges in this subcircuit may vary slightly across tasks.

We first ablated only edges involving non-final separators from the full model, and found
this to do little harm across the five tasks compared to the full model, especially at 10 shots
and for the 9B model (Tables 2, 5, 6), showing that relevant task information need not be
routed through the separators in and between the few-shots, i.e., the separators may provide
information about the presence of a prompt template, but do not play a nonredundant role
in assembling information about the task. We thus continued with these edges ablated. We
next considered the remaining logical possibilities, grouped by the types (input, output,
separator) of positions: within-type edges (1) xi → xj (for all 1 ≤ i < j ≤ N + 1), (2) yi → yj
(for all 1 ≤ i < j ≤ N), and across-type edges: (3) xi → yj (1 ≤ i < j ≤ N), (4) xi → tN+1
(1 ≤ i ≤ N), (5) yi → xj (1 ≤ i < j ≤ N + 1). We investigated adding each of these groups
individually to the aggregation circuit (Table 1). We found that adding (1) and (2) provided
strong accuracy gains on some tasks, and focused on these two groups.

We next focused on different circuits involving these edges. We considered both general
edge sets of types (1) and (2), and the local subset (xi → xi+1 and yi → yi+1); the latter were
sufficient in all but one case (yi → yj needed for Capitalization). For each task, we chose the
simplest circuit achieving ≥ 0.9 at N = 3, or (if there is none) the circuit achieving highest
accuracy at N = 3, 10, all based on the 2B model’s accuracies (Tables 2). We illustrate the
result for Country-Capital in Appendix, Figure 1; circuits for all five tasks are shown in
Appendix, Figure 24. At 2B parameters and 10 few-shots, the circuits explained ≥ 90% of the
full model’s performance, far exceeding the aggregation-only circuit on some tasks (Figure 2).
We next evaluated the circuits at 9B and 27B, using the same methodology (Tables 5, 6). At
10 shots, the circuits that we had chosen based on the 2B model explained at least 90% of
the full model’s performance in these model. Importantly, the AGGREGATION circuit again
underperformed the circuits involving contextualization on most tasks (Figure 2).

Projecting to Activation-Level Circuits In order to identify the heads responsible for
the information flow we have identified, we next projected the position-level circuits to
activation-level circuits. Here, nodes are activations of attention heads indexed by both
their positions and layers; edges are directed arcs between the input and output of individual
attention heads. More precisely, heads can be defined as tuples of (layer, head, position),
and edges can be described as (layer, head, start position, end position). We used a gradient-
based method (Michel et al., 2019; Syed et al., 2023) (see Appendix F for technical details) to
obtain a circuit on the level of activations with edges defined by attention heads, in the 3-shot
setup (Figures 9–13). The circuit reveals that the contextualization step tends to precede
the aggregation step: contextualization happens in the lower half layers, most aggregation
edges are in the middle and upper layers. Prior work has established the existence of
function vector heads, specific heads aggregating causally relevant task information at tN+1
(Section 2). We next identified function vector heads by using the method described in Todd
et al. (2024) for each task independently and selecting the top-10-scoring heads for each

conclude that these edges, at least in Gemma-2B on our prompt template, need not causally provide
information beyond the presence of a prompt template (which is kept constant in our corrupted
inputs). We caution that this difference need not invalidate the conclusion of Cho et al. (2025) as they
used a different template, using the word “label” for ti, whereas we use the “\t” punctuation.

5

Published as a conference paper at COLM 2025

Figure 3: Patching experiments manipulating information about the input available to each
edge in the full circuit, at the example of the Country-Capital task, 10-shot. For each ablation,
we indicate whether the drop in performance is statistically significant compared to the full
circuit performance in a binomial test with α = 0.05. See Figure 8 for results from all tasks.

task. These heads were largely part of the identified circuits and mostly contributed to the
yi → tN+1 edges (Appendix, Figure 26). This confirms that the circuits we have identified
describe the buildup of task information up to the function vector heads.

3.2 Which Information is Routed?

So far, we have identified edges of information flow, finding that the aggregation step
suggested by prior work is causally important to task success, but that it is preceded by
a contextualizing subcircuit. We next investigate which information is passed along the
edges. We are interested not in all information, but only in information about the input
that is causally implicated in the downstream prediction. We do this by performing targeted
manipulations on the input to manipulate the information present in specific activations.

For each edge, we specifically contrast the following hypotheses: An edge from some few-
shot example (xi, yi) might transport causally relevant information about (1) the specific
tokens, (2) the functional relationship between xi and yi (but not their token identities), (3)
the type of the xi or yi tokens without regard to their functional relationship.

Patching Methodology We vary the information about the input available to a particular
edge by constructing a contrastive input sample in which certain aspects have been altered
(Appendix H, Figure 22), and patching the K and V activations directly feeding into the
edge with the corresponding activations computed on that contrastive input (Appendix,
Figure 28). For instance, when patching an edge yi → tN+1, we modify the key and
value activations associated with the positions of yi across all attention heads in the model.
These modifications occur specifically when the activations are queried from the positions
corresponding to tN+1. Patching is done in parallel in each layer and head. All patching is
done within the overall circuit identified for the task, i.e., edges not present in the circuit
are ablated, and paths not present in the overall circuit play no role even in the patched
version. For instance, to determine whether the edges yi → tN+1 transport contextualized
information about preceding few-shots (xi′ , yi′) (i′ < i), we patch all inputs to this edge at
position yi with activations computed on an input where the preceding few-shots have been
corrupted; by varying the degree of corruption, we analyze which specific information is
transported (Appendix H, Figure 22). We note that this methodology allows us to focus on
causally relevant information used by downstream components. It is thus fundamentally
different from supervised probing, which does not distinguish between information used or
unused by downstream components. We focus on the 2B model for tractability.

AGGREGATION Subcircuit We first investigated the information transported by the edges
in the AGGREGATION subcircuit, consisting of the xi → yi, xN+1 → tN+1 and yi → tN+1
edges. Prior work (Cho et al., 2025; Kharlapenko et al., 2025; Wang et al., 2023) suggests
that the yi → tN+1 edges aggregate task information from the examples. Indeed, when we
patched these with arbitrary xi or yi (which disrupts the functional relationship), functional-
ity was largely destroyed (see Figures 3 and 8 for all patching results). In contrast, when we
patched the yi → tN edges with other few-shots that are valid for the task, functionality was
preserved. We also verified that the xi → yi edges transport xi: patching these edges with

6

Published as a conference paper at COLM 2025

corrupted xi leads to total failure. This is to be expected, as in the simple AGGREGATION
subcircuit, these edges are the only way for xi to influence the output. These results confirm
prior proposals about the aggregation step (Cho et al., 2025; Kharlapenko et al., 2025; Wang
et al., 2023) with rigorous causal analysis.

Our methodology allowed us to obtain two further findings. First, the yi → tN+1 edges
causally transport only task information and no token information. Namely, even in the
presence of contextualizing edges, i.e., even though there are multiple paths from few-shots
to the tN+1, performance did not deteriorate even when the yi → tN+1 and contextualizing
edges transported information from different prompts when they were valid for the task.9

Second, we next asked whether the edges rely on the functional relationship between xi
and yi or only their semantic types. We patched with pairs where the semantic types were
preserved but the functional relationship had been disrupted (e.g., in Country-Capital,
“France\tLondon”, “Canada\tBeijing”, etc. Appendix H, Figure 22). In four tasks, this led
to a failure, confirming that the functional relationship is transported by yi → tN+1. The
one exception is the Person-Sport task: here, functionality is largely preserved (> 90 % of
the full accuracy) as long as the patched x ∈ X , y ∈ Y . This phenomenon provides an
understanding of why ICL has sometimes been observed to be robust to perturbed labels
(Min et al., 2022): for some tasks (in this case, the Person-Sport task), the task information
is inferred on the basis of only the semantic types, without regard to their functional
relationship.10 In the context of the overall circuit:

The yi → tN+1 edges generally move information about the function f from individual
examples (xi, yi) to tN+1. In the Person-Sport task, they move information about X and
Y without regard to functional relationship.

In order to understand the role of these components further, we investigated the functional
behavior of the model with ablations applied. Overall, we observed three fallback tasks
which accounted for most interpretable errors: copying the query, producing from the correct
output space, copying another token from the prompt. With full ablation of the yi → tN edges,
behavior was often accounted for by copying the query or copying another token from
the corrupted input prompt (Appendix H, Figures 14, 15, 16, 17, 18). We note that as the
corrupted prompts maintain the separators, the last separator position can still infer the
presence of repeated structure, potentially explaining the presence of copying behavior.
When patching the edge while preserving the output space, behavior often amounted to
reproduction from the correct output space when there is well-delineated output space (e.g.,
Capitalization, Country-Capital, Person-Sport), or copying from the corrupted prompt when
there is none (Copying). This is expected, as such prompts maintain repeated structure in
terms of a specific output space, though with disrupted functional relationship.

Is the ICL aggregation circuit a type of induction circuit? An interesting question is
whether attention in the yi → tN+1 edges depends on the specific inputs, or just on the
few-shot template. Induction circuits – argued to be essential for ICL by Olsson et al.
(2022); Crosbie and Shutova (2024) – involve attention specifically to preceding position
preceded by the same as the current token, one might thus hypothesize that heads involved
in aggregation specifically attend to few-shot examples similar to the query. Indeed, Cho
et al. (2025) argued that, at least in the text classification tasks they studied, the ICL circuit
is a type of induction circuit, and the strongest information flow came from few-shot
examples where the input texts are semantically closest to the query text. However, this
argument was based on representational similarity, not any direct causal evidence. Relatedly,
theoretical constructions based on linear transformers performing ICL for linear functions
(e.g. Von Oswald et al., 2023; Vladymyrov et al., 2024; Mahankali et al., 2023) also crucially

9We emphasize that this is a claim about information that has a causal downstream effect in the
circuit, not about information that can be obtained via probing, which is likely to be richer and include
token information.

10An indirect argument based on representational similarity is made by Cho et al. (2025); our
analysis improves by causally localizing the invariance to perturbed input-output mappings to the
yi → tN+1 edges, ruling out a role for other pathways.

7

Published as a conference paper at COLM 2025

assume that attention is strongest to examples where xi is similar to the query xN+1, in line
with the induction circuit. We thus investigated patching the key or query vectors involved
in these attention edges with other valid prompts (preserving functional relationship but
changing the specific tokens). Strikingly, across all five tasks, at both 3 or 10 examples, there
was almost no discernible effect on accuracy (Table 4). This shows that, at least in the tasks
and model considered here, the aggregating attention edges do not exhibit the functionality
expected of the classical induction circuit: Attention is not preferentially given to specific
few-shots on the basis of similarity to the query.11

CONTEXTUALIZATION Subcircuit We next moved to analyzing the information trans-
ported by the contextualizing edges, starting with the edges connecting y’s (yi → yi+1 or
general yi → yj). We found that these edges transport both information about f and about
Y . Patching the yi → yi+1 edges for Country-Capital only decreases accuracy significantly
when y leaves Y , but not under other corruptions (Figure 3). In Capitalization, at 3 shots,
replacing with y ∈ Y hurts much less than a general ablation of y (accuracy 81% vs 56 %;
Appendix F, Figure 8), which is as harmful as full corruption of these edges and leads to a
large increase in copying behavior; nonetheless, accuracy still drops compared to ablations
keeping (x, y) ∈ f . At 10 shots, Capitalization only responds to ablations where y leaves
Y . In both cases, ablating the output space information leads to an increased number
of copy-type mistakes (Appendix H, Figure 19). As noted before, edges do not provide
specific token information used by downstream components at tN : we verified that a token
mismatch created by intervening on (xi−1, yi−1) for all yi → yj edges but not the yi → tN+1
edges has no discernible effect on accuracy if the functional relation between is preserved by
the prompt used for intervention. Overall, our causal interventions warrant the conclusion:

The yi → yj / yi → yi+1 edges contextualize the representation of each few-shot example
yi by transporting the type of Y , and sometimes the task f , from (xj, yj) (j < i).

We next studied the edges connecting inputs x’s. Ablating these on Present-Past and Person-
Sport turns out to not lead to a statistically significant drop, but the drop is substantive in
Country-Capital (Figure 3). Here, ablations only hurt when x left X , showing that xi → xj
transports the input space, but not (causally) the token xi. Such ablations again lead to
a substantial fraction of copying responses, i.e., the functional input-output behavior is
impacted (Appendix H, Figure 20). Patching prior xi’s for these edges, we found that they
affect the final prediction both via xi → xi+1 → yi+1 → tN+1 and via xN → xN+1 → tN+1
edges (Appendix, Table 8). Overall:

The xi → xi+1 edges contextualize the representations of xN+1 and of individual few-shot
outputs yi with information about X .

3.3 A CONTEXTUALIZATION subcircuit is important in the presence of ambiguity

Figure 4: Two hypotheses for the
causal graph on ambiguous inputs.

We conducted a controlled experiment aiming to
stress-test the aggregation step. We designed the
following hard version of the Present-Past task. We
take advantage of the fact that some English verbs
have identical present and past tense forms (e.g.,
“put”, “spread”). In a prompt for the Present-Past
task, examples using such verbs are thus ambiguous
between the Present-Past task and a simpler Copy-
ing task (Appendix H, Figure 23.1). In this exper-
iment, most individual examples do not give full
task information, and may in fact provide mislead-
ing information. We hypothesize that direct aggregation of uncontextualized per few-shot
representations as hypothesized by prior work may be less useful in this case, because

11Nonetheless, tN+1, collecting information from few-shot outputs that followed the same separator
token \t, might still rely on induction-head-like behavior, with the single preceding token as the key.

8

Published as a conference paper at COLM 2025

individual examples might, on their own, provide conflicting task information. The contex-
tualization step might help resolve this ambiguity before the aggregation step. Even when 7
out of 10 few-shot examples are ambiguous, the full model continues to perform the task
at very high accuracy (95%). Whereas the aggregation (AGGREGATION)-only circuit had
performed at 93% on the standard Present-Past task (and similarly on the Copying task), its
performance on the ambiguous prompts dropped to 56% (Appendix H, Table 9).

Wrong outputs largely consist of copying, expected as the ambiguous examples are compat-
ible with the Copying task. Note that, in the AGGREGATION-only circuit, the activations at
yi feeding into yi → tN are a mixture of activations for Copying or Present-Past; they each
largely succeed in inducing the correct prediction on their own without contextualization
when the task is consistent across the prompt, but tN+1 fails at resolving conflicting task
information when the task information is mixed across the prompt.

We found that contextualization is needed to explain the model’s accuracy. Adding xi →
xi+1, yi → yi+1 edges recovered part of the drop, but still underperformed the full model
(68%). We next investigated which further edges help close the gap to the full model;
indeed, in contrast to the standard tasks, we found separators now to play a role, as the full
model with only separator-involving edges ablated performs at 85% (Appendix H, Table 9).
Overall, adding a contextualization subcircuit with edges yi → yj, yi → tj, xi → tj, ti → yi,
ti → ti+1, xi → xi+1 recovered almost all of the full model’s performance (89.9%).

We investigated two hypotheses as to how contextualization resolves ambiguity (Figure 4):

1. (H1) Ambiguous examples obtain information from unambiguous examples, con-
textualizing their own representations so that they encode the Present-Past task
instead of the Copying task.

2. (H2) Unambiguous examples obtain information from ambiguous examples, con-
textualizing their own representations so they can override misleading functional
information from ambiguous examples.

Figure 5: Patching yi → tN+1 connections
on only ambiguous examples (bottom)
using activations taken on all-ambiguous
(red) or all-unambiguous (green) barely
hurts. In contrast, performing these
patches on only unambiguous exam-
ples (top) leads to a drastic drop, even
when patching with an all-unambiguous
prompt (green).

We note that these hypotheses are not exclusive
and might be true at the same time. To distin-
guish between them, we patched the K and V
activations at either all ambiguous or all un-
ambiguous examples feeding into yi → tN+1
edges, with activations computed from either
all-ambiguous or all-unambiguous prompts, in
both cases erasing the presence of the other type
of example (see Appendix H, Figure 23.2). Patch-
ing the yi’s in ambiguous examples had little ef-
fect on the accuracy (Table 3, Figure 5). This sug-
gests that, even if these examples may receive
information about the presence of Present-Past
examples, this is not causally important to task
disambiguation.

In contrast, patching the unambiguous examples
had great effect: Accuracy dropped to almost

zero when patching with ambiguous prompts (in which case all information would be
routed through the ambiguous examples, but we saw that they do not causally provide
disambiguation signal via yi → tN+1). Strikingly, accuracy dropped drastically even when
patching with fully unambiguous prompts, showing that contextualizing the unambiguous
examples with awareness of the presence of ambiguous examples is key to downstream
performance. Overall, our results allow us to reject H1. They are as expected under H2:

In the presence of ambiguous examples, contextualization changes the representations of
unambiguous few-shot examples. These altered representations of unambiguous exam-
ples are key to transporting task information to tN+1, overriding potentially misleading
information from ambiguous examples.

9

Published as a conference paper at COLM 2025

4 Discussion

On five tasks, we have shown that Gemma-2 2B performs ICL using a cascade contextual-
izing the representations of individual examples, and aggregating task information from
them. Using rigorous causal interventions, we extend prior work on mechanistically un-
derstanding the mechanisms of ICL in transformers (e.g. Wang et al., 2023; Cho et al., 2025;
Kharlapenko et al., 2025; Hendel et al., 2023; Todd et al., 2024; Bansal et al., 2022; Sia et al.,
2024; Song et al., 2025; Yin and Steinhardt, 2025; Crosbie and Shutova, 2024). We extend on
work on function or task vectors by showing that they are largely part of the aggregation
circuit hypothesized by Cho et al. (2025); Kharlapenko et al. (2025). Most importantly, we
establish the importance of a contextualization step, especially in the presence of ambiguous
examples in a prompt.

Our work is distinct from Cho et al. (2025) in providing a computation graph supported
by causal effects rather than representation similarity. A major difference between causal
experiments in our work and Cho et al. (2025) is that we construct a circuit sufficient for
recovering model performance, whereas Cho et al. (2025) zeroed out edges to confirm
their importance. A major difference to Kharlapenko et al. (2025) is that we keep different
few-shot examples distinct in our circuits, allowing us to identify the contextualization step.

Theoretical work has considered ICL both from the perspective of learning simple parametric
functions (e.g. Akyürek et al., 2023; Von Oswald et al., 2023; Mahankali et al., 2023), and
as general Bayesian inference (e.g. Xie et al., 2022; Wies et al., 2023; Hahn and Goyal,
2023). Theoretical constructions for transformers performing ICL often correspond to the
AGGREGATION subcircuit (Akyürek et al., 2023; Mahankali et al., 2023), but contextualization
of the few-shot inputs (Von Oswald et al., 2023; Vladymyrov et al., 2024) or outputs (Chen
et al., 2024) does play a role in some constructions (see Appendix A for more), in agreement
with our findings in an LLM. Mechanistic understanding of ICL also has the potential to
explain some of its behavioral aspects. For instance, we found that, in the Person-Sport
task, the circuit only assembles input and output spaces without regard to functional
relationships, explaining the robustness to label noise sometimes observed (Min et al., 2022).

Our work is grounded in a tradition of identifying important components in neural networks
(e.g. Michel et al., 2019). Modern circuit discovery in LMs was pioneered by Wang et al.
(2022); Hanna et al. (2023); a unifying framework was provided by Conmy et al. (2023).
Scaling this to larger models (e.g. Syed et al., 2023; Hanna et al., 2024; Ferrando and Voita,
2024) is a focus of recent research.

A limitation of the present study is that, to keep computational cost manageable, it focuses
on one model family and five tasks. A second limitation is that it focuses on causal under-
standing of information flow between positions, and does not interpret MLPs or individual
heads. Future work might combine our results with a further scaled-up version of the sparse
feature circuits of Kharlapenko et al. (2025) to understand contextualization at the level of
individual representations. It is likely that further advances in interpretability are needed to
comprehensively interpret all individual components in models of the scale studied here.

5 Conclusion

We have conducted extensive causal interventions to understand the flow of information
from individual few-shot examples to the next-token prediction in ICL, at the example of
five tasks in Gemma-2 2B. Our most important result is to establish a two-stage procedure,
whereby the model contextualizes representations of individual few-shot examples, which
are then aggregated to prepare next-token prediction.

Author Contributions

AB led the project and conducted the experiments. YV contributed to scaling experiments.
XH contributed to discussions throughout the project. MH supervised the project, provided
input on the experimental design, and drafted the paper text. All authors refined the paper.

10

Published as a conference paper at COLM 2025

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
Project-ID 232722074 – SFB 1102. We thank Entang Wang for comments on the manuscript.

References
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. 2023. Transformers learn

to implement preconditioned gradient descent for in-context learning. Advances in Neural
Information Processing Systems, 36:45614–45650.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. 2023. What
learning algorithm is in-context learning? investigations with linear models. In The
Eleventh International Conference on Learning Representations.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirch-
hoff, and Dan Roth. 2022. Rethinking the role of scale for in-context learning: An
interpretability-based case study at 66 billion scale. arXiv preprint arXiv:2212.09095.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirch-
hoff, and Dan Roth. 2023. Rethinking the role of scale for in-context learning: An
interpretability-based case study at 66 billion scale.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901.

Xingwu Chen, Lei Zhao, and Difan Zou. 2024. How transformers utilize multi-head attention
in in-context learning? a case study on sparse linear regression.

Hakaze Cho, Mariko Kato, Yoshihiro Sakai, and Naoya Inoue. 2025. Revisiting in-context
learning inference circuit in large language models. In The Thirteenth International Confer-
ence on Learning Representations.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. 2023. Towards automated circuit discovery for mechanistic interpretabil-
ity. Advances in Neural Information Processing Systems, 36:16318–16352.

Joy Crosbie and Ekaterina Shutova. 2024. Induction heads as an essential mechanism for
pattern matching in in-context learning. arXiv preprint arXiv:2407.07011.

Javier Ferrando and Elena Voita. 2024. Information flow routes: Automatically interpreting
language models at scale. arXiv preprint arXiv:2403.00824.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. 2022. What can trans-
formers learn in-context? a case study of simple function classes. Advances in Neural
Information Processing Systems, 35:30583–30598.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. 2021. Causal abstractions
of neural networks. Advances in Neural Information Processing Systems, 34:9574–9586.

Michael Hahn and Navin Goyal. 2023. A theory of emergent in-context learning as implicit
structure induction. arXiv preprint arXiv:2303.07971.

Tal Haklay, Hadas Orgad, David Bau, Aaron Mueller, and Yonatan Belinkov. 2025. Position-
aware automatic circuit discovery. arXiv preprint arXiv:2502.04577.

Michael Hanna, Ollie Liu, and Alexandre Variengien. 2023. How does gpt-2 compute
greater-than?: Interpreting mathematical abilities in a pre-trained language model. arXiv
preprint arXiv:2305.00586.

11

http://arxiv.org/abs/2212.09095
http://arxiv.org/abs/2212.09095
http://arxiv.org/abs/2408.04532
http://arxiv.org/abs/2408.04532
https://openreview.net/forum?id=xizpnYNvQq
https://openreview.net/forum?id=xizpnYNvQq

Published as a conference paper at COLM 2025

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. 2024. Have faith in faithful-
ness: Going beyond circuit overlap when finding model mechanisms. arXiv preprint
arXiv:2403.17806.

Roee Hendel, Mor Geva, and Amir Globerson. 2023. In-context learning creates task vectors.
In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 9318–9333.

Dmitrii Kharlapenko, Stepan Shabalin, Arthur Conmy, and Neel Nanda. 2025. Scaling sparse
feature circuits for studying in-context learning. In Forty-second International Conference on
Machine Learning.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. 2023. One step of gradient
descent is provably the optimal in-context learner with one layer of linear self-attention.
arXiv preprint arXiv:2307.03576.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating and editing
factual associations in gpt. Advances in neural information processing systems, 35:17359–
17372.

Paul Michel, Omer Levy, and Graham Neubig. 2019. Are sixteen heads really better than
one? Advances in neural information processing systems, 32.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Rethinking the role of demonstrations: What makes in-context
learning work?

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022. In-context
learning and induction heads. arXiv preprint arXiv:2209.11895.

Suzanna Sia, David Mueller, and Kevin Duh. 2024. Where does in-context learning happen in
large language models? Advances in Neural Information Processing Systems, 37:32761–32786.

Jinyeop Song, Seungwook Han, Jeff Gore, and Pulkit Agrawal. 2025. From context to
concept: Concept encoding in in-context learning.

Aaquib Syed, Can Rager, and Arthur Conmy. 2023. Attribution patching outperforms
automated circuit discovery. arXiv preprint arXiv:2310.10348.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. 2024. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
2024. Function vectors in large language models. In The Twelfth International Conference on
Learning Representations.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. 2020. Investigating gender bias in language models using causal
mediation analysis. Advances in neural information processing systems, 33:12388–12401.

Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. 2024. Linear trans-
formers are versatile in-context learners. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. 2023. Transformers learn
in-context by gradient descent. In International Conference on Machine Learning, pages
35151–35174. PMLR.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
2022. Interpretability in the wild: A circuit for indirect object identification in gpt-2 small.
arXiv preprint arXiv:2211.00593.

12

http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
https://openreview.net/forum?id=0ULf242ApE
https://openreview.net/forum?id=0ULf242ApE
https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=p1ft33Mu3J
https://openreview.net/forum?id=p1ft33Mu3J

Published as a conference paper at COLM 2025

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
2023. Label words are anchors: An information flow perspective for understanding
in-context learning. In Proceedings of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 9840–9855, Singapore. Association for Computational
Linguistics.

Noam Wies, Yoav Levine, and Amnon Shashua. 2023. The learnability of in-context learning.
Advances in Neural Information Processing Systems, 36:36637–36651.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2022. An explanation
of in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080.

Kayo Yin and Jacob Steinhardt. 2025. Which attention heads matter for in-context learning?

A ICL on Linear Regression Benefits from Contextualization Step

A substantial amount of work has studied ICL in small transformers trained to solve simple
synthetic tasks, particularly linear regression. However, the link between these mechanisms
and the ICL circuits inside LLMs largely remain unknown. Theoretical constructions for
ICL on linear regression based on gradient descent (GD) and similar algorithms often
involve just multiple rounds of parallel aggregation from each few-shot; in particular, a
single round of GD can be implemented as a single aggregation step, and is the optimal
ICL strategy for a one-layer (linear) transformer (Mahankali et al., 2023). However, there
is theoretical reason to believe that a contextualization step is beneficial in preprocessing
the representations of individual few-shots before aggregation. First, multilayer linear
transformers implement the GD++ algorithm (Von Oswald et al., 2023), which iteratively
contextualizes xi’s to approximate the input data covariance (Von Oswald et al., 2023), and
which allows faster convergence than GD (Vladymyrov et al., 2024); such preconditioning
also appears in constructions for ICL on non-isotropic data (Ahn et al., 2023). Second,
Chen et al. (2024) showed that preprocessing of individual few-shots is beneficial in sparse
linear regression. While these works show that contextualization helps outperform gradient
descent, they do not establish that the step is needed for optimal performance, as a priori
there might be undiscovered algorithms implementable by transformers outperforming GD
with only the aggregation step.

We empirically investigated which attention edges are needed when transformers learn
linear regression in context. Following Garg et al. (2022), we trained transformers to perform
linear regression, i.e., each prompt has a latent task v ∈ Rd and each few-shot consists of a
vector x ∈ Rd and the output y = vTx ∈ R. We chose d = 20.

We investigated three subcircuits:

1. AGGREGATION: xi → yi, yi → xN+1

2. Between-Xs: xi → xj (all 1 ≤ i < j ≤ N + 1)

3. Between-Ys: yi → yj (all 1 ≤ i < j ≤ N)

We trained the model with the aggregation-only circuit, and three combinations of this and
the other two subcircuits (Figure 6). As we trained from scratch, we ablated edges simply
by zeroing out their attention weights throughout training.

Garg et al. (2022) trained the model on the aggregation of the losses of each yi (i ≤ 40)
conditioned on the prior examples. This was not feasible in our setup, as the set of ablated
edges varies with the target. We instead randomized the length N of the prompt in every
training step (between 10 and 40) and trained only on the last output (yN+1) on each prompt.
As there are no separators, the position at which this output is predicted is the query, xN+1.

We varied the depth (4, 6, 8, 12 layers). The model of Garg et al. (2022) had used 12 layers; we
reasoned that contextualization might be more important in shallow models because these
provide less opportunity for deep computations at the last position We used the original

13

https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
http://arxiv.org/abs/2502.14010

Published as a conference paper at COLM 2025

Parallel: xi → yi, yi → xN+1
Between-Xs: xi → xj (all 1 ≤ i < j ≤ N + 1)

Between-Ys: yi → yj (all 1 ≤ i < j ≤ N)

Figure 6: Loss (MSE) on ICL on linear functions when trained with attention links ablated
during training, with transformers with l = 4, 6, 8, 12 layers. The AGGREGATION circuit
performs much better than a random baseline (loss 20.0), but underperforms the full model
by a large margin in shallow transformers. Adding links within x’s or y’s improves perfor-
mance, particularly the latter. Adding both performs at par with the full model, in line with
our findings on real-world tasks in Gemma-2.

code from Garg et al. (2022), but increased the batch size to 1024 and decreased the number
of steps to 150K for tractability. The model was run on one NVIDIA H100 card.

Results are in Figure 6. The AGGREGATION subcircuit performs much better than random
baseline (MSE loss of 20), but suffers substantially for shallow models. xi → xj edges
improve, but cannot close the gap to the full model. yi → yj edges nearly or fully close the
gap. Overall, while parallel aggregation plays an important role, a contextualization step is
needed to close the gap to the full transformer.

B Computational Resources

For the 2B model, a single patching run takes roughly 40 minutes on 1 NVIDIA A100 40GB
GPU on one 3-shot task, and roughly 4 hours on a 10-shot task. Costs are higher on the 9B
and 27B models.

C Datasets

We took Person-Sport, Country-Capital and Present-Past datasets from Todd et al. (2024),
and selected words for Capitalization dataset randomly from 5000 English words. For the
Copying dataset we used the same source as for Capitalization.

All datasets were randomly divided into train and test parts. To construct an ICL prompt,
we select examples from the train split of the dataset without replacement to use as few-shot
examples, and one example from the test split to use as final query and target. We used a
test size of 100 examples in each dataset.12 Train sizes of datasets range from 39 to 4000.

For the ambiguity dataset, we selected 20 English verbs with identical present and past tense
forms, and combined them with the Present-Past dataset. For each prompt, we randomly
selected N = 7 positions in the Present-Past prompt to replace with ambiguous examples.

D Patching methodology

We use path patching (Wang et al., 2022; Hanna et al., 2023) to identify position-level circuits
and analyze information flow along edges. This method involves: (1) representing the
model as a computation graph with token embeddings as inputs, loss value as output, and

12The high computational cost of the full set of patching experiments (Figure 8) prevented us from
running larger test sets. Importantly, our key conclusions are drawn only from patching effects with
statistically significant changes in accuracy (Figure. 8.

14

Published as a conference paper at COLM 2025

specific activations as nodes; (2) ablating graph components to isolate those responsible for
specific behaviors. This section details our computation graph definition (nodes, edges),
loss function and ablation implementation.

Computation graph Nodes consist of activations at the input/output of each attention
head across positions. Each node is represented as a tuple (input/output, layer, head, position),
where "position" indicates a token’s semantic role (e.g., x1, y3, t2, n4). Note that xi and yi
positions typically span multiple tokens but are treated as single nodes. Each node is thus a
tensor of size (number of tokens in position, hidden dimension).

Edges represent computational connections between nodes. In our position-level circuits,
edges exist exclusively within attention heads, as only these transfer information between
positions (Appendix E details edge inclusion criteria). Removing an edge between (input, L,
H, pos=x1) and (output, L, H, pos=y1) disconnects these nodes, implemented by computing:

(output,L,H,pos=y1)=Attention((input,L,H,pos=x1)C, (input,L,H,pos=t1), (input,L,H,pos=y1))

instead of

(output,L,H,pos=y1)=Attention((input,L,H,pos=x1), (input,L,H,pos=t1), (input,L,H,pos=y1))

where subscript C denotes counterfactual activations.

When discovering position-level circuits, we abstract all edges between the same pair of
positions into a single edge. Specifically, we treat all edges of the form ((input, L, H, pos=A)
→ (output, L, H, pos=B) for all L, H) as a single edge: (input, pos=A) → (output, pos=B).
Thus, removing such an edge corresponds to removing all edges between positions A and B
across all attention heads and layers.

We use cross-entropy loss over all tokens in the output position (yN+1). Performance drop
is measured as accuracy decrease between ablated and normal model runs.

Ablation Procedure Edge ablation requires two forward passes (Fig. 28):

1. Run counterfactual input IC, saving all input node activations (input, L, H, pos)C

2. Run correct input I. For each attention head, compute outputs position-wise, which
requires as many passed through attention block as there are positions. When
ablating edge A → B in head H (layer L), for position B: substitute activation at A
with (input, L, H, A)C saved from Step 1. Concatenate position outputs into final
tensor.

With this methodology we can identify circuits - subgraphs of the model’s computation
graph that can perform the task with high accuracy when the edges outside the circuit are
ablated.

Our approach to circuit discovery is closely related to the recent work of Haklay et al. (2025),
with several key differences:

• The dataset schema in our case is defined by the specifics of the task: what we refer
to as x’s, y’s, t’s, and n’s corresponds to what Haklay et al. (2025) call a “span.”

• We define an edge from position A to position B as patching both the V and K
activations at position A when queried by position B, whereas Haklay et al. (2025)
distinguish between edges originating from Q, K, and V activations.

• We do not take edges from a position to itself into account and thus do not have
separate nodes for MLPs, embeddings and logits.

• To identify position-level circuits, we abstract all edges from position A to position
B across all layers into a single edge. We only distinguish between layers when
identifying activation-level circuits (Section 3.1).

For analyzing information routing through specific edge sets (Section 3.2), we partition
edges into three categories: (1) Outside circuit, (2) Inside circuit but not under investigation,
(3) Inside circuit and under investigation. The extended procedure adds a third step:

15

Published as a conference paper at COLM 2025

1. Run counterfactual input IC, saving (input, L, H, pos)C

2. Run semi-counterfactual input ISC, ablating edges outside circuit (Set 1). Save input
node activations for heads corresponding to Set 3 edges: (input, L, H, pos)SC

3. Run correct input I while ablating:
• Set 1 edges using (input, L, H, pos)C
• Set 3 edges using (input, L, H, pos)SC

This isolates performance changes caused by removing only Set 3 information not present
in the semi-counterfactual. Counterfactual inputs (e.g., replacing "Berlin" with "table")
remove more information than semi-counterfactual (e.g., replacing "Berlin" with "Paris"),
which preserve broader categorical attributes. This reveals which information aspects along
specific edges impact downstream predictions.

Handling Multiple Tokens per Position Our approach requires identical token counts
per position in counterfactual and correct prompts, enforced during construction. When
ablating edges from position A, we replace its entire activation tensor with the counterfactual
version.

For projecting position-level circuits to activation-level circuits, we assign each edge a single
importance score by summing scores across all constituent token-level edges. Position-level
circuits require no such aggregation. See Appendix F for activation-level circuit details.

E Overall Set of Edges

We focus our discussion on edges involving x1, y1, . . . , xN+1, tN+1, specifically on edges
going from one of these positions to a different one. Here, we exactly document which
edges remain un-ablated in our experiments with position-level circuits:

1. Edges involving bos/eos/pad tokens are always ablated.
2. We keep edges xN+1 → yN+1 and tN+1 → yN+1, and do not ablate these. This is

because these edges support autoregressive prediction of the response yN+1 when
it consists of more than one token.

3. We always include edges going from one position to itself, provided the position
plays a role in the circuit at all. Note that a single position may be occupied by
multiple tokens (that is, if xi or yi has more than one token); in this case, such edges
can go from one token to another, without leaving a position in the position-level
circuit.

4. We consider only edges between inputs and outputs of attention heads, as we focus
on information flow between positions.

Note that our visualizations of circuits only include positions from x1 to tN+1, as positions
before or after are not connected to the N few-shot examples by any edges; recall that our
focus is on the process by which information is assembled from the few-shot examples.

F Details for Gradient-Based Circuit Finding Algorithm

Here, we describe how we identified activation-level circuits.

The algorithm we use consists of two parts:

1. (Head Pruning) Starting from the position-level circuits, we view the model as a
computational graph where nodes are the outputs of attention heads indexed by
⟨position, layer, head⟩, and prune heads.

2. (Edge Pruning) We then refine this circuit by pruning edges. We view the model
we get from the first step as a computational graph where edges connect inputs of
attention heads to outputs of attention heads.

16

Published as a conference paper at COLM 2025

Note that we could have also applied edge pruning to obtain an activation-level circuit from
the start, rather than going through a position-level and head-level circuit first. However,
such a strategy might have resulted in a circuit with less systematic patterns in which pairs
of positions have edges. In contrast, going via position-level circuits allows us to jointly
interpret all edges linking two positions, making interpretation much more feasible given
the large number of heads and edges involved in the circuit.

F.1 Step 1: Head pruning

Definition of Computation Graph We first view the model as a compu-
tation graph where nodes are indexed by ⟨position, layer, head⟩ (position ∈
{x1, y1, . . . , xN , yN , xN+1, tN+1, yN+1}, layer ∈ {1, . . . , nlayers}, head ∈ {1, . . . , nheads}).
Notably, our circuits also include yN+1 even though in principle the last separator is where
the answer is predicted, which is in order to account for multi-token outputs. The loss for
gradient-based pruning is the entire multi-token CE on the answer.

These nodes represent activations on the output of attention head after projection onto
residual stream, but before post-attention layernorm.

Pruning Strategy The algorithm we use for head pruning is based on the Head Importance
Scores method (Michel et al., 2019). We compute importance scores for each component in
a computational graph, and then prune the components with smallest importance scores.
Whereas the original Head Importance Score defined by Michel et al. (2019) approximates
how much the loss would change if we change the output of one head to zero, we instead
set the output of a head to the result of ablating it, that is, the value that it would have on
a corrupted prompt. Thus, we adapt the importance score to approximate how much the
loss would change if we change the output of the head from its clean activation ξclean to the
activation ξcorr computed on a corrupted prompt promptcorr. The importance score of an
attention head h is then the following:

Ih = Eprompt∼X

∣∣∣∣(Atth(ξclean)− Atth(ξcorr))
T ∂L(ξclean)

∂Atth(ξclean)

∣∣∣∣
where L(ξN+1) denotes the cross-entropy loss on predicting the correct response given a
prompt. We arrive at this by performing a Taylor approximation of the loss after corrupting
the activation:

L(ξcorr) ≈L(ξclean) + (Atth(ξcorr)− Atth(ξclean))
T ∂L(ξclean)

∂Atth(ξclean)

and rearranging to obtain:

|L(ξcorr)−L(ξclean)| ≈
∣∣∣∣(Atth(ξclean)− Atth(ξcorr))

T ∂L(ξclean)

∂Atth(ξclean)

∣∣∣∣
When a head belongs to multiple tokens within a position (a multi-token xi or yi), importance
scores are summed.

We then score each head with this importance score and “ablate” 20% of the remaining
heads that have the lowest score. “Ablating” in our setting is setting the output of a head to
the one it would have on xcorr. Then we calculate the scores for the model without pruned
heads again and prune another 20% of the heads using the newly calculated scores.

We stop when either the loss increases more than twice or the accuracy drops by more than
10%, compared to the original position-level circuit.

We take the last checkpoint for which the loss and accuracy were still inside the threshold.

F.2 Step 2: Edge pruning

In the second step, we view the model we get from step (1) as a computational graph where
edges connect inputs of attention heads before layernorm and outputs of attention heads
before layernorm, but after projection to residual stream.

17

Published as a conference paper at COLM 2025

Cap CC PP Copy PS
n-shot 3 10 3 10 3 10 3 10 3 10

(1) add xs → xs 0.54 0.53 0.77 0.81 0.87 0.95 0.87 0.95 0.84 0.88
(2) add ys → ys 0.89 0.97 0.44 0.61 0.90 0.94 0.94 1.00 0.80 0.82
(3) add xs → ys 0.50 0.55 0.36 0.29 0.83 0.91 0.88 0.96 0.82 0.82
(4) add ys → xs 0.51 0.51 0.70 0.82 0.88 0.94 0.89 0.94 0.84 0.83

AGGREGATION 0.53 0.55 0.40 0.41 0.84 0.93 0.91 0.96 0.83 0.80
Tasks: Cap = Capitalization, CC = Country-Capital, PP = Present-Past, PS = Person-Sport

Table 1: Accuracy of Gemma2-2B on circuits when adding edges between different xs
and ys combinations to the AGGREGATION-only circuit. Our aim is to find a minimal
circuit sufficient for recovering most (≈ 90%) of the full model’s accuracy. Adding (2)
most consistently improves accuracy compared to the AGGREGATION-only circuit, with a
large increase on Capitalization, where the other types of edges achieve no such increase.
Adding (1) or (4) both substantially improve accuracy over the AGGREGATION-only circuit
in Country-Capital. We note that adding (1) results in a smaller number of possible paths
than (4), which simplifies interpretation of information flow; hence, focused on (1). In
other words, to keep the circuits tractable and understandable, we do not aim to guarantee
completeness, but aim to provide minimal and sufficient circuits. Overall, we focused on
(1) and (2) for determining position-level circuits. As we show, our resulting position-level
circuits are indeed sufficient for recovering ≥ 90% of the full model’s accuracy (Figure 2).

Notice that all the edges except for edges inside attention are connecting only tokens of the
same type. Since the information between tokens gets mixed in a model only inside attention
layer, the edges between types are only edges between inputs and outputs of attention. Our
interpretation focuses on information flow between different positions in the prompt, that
is why we do not consider pruning other types of edges to get the activation-level circuits
(Figures 9–13).

We use edge attribution patching (Syed et al., 2023) to prune edges. As in head pruning, we
compute importance scores reflecting first-order approximations of the effect on the loss of
ablating each edge and then “prune” the edges with the lowest importance. After “pruning”
the edge, we replace it with the value on corrupted input (i.e., ablate it).

When we represent the model as computational graph, we view as nodes activations of
inputs and outputs of attention heads divided by type of tokens.

We distinguish between 16 types of tokens: 3 types for queries in the few-shot examples, 3
types for targets in few-shot examples, 3 types for separators between queries and targets
in few-shot examples, 3 types for separators between few-shot examples, a type for query
of the whole input, a type for target that the model needs to generate, a type for the last
separator before target, a type for bos/eos/pad tokens. In Figure 1 we use color coding to
differentiate token types, though some are merged into single categories for visual simplicity.
We view each activation site as 16 nodes that correspond to different token types.

Stopping Criterion We stop pruning edges based on a threshold on increased loss (1.5 ∗
loss_be f ore_pruning) and decreased accuracy (0.9 ∗ accuracy_be f ore_pruning). As above,
thresholds were chosen in preliminary experiments and not extensively tuned; these could
be refined in future work.

G Error Analysis

To obtain the model’s (with or without ablations applied) output on a prompt, we greedily
decoded next tokens after tN+1 until a separator \n was generated. We classified the
resulting answer for whether it

1. equals the ground-truth answer, or

18

Published as a conference paper at COLM 2025

FULL REMOVE-SEPS AGGREGATE AGGREGATE AGGREGATE
+ yi → yj + yi → yi+1

+ xi → xi+1

PP 1-shot 0.62 0.41 0.27 0.27 0.31
3-shot 0.96 0.92 0.84 0.90 0.93∗
5-shot 0.93 0.82 0.70 0.77 0.75
7-shot 0.96 0.93 0.88 0.89 0.89
10-shot 0.99 0.92 0.93 0.94 0.94∗

CC 1-shot 0.80 0.62 0.23 0.23 0.46
3-shot 0.90 0.87 0.40 0.44 0.79∗
5-shot 0.85 0.82 0.36 0.26 0.66
7-shot 0.88 0.83 0.33 0.43 0.74
10-shot 0.88 0.85 0.41 0.61 0.80∗

Copy 1-shot 0.99 0.87 0.91 0.91 0.85
3-shot 1.00 0.88 0.91∗ 0.94 0.93
5-shot 0.93 0.92 0.92 0.90 0.93
7-shot 1.00 0.92 0.97 0.97 0.97
10-shot 1.00 0.92 0.96∗ 1.00 0.96

Cap 1-shot 0.39 0.29 0.54 0.54 0.53
3-shot 0.97 0.87 0.53 0.89∗ 0.88
5-shot 0.80 0.70 0.31 0.74 0.66
7-shot 0.98 0.92 0.34 0.91 0.80
10-shot 0.99 0.91 0.55 0.97∗ 0.94

PS 1-shot 0.89 0.86 0.58 0.58 0.76
3-shot 0.86 0.88 0.83 0.80 0.83∗
5-shot 0.83 0.80 0.68 0.73 0.76
7-shot 0.87 0.89 0.78 0.77 0.81
10-shot 0.91 0.93 0.80 0.82 0.87∗

Tasks: Cap = Capitalization, CC = Country-Capital, PP = Present-Past, PS = Person-Sport

Table 2: Accuracy of circuits in Gemma2-2B, by prompt length.
FULL refers to the full model.
REMOVE-SEPS refers to the model with all edges involving separators other than tN+1
ablated.
AGGREGATE refers to the circuit consisting of only xi → yi, yi → tN+1, xN+1 → tN+1 edges.
yi → yj refers to the edges yi → yj (1 ≤ i < j ≤ N − 1).
yi → yi+1 refers to the edges yi → yi+1 (1 ≤ i ≤ N − 1).
xi → xi+1 refers to the edges xi → xi+1 (1 ≤ i ≤ N).
For each task, we selected one of the three tasks. For each task, we use asterisks to mark
the chosen position-level circuit. We chose the simplest circuit achieving ≥ 0.9 at N = 3,
or (if there is none) the circuit achieving highest accuracy at N = 3, 10. Circuits recover
94% Present-Past), 90% (Country-Capital), 96% (Copying), 97% (Capitalization) and 95%
(Person-Sport) of the full model’s accuracy. Compare Table 5 for the 9B model, and Table 6
for the 27B model. Compare Figure 7 for a visual representation.

no corruption 0.90
yi → tN+1 for all ambiguous (xi, yi) fully ambiguous prompt 0.90

fully unambiguous prompt 0.94
yi → tN+1 for all unambiguous (xi, yi) fully ambiguous prompt 0.02

fully unambiguous prompt 0.46

Table 3: Accuracy when patching the yi → tN+1edges separately for ambiguous and
unambiguous examples. 10-shot setting, 7 ambiguous examples in each prompt. In bold -
significant drop.

19

Published as a conference paper at COLM 2025

1 3 5 7 10
Number of Fewshots

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Capitalization

1 3 5 7 10
Number of Fewshots

Country-Capital

1 3 5 7 10
Number of Fewshots

Present-Past

1 3 5 7 10
Number of Fewshots

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Person-Sport

1 3 5 7 10
Number of Fewshots

Copy

Circuits
vanilla
aggregation
aggregation + yi yj

aggregation + yi yi + 1 + xi xi + 1
Chosen Circuit

Figure 7: Accuracy of circuits by prompt length (Gemma-2 2B). Compare Table 2.

Present-Past Country-Capital Copying Capitalization Person-Sport
N 3 10 3 10 3 10 3 10 3 10

no ablation 0.93 0.94 0.79 0.80 0.91 0.96 0.89 0.97 0.83 0.87
key 0.92 0.94 0.82 0.81 0.88 0.98 0.87 0.99 0.81 0.91
query 0.93 0.96 0.82 0.81 0.88 0.96 0.89 0.98 0.84 0.87

Table 4: Patching key and query vectors in yi → tN+1 edges with other examples from the
same task, at N = 3 and N = 10-shot prompts. Accuracy shows no clear change compared
to the full circuit. This shows that these attention edges transport information about the
prompt (and thus the task) only via the value vectors, but not the allocation of attention.

PP CC Copy Cap PS
n-shot 3 10 3 10 3 10 3 10 3 10

full model 0.99 1.00 0.91 0.90 1.00 1.00 0.95 1.00 0.94 0.96
REMOVE-SEPS 0.97 0.98 0.90 0.90 1.00 1.00 0.91 0.97 0.92 0.96
AGGREGATION 0.79 0.84 0.73 0.78 0.99 1.00 0.27 0.16 0.83 0.85
AGGREGATION
+ yi → yj 0.93 0.98 0.88 0.90 0.99 1.00 0.81 0.97 0.86 0.88
AGGREGATION
+ yi → yi+1 0.95 0.98 0.90 0.89 0.99 1.00 0.81 0.82 0.90 0.93
+ xi → xi+1

Tasks: Cap = Capitalization, CC = Country-Capital, PP = Present-Past, PS = Person-Sport

Table 5: Accuracy results of circuits on Gemma2-9B. Removing edges between the separators
hurts even less than in the 2B model (compare Table 2 for that). As in the 2B model,
accuracy of the AGGREGATION-only circuit is low on some tasks, in particular Capitalization.
Including contextualization recovers almost the entire performance of the full model. In
bold are the circuits we had selected based on the 2B model. Compare Table 2 for the 2B
model, and Table 6 for the 27B model.

20

Published as a conference paper at COLM 2025

Figure 8: Accuracies in patching experiments within circuits to get information about edges
semantics (Gemma-2 2B). For each ablation, we indicate whether the drop in performance
is statistically significant according to a binomial test with α = 0.05. We note that some
components show no statistically significant drop when ablated; this is because we had
conservatively selected maximally accurate circuits for each task. Note that yi → yi+1 is a
subset of yi → yj; on Capitalization, the circuit includes the larger set.

PP CC Copy Cap PS
n-shot 3 10 3 10 3 10 3 10 3 10

full model 1.00 1.00 0.91 0.89 1.00 1.00 0.96 1.00 0.91 0.97
REMOVE-SEPS 0.99 0.99 0.90 0.90 0.97 1.00 0.92 0.95 0.89 0.96
AGGREGATION 0.87 0.88 0.84 0.80 0.97 0.99 0.38 0.34 0.84 0.86
AGGREGATION
+ yi → yj 0.96 0.98 0.88 0.87 0.97 1.00 0.86 0.90 0.84 0.89
AGGREGATION
+ yi → yi+1 0.97 0.98 0.89 0.89 0.97 1.00 0.82 0.68 0.88 0.94
+ xi → xi+1

Tasks: Cap = Capitalization, CC = Country-Capital, PP = Present-Past, PS = Person-Sport

Table 6: Accuracy results of circuits on Gemma2-27B. In bold are the circuits we had selected
based on the 2B model. Compare Table 2 for the 2B model, and Table 5 for the 9B model.

21

Published as a conference paper at COLM 2025

Capitalization Task

x1 t1 y1 n x2 t2 y2 n x3 t3 y3 n x4 t4
—– yi → tN+1 (aggregation)

—– yi → yj (contextualization)
—– other edges

Figure 9: Activation-level circuit. Only attention edges are shown. Each row corresponds
to one layer, starting from the input layer at the bottom. Edges to tN+1 are marked in bold
when they belong to an attention head with top-10 function vector score for the task.

22

Published as a conference paper at COLM 2025

Country-Capital Task

x1 t1 y1 n x2 t2 y2 n x3 t3 y3 n x4 t4
—– yi → tN+1 (aggregation)

—– yi → yi+1 (contextualization)
—– xi → xi+1 (contextualization)

—– other edges

Figure 10: Activation-level circuit. Only attention edges are shown. Each row corresponds
to one layer, starting from the input layer at the bottom. Edges to tN+1 are marked in bold
when they belong to an attention head with top-10 function vector score for the task.

23

Published as a conference paper at COLM 2025

Present-Past Task

x1 t1 y1 n x2 t2 y2 n x3 t3 y3 n x4 t4
—– yi → tN+1 (aggregation)

—– yi → yi+1 (contextualization)
—– xi → xi+1 (contextualization)

—– other edges

Figure 11: Activation-level circuit. Only attention edges are shown. Each row corresponds
to one layer, starting from the input layer at the bottom. Edges to tN+1 are marked in bold
when they belong to an attention head with top-10 function vector score for the task.

24

Published as a conference paper at COLM 2025

Person-Sport Task

x1 t1 y1 n x2 t2 y2 n x3 t3 y3 n x4 t4
—– yi → tN+1 (aggregation)

—– yi → yi+1 (contextualization)
—– xi → xi+1 (contextualization)

—– other edges

Figure 12: Activation-level circuit. Only attention edges are shown. Each row corresponds
to one layer, starting from the input layer at the bottom. Edges to tN+1 are marked in bold
when they belong to an attention head with top-10 function vector score for the task.

25

Published as a conference paper at COLM 2025

Copying Task

x1 t1 y1 n x2 t2 y2 n x3 t3 y3 n x4 t4
—– yi → tN+1 (aggregation)

—– other edges

Figure 13: Activation-level circuit. Only attention edges are shown. Each row corresponds
to one layer, starting from the input layer at the bottom. Edges to tN+1 are marked in bold
when they belong to an attention head with top-10 function vector score for the task.

26

Published as a conference paper at COLM 2025

Capitalization (AGGREGATION Subcircuit)

yi → tN+1 (3 shot)

yi → tN+1 (10 shot)

Figure 14: Error patterns: 10 shots (top) and 3 shots (bottom), yi → tN+1(Capitalization).
Perturbing the functional behavior but leaving the output space intact leads to incorrect
responses staying in the correct output space (capitalized tokens; dark blue). Disrupting the
output space leads to production of other tokens. See Appendix G for further information.

2. equals the query xN+1, or

3. is from the tasks correct output space Y (e.g., a capitalized word, a city, etc – see
Figure 25, or

4. matches a word from the corrupted prompt, and is thus likely copied from there, or

5. is any other kind of word

27

Published as a conference paper at COLM 2025

Copying (AGGREGATION Subcircuit)

yi → tN+1 (3 shot)

yi → tN+1 (10 shot)

Figure 15: Error patterns for ablations in the (aggregation-only) circuit for Copying. Breaking
the functional relationship between x and y often leads to reproduction of other tokens
from the corrupted prompt (light green), or the production of other tokens (yellow). See
Appendix G for further information.

28

Published as a conference paper at COLM 2025

Country-Capital (AGGREGATION Subcircuit)

yi → tN+1 (3 shot)

yi → tN+1 (10 shot)

Figure 16: Error patterns for ablations in the aggregation edges for Country-Capital. See
Appendix G for further information.

29

Published as a conference paper at COLM 2025

Person-Sport (AGGREGATION Subcircuit)

yi → tN+1 (3 shot)

yi → tN+1 (10 shot)

Figure 17: Error patterns in the Person-Sport task. The downstream effect of the aggregation
edges suffers only weakly unless x or y leave their respective spaces. If x leaves X , predic-
tions still are often correct or from the correct output space, showing substantial robustness
in task inference. If y leaves Y , the model copies a token from the prompt or provides some
other token. See Appendix G for further information.

30

Published as a conference paper at COLM 2025

Present-Past (AGGREGATION Subcircuit)

yi → tN+1 (3 shot)

yi → tN+1 (10 shot)

Figure 18: Present-Past task. Aggregation subcircuit. Disrupting the functional relation
between x and y, even if leaving the input- and output-spaces unchanged, leads to a large
amount of reproduction from the correct output space (past-tense verbs), copying from the
prompt, or other errors. See Appendix G for further information.

31

Published as a conference paper at COLM 2025

Capitalization (CONTEXTUALIZATION Subcircuit)

yi → yj (3 shot)

yi → yj (10 shot)

Figure 19: Error patterns for ablating yi → yj edges (Capitalization). The y-axis denotes the
number of datapoints in each class. Ablating information about the output space leads to a
large number of copy-type mistakes. See Appendix G for further information.

32

Published as a conference paper at COLM 2025

Country-Capital (CONTEXTUALIZATION Subcircuit)

xi → xi+1 (3 shot)

xi → xi+1 (10 shot)

Figure 20: Error patterns for ablations in the xi → xi+1 edges for Country-Capital. The y-axis
denotes the number of datapoints in each class. Corrupting the input-space information in
Neighboring-Xs edges leads to a substantial fraction of copying responses, i.e., the functional
input-output behavior breaks down, in particular at 3 shots. See Appendix G for further
information.

33

Published as a conference paper at COLM 2025

Country-Capital (CONTEXTUALIZATION Subcircuit)

yi → yi+1 (3 shot)

yi → yi+1 (10 shot)

Figure 21: Error patterns for ablations in the yi → yi+1 edges for Country-Capital. The
y-axis denotes the number of datapoints in each class. Corrupting the output space infor-
mation produces a (limited but statistically significant) increase in copying responses. See
Appendix G for further information.

34

Published as a conference paper at COLM 2025

1. Original
Moldova\tChisinau\nGeorgia\tTbilisi\nTanzania\tDodoma\nGermany\t

2. Full ablation:
misreference\tnothosaurus\namide\tjerl\ncapes\tlinalool\ncapes\t

3. Ablating the inputs xi and the input space X :
misreference\tChisinau\nwhere\tTbilisi\nany\tDodoma\nGermany\t

4. Ablating the inputs xi, while preserving the input space X :
Montenegro\tChisinau\nPanama\tTbilisi\nMalaysia\tDodoma\nGermany\t

5. Ablating the outputs yi and the output space Y :
Moldova\tsaponify\nGeorgia\tbeeswings\nTanzania\tculverkey\nGermany\t

6. Ablating the outputs yi, while preserving the output space Y :
Moldova\tChisinau\nGeorgia\tZagreb\nTanzania\tDodoma\nGermany\t

7. Ablating examples, while preserving the functional relationship:
Montenegro\tPodgorica\nPanama\tPanama City\nMalaysia\tKuala Lumpur\nGermany\t

Figure 22: Examples for corrupted prompts used for patching, for the Country-Capital task
(3-shot setting). We use full ablations (2) for identifying position-level circuits, and more
refined ablations (3–7) for identifying the type of information flow routed between positions
(Figure 3).

H More Details on Corrupted Prompts

See Figures 22 for examples of the different corrupted prompts used for patching.

An important constraint in choosing corrupted prompts is to keep the number of tokens in
each xi and yi identical. For full corruption, the vocabulary is a subset of words used in the
Capitalization task, which are random English words. Corrupted tokens could repeat in
one prompt, but were never the same as the query token. For corruption within the input or
output space, we use the input or output set of the training set of the corresponding task.

35

Published as a conference paper at COLM 2025

(1) extend\textended\nset\tset\nwet\twet\nput\tput\nbid\tbid\nlast
\tlasted\ncut\tcut\nspread\tspread\nreflect\treflected\nupset
\tupset\nnotice\t

(2) split\tsplit\nbid\tbid\nlet\tlet\nbroadcast\tbroadcast\nspread
\tspread\nupset\tupset\nhit\thit\nset\tset\nupset\tupset\nupset
\tupset\nnotice\t

Figure 23: (1) Example prompt in the ambiguity experiment, with 7 ambiguous and 3
unambiguous examples. (2) A prompt where all examples are ambiguous, used for testing
the hypotheses H1 and H2.

Present-Past Person-Sport Capitalization Country-Capital
3-shot 10-shot 3-shot 10-shot 3-shot 10-shot 3-shot 10-shot

falcon3 0.90 0.95 0.46 0.60 0.99 1.00 0.69 0.69
llama3 0.55 0.63 0.23 0.28 0.53 0.71 0.30 0.41
phi2 0.96 0.98 0.69 0.83 0.94 0.98 0.87 0.88
qwen2 0.43 0.59 0.28 0.27 0.63 0.66 0.41 0.45
qwen2-3b 0.51 0.58 0.19 0.20 0.57 0.63 0.43 0.42
smollm2 0.95 0.97 0.67 0.71 1.00 1.00 0.89 0.91

Table 7: Accuracies of six other models at the 2B/3B scale. On average across the four tasks,
each model overall underperforms Gemma-2 2B at 10 shots on these tasks (Table 2), further
motivating focusing on Gemma-2.

Country-Capital
3-shot 10-shot

xN+1 → tN+1 all xi with random words 0.58 0.73
yi → tN+1 xj, j < i with random word 0.70 0.65
xN+1 → tN+1 all xi within input space 0.80 0.80
yi → tN+1 xj, j < i within input space 0.78 0.77

Table 8: Determining through which downstream paths xi → xj edges provides information:
A priori, given the position-level circuit for the Country-Capital task (Figure 24), xi → xj
edges might provide information affecting the final prediction both via xi → xi+1 →
yi+1 → tN+1 and via xN → xN+1 → tN+1. Here, we patch with prior xi’s, for both types
of donwstream edges (xN+1 → tN+1 and yi → tN+1), on the Country-Capital task. We
consider both patching with random words (eliminating information both about xi and X),
and patching with other words in the input space (eliminating information about xi but not
X). Given the position-level circuit for the Country-Capital task (Figure 24), information
about the manipulated words can flow into these edges only via xi → xi+1 connections.
Accuracy drops substantively compared to the full circuit (0.79 at 3 shots, 0.8 at 10 shots)
when eliminating information about X , both when applying this patch to xN+1 → tN+1 or
to yi → tN+1. This shows that xi → xi+1 edges contextualize both the individual few-shot
examples and the query xN+1 with information about the input space X .

36

Published as a conference paper at COLM 2025

Country-Capital

Capitalization

Present-Past

Person-Sport

Copying

Figure 24: Position-level circuits for 3-shot prompts; edges are annotated for information
as identified in our patching experiments (subsection 3.2). Dotted connections are part of
the selected circuits, but the accuracy drop associated with ablating them is not statistically
significant.

37

Published as a conference paper at COLM 2025

Task Example X Y
Copying f(pseudoscarus) = pseudoscarus arbitrary words arbitrary words
Capitalization f(mousse) = Mousse lowercase words uppercase words
Country-Capital f(Malaysia) = Kuala Lumpur countries capitals
Present-Past f(give) = gave verbs past tense verbs
Person-Sport f(Kasey Keller) = soccer sportspeople sports

Figure 25: Input spaces, output spaces, and functions f : X → Y for the five tasks considered
in this paper.

FULL AGGREGATION REMOVE-SEPS AGGREGATION
+ xi → xi+1
+ yi → yi+1

3-shot no ambiguous 0.96 0.93 0.92 0.84
1 ambiguous 0.98 0.73 0.81 0.66
2 ambiguous 0.66 0.41 0.47 0.34

10-shot no ambiguous 0.99 0.94 0.92 0.93
3 ambiguous 0.98 0.98 0.98 0.95
5 ambiguous 0.98 0.93 0.98 0.80
7 ambiguous 0.95 0.68 0.85 0.56

Table 9: Accuracy of the Present-Past task in the presence of different numbers of ambigu-
ous few-shot examples (Section 3.3). In the presence of ambiguity, the full model (FULL)
continues to perform well even when 7 out of 10 examples are ambiguous between the
Present-Past and Copying tasks. In contrast, the accuracy of the AGGREGATION circuit
drops to 56% as the number of ambiguous examples increases from 0 to 7. Adding contex-
tualization between xi’s an yi’s helps, but does not close the gap to the full model; indeed,
even ablating edges involving separators preceding tN+1 hurts (REMOVE-SEPS), in contrast
to the standard test sets.

38

Published as a conference paper at COLM 2025

Country-Capital
Layer Head Edges
12 1 t4 → t4, x4 → x4, x3 → x4, y2 → t4, y2 → y2, y2 → y3, y3 → t4,

y1 → t4, y3 → y3, y1 → y2
14 0 t4 → t4, x4 → x4, y2 → y2, y2 → t4, y3 → t4, y3 → y3, y1 → t4
14 1 x4 → t4, t4 → t4, x4 → x4, y2 → t4, y3 → t4, y3 → y3, y1 → t4
14 3 x4 → t4, t4 → t4, x4 → x4, x3 → x4, y2 → t4, y3 → t4, y3 → y3,

y1 → t4
13 4 x4 → t4, t4 → t4, x4 → x4, x3 → x4, y2 → t4, y2 → y2, y2 → y3,

y3 → t4, y1 → t4, y3 → y3
15 7 x4 → t4, t4 → t4, x4 → x4, x3 → x4, y2 → t4, y3 → t4, y3 → y3,

y1 → t4
13 7 x4 → t4, t4 → t4, x4 → x4, y2 → y2, y3 → t4, y3 → y3, y1 → t4
17 7 t4 → t4, x4 → x4, y3 → t4, x4 → t4
16 6 t4 → t4, y3 → t4, y2 → t4, x4 → t4
15 3 x4 → t4, t4 → t4, x4 → x4, y3 → t4, y2 → y2, y3 → y3

Capitalization
Layer Head Edges
14 0 y2 → t4, y1 → t4, y3 → t4, t4 → t4
14 1 y2 → t4, y1 → t4, y3 → t4, t4 → t4
12 1 y2 → t4, y1 → t4, y3 → t4
13 4 y2 → t4, y2 → y3, y2 → y2, y3 → y3, y3 → t4
15 3 t4 → t4
17 7 t4 → t4
15 0 y2 → t4, y1 → t4, y3 → t4, t4 → t4
17 3 t4 → t4, x4 → t4
16 6 t4 → t4, x4 → t4
19 5 y2 → t4, y3 → t4, t4 → t4

Present-Past
Layer Head Edges
14 0 y3 → t4, y2 → t4, t4 → t4, y1 → t4
14 1 y3 → t4, y2 → t4, t4 → t4, y1 → t4
12 1 y3 → t4, y2 → y3, t4 → t4, y2 → t4, y3 → y3, y1 → t4
15 0 y3 → t4, y2 → t4, t4 → t4, y1 → t4
13 4 y3 → t4, y2 → t4, t4 → t4
15 3 t4 → t4
23 5 y3 → t4, t4 → t4, x4 → t4
14 7 y3 → t4, y2 → t4, t4 → t4, x4 → t4
20 6 x4 → t4, t4 → t4, x4 → x4, y3 → t4
23 0 t4 → t4

Figure 26: Top-10 function vector heads on each task, and their roles in the activation-level
circuits (3-shot prompts, N = 3). Edges from the form yi → tN+1 are highlighted in boldface.
Most are involved in at least one such edge, showing that function vector heads are causally
involved in the aggregation of task information from few-shot examples. Many edges also
causally participate in tN+1 → tN+1 edges, suggesting processing or forwarding of task
information. Heads also sometimes participare in edges not going to tN+1 (those do not
enter the function vector score calculation); these are also shown here. For the two remaining
tasks, see next figure.

39

Published as a conference paper at COLM 2025

Copying
Layer Head Edges
14 0 y3 → t4, y2 → t4, t4 → t4, y1 → t4
14 1 y3 → t4, y2 → t4, t4 → t4
12 1 y3 → t4, y2 → t4, y1 → t4
13 4 y3 → t4, y2 → t4
15 3 t4 → t4
17 3 x4 → t4, t4 → t4
15 0 y3 → t4, y2 → t4, t4 → t4, y1 → t4
17 7
6 4 y2 → t4
16 6 x4 → t4, t4 → t4

Person-Sport
Layer Head Edges
12 1 y2 → t4, y3 → t4, t4 → t4, y2 → y3, x4 → x4, y3 → y3
15 7 y2 → t4, y3 → t4, x4 → t4, t4 → t4, x4 → x4
14 1 t4 → t4, y3 → t4, y2 → t4
14 0 x3 → x4, y1 → t4, y2 → t4, y3 → t4, t4 → t4, x4 → x4
13 5 y2 → t4, y3 → t4, x4 → t4, t4 → t4, x4 → x4, y3 → y3
14 4 t4 → t4, y3 → t4, x4 → x4, x4 → t4
17 7 t4 → t4, x4 → t4
13 4 t4 → t4, y3 → t4, x4 → x4, y2 → t4
24 3 t4 → t4, y3 → t4
15 3 t4 → t4, x4 → x4, x4 → t4

Figure 27: Continuation of previous figure.

Figure 28: Patching the edge y1 → t2 inside an attention head. We compute attention
separately for queries at each position. For the ablation, we modify only the computation at
t2 query position, replacing the y1 activation in the K and V matrices with its counterpart
computed on a corrupted input prompt. This ensures t2 cannot access information unique
to the clean y1 activation, at least not directly via the y1 → t2 edge.

40

	Introduction
	Background: Aggregation and Function Vectors
	Results
	Identifying Circuits
	Which Information is Routed?
	A Contextualization subcircuit is important in the presence of ambiguity

	Discussion
	Conclusion
	ICL on Linear Regression Benefits from Contextualization Step
	Computational Resources
	Datasets
	Patching methodology
	Overall Set of Edges
	Details for Gradient-Based Circuit Finding Algorithm
	Step 1: Head pruning
	Step 2: Edge pruning

	Error Analysis
	More Details on Corrupted Prompts

