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Abstract
We introduce sliced optimal transport dataset dis-
tance (s-OTDD), a model-agnostic, embedding-
agnostic approach for dataset comparison that
requires no training, is robust to variations in
the number of classes, and can handle disjoint
label sets. The core innovation is Moment Trans-
form Projection (MTP), which maps a label,
represented as a distribution over features, to
a real number. Using MTP, we derive a data
point projection that transforms datasets into one-
dimensional distributions. The s-OTDD is de-
fined as the expected Wasserstein distance be-
tween the projected distributions, with respect
to random projection parameters. Leveraging
the closed form solution of one-dimensional op-
timal transport, s-OTDD achieves (near-)linear
computational complexity in the number of data
points and feature dimensions and is independent
of the number of classes. With its geometrically
meaningful projection, s-OTDD strongly corre-
lates with the optimal transport dataset distance
while being more efficient than existing dataset
discrepancy measures. Moreover, it correlates
well with the performance gap in transfer learning
and classification accuracy in data augmentation.

1. Introduction
Dataset distances provide a powerful framework for com-
paring datasets based on their underlying structures, dis-
tributions, or content. These measures are essential in ap-
plications where understanding the relationships between
datasets drives decision-making, such as assessing data qual-
ity, detecting distributional shifts, or quantifying biases.
They play a critical role in machine learning workflows,
enabling tasks like domain adaptation, transfer learning,
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continual learning, and fairness evaluation. Additionally,
dataset distances are valuable in emerging areas such as
synthetic data evaluation, 3D shape comparison, and feder-
ated learning, where comparing heterogeneous data distribu-
tions is fundamental. By capturing meaningful similarities
and differences between datasets, these measures facilitate
data-driven insights, enhance model robustness, and support
novel applications across diverse fields.

A common approach to comparing datasets relies on prox-
ies, such as analyzing the learning curves of a predefined
model (Leite & Brazdil, 2005; Gao & Chaudhari, 2021)
or examining its optimal parameters (Achille et al., 2019;
Khodak et al., 2019) on a given task. Another strategy
involves making strong assumptions about the similarity
or co-occurrence of labels between datasets (Tran et al.,
2019). However, these methods often lack theoretical guar-
antees, are heavily dependent on the choice of the probe
model, and require training the model to completion (e.g.,
to identify optimal parameters) for each dataset under com-
parison. To address limitations of previous approaches,
model-agnostic approaches are developed. These methods
often assess task similarity based on the similarity between
joint or conditional input-output distributions, occasionally
incorporating the loss function as well. Principled notions
of domain discrepancy (Ben-David et al., 2006; Mansour
et al., 2009) provide a more rigorous foundation but are
frequently impractical due to computational intractability or
poor scalability to large datasets.

More recently, approaches based on Optimal Transport (Vil-
lani, 2008; Peyré & Cuturi, 2020) (OT) have demonstrated
promise in modeling dataset similarities (Alvarez-Melis &
Fusi, 2020; Tan et al., 2021). Authors in (Alvarez-Melis &
Fusi, 2020) introduced optimal transport dataset distance
(OTDD) which is based on a hierarchical OT framework
drawing from (Yurochkin et al., 2019). In this approach, an
inner OT problem calculates the label distance between the
class-conditional distributions of two supervised learning
tasks. This label distance is then integrated into the trans-
portation cost of an outer OT problem, yielding a dataset
distance that accounts for both sample and label discrepan-
cies, and can handle disjoint sets of labels from different
datasets. Meanwhile, authors in (Tan et al., 2021) treat the
optimal transport plan between the input distributions of
datasets as a joint probability distribution and leverage con-
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ditional entropy to quantify the difference between datasets.

A key limitation of OT-based approaches is their high com-
putational complexity. These methods require pairwise OT
(or entropy-regularized OT) computations across datasets
and classes. This process can be prohibitively expensive,
especially for applications that demand frequent dataset sim-
ilarity evaluations. Solving optimal transport incurs a time
complexity of O(n3 log n) (Peyré & Cuturi, 2020) and a
space complexity of O(n2), where n is the maximum num-
ber of realizations in the two input distributions. Using
entropic regularization (Cuturi, 2013) for approximate solu-
tions reduces the complexity to O(n2 log n/ϵ3) (Altschuler
et al., 2017), with ϵ denoting the accuracy level. To enhance
efficiency, (Liu et al., 2025) proposes using multidimen-
sional scaling (MDS) (Cox & Cox, 2000) to embed class
labels as vectors while preserving the Wasserstein distance
geometry for label distances. The authors then leverage a
reference distribution to form Wasserstein embeddings of
datasets (Wang et al., 2013; Kolouri et al., 2021), termed
Wasserstein Task Embedding (WTE). Although WTE is
more efficient than OTDD, performing MDS and Wasser-
stein embedding remains costly due to the need for solving
optimal transport. Additionally, WTE is not a valid metric.

Sliced optimal transport or sliced Wasserstein (SW) dis-
tance (Bonneel et al., 2015; Rabin et al., 2012) is a well-
known approach to obtain scalable optimal transport dis-
tance between distributions. The SW relies on random pro-
jections to exploit the closed-form of Wasserstein distance
in one-dimension with O(n log n) in time complexity and
O(n) in space complexity. The challenge in using SW as a
dataset distance is that carrying out projection for class la-
bels is non-trivial. Authors in (Bonet et al., 2024) bypass the
problem by using MDS to embed class labels into vectors on
a chosen manifold, then utilize SW on product of manifolds
i.e., Cartan-Hadamard Sliced-Wasserstein (CHSW), as the
dataset distance. Nevertheless, conducing MDS as WTE
leads to extra computation which has quadratic computation
in terms of the number of classes that is undesirable when
having a large number of classes.

Our goal is to develop a model-agnostic sliced optimal
transport distance for comparing datasets, which is also
embedding-agnostic, requiring no additional preprocessing.
Furthermore, we aim for the distance to achieve (near-)linear
computational complexity with respect to the number of data
points and feature dimensions, while being robust to the
number of classes in the datasets. To this end, we propose
a novel approach for projecting a data point-comprising a
feature and a label-onto a real number. This projection in-
cludes an innovative label (class) projection, which maps a
label, represented as a conditional distribution over features
(as in OTDD), to a scalar.

Contribution. In summary, our contributions are three-fold:

1. We propose Moment Transform Projection (MTP), which
maps a label, a distribution over high-dimensional features,
to a single scalar. MTP first projects the distribution of in-
terest onto one dimension using a feature projection, then
computes a scaled moment to convert the projected one-
dimensional distribution into a scalar. We prove that MTP
is injective under certain regularity assumptions of the un-
derlying dataset distributions. Using MTP, we derive data
point projection that combines the label projections from
multiple MTPs with a feature projection to obtain a one-
dimensional representation of a data point. By connecting
data point projection to the hierarchical hybrid projection
approach (Nguyen & Ho, 2024), we show that data point
projection is injective, given the injectivity of the MTP.

2. We propose the sliced optimal transport dataset distance
(s-OTDD), the first formal dataset distance based on sliced
optimal transport. The s-OTDD is defined as the expected
Wasserstein distance between the projected one-dimensional
distributions of two input datasets, where the projections
are determined by random parameters. We prove that the
s-OTDD is a valid distance on the space of distributions
over the product of the feature space and the space of all
distributions on the feature space. Moreover, we dicuss in
detail the computational properties of the s-OTDD including
approximation error, computational complexities, and other
computational benefits.

3. We show that the s-OTDD exhibits a strong correla-
tion with the OTDD when comparing subsets from MNIST
and CIFAR10, while being faster than existing competitors.
Moreover, we observe that it correlates well with the per-
formance gap in transfer learning across various datasets
and modalities, including NIST datasets for images, as well
as AG News, DBPedia, Yelp Reviews, Amazon Reviews,
and Yahoo Answers for text. Finally, we also find that the
s-OTDD correlates well with classification accuracy in data
augmentation on CIFAR10 and Tiny-ImageNet.

Organization. We begin by reviewing preliminaries on opti-
mal transport dataset distance in Section 2. Next, we present
the proposed s-OTDD and its key contributions in Section 3.
Experiments demonstrating the favorable performance of
the s-OTDD are provided in Section 4. Finally, we conclude
in Section 5 and defer proofs of key results and additional
materials to the Appendices.

Notations. We denote P(X ) as the set of all distributions on
the set X . We denote Rd as the set of real numbers in d > 0
dimensions, N = 1, 2, . . . ,∞ as the set of natural numbers,
and Sd−1 as the unit hypersphere in d > 1 dimensions. For a
dataset D = (x1, y1), . . . , (xn, yn), we define its empirical
distribution as PD = 1

n

∑n
i=1 δ(xi,yi). We denote [[n]] as

the set {1, . . . , n}. For any two sequences an and bn, the
notation an = O(bn) means that an ≤ Cbn for all n ≥ 1
for a constant C. Lastly, λ! denotes the factorial of λ > 0.
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2. Preliminaries
In this section, we review the definition of Wasserstein dis-
tance, sliced Wasserstein distance, and their computational
properties, and restate the optimal transport dataset distance.

Wasserstein Distance. The Wasserstein-p distance (Villani,
2008; Peyré & Cuturi, 2020) (p ≥ 1) between two distribu-
tions µ ∈ P(X ) and ν ∈ P(X ), where X are subsets of Rd
and has a ground metric dX : X × X → R+, is defined as:

Wp
p(µ, ν) := inf

π∈Π(µ,ν)

∫
X×X

dX (x, x′)pdπ(x, x′), (1)

where Π(µ, ν) is the set of all possible transportation plan
i.e., all joint distributions π(x, x′) such that π(x,X ) = µ(x)
and π(X , x′) = ν(x′). When µ and ν are discrete i.e.,
µ =

∑n
i=1 αiδxi and ν =

∑m
j=1 βjδx′

j
with

∑n
i=1 αi =∑m

j=1 βj = 1 (αi > 0∀i, and βj > 0∀j), we have:

Wp
p(µ, ν) := min

γ∈Γ(α,β)

n∑
i=1

m∑
j=1

γijd
p
X (xi, x

′
j), (2)

where Γ(α,β) = {γ ∈ Rn×m+ | γ1 = β, γ⊤1 = α},
α = (α1, . . . , αn), and β = (β1, . . . , βn). The time com-
plexity and the space complexity of the Wasserstein distance
is O(n3 log n) (Peyré & Cuturi, 2020) and O(n2) in turn
which are very expensive. Using entropic regularization re-
duces the complexity to O(n2 log n/ϵ3) with ϵ denoting the
accuracy level. To avoid such quadratic complexity, sliced
Wasserstein is proposed as an alternative solution.

Sliced Wasserstein distance. The sliced Wasserstein (SW)
distance is motivated from the closed-form solution of the
one-dimensional Wasserstein distance with ground metric
dX (x, x′) = h(x − x′) with X ⊂ R and h is a strictly
convex function:

Wp
p(µ, ν) =

∫ 1

0

dX
(
F−1
µ (z), F−1

ν (z)
)p
dz, (3)

where F−1
µ and F−1

ν are inverse CDF of µ and ν respec-
tively. When µ and ν are discrete with at most n supports,
the time complexity and the space complexity for comput-
ing the closed-form are O(n log n) (Peyré & Cuturi, 2020)
and O(n) respectively. To exploit the closed-form, the SW
distance relies on random projections. For p ≥ 1, the SW
distance (Bonneel et al., 2015) of p-th order between two
distributions µ ∈ P(X ) and ν ∈ P(X ) with X ⊂ Rd is
defined as follow:

SWp
p(µ, ν) = Eθ∼U(Sd−1)[W

p
p(Rθ♯µ,Rθ♯ν)], (4)

where Rθ♯µ and Rθ♯ν are the one-dimensional push-
forward distributions of µ and ν through the function
Rθ(x) = θ⊤x (derived from Radon Transform (RT) (Hel-
gason, 2011)), and U(Sd−1) is the uniform distribution over

the unit hypersphere in d dimensions. In addition to the
computational benefit, SW has been widely known for its
low sample complexity (Manole et al., 2022; Nadjahi et al.,
2020; Nietert et al., 2022; Boedihardjo, 2025).

Optimal Transport dataset distance. We are given two
datasets D1 = {(xi, yi)}ni=1 and D2 = {(x′j , y′j)}mj=1,
where (xi, yi), (x

′
j , y

′
j) ∈ X × Y,∀i ∈ [[n]],∀j ∈ [[m]]

with X is the space of features and Y is the space of la-
bels. We assume that we know the support distance on
the space of features X i.e., dX : X × X → R+ e.g.,
Euclidean distance. In contrast to the mild assumption of
having dX , we rarely know the distance on the space of
labels Y e.g., we cannot tell if the label “dog” is closer
to the label “cat” than to the label “bird”. As a solu-
tion, authors in (Alvarez-Melis & Fusi, 2020) propose to
map a label into a distribution over features, then use dis-
tances between distributions as the proxy for the distance
between labels. In particular, for the first dataset, we as-
sume that (x1, y1), . . . , (xn, yn) ∼ q(X,Y ) where q(X,Y )
is an unknown joint distribution. After that, we can define
qy(X) = q(X|Y = y) as the conditional distribution over
features given the label y. Similarly, for the second dataset,
we can obtain qy′(X ′) for a label y′. Therefore, the distance
between labels can be defined as:

dY(y, y
′) = D(qy(X), qy′(X

′)), (5)

where D is a distance between two distributions. In prac-
tice, we observe qy(X) and qy′(X

′) in empirical forms,
hence, optimal transport distances naturally serve as a
measure for D. Authors in (Alvarez-Melis & Fusi, 2020)
suggest using the Wasserstein distance i.e., dY(y, y′) =
Wp(qy(X), qy′(X

′)), where we abuse the notation of the
Wasserstein distance between two pdfs as the Wasserstein
distance between the two distributions. Due to the expen-
sive computational complexities of the Wasserstein distance,
authors in (Alvarez-Melis & Fusi, 2020) propose to approx-
imate two distributions by two multivariate Gaussians, then
use the closed-form solution of Wasserstein-2 distance as
the label distance. Nevertheless, the approximation can
only capture the first two moments of the two distributions,
hence, the resulting comparison might not be accurate. Af-
ter having the label distance, the optimal transport dataset
distance can be defined as:

OTDD(D1,D2)

= min
γ∈Γ( 1

n ,
1
m )

n∑
i=1

m∑
j=1

γijd((xi, yi), (x
′
j , y

′
j)), (6)

which is the Wasserstein distance with the ground metric:
dp((xi, yi), (x

′
j , y

′
j)) = dpX (xi, x

′
j) + dpY(yi, y

′
j), which is

the combination of the feature distance and the label dis-
tance. As long as the feature distance and the label distance
are valid metrics, the OTTD is a valid metric on the product
space of X × P(X ) (Alvarez-Melis & Fusi, 2020).
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3. Sliced Optimal Transport Dataset Distances
While the OTDD is a natural distance between two datasets,
it inherits the computational challenges of the Wasserstein
distance. Let n denote the maximum number of data points
in the two datasets, c the maximum number of classes, and
nmax the maximum number of samples per class. The time
complexity of OTDD is O(n3 log n+ c2(n3max log nmax +
d)), and the memory complexity is O(n2+c2). When using
a Gaussian approximation for the label distribution, the time
complexity becomes O(n3 log n + c2(d3 + nmaxd

2)). As
a result, OTDD may not be scalable for large datasets. To
address this, we aim to develop a sliced optimal transport
version of OTDD that leverages the one-dimensional closed-
form of the Wasserstein distance. This requires developing
a novel approach to project a data point onto a single scalar.

3.1. Label Projection

As mentioned in Section 2, a label is represented as a dis-
tribution over the feature space X . Given a label y, we
would like to map the label distribution qy to a scalar. To
achieve our goal, there are two steps: projecting qy to one-
dimension through feature projection, and transforming the
one-dimensional projection of qy into a scalar.

Feature Projection. Since a label is treated as a distribution
over the feature space, we can project a label to an one-
dimensional distribution through a feature projection i.e., a
mapping from FPθ : X → R with the projection parameter
θ belongs to a projection space Θ. We can choose any
feature projection methods based on the prior knowledge of
the feature space X e.g., Euclidean space (Bonneel et al.,
2015), images (Nguyen & Ho, 2022), functions (Garrett
et al., 2024), spherical space (Tran et al., 2024; Quellmalz
et al., 2023; 2024), hyperbolic space (Bonet et al., 2023),
manifolds (Bonet et al., 2024; Nguyen & Mueller, 2024),
and so on. It is worth noting that a feature projection is
injective if FPθ♯µ1 = FPθ♯µ2 for all θ ∈ Θ then µ1 = µ2

for any µ1, µ2 ∈ P(X ). The injectivity of the projection is
vital to preserve the distributional metricity.

Scaled Moment. We now discuss how to map a one-
dimensional distribution into a scalar. More importantly,
we want the transformation to be injective. To design such
transformation, we rely on scaled moments.
Definition 1. Given a distribution µ ∈ P(R) with the den-
sity function fµ and a set Λ ⊂ N such that

∫
R
xλ

λ! fµ(x)dx <
∞ for all λ ∈ Λ, the λ-th scaled moment of µ is defined as:

SMλ(µ) =

∫
R

xλ

λ!
fµ(x)dx (7)

The difference between the scaled moment and the conven-
tional moment is that the scaled moment is scaled by the
factorial function of the order λ. The scaling is for avoiding

exploding in value of high moments.

Moment Transform Projection. After the feature projec-
tion, we obtain an one-dimensional projection of the label
distribution FPθ♯qy . We then can obtain the scaled moment
of FPθ♯qy as the final desired scalar. Before giving the for-
mal definition, we first state the following assumption.

Assumption 1 (Existence of projected scaled moments). A
distribution µ ∈ P(Rd) with the density function fµ has
all projected λ-th scaled moments (λ ∈ Λ ⊂ N) given a
feature projection FPθ if

∫
Rd

(FPθ(x))λ
λ! fµ(x)dx <∞ for

all θ ∈ Sd−1 and λ ∈ Λ.

Definition 2. Given a feature projection FPθ : X → R
and a set Λ ⊂ N, a distribution µ ∈ P(Rd) (d > 1) that
satisfies Assumption 1, the Moment Transform projection
MT Pλ,θ : P(Rd) → R, with θ ∈ Sd−1 and λ ∈ Λ, is
defined as follows:

MT Pλ,θ(µ) = SMλ(FPθ♯µ)

=

∫
Rd

(FPθ(x))λ

λ!
fµ(x)dx. (8)

When µ is an empirical distribution i.e., µ = 1
n

∑n
i=1 δxi ,

the MTP projection of µ given λ and a feature projection
FPθ is MT Pλ,θ = 1

n

∑n
i=1

(FPθ(x))λ
λ! . We now discuss

the distributionally injectivity of the MTP.

Proposition 1. For µ, ν ∈ P(Rd) and a injectivive fea-
ture projection FPθ and a set Λ ⊂ N, MT Pλ,θ(µ) =
MT Pλ,θ(ν) for all θ ∈ Sd−1 and λ ∈ Λ implies µ = ν if
either following conditions hold:

(1) µ and ν satisfies Assumption 1 with an infinite set Λ = N
and moment generating functions (MGFs) of FPθ♯µ and
FPθ♯ν exist for all θ ∈ Θ.

(2) µ and ν satisfies Assumption 1 with an finite set Λ ⊂ N,
and for all θ ∈ Θ, the projected Hankel matrices

Aθ,µ =


mθ,µ,0 mθ,µ,1 . . . mθ,µ,λmax

mθ,µ,1 mθ,µ,2 . . . mθ,µ,0

...
...

. . .
...

mθ,µ,λmax mθ,µ,0 . . . mθ,µ,λmax−1


with mθ,µ,λ is λ-th moment of FPθ♯µ (similar with mθ,ν,λ)
are positive definite and |mθ,µ,λ| < CDλλ! and |mθ,ν,λ| <
CDλλ! for some constants C and D for all λ ∈ Λ .

The proof of Proposition 1 is given in Appendix A.1 and is
based on the Hamburger moment problem (Reed & Simon,
1975; Chihara, 2011).

3.2. Data Point Projection

With the proposed label projection, we can propose data
point projection. We recall that a data point is a pair of a
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feature and a label or equivalently a pair of a feature and
a distribution over features, which is denoted as (x, qy) ∈
X × P(X ). For the feature domain, as discussed, we can
use any feature projections based on the prior knowledge
of the feature space, denoted as FPθ : X → R. For the
label, we can use MTP defined in the Section 3.1. Now, we
need to combine the outputs of the feature projection and
the label projection to obtain the final scalar.
Definition 3. Given a data point (x, qy) ∈ X × P(X ) and
k ≥ 1, the data point projection can be defined as follows:

DPkψ,θ,λ,ϕ(x, qy) = ψ(1)FPθ(x)

+

k∑
i=1

ψ(i+1)MT Pλ(i),ϕ(qy), (9)

where ψ = (ψ(1), ψ(2), . . . , ψ(k+1)) ∈ Sk, θ ∈ Θ, λ =
(λ(1), . . . , λ(k)) ∈ Λk, ϕ ∈ Φ with Θ and Φ are projection
space of the feature projections.

Given a dataset D = {(x1, qy1), . . . , (x1, qyn)}, we
have the projected distribution of the corresponding em-
pirical distribution through the data point projection is
DPkψ,θ,λ,ϕ♯PD = 1

n

∑n
i=1 δDPkψ,θ,λ,ϕ(xi,qyi )

. The pro-
posed data point projection combines the outputs of k ≥ 1
MTPs to obtain the final projection value. It follows the
principle of hierarchical hybrid projection in (Nguyen & Ho,
2024) to retain the overall injectivity.
Corollary 1. The data point projection is injective when
the feature projection and the MTP is injective i.e., for
µ, ν ∈ X × P(X ) if DPkψ,θ,λ,ϕ♯µ = DPkψ,θ,λ,ϕ♯ν for all
ψ ∈ S, θ ∈ Θ, λ ∈ Λ ⊂ N, ϕ ∈ Φ.

The Corollary 1 follows the fact that the data point projec-
tion is a composition of injective projections (Nguyen & Ho,
2024) i.e., the Radon Transform projection and the MTP.

It is worth noting that we can use the same value for θ
and ϕ when we use a single feature projection to project
feature and to construct label projections. This approach not
only reduces memory consumption for storing projection
parameters but also saves computation since we need to
project features only once.

3.3. Sliced Optimal Transport Dataset Distance

With projections of data points, we can now introduce the
sliced optimal transport dataset distance (s-OTDD).
Definition 4. Let D1 and D2 be the two given datasets, PD1

and PD2
be corresponding empirical distributions of D1 and

D2 respectively, the sliced optimal transport dataset distance
(s-OTDD) of order p > 0 is defined as follows:

s-OTDDpp(D1,D2)

= E
[
Wp
p(DPkψ,θ,λ,ϕ♯PD1

,DPkψ,θ,λ,ϕ♯PD2
)
]
, (10)

where the expectation is with respect to the random projec-
tion parameters (ψ, θ, λ, ϕ) ∼ U(S)⊗U(Sd−1)⊗ σ(Λk)⊗
U(Φ) with ϕ ∈ Φ, and σ(Λk) is the uniform distribution on
Λk when Λ is finite or the product of zero-truncated Poisson
distributions (Cohen, 1960) when Λ is infinite.

Proposition 2. The sliced optimal transport dataset dis-
tance s-OTDDp(D1,D2) defines a valid metric on P(X ×
P(X )) the space of distributions over feature and label-
distribution pairs if the data point projection is injective.

Proof of Proposition 2 is given in Appendix A.2. The propo-
sition strengthens the geometrical benefits of the s-OTDD.

Numerical Approximation. The expectation in s-OTDD
is intractable, hence, numerical approximation such as
Monte Carlo integration must be used. In particular, we
sample (ψ1, θ1, λ1, ϕ1), . . . , (ψL, θL, λL, ϕL) ∼ U(S) ⊗
U(Sd−1)⊗ σ(Λk)⊗ U(Φ) with the number of projections
L > 0, then we form the following estimation:

̂s-OTDD
p

p(D1,D2;L) =

1

L

L∑
l=1

Wp
p(DPkψl,θl,λl,ϕl♯PD1

,DPkψl,θl,λl,ϕl♯PD2
). (11)

In practice, we do not know the number of moments. Hence,
we can assume it to be infinite and use the product of zero-
truncated Poisson distributions (Cohen, 1960) with some
rate hyperparameters as σ(Λk). Another approach is to
cap the number of moments to be λmax ≥ 1 i.e., Λ =
{1, 2, . . . , λmax}, then use the uniform distribution U(Λk)
as σ(Λk). We now discuss the approximation error of the
s-OTDD when using the Monte Caro estimation.

Proposition 3. For any p ≥ 1, and two datasets D1 and
D2, we have the following approximation error:

E
[∣∣∣ ̂s-OTDD

p

p(D1,D2;L)− s-OTDDpp(D1,D2)
∣∣∣] ≤

1√
L
V ar

[
Wp
p(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD2)

]
, (12)

where the variance is with respect to (ψ, θ, λ, ϕ) ∼ U(S)⊗
U(Sd−1)⊗ σ(Λk)⊗ U(Φ).

The proof of Proposition 3 is given in Appendix A.3. We can
see that the approximation error reduce fast when increasing
the number of projections L i.e., O(L−1/2). It is worth
noting that variance reduction can also be used (Nguyen
& Ho, 2023; Nguyen et al., 2024; Leluc et al., 2024). We
refer the read to Algorithm 1 in Appendix B for a detailed
computational algorithm.

Computational Complexities. Using a feature projection
with linear complexity in the number of dimensions d (e.g.,
Radon transform, convolution, etc), the time complexity of
s-OTDD is O(L(n log n+dn)) and the space complexity is
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Figure 1: The figure shows distance correlation with OTDD (Exact) of OTDD (Gaussian approximation), WTE, CHSW, and s-OTDD.

O(L(d+n)), where n is the number of data points and L is
the number of projections. Interestingly, both time complex-
ity and memory complexity do not depend on the number
of classes c and the maximum class size nmax (good for im-
balanced data). In a greater detail, the time complexity for
applying projection for the class i is O(Lnid) where ni is
the size of the class i. As a result, the total time complexity
for projection is O

(
L
∑k
i=1 nid

)
= O(Lnd). After hav-

ing the projections, solving one-dimensional Wasserstein
distances costs O(Ln log n) in time. For space complex-
ity, O(L(d + n)) is for storing projection parameters and
projections. It is worth noting that the majority of compu-
tation of s-OTDD is for projecting and computing inverse
CDFs of projected distributions of datasets, and such com-
putation can be done independently for each dataset. After
that, s-OTDD value can be obtained with linear complexity
with the precomputed projected inverse CDFs. Therefore,
s-OTDD is suitable for distributed and federated settings
where datasets can be stored across machines.

4. Experiments
In Section 4.1, we conduct analysis for the s-OTDD in com-
paring subsets of the MNIST dataset (LeCun et al., 1998)
and the CIFAR10 dataset (Krizhevsky et al., 2009). In par-
ticular, we analyze the correlations, which Spearman’s rank
correlation denoted by ρ and Pearson correlation denoted by
r, of the s-OTDD with OTDD. While prior work (Alvarez-
Melis & Fusi, 2020) reports only Spearman’s rank correla-
tion, we also compute Pearson correlation for a more com-
prehensive analysis, though Spearman’s correlation remains
our primary metric to maintain comparability with existing

baselines. Furthermore, we compare the computational time
of the proposed s-OTDD with existing dataset distance met-
rics and investigate its dependency on the number of projec-
tions and on the number of moments. In Section 4.2, we eval-
uate the correlations of the s-OTDD with the performance
gap in transfer learning on image NIST datasets (Deng,
2012) and a diverse set of text datasets (Zhang et al., 2015)
including AG News, DBPedia, Yelp Reviews (with both
5-way classification and binary polarity labels), Amazon
Reviews (with both 5-way classification and binary polar-
ity labels), and Yahoo Answers. Also, to demonstrate the
robustness and scability of proposed method, we empiri-
cally validate the correlations between s-OTDD distance
and transferability on large-scale dataset, which is Split
Tiny-ImageNet (Le & Yang, 2015) at 224×224 resolution.
Finally, we test the performance of the s-OTDD with the
OTDD as the reference in distance-driven data augmenta-
tion for image classification on CIFAR10 (Krizhevsky et al.,
2009) dataset and Tiny-ImageNet (Le & Yang, 2015) dataset
in Section 4.3. When dealing with the high dimensional
datasets, i.e. CIFAR10 dataset and Tiny-ImageNet dataset,
we use the convolution feature projection (Nguyen & Ho,
2022) for the s-OTDD while we use the Radon Transform
projection for the NIST datasets and text feature datasets.
We also provide experiments to compare the convolution
feature projection and the Radon transform projection on
the NIST datasets in Figure 12 in Appendix B. In general,
the convolution-based projections require fewer projections
yet exhibit stronger positive correlations between distance
and adaptation performance. For all experiments, we use
s-OTDD with k = 5 and σ(Λk) be the product of k Trun-
cated Poisson distributions which have the corresponding
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rate parameters be 1, . . . , 5 in turn.1.

4.1. Empirical Analysis of Sliced Optimal Transport
Dataset Distance

Distance Correlation. We treat the OTDD (Exact) as the de-
sired dataset distance. After that, we compare the proposed
s-OTDD with OTDD (Gaussian approximation), WTE, and
CHSW in terms of correlations with the OTDD. We ran-
domly split MNIST and CIFAR10 to create subdataset pairs,
each ranging in size from 5,000 to 10,000. For each split,
we plot the results of each method and OTDD (Exact), and
report their correlations. The results are fully presented
in Figure 9 and Figure 10 in Appendix B. The process is
repeated 10 times and is summarized in Figure 1. From
the figure, we observe that the s-OTDD (10,000 projec-
tions) has significant correlations with the OTDD (Exact) in
both datasets. Moreover, s-OTDD shows comparable per-
formance with OTDD (Gaussian approximation) and WTE
while being computationally faster than them (see the next
analysis).

Computational Time. We compare the computational time
of the proposed s-OTDD with existing discussed dataset
distances. We randomly split the MNIST dataset and the
CIFAR10 dataset into two subdatasets which has the size
varied from 1,000 to the full size of corresponding dataset.
The total runtime includes all preprocessing steps, such as
estimating the dataset’s mean and covariance, as well as
performing MDS for WTE and CHSW. We report the com-
putational time in Figure 2. We observe that s-OTDD, with
different numbers of projections, scales efficiently as the
dataset size increases. Additionally, when moving from
MNIST to CIFAR10 (which has a higher feature dimen-
sion), the computation time for s-OTDD does not increase
significantly compared to OTDDs, WTE, and CHSW. In
contrast to s-OTDD, other dataset distances struggle with
relatively large datasets i.e., they are able to run for dataset
sizes below 30,000 but then crash due to memory limitations
(see Appendix C for the detail of the computational infras-
tructure). Thank to the computational benefits, s-OTDD
successfully runs on large datasets, proving that it is more
scalable than other existing dataset distances.

Projection Analysis. In addition to investigating the ef-
fect of varying the number of projections on computational
time in Figure 2, we assess the dependency of s-OTDD
to the number of projections. Specifically, we vary the
number of projections from 1,000 to 50,000 and examine
datasets of different sizes: 1,000, 5,000, 10,000, 15,000,
and 20,000, computing the correlations with the configu-
ration using 50,000 projections in each case. The results
are reported in Figure 3. From the figure, we see that the

1All datasets and models were downloaded and evaluated at
Movian AI or University of Texas at Austin
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Figure 2: The figure shows computational time of OTDD (Exact),
OTDD (Gaussian approx), WTE, CHSW (1,000, 5,000, 10,000
projections), and s-OTDD (1,000, 5,000, 10,000 projections) when
varying size of two datasets.
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Figure 3: The figure shows Pearson correlations of s-OTDD with
s-OTDD (50,000 projections) when varying number of projections
from 1,000 to 50,000 in MNIST dataset and CIFAR10 dataset.
correlations grows very fast when increasing the number of
projections, which strengthens the fast approximation rate
in Proposition 3. Furthermore, to analyze how the number
of projections influences the correlations with OTDD, we
select a specific dataset size and compare the s-OTDD re-
sults using fewer projections (500, 1,000, 5,000, and 10,000)
against the OTDD (Exact) baseline, with results presented in
Figure 9 in Appendix B. The result indicates that increasing
the number of projections enhances the alignment between
s-OTDD and OTDD (Exact). We also conduct a similar
projection anaylsis for CHSW in Figure 10 in Appendix B.

Number of Moments Analysis. The number of moments
for the label projection is denoted by k in the paper. It is
noted that the higher k, the more moments information of
the label distribution is gathered into the data point projec-
tion. Hence we want to have k as big as possible as long as
it does not raises numerical issue i.e., overflow which might
be due to the non-existence of the higher moments. We
conduct an ablation study in which k is varied in Figure 7.

4.2. Transfer Learning
We apply the proposed method to transfer learning, follow-
ing the OTDD framework. Transferability between source
and target datasets is measured using the Performance Gap
(PG), defined as the accuracy difference between fine-tuning
on the full target dataset and using an adaptation method:

PG(DS→T ) = accuracy(DT )− accuracy(DS→T )
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Figure 4: The figure shows correlations of OTDD (Exact) and
s-OTDD (10,000 projections) with the performance gap when
conducting transfer learning in *NIST datasets.
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Figure 5: The figure shows correlations of OTDD (Exact) and s-
OTDD (10,000 projections) with the performance when conducting
transfer learning in text datasets.

PG serves a similar role to the Relative Drop metric in
OTDD but offers a clearer view of adaptation transferability.
A smaller PG indicates better adaptation for similar datasets,
while a larger PG is expected for more distinct datasets.

NIST Datasets. We use a simplified LeNet-5, freezing the
convolutional layers while fine-tuning the fully connected
ones. We utilize the entire dataset for s-OTDD computation,
while all other methods are evaluated using a random sample
of 10,000 data points. Figure 4 shows a positive correlations
between s-OTDD with 10,000 projections and PG (ρ = 0.40),
which is roughly the same as OTDD (Exact). Additionally,
OTDD (Gaussian approximation), CHSW, and WTE yield
correlations of ρ = 0.40, ρ = 0.16, and ρ = 0.37, respectively
(see Figure 11 in Appendix B).

Text Datasets. We limit the target dataset to 100 examples
per class, fine-tune BERT on the source domain, then adapt
and evaluate it on the target domain following OTDD set-
tings. For distance calculations, we sample 5,000 points for
OTDD (Exact) and 10,000 points for s-OTDD (10,000 pro-
jections). Sentences are embedded using BERT (base) (Li
et al., 2022), and distances are computed on these embed-
dings. The results in Figure 5 shows that although OTDD
(Exact) outweighs a bit higher than s-OTDD on Spearman
rank, but both score the same on Pearson (r = 0.48). Cru-
cially, s-OTDD performs the computation in roughly one-
tenth the time, providing a substantial speed-efficiency ad-
vantage at the expense of a modest drop in Spearman.
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Figure 6: The figure shows the Pearson and Spearman correlations
between s-OTDD (500,000 projections) and the performance gain
in the Split Tiny-ImageNet (224×224) experiment.

Split Tiny-ImageNet. We randomly divide the Tiny Im-
ageNet (Le & Yang, 2015) dataset into 10 disjoint tasks,
each containing 20 classes. Each image is first rescaled to
256×256 and then center-cropped to obtain a 224×224 reso-
lution. We initially train a ResNet-18 model on each task,
serving as baseline, and subsequently freeze all layers ex-
cept the final fully connected layer to fine-tune on the target
task. We calculate the performance gain after transferbility
by Gain(DS→T ) = accuracy(DS→T ) − accuracy(DT ).
For distance calculations, we draw 5,000 sample pairs and
compute s-OTDD with 500,000 random projections. As
shown in Figure 6, s-OTDD exhibits a strong correlation
with the performance gain. In contrast, OTDD is infeasible
at the 224×224 resolution.

From above experiments, we observe that not only s-OTDD
achieve comparable performance but also more scalable and
robust to existing dataset distances in transfer learning while
it offers considerably better computational speed.

4.3. Distance-Driven Data Augmentation
As discussed in (Alvarez-Melis & Fusi, 2020), data aug-
mentation enhances dataset quality and diversity but lacks
clear guidelines for its effective implementation. A model-
agnostic dataset metric can help compare and select the most
suitable augmentation strategies. Intuitively, a smaller dis-
tance between the augmented source dataset and the target
dataset positively correlates with higher accuracy. In this
large-scale experiment, we use augmented Tiny-ImageNet
as the source dataset, CIFAR10 as the target dataset, and
ResNet-50 (He et al., 2016) as the classifier. Augmentations
for Tiny-ImageNet include random variations in brightness,
contrast, saturation (0.1-0.9), and hue (0-0.5). We evaluate
the proposed method and OTDD (Exact), with results pre-
sented in Figure 8. For s-OTDD, we sample 50,000 data
points per dataset and use 100,000 projections, while for
OTDD (Exact), we sample 5,000 data points per dataset.
The results are summarized in Figure 8.
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Figure 7: Experiment when varying number of moments in s-OTDD from 1 to 6 in *NIST Adaptation Experiment.
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Figure 8: The figure shows correlations of OTDD (Exact) OTDD
(Exact) and s-OTDD (100,000 projections) with the classification
accuracy in data augmentation experiment.

Figure 8 shows that both OTDD (Exact) and our proposed
s-OTDD method produce distances that are negatively cor-
related, which is natural, with test accuracy when transfer-
ring from augmented Tiny-ImageNet to CIFAR10. Despite
processing ten times the dataset size compared to OTDD
(Exact), s-OTDD is significantly faster, with a processing
time in about 53 × 103 seconds, whereas OTDD (Exact)
takes over 74× 103 seconds, revealing a huge improvement
in efficiency. Moreover, OTDD (Exact) achieves a Spear-
man correlations of −0.70, while s-OTDD attains a better
correlations of −0.74. In other words, s-OTDD provides
a reliable alternative distance to OTDD (Exact), achieving
comparable performance while being faster.

5. Conclusion
We propose the sliced optimal transport dataset distance
(s-OTDD), a versatile approach for comparing datasets that

is model-agnostic, embedding-agnostic, training-free, and
robust to variations in class count and disjoint label sets.
At the heart of s-OTDD is the Moment Transform Projec-
tion (MTP), which encodes a label-represented as a feature
distribution-into a real number. This projection enables us to
represent entire datasets as one-dimensional distributions by
mapping individual data points accordingly. From theoreti-
cal aspects, we discuss theoretical properties of the s-OTDD
including metricity properties and approximation rate. From
the computational aspects, the proposed s-OTDD achieves
(near-)linear computational complexity with respect to the
number of data points and feature dimensions, while remain-
ing independent of the number of classes. For experiments,
we analyze the performance of s-OTDD by comparing its
computational time with existing dataset distances, its cor-
relations with OTDD, its dependence on the number of
projections, and number of moments, using subsets of the
MNIST and CIFAR10 datasets. Moreover, we evaluate the
correlations between s-OTDD and transfer learning perfor-
mance gaps on image NIST datasets, text datasets and large
scale Split Tiny-ImageNet (224x224 resolution). Finally,
we test s-OTDD for data augmentation in image classifica-
tion on CIFAR10 and Tiny-ImageNet. Overall, s-OTDD
is comparable to baseline while being significantly faster,
more scalable, and more robust. Future works will focus
on understanding the gradient flow (Alvarez-Melis & Fusi,
2021) of the s-OTDD and adapt the s-OTDD in continual
learning applications (Lee et al., 2021; Ke et al., 2020; Yang
& Cai, 2023; Goldfarb et al., 2024).
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Supplement to “Lightspeed Geometric Dataset Distance via Sliced Optimal
Transport”

We first give skipped proofs in the main text in Appendix A. We then present additional materials including algorithms and
additional experiments in Appendix B. Finally, we report computational devices used for experiments in Appendix C.

A. Proofs
A.1. Proof of Proposition 1

We can rewrite the MTP in Definition 2 as:

MT Pλ,θ(µ) =
∫
Rd(FPθ(x))λfµ(x)dx

λ!
=

∫
Rd t

λfFPθ♯µ(t)dt

λ!
,

where fFPθ♯µ is the density function of FPθ♯µ. Let Tµ,θ be the random variable of FPθ♯µ, we have:

MT Pλ,θ(µ) =
E[Tλµ,θ]
λ!

.

For a given θ, when MT Pλ,θ(µ) = MT Pλ,θ(ν) for all λ ∈ Λ, it implies
E[Tλµ,θ]
λ! =

E[Tλν,θ]
λ! for all λ ∈ Λ.

(1) When Λ is infinite i.e., Λ = N, we have
E[Tλµ,θ]
λ! =

E[Tλν,θ]
λ! for all λ ⊂ N. Therefore, we have:

∞∑
λ=1

zλE[Tλµ,θ]
λ!

=

∞∑
λ=1

zλE[Tλν,θ]
λ!

.

Since we assume that all projected scaled moment exists in Assumption 1 and the moment generating functions of FPθ♯µ
and FPθ♯ν exist for all θ ∈ Θ, using Taylor’s expansion, we have:

E[ezTµ,θ ] = E[ezTν,θ ],

which means that moment generating function of FPθ♯µ equals moment generating function of FPθ♯ν. Therefore, we
can conclude that FPθ♯µ = FPθ♯ν for all θ ∈ Θ due to the uniqueness of the moment generating function. Due to the
assumption of injectivity of the feature projection, we obtain µ = ν. We complete the proof.

(2) When Λ is finite i.e., Λ = {1, 2, . . . , λmax}, we assume that projected Hankel matrices

Aθ,µ =


mθ,µ,0 mθ,µ,1 . . . mθ,µ,λmax

mθ,µ,1 mθ,µ,2 . . . mθ,µ,0

...
...

. . .
...

mθ,µ,λmax
mθ,µ,0 . . . mθ,µ,λmax−1

 , Aθ,ν =


mθ,ν,0 mθ,ν,1 . . . mθ,ν,λmax

mθ,ν,1 mθ,ν,2 . . . mθ,ν,0

...
...

. . .
...

mθ,ν,λmax
mθ,ν,0 . . . mθ,ν,λmax−1


, with mθ,µ,λ =

∫
Rd(FPθ(x))λfµ(x)dx and mθ,ν,λ =

∫
Rd(FPθ(x))λfν(x)dx, are positive definite for all θ ∈ Θ and

|mθ,µ,λ| < CDλλ!, and |mθ,ν,λ| < CDλλ! for some constants C and D for all λ ∈ Λ. From the Hamburger moment
problem (Reed & Simon, 1975; Chihara, 2011), we know that moments uniquely define a distribution. Therefore, we have
FPθ♯µ = FPθ♯ν for all θ ∈ Θ. Due to the assumption of injectivity of the feature projection, we obtain µ = ν. We
complete the proof.

A.2. Proof of Proposition 2

From Definition 4, we have:

s-OTDDpp(D1,D2) = E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ)

[
Wp
p(DPkψ,θ,λ,ϕ♯PD1

,DPkψ,θ,λ,ϕ♯PD2
)
]
.

Since the Wasserstein distance is non-negative and symmetric (Peyré & Cuturi, 2020), the symmetry and non-negativity of
the s-OTDDpp(D1,D2) follows directly from it. We now prove the triangle inequality of s-OTDD. Given any three datasets
D1,D2, and D3. We want to show that:

s-OTDDp(D1,D2) ≤ s-OTDDp(D1,D3) + s-OTDDp(D3,D2).
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From the triangle inequality of the Wasserstein distance, we have:

s-OTDDp(D1,D2) =
(
E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ)

[
Wp
p(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD2)

]) 1
p

≤
(
E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ)

[
(Wp(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD3)

+Wp(DPkψ,θ,λ,ϕ♯PD3
,DPkψ,θ,λ,ϕ♯PD2

))p
]) 1

p

.

Using the Minkowski’s inequality, we further have:

s-OTDDp(D1,D2) ≤
(
E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ)

[
Wp
p(DPkψ,θ,λ,ϕ♯PD3 ,DPkψ,θ,λ,ϕ♯PD2)

]) 1
p

+
(
E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ)

[
Wp
p(DPkψ,θ,λ,ϕ♯PD3

,DPkψ,θ,λ,ϕ♯PD2
)
]) 1

p

= s-OTDDp(D1,D3) + s-OTDDp(D3,D2),

which completes the proof of the triangle inequality. For the identity of indiscernibles, when D1 = D2, we have directly that

s-OTDDp(D1,D2) =
(
E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ)

[
Wp
p(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD2)

]) 1
p

=
(
E(ψ,θ,λ,ϕ)∼U(S)⊗U(Sd−1)⊗σ(Λk)⊗U(Φ) [0]

) 1
p = 0,

due to the identity of indiscernibles of the Wasserstein distance when DPkψ,θ,λ,ϕ♯PD1 = DPkψ,θ,λ,ϕ♯PD2 . In addition, when
s-OTDDp(D1,D2) = 0, it implies that Wp

p(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD2) = 0 for all ψ ∈ S, θ ∈ Θ, λ ∈ Λ, ϕ ∈ Φ. As
a result, DPkψ,θ,λ,ϕ♯PD1 = DPkψ,θ,λ,ϕ♯PD2 for all ψ ∈ S, θ ∈ Θ, λ ∈ Λ, ϕ ∈ Φ. From the assumption of the injectivity of
the data point projection, we obtain that PD1 = PD2 which implies D1 = D2. We conlude the proof here.

A.3. Proof of Proposition 3

We recall the empirical approximation of the s-OTDD is:

̂s-OTDD
p

p(D1,D2;L) =
1

L

L∑
l=1

Wp
p(DPkψl,θl,λl,ϕl♯PD1

,DPkψl,θl,λl,ϕl♯PD2
).

Using Holder’s inequality, we have:

E
[∣∣∣ ̂s-OTDD

p

p(D1,D2;L)− s-OTDDpp(D1,D2)
∣∣∣]

≤
(
E
[∣∣∣ ̂s-OTDD

p

p(D1,D2;L)− s-OTDDpp(D1,D2)
∣∣∣2]) 1

2

=

E

∣∣∣∣∣ 1L
L∑
l=1

Wp
p(DPkψl,θl,λl,ϕl♯PD1 ,DPkψl,θl,λl,ϕl♯PD2)− E

[
Wp
p(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD2)

]∣∣∣∣∣
2
 1

2

.

Since

E

[
1

L

L∑
l=1

Wp
p(DPkψl,θl,λl,ϕl♯PD1 ,DPkψl,θl,λl,ϕl♯PD2)

]
=

1

L

L∑
l=1

E[Wp
p(DPkψl,θl,λl,ϕl♯PD1 ,DPkψl,θl,λl,ϕl♯PD2)]

= E
[
Wp
p(DPkψ,θ,λ,ϕ♯PD1

,DPkψ,θ,λ,ϕ♯PD2
)
]
,
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Algorithm 1 Computational Algorithm for s-OTDD

Input: Two datasets D1 = {(x1, y1), . . . , (xn, yn)} and D2 = {(x′1, y′1), . . . , (x′m, y′m)}, label sets Y1 and Y2, parameter
p ≥ 1, number of moments k, number of projections L, rate parameters r1, . . . , rk > 0.
for l = 1 to L do

Sample θl ∼ U(Sd−1)
for i = 1 to n do

Compute FPθ(xi)
end for
for j = 1 to m do

Compute FPθ(x′j)
end for
for j = 1 to k do

Sample λ(j)l ∼ TruncatedPoisson(rj)
for a in Y1 do

Compute MT Pλ(i),θ(qa) =
1
na

∑na
i=1

FPθ(xi)λ
(j)

λ! for na is the number of samples in class a.
end for
for a′ in Y2 do

Compute MT Pλ(i),θ(qa′) =
1
ma′

∑ms′
i=1

FPθ(x′
i)
λ(j)

λ! for ma′ is the number of samples in class a′.
end for

end for
Sample ψl ∼ U(Sk)
for i = 1 to n do
DPkψ,θ,λ,θ(xi, qyi) = ψ(1)FPθ(xi) +

∑k
i′=1 ψ

(k)MT Pλ(i′),θ(qyi)
end for
for i = j to m do
DPkψ,θ,λ,θ(x′j , qy′j ) = ψ(1)FPθ(x′j) +

∑k
i′=1 ψ

(k)MT Pλ(i′),θ(qy′j )
end for
Compute wl =W p

p

(
1
n

∑n
i=1 δDPkψ,θ,λ,θ(xi,qyi )

, 1
m

∑m
j=1 δDPkψ,θ,λ,θ(x

′
j ,qy′j

)

)
end for
Return: 1

L

∑l
l=1 wl

we have:

E
[∣∣∣ ̂s-OTDD

p

p(D1,D2;L)− s-OTDDpp(D1,D2)
∣∣∣]

≤

(
V ar

[
1

L

L∑
l=1

Wp
p(DPkψl,θl,λl,ϕl♯PD1 ,DPkψl,θl,λl,ϕl♯PD2

)

]) 1
2

=
1√
L

(
V ar

[
Wp
p(DPkψ,θ,λ,ϕ♯PD1 ,DPkψ,θ,λ,ϕ♯PD2)

]) 1
2

,

due to the i.i.d sampling of the projection parameters, which completes the proof.

B. Additional Materials
Algorithms. We present the computational algorithm for s-OTDD in Algorithm 1. In the algorithm, we use the same feature
projection for both the label projection (MTP) and the data point projection.

Projection Analysis. As mentioned in the main text, we present the distance correlations with OTDD (Exact) of s-OTDD
as a function of the number of projections in Figure 9 and similarly for CHSW in Figure 10. For s-OTDD, we observe
that increasing the number of projections consistently improves the correlations for both MNIST and CIFAR10 datasets,
indicating a clear trend. In contrast, the same does not hold true for CHSW, where the correlations do not show consistent
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Figure 9: The figure shows distance correlations with OTDD (Exact) of s-OTDD when varying the number of projections.
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Figure 10: The figure shows distance correlation with OTDD (Exact) of CHSW when varying the number of projections.

improvement as the number of projections increases. This important observation suggests that s-OTDD in its population
form is highly correlated with OTDD (Exact), and therefore, reducing the Monte Carlo approximation error by increasing
the number of projections results in a more accurate correlations with OTDD (Exact).

Transfer Learning. We present the complete experimental results for transfer learning using the *NIST datasets in Figure 11.
As highlighted in Section 4.2, the figure demonstrates clear positive correlations between s-OTDD with 10,000 projections
and PG, with a Spearman’s rank correlation coefficient of ρ = 0.42, which is identical to that of OTDD (Exact). For
the other distances, we observe that OTDD (Gaussian approximation), CHSW, and WTE yield correlations of ρ = 0.44,
ρ = 0.15, and ρ = 0.43, respectively. These results reinforce the reliability of s-OTDD in capturing meaningful transfer
learning behavior, comparable to OTDD (Exact) and other related metrics.
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Figure 11: The figures show Pearson and Spearman correlation of OTDD (Exact), OTDD (Gaussian approximation), CHSW (10,000
projections), WTE, and s-OTDD (10,000 projections) with the performance gap when conducting transfer learning in *NIST datasets.
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Figure 12: The figure compares two projection methods, linear projections (Radon Transform projection) and convolution projection,
using the *NIST dataset experiments.
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Figure 13: The figure shows Pearson and Spearman correlations of distance and Performance Gap in term of other metrics, i.e F1,
Precision and Recall.

C. Computational Devices
For the runtime experiments and distance computations, we conducted tests using 8 CPU cores with 128GB of memory. For
model training experiments, such as training BERT and ResNet, we used an NVIDIA A100 GPU.
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