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Abstract
As one of the most popular machine learning models today, graph neural networks
(GNNs) have attracted intense interest recently, and so does their explainability.
Unfortunately, today’s evaluation frameworks for GNN explainability often rely on
few inadequate synthetic datasets, leading to conclusions of limited scope due to
a lack of complexity in the problem instances. As GNN models are deployed to
more mission-critical applications, we are in dire need for a common evaluation
protocol of explainability methods of GNNs. In this paper, we propose, to our
best knowledge, the first systematic evaluation framework for GNN explainability
GRAPHFRAMEX, considering explainability on three different “user needs”. We
propose a unique metric, the characterization score, which combines the fidelity
measures and classifies explanations based on their quality of being sufficient
or necessary. We scope ourselves to node classification tasks and compare the
most representative techniques in the field of input-level explainability for GNNs.
We found that personalized PageRank has the best performance for synthetic
benchmarks, but gradient-based methods outperform for tasks with complex graph
structure. However, none dominates the others on all evaluation dimensions and
there is always a trade-off. We further apply our evaluation protocol in a case
study for frauds explanation on eBay transaction graphs to reflect the production
environment.

1 Introduction
As machine learning models are being deployed to mission critical applications and are having
increasingly profound impact on our society, interpreting machine learning models has become
crucially important [1, 2]. At the same time, graph neural networks (GNNs) are of growing interest
and are ubiquitous in many learning systems across various areas[3–8]). Due to the complex data
representation and non-linear transformation, explaining decisions made by GNNs is challenging.
The past decade has witnessed the rise of new methods to explain GNN predictions [9–24].

How do these GNN explanation methods compare with each other? How should we evaluate these
GNN explanation methods? These two questions, unfortunately, are still open today. Today’s GNN
explainability methods are often evaluated on the inadequate synthetic datasets introduced by [10],
later referred as type 1 (see AppendixA.6 for the types of synthetic data) - where groundtruth is
available and often on different grounds — as shown in Table 1. Furthermore, they only consider
a small subset of metrics to evaluate their method and this choice is very different from method
to method. Most papers do not consider the aspect of computing time. They also evaluate their
method on an almost accurate GNN model, without considering the influence of GNN accuracy
on explainability. As a result, insights obtained in these different papers often do not reflect their
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Table 1: XAI LITERATURE FOR GNN NODE CLASSIFICATION. "Acc" defines the accuracy
(F1-score) measured with respect to the groundtruth, "Fid+" and "Fid-" refer to the fidelity metrics
as defined in [26] (see Appendix A.4). The column "Time" indicates if the paper has run a
comparative analysis of the computation time of the explainability methods. The final column
"GNN accuracy" shows if the authors have reported the testing accuracy of their model.
Paper Type Year Explainer Use type 1 Synthetic Real Time GNN Accuracy

syn data** Acc Fid- Fid+ Acc Fid- Fid+

Method [9] 2019 LRP ✓ ✓

Method [10] 2019 GNNExplainer ✓ ✓ > 0.90

Method [11] 2020 PGExplainer ✓ ✓ ✓ 0.92 − 1.00

Method [12] 2020 RelEx ✓ ✓

Method [13] 2020 PGM-Explainer ✓ ✓ ✓ 0.85 − 1.00

Method [14] 2021 RG-Explainer ✓ ✓

Method [15] 2021 ZORRO ✓* 0.48 − 0.79

Method [16] 2021 SubgraphX ✓ ✓ ✓ 0.86 − 0.99

Method [17] 2021 CF-GNNExplainer ✓ ✓ ✓ > 0.87

Method [18] 2021 RCExplainer ✓ ✓ ✓ ✓ 0.84 − 0.99

Method [19] 2021 Gem ✓ ✓* ✓

Taxonomy [26]
(Yuan et al.)

2020
GNNExplainer,PGExplainer

SubgraphX,DeepLift
GNN-LRP,Grad-CAM,XGNN

✓ ✓ ✓ ✓

Taxonomy [25]
(Faber et al)

2021
Saliency,Occlusion,IntegratedGrad

GNNExplainer,PGM-Explainer
✓ ✓ 0.81-1.00

Taxonomy [27]
(Li et al)

2022
GraphMask

GNNExplainer,PGExplainer
✓*

Taxonomy [28]
(Agarwal et al)

2022

VanillaGrad,IntegratedGrad
GraphMask,GraphLIME

GNNExplainer,PGExplainer
PGMExplainer

✓*

* Different denomination in the paper, but the same evaluation mechanism as ours.
** Type 1: [10]; Type 2: [25]; Type 3: MUTAG [29], MoleculeNet [30],... See Appendix A.6 for the full synthetic data classification.

performance on real-world applications! Most method papers (see upper section of Table 1) have
inconsistent rankings when evaluation the methods on type 1 synthetic datasets or on real datasets.
Only the taxonomy survey [25] that proposes three novel synthetic benchmarks - type 2 - has
consistent results with real data.

Evaluation Framework. In this paper, we aim at overcoming these limitations and propose GRAPH-
FRAMEX, the first systematic framework for evaluating explainability methods in the context of node
classification. We consider three aspects of users’ needs in our evaluation protocol. Our framework
further distinguishes two types of explanations, according to whether they are necessary or sufficient.
For evaluation, we combine the two fidelity measures, Fid+ and Fid-, that capture the two explanation
types, into one single performance metric: the characterization score. Our evaluation method does
not require groundtruth from synthetic datasets and can be applied to any graph datasets in practice.
This paper is the first to study the relation between accuracy and explainability. We evaluate a variety
of explainability methods on type 1 synthetic datasets of [10] and ten real datasets. We show the
limitations of these specific synthetic datasets. To reflect the production environment, we run a fraud
explanation study for eBay transaction graphs. Because runtime is also important, our analysis further
compares methods on their average mask computation time. This is also the first paper interested in
explaining inaccurate GNN models and the first to investigate the influence of GNN accuracy on the
explainer performance.

Moving Forward. As an early attempt to systematically investigate evaluation of GNN explainability,
this paper also aims to facilitate the assessment of future explainability methods and shed light on
how to build more effective explainability methods that would incorporate the advantages of existing
methods. We have created an online platform for people to compete and compare their method to a
standard leaderboard with our proposed evaluation and a selected set of representative methods. They
also have the possibility to integrate their method to the final leaderboard. It also opens new doors
to create synthetic datasets that better reflect the complexity of real ones, which we will discuss in
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Section 5.2.4. Our code is available at https://github.com/GraphFramEx/graphframex and
this work is available at http://www.graphframex.com/.

2 Related work

Confronted to a rapid increase of XAI methods, researchers have tried to identify a list of properties
desired of explainable systems and developed concrete tools to help compare and evaluate all of the
methods [31, 32]. Following these systematic XAI evaluation reviews, recent studies have proposed to
systematically evaluate the performance of explainability methods for GNNs [25–28]. [25] evaluates
explainability methods on three new benchmarks for which groundtruth is available to alleviate five
pitfalls observed in the widely used type 1 synthetic datasets. But methods are only evaluated with
the accuracy metric. Our framework evaluates explainers regardless of the existence of groundtruth.
The first attempt to construct an evaluation framework without groundtruth explanations is the paper
of Yuan et al. [26]. They evaluate diverse explainability methods on two fidelity scores at different
sparsity levels. But simple baselines such as distance and PageRank and gradient-based methods are
omitted, while we show their superiority in some settings. [27] adopts the same methodology as [26],
but normalizes one of the fidelity scores. Authors of [28] are the first ones to carry out a theoretical
study and derive upper bounds on three evaluation metrics: unfaithfulness, instability and fairness
mismatch. Like [25], we consider stability and fairness to be optional criteria and not general quality
measures. None of the papers studies the relation between accuracy and explainability. Moreover,
they do not consider other mask transformation than sparsity.

3 Problem setup

Let G = (V, E) represent the graph with V = {v1, v2...vN} denoting the node set and E ⊆ V × V
as the edge set. Edges may be directed or undirected. The numbers of nodes and edges are denoted
by N and M , respectively. A graph can be described by an adjacency matrix A ∈ {0, 1}N×N , with
aij = 1 if there is an edge connecting node i and j, and aij = 0 otherwise. In addition, nodes in V
are associated with d-dimensional features, denoted by X ∈ RN×d.

In the context of node classification, a GNN can be written as a function f : V −→ Y , which assigns
to nodes in V labels from a finite set Y . The GNN model is trained with an objective function
L : Y ×Y → R that computes a cross-entropy loss s = L(y, ŷ) by comparing the model’s prediction
ŷ to a ground-truth label y. To fuse the information of both node features and graph structure in node
representation vectors, GNN models utilize a message passing scheme to aggregate information from
neighboring nodes.

Given a pre-trained classifier f , our objective is to obtain an explanation model. An “explanation” in
the domain of GNNs is a mask or a subgraph of the initial graph, i.e., a set of weighted nodes, edges
and possibly node features. The weights on those graph entities relate to their inherent importance for
explaining the model outcomes. The explainer model usually performs a feature attribution operation
which associates each feature of a computation graph GC with a weight or relevance score for the
classifier’s prediction. The computation graph GC might be the initial graph G or a subgraph around
the target node vt since some methods only look at a k-hop neighbourhood to do predictions. We
focus on the contribution of the structural features, namely the edges. To explain each node vt, all
the methods compared in this paper generate a mask ME(E , f, vt, yt) ∈ R|V|×|V|, each element
of which is the importance score of the edges to the prediction class yt of the target node vt. The
more complex methods also generate a mask MNF (V, f, vt, ct) on the node features (see Table 5 in
Appendix B). At the end, an explanation corresponds to a mask ME on the edges and sometimes
a mask MNF on the node features, that operate on the initial graph to form a subgraph GS with
adjacency matrix AS = ME ⊙A and features XS = MNF ⊙X, where ⊙ denotes elementwise
multiplication. We denote by yGS

t and y
GC\S
t the model’s predictions for node vt when taking as

input respectively the explanatory or masked graph GS and its complement or masked-out graph
GC\S .

Scope. Our framework only compares post-hoc explainability methods since our focus is on ex-
plaining any GNN model. We restricted our study to input-level methods because there are currently
limited model-level explainability methods [10, 20]. We evaluate both model-aware and model-
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compare explainers more on one aspect rather than the
other.

Efficiency. Efficiency relates to the trade-off between performance, assessed by the characterization
score, and computation time of an explanation. A method is very efficient if it quickly generates
explanations that well characterize the GNN predictions. This is an important criteria as users might
want rapid answers to their why-questions.

5 Results
We evaluate existing methods on their efficiency, characterization power, and type of explanations.
No method is dominating the others in all aspects. We also discuss here the limitations of previous
evaluation protocols.

5.1 Experimental settings

We describe the setup and implementation details for the explainability procedure. See Appendix B
for more details on the datasets statistics, the methods and the experimental protocol.

Datasets.

• Synthetic datasets We use type 1 synthetic datasets introduced by [10]. We refer the reader to
Appendix A.6 to learn more about the 3 classes of existing synthetic datasets in explainability for
GNNs. Ground truth explanations are available.

• Real datasets We use 10 publicly available datasets to evaluate our framework on real graphs:
the citation network datasets [35], the Facebook Page-Page network dataset [36], the actor-only
induced subgraph of the film-director-actor-writer network [37], the WebKB datasets [37], and
the Wikipedia networks [36]. We use the code accessible in Pytorch geometric.

• eBay We test our evaluation framework on a real-world eBay transaction graph dataset. This
is a binary node classification task where transaction nodes are labeled as legit or fraudulent.
The objective is to explain fraudulent nodes. The eBay graph dataset is a very large sampled
real-world dataset with 289k nodes (208k transaction nodes) and 1% of all nodes (1.48% of
transaction nodes) are fraudulent. This is a typical example of a rare event detection task.

GNN models. By default, we use the graph convolutional networks (GCN) [38]. Besides GCN, we
also evaluate explainability methods on graph attention networks (GAT) [39] and graph isomorphism
networks (GIN) [40]. Results using GAT and GIN models are presented in Appendix C.

Explainers. To explain the decisions made by the GNNs, we adopt different classes of explainers
including structure-based methods, gradient/feature-based methods and perturbation-based methods.
We refer the reader to Appendix A.3 for the full taxonomy and to Appendix B.2 for more details on
the explainability methods. In our experiments, we compare the following methods: Random gives
every edge and node feature a random value between 0 and 1; Distance assigns higher importance
to edges that have lower distance to the target node; PageRank measures the importance of edges
following the personalized PageRank strategy with automatic restart on the target node [41, 42];
Saliency (SA) measures node importance as the weight on every node after computing the gradient of
the output with respect to node features [9]; Integrated Gradient (IG) avoids the saturation problem
of the gradient-based method Saliency by accumulating gradients over the path from a baseline
input (zero-vector) and the input at hand [43]; Grad-CAM is a generalization of class activation
maps (CAM) [44]; Occlusion attributes the importance of an edge as the difference of the model
initial prediction prediction on the graph after removing this edge [25]; GNNExplainer computes
the importance of graph entities (node/edge/node feature) using the mutual information [10]; We
also try Basic GNNExplainer that considers only edge importance; PGExplainer is very similar
to GNNExplainer, but generates explanations only for the graph structure (nodes/edges) using the
reparameterization trick to overcome computation intractability [11]; PGM-Explainer perturbs the
input and uses probabilistic graphical models to find the dependencies between the nodes and the
output [13]; and SubgraphX explores possible explanatory subgraphs with Monte Carlo Tree Search
and assigns them a score using the Shapley value [16].

Protocol. In this work, we focus on node classification tasks and compare local, that is input-level,
explainability methods. We train one of the three GNN models. Once trained, we use the GNN to do
predictions on a testing set. Explanations are then eventually transformed with the topk strategy. We
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A Background and foundational concepts

A.1 Interpretability, explainability and transparency

There is a general misunderstanding of the terms explainability and interpretability. While inter-
pretability is the common term in the philosophical literature, the scientific community prefers the
term explainability. For this reason, we will only make use of terms that come from the same
etymology as “explain”. An explanation is the process (and its product) aiming at making some-
thing intelligible through the provision of structured information. Thus, the word explanation can
be misleading as it refers to both the method and the result. Note that, for practical reasons, we
explicitly use the term "method" to designate the method ("explainability method" or "explanation
method") and the term "explanation" to describe the result of this method. As opposed to general
explanations, scientific explanations answer only why-questions, where premises are always followed
by a deduction. This does not mean that the explanation is unique: we often observe the existence
of a large space of alternatives for the same question. Therefore, explanations need to take into
consideration the social aspect of the process. Explainability of machine learning models has recently
become a top-priority in AI, where it is often abbreviated as explainable Artificial Intelligence (xAI)
or interpretable Machine Learning (iML). We adopt the first initialism here to stay as general as
possible.

A.2 GNN models and explanation quality

There are several variants of GNNs (graph convolutional networks (GCNs) [38], graph attention
networks (GATs) [39], graph isomorphism networks (GINs) [40]), and they differ in their aggregation
strategy. In this paper, we restrict our evaluation framework to methods that explain GCNs. We tested
our framework on the simple GCN architecture proposed by [38]. Some papers [16, 21, 22, 24, 26,
45, 46] have tested their method for different GNN models and report their results for each one. To
rigorously measure the robustness of explainers to the change of GNN model, the authors of [47]
define the consistency metric. It measures how accuracy varies across different hyperparameters of
a model or model architectures. When comparing explanations for different GNNs, those papers
tackle the question: does the performance of an explainability method depend on our initial choice of
the GNN architecture? In the scope of this paper, we only want to raise awareness on the potential
importance of the GNN model on the generated explanations.

A.3 Taxonomy of explainability methods for GNNs

Even if close in meaning, the definitions presented in this section are not to be confused with the ones
introduced in [1] and [48].

Input-level/Local vs Model-level/Global explanations. An input-level or example-level or even
local explanation identifies features in a given input that are important for its prediction. In contrast,
model-level or global explanations are input-independent: they investigate what input graph patterns
can lead to a certain GNN prediction without respect to any specific input example. They explain the
general behavior of the model.

Intrinsic explanations vs Post-hoc explanations. Intrinsic explanations are produced for models
that are self-understandable like linear regression and decision trees. No external method is required
to explain their outcomes. Post-hoc explanations are brought up for models with higher complexity
like neural networks, including GNNs, that do not presume any knowledge of the inner-workings or
type of model at hand. In this case, an external method called explainability method is required to
bring some clarity.

Model-aware vs model-agnostic explanations. Among post-hoc explanations, we have model-
aware explanations and model-agnostic explanations. Model-aware methods look inside the model to
extract information. They directly study the model parameters to reveal the relationships between
the features in the input space and the output predictions. Model-agnostic explanations consider the
model as a black-box. To infer what elements are important in the input, they perturb the input and
study the changes in the output.
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the focus choice. Equations A.4 detail the mathematical expressions of the different fidelity scores.
The fidelity scores (+/-) can be expressed either with probabilities (fidprob+/−) or indicator functions

(fidacc+/−). While fidprob+/− metrics are more appropriate for evaluating explanations in the context of
regression tasks because they are only based on the predicted probabilities, fidacc+/− metrics use the
indicator function and are more suitable for classification problems. In this paper, we convey our
results with the fidelity metrics that use the indicator function and are more suitable for classification
problems.

A.5 Accuracy measure and the concept of groundtruth

The accuracy metric is based on the assumption that we actually know the groundtruth explanation.
In current synthetic datasets, node labels are defined based on their position in the graph. Therefore,
the groundtruth explanations are artificially built and interpreted as the motifs which the nodes belong
to. We are critical towards this method of assigning explanations as it is an a posteriori assignment
and is only based on the labeling procedure. How we, humans, synthetically build and explain the
node labels is not necessary the right explanation of the GNN model logic. The GNN might put
its attention on different graph entities than the ones of the human-intelligible substructures. For
this reason, we claim here that accuracy is not the right evaluation metric as it is limited to datasets
where we have ground-truth explanations and in these very rare cases, we strongly question their
"ground-truth" quality.

A.6 Classification of synthetic datasets

The term synthetic is widely used but its definition is not always clear. Synthetic refers here to data
for which we have groudtruth explanations available. But, the procedure to generate the synthetic
data and its groundtruth explanations differ. We have identified three origins of groudtruth:

• Type 1 synthetic data The true explanation is artificially defined by humans while they construct
the graphs and can be identified as the nodes in the k-hop neighborhood of the target node.
Such simple explanations can be easily discovered with nearest neighbor search or personalized
PageRank. For instance, in the BA-house dataset, the motif house is the expected explanation.
These synthetic datasets have been introduced in [10] and are now widely used as benchmarks to
evaluate new explainability methods.

• Type 2 synthetic data The true explanation is also defined during the construction of the datasets.
But, this time, it is more complex than the simple target node neighbourhood. Type 2 synthetic
datasets correspond to the three benchmarks introduced in [25]. They have been created to
overcome the 5 pitfalls encountered in type 1 synthetic datasets.

• Type 3 synthetic data The true explanation finds its origin in scientific experiments, human obser-
vations or human intuitions. Type 3 synthetic data often reflect biological and chemical problems,
where particular substructures can predict properties for molecules, as in the MUTAG [29] or the
MoleculeNet [30] datasets (HIV, BACE, BBBP, Tox21, QM7), or predict properties of proteins,
as in the Enzymes dataset [29].

In this paper, we tested explainability methods on type 1 synthetic datasets to highlight their limitation
in a rigorous evaluation of explainers. In addition, type 1 and type 3 are the most common families
of synthetic data in recent papers [9–14, 16, 16–19, 26]. We have not tested the methods on type 3
synthetic datasets since they are made for graph classification and regression tasks.

A.7 Mask transformation strategies

Sparsity. Sparsity is defined as the minimum percentage X of edges to remove from the initial graph.
The sparsity strategy consists in keeping only edges which belong to the (100-X)% highest values
in the mask. A sparsity of 70% or 0.7 means that we keep at least 30% of the edges in the mask.
Some very sparse explainability methods might return sparser explanations with even less edges.
But, we have the assurance that explanations cannot be bigger. Note that the size of the explanation
is dependent on the size of the graph: if we change the dataset, the number of edges contained in
the transformed masks will be different. Thus, for the sparsity strategy, the size of the explanation
depends on the dataset.

16



GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks

Datasets BA-House BA-Grid Tree-Cycle Tree-Grid BA-Bottle

Base Type BA graph BA graph Tree Tree BA graph

Size 300 nodes 300 nodes height 8 height 8 300 nodes

Motif Type house grid cycle grid bottle

Size 5 nodes 9 nodes 6 nodes 9 nodes 5 nodes
Number 80 80 60 80 80

# Features constant constant constant constant constant
# Classes 4 2 2 2 4

Table 2: Synthetic datasets statistics

Datasets Cora CiteSeer PubMed Chameleon Squirrel Actor Facebook Cornell Texas Wisconsin

# Nodes 2708 3327 19717 2277 5201 7600 22470 183 183 251
# Edges 5429 4732 44338 36101 217073 33544 171002 295 309 499

# Features 1433 3703 500 2325 2089 931 4714 1703 1703 1703
# Classes 7 6 3 5 5 5 4 5 5 5

Table 3: Real datasets statistics

Threshold. Threshold is a value between 0 and 1 that defines the lowest value for edge importance.The
threshold strategy consists in keeping the edges whose value in the mask is greater than the threshold.
For a threshold τ ∈ [0, 1], we keep only values in the mask greater than τ . This leads to explanations
of different sizes among the explainability methods, since some methods might value edges high
while other methods give to their most important edges values below 0.5. Thus, for the threshold
strategy, the size of the explanation depends on the method.

Topk. Topk is the number of edges in the explanatory subgraph. The topk strategy only keeps the top
k highest values in the mask. This strategy always returns explanations with a similar absolute size
whatever the dataset and the method. We also define the directed topk strategy and the undirected topk
strategy. While the first one keeps the top k directed edges, the second one avoids double counting
of node-to-node connections and returns explanations with k connections, i.e. the explanation is an
undirected subgraph of k edges.

B Experimental details
B.1 Datasets

Details on how the synthetic datasets were constructed can be found in Table 2. Table 3 presents the
structural properties of the real datasets. eBay graph characteristics are detailed in Table 4.

Synthetic datasets. We use type 1 synthetic datasets introduced in [10] (see Appendix A.6), which
are widely used in the xAI litterature [9–14, 16, 16–19, 26]. We follow the code2 of Vu et al. [13] to
create the synthetic datasets. In these datasets, each input graph is a combination of a base graph and
a set of motifs. Diverse motifs (house, cycle, grid, bottle) are plugged in on a base graph (Barabasi
graph or tree). Nodes are labeled based on their position in the graph: they receive a label 0 if they
are in the base graph and a non-zero label if they belong to a motif. For house and bottle, the position
in the motif is also important. For grid and cycle, we only look if the node belongs to the shape. The
ground-truth label of each node on a motif is determined based on its role in the motif. As the labels
are determined based on the motif’s structure, the explanation for the role’s prediction of a node are
the nodes in the same motif. Thus, the ground-truth explanation in these datasets are the nodes in the
same motif as the target.

Citation datasets. We consider three citation network datasets: Citeseer, Cora and Pubmed[49]. The
datasets contain sparse bag-of-words feature vectors for each document and a list of citation links

2https://github.com/vunhatminh/PGMExplainer/tree/master/PGM_Node/Generate_XA_Data
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Dataset # Nodes # Txn Nodes # Edges # Features # Classes # Positive label Train/Val/Test split

eBay 288853 207749 1225808 114 2 3081 (1.48% of txns) 0.75/0.15/0.1

Table 4: eBay graph statistics

between documents. Citation links are treated as (undirected) edges. Each document has a class label.
For training, we only use 20 labels per class, but all feature vectors.

Facebook. This dataset is a page-page graph of verified Facebook sites. Nodes correspond to official
Facebook pages, links to mutual edges between sites. Node features are extracted from the site
descriptions. The task is multi-class classification of the site category.

Wikipedia network. Chameleon and squirrel are two page-page networks on specific topics in
Wikipedia. In those datasets, nodes represent web pages and edges are mutual links between pages.
And node features correspond to several informative nouns in the Wikipedia pages. We classify the
nodes into five categories in terms of the number of the average monthly traffic of the web page.

Actor co-occurrence network. This dataset is the actor-only induced subgraph of the film-director-
actor-writer network. Each node corresponds to an actor, and the edge between two nodes denotes
co-occurrence on the same Wikipedia page. Node features correspond to some keywords in the
Wikipedia pages. Nodes are classified into five categories in terms of words on the actor’s Wikipedia.

WebKB. WebKB1 is a web page dataset collected from computer science departments of various
universities by Carnegie Mellon University. We use the three subdatasets of it, Cornell, Texas, and
Wisconsin, where nodes represent web pages, and edges are hyperlinks between them. Node features
are the bag-of-words representation of web pages. The web pages are manually classified into the
five categories, student, project, course, staff, and faculty.

eBay. We conducted a case study on a real-world dataset with collaboration with the eBay Risk
Team. We construct a bipartite graph with 2 different kinds of nodes: transaction nodes (txn), which
are what we want to predict as targets, and entity nodes, which are unique assets including buyer
account, payment tokens, email, IP address, and shipping address, acting like a linkage medium to
connect txns together. If a txn has relation with an entity, we put an edge between these two nodes.
Two different txns will be linked to the same entity node if they are sharing the same entity, e.g. the
same shipping address is used in the two txns. Each txn is labeled as legit or fraudulent, and carries
features provided by eBay risk system. These features include the information of transaction itself
and expert-designed features extracted from its neighbors such as user and email information. For
the entity nodes, the feature vectors are filled with zero value. Our source data is sampled from
e-commerce history transaction logs. To ensure the connectivity of the graph, we first sample some
seed txns within certain period of time, and then expand 3 hop neighbors from these seeds, and at
each hop, no more than 32 neighbors are picked. Then we collect all involved nodes. The final
graph has a size of 288,853 nodes (includes 207,749 txn nodes) and 1,225,808 edges. Among the txn
nodes, 3,081 are labeled as fraudulent. Each txn node has 114 features. The graph we are using is the
same with eBay-small graph in paper xFraud [50]. The desensitization version data is available for
legitimate, non-commercial usage after submitting the application 3. According to our experience,
user based features usually contribute more, and payment tokens are usually a stronger evidence of
fraud propagation among other entities. For example, a transaction with large user behavior change
may be caused by account takeover attack, and a transaction using a payment token which has been
used in other proved fraudulent purchases are more likely to be malicious.

B.2 Explainability methods

Model-aware. Gradient-based methods compute the gradients of target prediction with respect to
input features by back-propagation. Features-based methods map the hidden features to the input
space via interpolation to measure important scores. Decomposition methods measure the importance
of input features by distributing the prediction scores to the input space in a back-propagation manner.

3https://github.com/eBay/xFraud
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Model-agnostic. Perturbation-based methods use masking strategy in the input space to perturb
the input. Surrogate models use node/edge dropping, BFS sampling and node feature perturbation.
Counterfactual methods generate counterfactual explanations by searching for a close possible world
using adversarial perturbation techniques [51].

Explainer Model-aware/agnostic Target Type Flow

SA Model-aware N/E Gradient Backward
IG Model-aware N/E Gradient Backward
Grad-CAM Model-aware N Gradient Backward

Occlusion Model-agnostic N/E Perturbation Forward
GNNExplainer Model-agnostic N/E/NF Perturbation Forward
PGExplainer Model-agnostic N/E Perturbation Forward
PGM-Explainer Model-agnostic N/E Perturbation Forward
SubgraphX Model-agnostic N/E Perturbation Forward

PageRank Model-agnostic N Baseline -
Distance Model-agnostic N Baseline -

Table 5: Explainability methods tested in the context of our evaluation framework.

B.3 GNN training

For all datasets, we use Adam optimizer [52]. The graph convolution network (GCN) has 2 or 3
layers with 16, 20 or 32 units. We eventually apply regularization on the weights with a weight decay
factor of 0.05 or 0.005. We also apply dropout for some datasets. We indicate all parameters for each
family of datasets. For synthetic datasets and for Facebook dataset, we use a 0.8/0.15/0.1 train/val/test
split. For the Planetoid datasets, we use the default split: 140/500/1000 for Cora, 120/500/1000
for CiteSeer and 60/500/1000 for PubMed. We use the default train/val/test split for all other real
datasets, namely 0.48/0.32/0.2. We further describe the model accuracy, F1-score, precision and
recall for synthetic and real datasets.

B.4 Protocol

For each dataset, we first train a graph convolution network (GCN) as introduced by Kipf and Welling
[38]. For synthetic datasets, we use the version implemented by Rex Ying 4 [10]. For real datasets,
we use the original GCN implementation from Kipf 5. We use the trained model to do predictions of
node targets of a testing set. We test twelve explainability methods on the synthetic and real datasets.
We select 100 testing nodes which label we want to explain. We run each experiment on 5 different
seeds and present the average results. All computations were run on ETH Zurich internal clusters:

4https://github.com/RexYing/gnn-model-explainer
5https://github.com/tkipf/gcn

Datasets Syn WebKB Citat., Wiki eBay

Faceb., Actor

layers 3 2 2 2

hidden dim 20 32 16 32
epochs 1000 400 200 500

learning rate 0.001 0.001 0.01 0.001

weight decay 5 · 10−3 5 · 10−3 5 · 10−4 5 · 10−4

dropout 0 0.2 0.5 0.5

Table 6: GNN model and training parameters

Datasets BA BA Tree Tree BA
House Grid Cycle Grid Bottle

accuracy 0.986 1 1 0.895 1

F1-score 0.976 1 1 0.897 1
recall 0.979 1 1 0.87 1
precision 0.972 1 1 0.925 1

Table 7: GNN testing accuracy
on synthetic datasets
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Table 9: XAI LITERATURE FOR GNN GRAPH CLASSIFICATION. Acc defines the accuracy
(AUC, F1-score) measured with respect to the groundtruth, Fid+ and Fid- refer to the fidelity
metrics as defined in [26]. "Time" indicates if the paper has run a comparative analysis of the
computation time of the explainability methods. The final column "GNN accuracy" shows if
the authors have reported the testing accuracy of their model.

Paper Type Year Explainer Target Synthetic Real Time GNN Accuracy

Acc Fid- Fid+ Acc Fid- Fid+

Method[9] 2019 LRP E ✓ ✓

Method[11] 2020 PGExplainer E ✓ ✓ 0.92 - 1.00

Method[12] 2020 RelEx E ✓

Method[13] 2020 PGM-Explainer E ✓ 0.85-1.00

Method[20] 2020 XGNN E ✓* ✓*

Method[21] 2021 GNN-LRP E ✓* ✓* ✓* ✓* 0.77-0.95

Method[22] 2021 Causal Screening E ✓* ✓ 0.64 - 0.98

Method[16] 2021 SubgraphX E ✓ ✓ ✓ 0.86-0.99

Method[23] 2021 Refine E ✓ ✓* ✓ ✓* ✓ 0.60-1.00

Method[14] 2021 RG-Explainer E ✓ ✓

Method[19] 2021 Gem E ✓* ✓

Taxonomy[24] 2019 CG,EB,c-EB
CAM,Grad-CAM

E ✓ 0.88-0.99

Taxonomy[26] 2020
GNNExplainer,PGExplainer

SubgraphX,DeepLift
GNN-LRP,Grad-CAM,XGNN

E ✓ ✓ ✓ ✓ ✓ ✓ 0.44-0.91

Taxonomy [28] 2022
VanillaGrad,IntergratedGrad

GNNExplainer,PGMExplainer
E ✓*

* Different denomination in the paper, but the same evaluation mechanism as ours.
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