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Abstract001

Recently, Multimodal Large Language Models002
(MLLMs) encounter two key issues in multi-003
image contexts: (1) a lack of fine-grained per-004
ception across disparate images, and (2) a di-005
minished capability to effectively reason over006
and synthesize information from multiple vi-007
sual inputs. However, while various prompt-008
ing methods aim to describe visual content,009
many existing studies focus primarily on single-010
image settings or specific, constrained scenar-011
ios. This leaves a critical gap in understanding012
and addressing how MLLMs tackle more gen-013
eral and complex multi-image reasoning tasks.014
Thus, we first extensively investigate how cur-015
rent prompting methods perceive fine-grained016
visual details and process visual information017
when dealing with multiple images. Our find-018
ings reveal that existing prompting methods019
fall short in attending to needed clues and020
seamlessly integrating perception and reason-021
ing. Inspired by the findings, we propose a new022
zero-shot prompting method, Question-Guided023
Chain-of-Captions (QG-CoC), a generalized024
prompting approach that effectively handles025
problems with an arbitrary number of images.026
We evaluate our method on various open-source027
and closed-source MLLMs for multi-image and028
single-image benchmarks. Experimental re-029
sults indicate that QG-CoC demonstrates com-030
petitive performance across tasks and exhibits031
robust improvements in the challenging scenar-032
ios where existing prompting methods fail.033

1 Introduction034

Recent advancements in MLLMs (Li et al., 2024;035

Liu et al., 2023) have demonstrated impressive abil-036

ities in understanding the semantics of multimodal037

data and achieving promising results across various038

single-image tasks. However, recent empirical stud-039

ies (Meng et al., 2024) show that MLLMs currently040

still struggle with solving complex multimodal un-041

derstanding tasks such as temporal, spatial, and042

multi-image relationships.043

Therefore, there have been some emerging 044

prompting methods that help to enhance the reason- 045

ing chain of multimodal data. Most of the works 046

focus on converting visual scenes into rich text- 047

based representations such as scene graph, visual 048

table, and bounding box detection (Mitra et al., 049

2024; Shao et al., 2024), then triggering the reason- 050

ing ability of MLLMs. Although these methods are 051

effective for understanding single-image context, 052

they encounter obstacles when discerning relation- 053

ships between multiple images. This difficulty pri- 054

marily stems from an insufficient focus on key in- 055

formation, which requires joint consideration of all 056

images involved. Although some methods (Zhang 057

et al., 2024) start to consider multiple images in 058

their prompting methods, they are far from being 059

general and dealing with different kinds of scenar- 060

ios that involve multi-perspectives, multi-relations, 061

and multi-understanding (Wang et al., 2024; Meng 062

et al., 2024). 063

In our preliminary study, we first conduct a com- 064

prehensive evaluation of various captioning strate- 065

gies to analyze how to caption images effectively 066

under multi-image scenarios. Our findings reveal 067

that question-guided captioning each image in de- 068

tail benefits more than captioning multiple images 069

as a whole or concisely. Then, we adopt existing 070

prompting methods to multi-image scenarios and 071

observe the limitations of existing methods that 072

generate a lack of spatial context, unrelated object 073

descriptions, and vague descriptions. Motivated 074

by our preliminary study, we propose QG-CoC, 075

which first decomposes the original question into 076

necessary sub-questions to understand which key 077

information is needed for solving different tasks. 078

Then, based on each specific sub-question, we gen- 079

erate relevant captioning to ensure each caption 080

is conditioned under the given sub-question. Af- 081

ter obtaining guided captions, we utilize each sub- 082

caption as a clear hint to answer each sub-problem. 083

Last, we combine the sub-question and sub-answer 084
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pairs to serve as prior domain knowledge, high-085

lighting the key information needed to generate a086

final response.087

To summarize, our main contributions are as088

follows:089

• We first analyze why existing prompting meth-090

ods cannot work and suggest what is the most091

effective way to caption images under multi-092

image scenarios.093

• We then introduce QG-CoC, a novel zero-shot094

prompting method that can deal with an ar-095

bitrary number of images. This provides a096

strong baseline for future multimodal under-097

standing tasks.098

• Our method consistently outperforms existing099

prompting methods in multi-image scenarios100

and also shows generalization in single-image101

scenarios under both closed-source and open-102

source models.103

2 Related Work104

MultiModal Prompting Methods. Chain-of-105

Thought (CoT) prompting has considerably en-106

hanced the reasoning capacities of LLMs. Recent107

research has explored various methodologies to108

adapt CoT for multimodal models. Some investi-109

gations adopt a two-stage approach, where image110

information is initially transformed and grounded111

into captions, graph structure (e.g., scene graphs or112

knowledge graphs), or bounding boxes before rea-113

soning (Mitra et al., 2024; Zhang et al., 2024; Shao114

et al., 2024; Zhang et al., 2023; Mondal et al., 2024;115

Zhong et al., 2024). Other studies use agent-style116

pipelines that integrate external tools to process117

and reason with image observations. These tools118

include code interpreters and specialized vision119

models (Shao et al., 2024; Lei et al., 2024). Al-120

though these approaches effectively manage both121

textual and visual input, they exhibit limitations122

in handling multi-image scenarios since they need123

models to automatically integrate and analyze ei-124

ther spatial, temporal, or contextual cues from var-125

ied perspectives, moments, and settings (Shao et al.,126

2024). To address these limitations, in our work, a127

general prompting framework is designed for mul-128

timodal reasoning without fine-tuning or relying129

on separate visual modules or external tools.130

MultiModal Understanding Benchmarks.131

There are lots of benchmarks have been developed132

to comprehensively assess the multimodal under-133

standing and reasoning capabilities of MLLMs134

that require conditioning on images; however, they 135

predominantly focus on single-image scenarios and 136

do not directly measure how well the model and 137

the prompting methods can integrate information 138

across different images (Yue et al., 2024; Liu 139

et al., 2024; Lu et al., 2022). Therefore, several 140

benchmarks have recently been introduced to 141

systematically evaluate multi-image reasoning 142

and understanding capabilities, covering diverse 143

perspectives and tasks such as comparison, video 144

understanding, and grounding (Wang et al., 2024; 145

Meng et al., 2024). Besides, these benchmarks 146

comprehensively assess MLLMs, covering a 147

broader range of current multi-image capacities. 148

Despite these efforts, existing MLLMs fail 149

to explore and unlock the inherent reasoning 150

capabilities without specific prompting to solve 151

multi-image problems, and most of the common 152

techniques to enhance performance based on 153

fine-tuning (Liu et al., 2023; Jiang et al., 2024). In 154

parallel, in our work, we focus on how to apply 155

a sophisticated prompting strategy to represent 156

visual scenes into more informative descriptions, 157

demonstrating benefits in diverse domains in both 158

single-image and multi-image scenarios. 159

3 Preliminaries 160

3.1 Analysis on Different Captioning 161

Strategies under Multi-Image 162

MLLMs are capable of reasoning directly over both 163

vision and language modalities. These models typi- 164

cally receive an input consisting of images I and an 165

associated task prompt in text form P (e.g., a ques- 166

tion, caption generation, or scene graph generation). 167

The diverse descriptions generated from these in- 168

puts often encapsulate multiple perspectives and 169

provide advantageous informative context that aids 170

in addressing the original problem. However, a 171

critical question arises: How can we accurately 172

generate key information from images to effectively 173

answer multi-image problems? Previous research 174

has demonstrated that providing useful context can 175

enhance single-image problems and help uncover 176

visual details that MLLMs might overlook when 177

processing combined image and text inputs. 178

In this analysis, we compare different captioning 179

strategies and derive insights into their effective- 180

ness, focusing on four key settings: (1) concise 181

versus detailed captions, (2) individual captions for 182

each image versus a summarized caption across 183

multiple images, and (3) the inclusion of questions 184
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Figure 1: An example multi-image question with different captioning settings. Text in red, green, and orange
highlights our advantages. Text in blue is the correct answer. The actual prompt used for each captioning setting can
be found in Appendix B.

Model Gemini-Flash LLaVA-OV Mantis

Dataset MMIU MUIR MMIU MUIR MMIU MUIR

Concise vs. Detailed 54.1 → 54.9 65.2 → 66.3 47.3 → 48.0 43.7 → 44.0 45.3 → 46.4 42.3 → 44.5
Summarize vs. Individual 54.1 → 54.5 66.0 → 66.5 46.5 → 48.6 44.1 → 43.9 45.3 → 46.4 43.1 → 43.5
Question-Guided (N/Y) 53.3 → 55.3 65.4 → 66.2 47.4 → 47.8 43.1 → 44.7 45.5 → 46.0 42.4 → 44.1

Table 1: Comparison of captioning settings across models and multi-image datasets. Metrics represent answer
accuracy (%).

when doing captioning. To comprehensively assess185

performance, we evaluate both closed-source and186

open-source models across all possible combina-187

tions of these factors, resulting in 8 experimental188

settings. For each control factor, results are aver-189

aged over the 4 relevant variations, enabling a fair190

and robust comparison of the different strategies.191

1. Caption Length (Concise vs. Detailed): To192

examine whether the level of detail in image193

captions affects multi-image understanding,194

we compare two captioning length settings:195

Concise (describe the image in a sentence)196

vs. Detailed (describe the image in detail).197

Table 1 indicates that detailed captions im-198

prove multi-image accuracy due to enhanced199

modality matching and comprehensive image200

descriptions. In Figure 1, we can observe that201

detailed captioning will contain the informa-202

tion such as author and school list needed for203

answering the question.204

Insight: Detailed captions are superior to con-205

cise ones, as they mitigate information loss206

and better support complex reasoning tasks.207

2. Caption Scope (Summarized vs. Individ- 208

ual): When dealing with multiple images re- 209

lated to the question, a key decision is whether 210

to summarize image set as a whole or describe 211

each image independently. We evaluated two 212

settings: Summarized (generate a summarized 213

caption that describes the content across the 214

whole set) vs. Individual (generate a separate 215

caption for each image). Table 1 indicates that 216

when handling multiple images, generating in- 217

dividual captions for each image outperforms 218

producing a single summarized caption across 219

all images. In Figure 1, we can observe that 220

individual captioning provides more informa- 221

tion than summarized captioning. 222

Insight: Individual captions are more effec- 223

tive than summarized captions, particularly 224

in multi-image scenarios requiring precise, 225

image-specific information. 226

3. Question-Guided (No vs. Yes): To under- 227

stand whether integrating the question during 228

the caption generation influences the perfor- 229

mance, we compare two captioning settings: 230
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Figure 2: An example multi-image question with different prompting methods. Text in red highlights the
disadvantages. Text in blue is the correct answer. The actual prompt used for each method can be found in
Appendix C.

No Question-Guided (captions are generated231

based on images solely) vs. Question-Guided232

(captions are generated based on images and233

the question). Table 1 and Figure 1 show234

that question-guided captions improve overall235

multi-image task accuracy, focusing on task-236

relevant visual elements.237

Insight: Question-guided captioning outper-238

forms unguided captioning by aligning gener-239

ated context more closely with the question.240

Based on the above findings regarding effective241

image captioning in multi-image scenarios, the242

next subsection examines if adjusting the previous243

single-image prompting methods to multi-image244

scenarios can provide the necessary context for245

multi-image problems.246

3.2 Adjusting Existing Prompting Methods to247

Multi-Image Scenarios248

We conduct the following study to verify whether249

existing prompting methods can be effectively250

extended to address the complexities of multi-251

image scenarios. Our study focused on prominent252

methods such as DDCoT (Duty-Distinct Chain-of-253

Thought), which we adapted to decompose a cen-254

tral question into sub-questions applicable across255

multiple images; CCoT (Compositional Chain-of-256

Thought), explored for its potential to generate a257

composite scene graph from each given image; and258

CoCoT (Contrastive Chain-of-Thought), which,259

while originally designed for discerning similarities260

and differences between just two images, we con-261

sidered for its conceptual applicability to broader262

multi-image comparisons. As illustrated in Fig- 263

ure 2 using Gemini-1.5-Flash, we present a case 264

study and reveal a consistent pattern. While these 265

adapted existing methods demonstrate some capa- 266

bility in identifying individual entities, their charac- 267

teristics, and straightforward, explicit relationships 268

between images, they exhibit significant limitations. 269

Specifically, they struggle to extract deeper, im- 270

plicit context or perform complex reasoning that 271

requires synthesizing information from an arbitrary 272

number of images. For example, DDCoT lacks 273

present spatial context from images, CCoT presents 274

unrelated object descriptions since it does not un- 275

derstand what information is needed to answer the 276

question, and CoCoT only vaguely describes the 277

similarity and difference between images. To fur- 278

ther validate these observations, Section 4 provides 279

quantitative support that demonstrates these limita- 280

tions. 281

Thus, since the above study highlights the need 282

for more specialized prompting methods tailored to 283

multi-image context, we propose a new zero-shot 284

prompting method Question-Guided Chain-of- 285

Captions that involves balancing detail, specificity, 286

and relevance. 287

3.3 Question-Guided Chain-of-Captions 288

As shown in Figure 3, Question-Guided Chain- 289

of-Captions (QG-CoC) is a structured reasoning 290

approach designed to enhance multi-image under- 291

standing. The method involves three key steps: 292

Step 1: Decompose the question into sub-questions. 293

First, given a complex question, the method breaks 294

it down into a series of simpler, interpretable sub- 295
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Figure 3: An example multi-image question and its corresponding reasoning steps using QG-CoC. The prompts
used for each step can be found Appendix D.

questions. Each sub-question targets a specific as-296

pect of the image(s), such as the subject’s action,297

outcome, or reaction. This decomposition ensures298

that the reasoning is detailed and aligned with the299

intent of the question. Step 2: Caption key infor-300

mation for each sub-question. The MLLM then301

generates targeted captions for each sub-question.302

These captions extract and describe the most rele-303

vant visual evidence (e.g., objects, actions, effects,304

or scene changes), providing intermediate interpre-305

tations. This step directly connects each piece of306

reasoning to the image content. Step 3: Answer the307

sub-questions and integrate reasoning. Finally, the308

model answers each sub-question based on the cap-309

tions, forming a coherent reasoning chain. These310

individual answers are then combined to produce311

the final answer to the original question, supported312

by visual evidence from the images. This step-by-313

step process improves both the accuracy and the314

explainability of the model predictions.315

4 Experimental Results316

4.1 Experimental Setting317

Implementation. We conduct experiments us-318

ing different zero-shot prompting methods on both319

closed-source and open-source MLLMs. For ex-320

periments in this section, we utilize GPT-4o and321

Gemini-1.5-Flash as representatives of general-322

purpose MLLMs. We also utilize two open-323

sourced MLLMs: Mantis-idefics2-8B and LLaVA- 324

OneVision-7B, which support multiple image in- 325

puts. However, they have limited capacity to pro- 326

cess and follow long prompts to generate additional 327

context in the first stage. From open-source model 328

evaluation, we use Gemini-1.5-Flash as oracle cap- 329

tioning in the first stage. The versions of these 330

models we used for the experiments are listed in 331

Appendix A. 332

Baselines. First, to evaluate the added benefit 333

of our method to pretrained MLLMs, our default 334

baseline is to apply the model to the benchmark 335

without any prompt engineering. Then, we com- 336

pare QG-CoC prompting to five state-of-the-art 337

methods including: (1) Detailed Captioning: In 338

the previous section, we find that captioning image 339

individually in detail enhance the performance the 340

most, (2) Question-Guided Detailed Captioning: 341

In the previous section, we find that adding ques- 342

tion in the prompt enhances the performance, (3) 343

DDCoT: First, decompose the question, then uti- 344

lizes MLLMs to answer the sub-questions and uses 345

it as rationale, (4) CCoT: Utilize MLLMs to gen- 346

erate a scene graph based on each image, and (5) 347

CoCoT: Utilize MLLMs to describe the similarity 348

and difference between multiple images. All these 349

methods work in a two-step pipeline. The first step 350

generates an additional textual representation from 351

the instructions of different methods. The second 352
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Model Method
Dataset

Multi-Image Single-Image

MUIR MMIU ScienceQA MMMU MMBench

Open-Source

LLaVA-One-Vision

w/o prompt 41.2 44.6 94.5 45.4 85.1
Caption 42.0 48.1 91.7 49.7 85.1

QG-Caption 44.7 49.4 93.1 45.4 85.6
DDCoT 53.4 50.5 92.9 49.7 84.3
CCoT 44.6 46.9 93.0 46.8 86.0
CoCoT 44.2 46.4 – – –

QG-CoC 53.3 50.9 94.5 48.9 87.6

Mantis-idefics2

w/o prompt 43.4 45.0 80.3 41.8 79.0
Caption 43.9 46.7 79.7 44.7 80.4

QG-Caption 44.5 47.7 79.1 44.0 79.7
DDCoT 47.9 50.1 83.0 49.7 78.3
CCoT 44.4 44.9 80.7 46.1 82.1
CoCoT 42.6 45.4 – – –

QG-CoC 48.9 49.8 83.8 48.9 83.4
Closed-Source

GPT-4o

w/o prompt 70.8 63.3 89.5 63.1 86.0
Caption 71.8 63.6 86.8 66.0 88.1

QG-Caption 70.0 65.1 89.6 61.7 89.5
DDCoT 73.1 62.9 89.3 64.5 86.6
CCoT 70.4 60.9 87.8 61.0 88.1
CoCoT 74.0 64.5 – – –

QG-CoC 74.9 65.8 90.3 66.7 88.9

Gemini-1.5-Flash

w/o prompt 66.0 55.0 87.0 64.5 86.0
Caption 66.8 53.7 86.9 61.0 84.5

QG-Caption 66.0 54.9 86.8 66.7 84.9
DDCoT 67.6 51.5 86.9 53.9 84.5
CCoT 66.3 51.9 85.5 53.2 85.6
CoCoT 65.4 55.5 – – –

QG-CoC 68.2 55.4 87.2 63.7 85.2

Table 2: Multi-Image and Single-Image benchmark performance of different models with various prompting
methods. Metrics represent answer accuracy (%).

step involves passing the images, question, and353

output from the first step to answer the question.354

Evaluation Dataset. We select two representa-355

tive and multi-faceted benchmarks: MuirBench356

and MMIU. MuirBench is a comprehensive bench-357

mark consisting of 12 diverse multi-image tasks,358

such as scene understanding, ordering, etc. It con-359

tains 2,600 multiple-choice questions with 11,264360

images in total. We report the overall average per-361

formance across the 12 tasks. MMIU is a multi-362

image benchmark encompassing 7 types of multi-363

image relationships, 52 tasks, 77K images, and 11K364

multiple-choice questions. We report the overall365

average performance across all the tasks. How-366

ever, during the evaluation, we observe some tasks367

in MMIU exhibit low quality, so we filter out368

some tasks in the spatial and semantic relation-369

ships. We also compare our method on various 370

single-image tasks, including MMMU, MMBench, 371

and ScienceQA, to validate the generalizability of 372

our method. However, since CoCoT is constructed 373

under image comparison, we cannot evaluate Co- 374

CoT on single-image benchmarks. 375

4.2 Main Results 376

To investigate which prompting methods and mod- 377

els better solve multi-image problems, we summa- 378

rize the answer accuracy performance in Table 2. 379

Comparison with various prompting baselines. 380

QG-CoC demonstrates strong performance across 381

both multi-image and single-image benchmarks, as 382

shown in Table 2: 383

1. Comparison over Caption: While provid- 384

ing detailed captions for individual images 385
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(“Caption” method) is beneficial, QG-CoC386

not only provides image captions but also en-387

sures these captions are directly relevant to388

specific parts of the sub-question. This rel-389

evance is achieved by first decomposing the390

main question into sub-questions (Step 1) and391

captioning key information for sub-questions392

(Step 2). As a result, the generated captions393

are targeted, leading to more focused and ef-394

fective reasoning compared to general detailed395

captions.396

2. Comparison over QG-Caption: QG-397

Caption incorporates the question into the398

prompt to improve caption relevance. Instead399

of guiding captions with a single, potentially400

complex main question, QG-CoC decomposes401

the question into simpler sub-questions (Step402

1) and then generates targeted captions for403

each sub-question (Step 2). This question-404

guided captioning at each sub-question typi-405

cally yields better results than a single pass of406

QG-Caption.407

3. Comparison over DDCoT: DDCoT also in-408

volves question decomposition. However,409

QG-CoC introduces a crucial intermediate410

step: generating explicit, targeted captions for411

each sub-question (Step 2) before proceeding412

to answer them and integrate reasoning (Step413

3). This step of grounding each sub-problem414

in visual evidence through dedicated captions415

often leads to more robust reasoning. While416

DDCoT shows competitive performance, QG-417

CoC frequently outperforms it.418

4. Comparison over CCoT: While scene graphs419

can be informative, they might produce overly420

detailed or less relevant information for a spe-421

cific question. Our method of generating cap-422

tions related to sub-questions (Step 2), guided423

by the initial question decomposition (Step 1),424

ensures that the visual information extracted425

is directly relevant to the task. Thus, QG-426

CoC consistently demonstrates higher accu-427

racy than CCoT.428

5. Comparison over CoCoT: CoCoT utilizes429

MLLMs to describe the similarity and differ-430

ence between multiple images. This can be431

effective for comparative tasks but may not be432

optimal for all types of multi-image tasks. QG-433

CoC, through its sub-question decomposition434

(Step 1) and subsequent targeted captioning 435

(Step 2), offers a more general framework that 436

can adapt to various reasoning needs beyond 437

simple comparison. As a result, QG-CoC gen- 438

erally achieves higher accuracy than CoCoT. 439

Overall, the results show the effectiveness of QG- 440

CoC in leveraging both detailed image understand- 441

ing and question-aware reasoning. 442

5 Discussion 443

We conduct an analysis of QG-CoC through mul- 444

tiple perspectives, including detailed breakdowns 445

of different visual domains on MMIU and MUIR 446

benchmarks, the impact of incorporating each com- 447

ponent of QG-CoC, and common error analysis. 448

Different Prompting Methods Performance 449

Across Various Image Relationships. As shown 450

in Figure 4, models exhibit different capabilities 451

across various image relationships in MMIU. We 452

also record all model performance on all tasks in 453

MMIU (Table 6) and MUIR (Table 7). 454

1) In semantic relationships, direct prompting 455

generally performs better on multi-image semantic 456

tasks involving low-level relationships than adding 457

more context. Since low-level relationships usually 458

involve intuitive understanding, providing more 459

details will not help with reasoning. Inversely, 460

in high-level tasks, for subjective tasks such as 461

Causality Reasoning and Emotion Recognition, 462

which require the identification and reasoning of 463

implicit visual information, and objective tasks, 464

such as retrieval tasks, QG-CoC outperforms exist- 465

ing methods significantly since our method pro- 466

vides more key information to tackle them. 2) 467

In temporal relationships, all prompting methods 468

can handle discrete and continuous temporal re- 469

lationships relatively well, but perform poorly on 470

reasoning-intensive tasks such as Visual Ordering 471

and Temporal Ordering. 3) In spatial relationships, 472

we find that all prompting method struggles with 473

understanding both 2D and 3D positional relations. 474

Since these prompting methods cannot provide 475

spatial information in multiple images and reason 476

correctly, QG-CoC overall provides more spatial- 477

related information compared to other methods. 478

Importance of each component on QG-CoC. 479

We analyze the contribution of each component in 480

QG-CoC through an ablation study on the MUIR 481

and MMIU benchmarks. In Table 3, starting from 482

the zero-shot baseline, each successive module 483
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(a) LLaVA-OV (b) Mantis

Figure 4: Prompting methods performance by image relationships on different models (MMIU dataset).

Method MUIR MMIU

Zero-shot 66.0 55.0
+ Question-Decompose 66.5 54.8
+ Question-Guided Caption 67.2 55.1
+ QG-CoC 68.2 55.4

Table 3: Ablation experiment results across MMIU
and MUIR benchmarks using Gemini-1.5-Flash. Our
method achieves the highest accuracy among all.

leads to consistent performance gains. Introduc-484

ing Question Decomposition improves MUIR ac-485

curacy from 66.0 to 66.5, showing the benefit of486

simplifying complex queries. Adding the Question-487

Guided Captioning module further raises the score488

to 67.2, highlighting the importance of context-489

aware visual grounding. Finally, incorporating the490

full QG-CoC model achieves the highest accuracy491

of 68.2 on MUIR and 55.4 on MMIU, confirming492

that the combined reasoning and generation steps493

effectively enhance overall understanding. These494

results underscore the complementary roles of each495

module and validate the design of our composi-496

tional reasoning pipeline.497

Error Reason Percentage (%)
(E1) Wrong question understanding 33.3% (40/120)
(E2) Inaccurate perception 31.7% (38/120)
(E3) Wrong reasoning 35.0% (42/120)

Table 4: Statistics of error analysis under Gemini-1.5-
Flash using QG-CoC.

Error Analysis. We delve deeper into the pri-498

mary challenges that MLLMs encounter when solv-499

ing multi-image problems using QG-CoC. To gain500

a quantitative understanding of model failures, we501

randomly sample 10 error instances for every task502

and a total of 120 error instances made by Gemini-503

1.5-flash on MuirBench, and annotate the main504

reasons for these mispredictions. We categorize505

into the three error types, including: (E1) Wrong 506

question understanding, which means MLLMs do 507

not understand the question accurately, leading to 508

the incorrect question decomposition. (E2) Wrong 509

perception, which means the failure to capture de- 510

tails in or between images. (E3) Wrong reasoning, 511

which means even if we get accurate decomposi- 512

tion and captioning, MLLMs still infer the wrong 513

reasoning path to answer the question. 514

In Table 4, we observe that the most common 515

error category (35.0% of error cases) is failure of 516

reasoning. We conclude that even if the given con- 517

text is accurate, MLLMs still infer incorrectly. The 518

other error category (33.3% of error cases) is due to 519

inaccurate question understanding and influences 520

the generation of incorrect captions and reasoning. 521

The rest 31.7% of errors are due to the failure to 522

capture details in images. The detailed qualitative 523

examples are provided in Figure 10. 524

6 Conclusion 525

In this work, we introduce a novel prompting 526

method called Question-Guided Chain-of-Captions 527

(QG-CoC), which first incorporates problem de- 528

composition and then generates each sub-question- 529

guided image captioning to provide a clue to an- 530

swer the sub-question, then combines the sub- 531

question and sub-answer pair as prior knowledge to 532

answer the original problem. Our extensive experi- 533

ments demonstrate the advantages of our method 534

for different MLLMs on various benchmarks. 535

Limitations 536

This work only provides a strong baseline for 537

the single-image and multi-image reasoning of 538

8



MLLMs. Although we experiment with many rep-539

resentative models and reasoning methods in this540

paper, we acknowledge that this does not cover all541

models and frameworks. Our proposed method re-542

lies on the captioning ability of advanced MLLMs.543

Therefore, it might cause performance deterioration544

in less advanced language models or more challeng-545

ing tasks. To strengthen QG-CoC, a more diverse546

and complicated scenario should be explored in the547

future, such as complex geometric shapes and even548

2D, 3D-spatial information.549
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A Model Hyperparameters 629

The hyperparameters for the experiments for study- 630

ing QG-CoC and other prompting methods are set 631

to their default values to ensure consistency in our 632

experiment. Table 5 details the specific generation 633

parameters for the various MLLMs we evaluate. 634

B Detail Studies of Different Captioning 635

Strategies under Multi-Image 636

B.1 Full Model Prompt 637

In Figure 5, we show the full model prompt of 638

different captioning settings. 639
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Model Version Generation Setup
Close-source

GPT-4o gpt-4o-2024-05-13 temperature = 0, max tokens = 2048
Gemini-Flash gemini-1.5-flash temperature = 0, max tokens = 2048

Open-source
LLaVA-OneVision-7B lmms-lab/llava-onevision-qwen2-7b-ov do_sample=False, temperature=0, max tokens = 2048
Mantis-Idefics2-8B TIGER-Lab/Mantis-8B-Idefics2 do_sample=False, temperature=0, max tokens = 2048

Table 5: Model names, versions, and generating setups for various MLLMs.

C Detail Studies of Adjusting Existing640

Prompting Methods to Multi-Image641

Scenarios642

C.1 Full Model Prompt643

In Figure 6, we show the full model prompt of644

different methods.645

D Detail Studies of Question-Guided646

Chain-of-Captions647

D.1 Full Model Prompt648

In Figure 7, we show the full model prompt of649

QG-CoC.650

D.2 Full Quantitative Results Across Various651

Image Relationships652

We further show the overall performance of QG-653

CoC across various image relationships and com-654

pare it with different prompting methods and mod-655

els. The results of MMIU and MUIR datasets are656

shown in Table 6 and Table 7, and we also illustrate657

the task performance of different prompting meth-658

ods under MUIR benchmark in Figure 8. The find-659

ings remain the same as MMIU, and our method660

outperforms other methods. Additionally, we ob-661

serve that the performance of each task under open-662

source models generally has a larger difference663

compared to closed-source models across various664

datasets and prompting methods.665

D.3 More Qualitative Examples666

In Figure 9, we show more examples for each multi-667

image task using QG-CoC in Gemini-1.5-Flash.668

D.4 Qualitative Analysis of Error Cases669

We present every type of error case that Gemini-670

1.5-Flash cannot answer correctly in Figure 10a,671

10b,10c. From E1, the model understands the672

wrong meaning of the question that "tortoise" is not673

"duck", and decomposes the question into wrong674

sub-questions (sub-goals). From E2, in step 2,675

the model incorrectly captions that "L shape has 4676

squares", when the correct caption is "3 squares".677

From E3, since the generated sub-questions and 678

captions are accurate, we can observe that the 679

model correctly points out the difference between 680

the two images, "a person walking". However, 681

the model does incorrect reasoning in the final re- 682

sponse. 683
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Model Method Overall Discrete Continuous Low-level High-sub High-obj Two-D Three-D

LLaVA-OV w/o prompt 44.6 37.6 47.9 66.8 51.8 42.9 37.1 27.8
Caption 48.1 40.5 50.6 75.6 55.8 51.2 35.8 27.5

QG-Caption 49.4 40.1 53.4 78.4 56.3 53.8 37.6 26.5
CCoT 50.5 41.4 50.2 76.9 57.5 59.1 39.6 28.5

DDCoT 46.9 39.6 47.8 69.1 57.3 51.3 36.4 26.6
CoCoT 46.4 39.6 48.0 72.3 53.5 48.2 36.5 26.8

QG-CoC 50.9 39.4 52.3 71.9 60.0 61.0 37.8 34.1

Mantis w/o prompt 45.0 34.5 45.7 62.7 51.8 52.0 41.8 26.4
Caption 46.7 35.4 45.7 69.5 52.0 52.7 40.7 28.6

QG-Caption 47.7 35.8 51.4 69.8 51.8 55.4 39.4 30.3
CCoT 50.1 38.0 50.3 69.2 57.3 61.5 45.9 28.8

DDCoT 44.9 37.9 48.5 57.3 50.8 52.2 42.5 25.4
CoCoT 45.4 34.6 45.7 67.6 50.8 49.8 41.6 27.6

QG-CoC 49.8 37.4 50.4 68.7 55.8 61.9 44.6 30.1

GPT-4o w/o prompt 63.3 60.6 60.7 94.8 60.0 67.3 53.3 46.4
Caption 63.6 59.0 57.5 95.1 65.8 65.9 53.3 48.6

QG-Caption 65.1 58.1 61.4 93.1 66.0 67.7 55.8 53.5
CCoT 60.9 53.4 60.0 91.7 60.8 63.7 53.4 43.0

DDCoT 62.9 57.3 58.3 94.1 64.0 65.1 54.4 47.0
CoCoT 64.5 60.3 60.9 95.4 65.8 65.0 56.3 48.0

QG-CoC 65.8 59.3 61.4 93.3 66.0 68.5 56.2 55.9

Gemini-Flash w/o prompt 55.0 49.4 53.0 82.1 62.0 61.3 46.4 30.9
Caption 53.7 51.4 52.1 83.1 60.3 63.3 47.2 18.4

QG-Caption 54.9 52.8 55.1 78.3 59.5 63.0 47.5 28.1
CCoT 51.9 48.1 52.3 72.2 59.8 60.9 45.6 24.5

DDCoT 51.5 47.8 51.6 80.4 58.8 61.4 42.4 18.4
CoCoT 55.5 50.8 52.3 79.6 59.8 63.2 49.1 33.8

QG-CoC 55.4 51.1 54.6 76.8 60.3 63.4 48.1 33.6

Table 6: MMIU performance across dimensions with different prompting methods and models.

Model Method Overall Geographic. Diagram. Matching. Difference. Retrieval. Counting. Attribute. Scene. Action. Grounding. Cartoon. Ordering

LLaVA-OV w/o prompt 41.2 37.0 54.0 44.0 30.0 45.9 26.5 34.2 63.4 40.2 29.8 38.5 15.6
Caption 42.0 46.0 56.0 44.0 32.4 38.4 34.2 28.6 66.7 42.1 32.1 37.2 20.3

QG-Caption 44.7 40.0 60.1 49.6 33.2 41.4 36.3 37.2 66.1 43.3 29.8 38.5 20.3
CCoT 44.6 44.0 58.8 47.8 32.7 43.5 35.9 36.7 69.9 40.2 32.1 38.5 18.8

DDCoT 53.4 41.0 69.6 61.0 46.2 54.5 34.2 56.1 74.2 42.1 32.1 41.0 21.9
CoCoT 44.2 42.0 56.8 46.3 34.4 50.3 31.6 35.7 67.2 42.1 31.0 35.9 17.2

QG-CoC 53.3 42.0 70.1 60.1 38.8 54.1 41.9 56.6 76.9 43.9 29.8 42.3 20.3

Mantis w/o prompt 43.4 25.0 62.1 53.7 28.8 35.3 38.0 46.9 56.5 34.2 28.6 38.5 17.2
Caption 43.9 29.0 61.3 53.0 32.7 31.9 39.3 33.7 62.9 44.5 28.6 43.6 17.2

QG-Caption 44.5 32.0 63.6 53.5 28.5 37.0 41.0 38.8 62.4 41.5 28.6 38.5 15.6
CCoT 44.4 30.0 63.3 56.5 28.2 34.6 41.5 35.7 66.1 37.8 27.4 38.5 10.9

DDCoT 47.9 35.0 59.8 57.8 35.9 42.1 39.3 52.0 71.0 38.4 34.5 41.0 15.6
CoCoT 42.6 26.0 59.6 52.6 33.8 31.5 39.3 35.2 55.9 38.4 29.8 38.5 17.2

QG-CoC 48.9 37.0 64.3 59.1 34.5 41.4 44.0 48.0 70.4 39.0 32.1 46.2 15.6

GPT-4o w/o prompt 70.8 50.0 90.2 84.1 58.5 63.0 78.6 63.3 86.6 50.6 54.8 53.9 28.1
Caption 71.8 62.0 91.0 85.6 65.3 59.9 79.1 56.1 83.3 54.9 53.6 52.6 34.4

QG-Caption 67.0 44.0 90.2 84.9 63.8 58.2 75.2 60.7 85.0 51.2 52.4 50.0 23.4
CCoT 70.4 51.0 90.2 83.9 66.2 61.6 75.6 60.2 83.3 46.3 54.8 44.9 31.3

DDCoT 73.1 50.0 89.7 85.8 66.5 64.4 79.9 61.7 87.6 57.3 56.0 56.4 40.6
CoCoT 74.0 57.0 90.5 87.3 70.6 70.9 76.5 59.2 88.2 50.0 54.8 57.7 37.5

QG-CoC 74.9 61.0 91.0 87.9 68.5 68.5 79.1 62.2 87.0 57.9 57.1 56.4 43.8

Gemini-Flash w/o prompt 66.0 53.0 84.7 82.5 53.5 75.3 51.3 54.1 82.8 43.3 51.2 46.2 18.8
Caption 66.9 58.0 84.2 83.2 56.2 69.2 50.9 58.2 80.7 47.6 50.0 50.0 32.8

QG-Caption 66.0 47.0 83.4 83.4 55.0 64.4 52.1 61.2 83.3 53.1 48.8 42.3 25.0
CCoT 66.3 54.0 85.7 82.3 52.4 69.9 50.0 60.7 81.2 49.4 47.6 43.6 34.4

DDCoT 67.6 44.0 87.7 84.3 56.5 74.7 46.6 62.2 75.8 49.4 56.0 53.9 32.8
CoCoT 65.4 44.0 84.4 81.7 50.9 73.3 48.7 57.1 80.7 47.0 51.2 52.6 25.0

QG-CoC 68.2 46.0 88.7 84.3 57.4 76.0 50.4 59.2 79.0 50.6 52.4 51.3 28.1

Table 7: MUIR performance across tasks with different prompting methods and models.
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Figure 5: Actual prompts with different captioning settings.
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Figure 6: Different actual prompts of existing prompting methods adapted to multi-image scenarios.

Figure 7: An actual prompt of QG-CoC.
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(a) LLaVA-OV (b) Mantis

Figure 8: Prompting methods performance by tasks on different models. (MUIR)

(a) Task: Image Text Matching (b) Task: Ordering

Figure 9: Examples of different tasks using QG-CoC on Gemini-1.5-Flash.
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(a) Error type 1 (Wrong Question Understanding) example
of QG-CoC on Gemini-1.5-Flash.

(b) Error type 2 (Inaccurate Perception) example of QG-CoC
on Gemini-1.5-Flash.

(c) Error type 3 (Wrong Reasoning) example of QG-CoC on Gemini-1.5-Flash.

Figure 10: Examples of three common error types made by QG-CoC on Gemini-1.5-Flash.
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