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ABSTRACT

Transformer architectures have achieved great success in solving natural language
tasks, which learn strong language representations from large-scale unlabeled texts.
In this paper, we seek to go further beyond and explore a new logical inductive
bias for better language representation learning. Logic reasoning is known as a
formal methodology to reach answers from given knowledge and facts. Inspired by
such a view, we develop a novel neural architecture named FOLNet (First-Order
Logic Network), to encode this new inductive bias. We construct a set of neural
logic operators as learnable Horn clauses, which are further forward-chained into
a fully differentiable neural architecture (FOLNet). Interestingly, we find that
the self-attention module in transformers can be composed by two of our neural
logic operators, which probably explains their strong reasoning performance. Our
proposed FOLNet has the same input and output interfaces as other pretrained
models and thus could be pretrained/finetuned by using similar losses. It also allows
FOLNet to be used in a plug-and-play manner when replacing other pretrained
models. With our logical inductive bias, the same set of “logic deduction skills”
learned through pretraining are expected to be equally capable of solving diverse
downstream tasks. For this reason, FOLNet learns language representations that
have much stronger transfer capabilities. Experimental results on several language
understanding tasks show that our pretrained FOLNet model outperforms the
existing strong transformer-based approaches.1

1 INTRODUCTION

Pretrained transformer models have achieved great success in solving natural language tasks, which
learn strong language representations from large-scale unlabeled texts. The learned representations
can be easily transferred to different downstream tasks by finetuning over limited amount of labeled
data (Radford et al., 2018; Devlin et al., 2018; Lan et al., 2019; Liu et al., 2019; Yang et al., 2019).
They even exhibit strong zero-shot or few-shot generalization capability without finetuning when
further scaling up the model size (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022).
Besides large-scale models and training data, one important reason for the success is the strong
relational inductive bias encoded in the transformer architecture (Vaswani et al., 2017); it effectively
models the pairwise relations between tokens and use it to compute the language representations.

In this paper, we seek to go beyond the inductive bias in transformer models and explore a new logical
inductive bias for better language representation learning. The main idea is to view the computation
of language representations as a logic reasoning process; that is, the language representations are
deduced via logic reasoning step-by-step from the original discrete token sequences. Specifically, we
treat the tokens in the input sequence as the terms in logic programming, and treat their properties
and relations as the predicates of different arities. Then, the final language representations are derived
as the advanced properties and relations from the basic input properties and relations (e.g., token ids
and relative distances). Most importantly, we require the construction of such deduction process to
follow the principles of first-order logic, in order to encode such logical inductive bias.

Following the above logical inductive bias, we derive a principled neural architecture, named FOLNet
(First-Order Logic Network), for learning language representations. Specifically, we construct a set

1The code along with the pretrained model checkpoints will be released publicly.
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of neural logic operators as learnable Horn clauses, which are further forward-chained into a fully
differentiable neural architecture. In particular, the FOLNet architecture consists of two interacting
branches responsible for unary and binary relational reasoning, respectively. Interestingly, we find
that the self-attention mechanism can be constructed by two of our developed neural logic operators,
and the entire transformer architecture can be understood as a single-branch version of FOLNet. This
newly discovered connection might partially explain the surprisingly strong reasoning performance
of the transformer architecture (Wei et al., 2022; Lewkowycz et al., 2022). As we will demonstrate in
our experiments, such dual-branch architecture has several significant advantages that are essential for
learning better language representations. Furthermore, we also establish a new unified understanding
of different positional encoding strategies with our logical inductive bias. For instance, we find that
the existing popular relative positional encoding can be constructed by the degenerated version of our
two neural logic operators. More importantly, it also allows us to develop a new principled relative
positional encoding that is simple yet quite effective in practice. Notably, our proposed FOLNet
has the same input and output interfaces as other pretrained transformer models (e.g., BERT) and
thus could be trained by using similar losses. It also allows FOLNet to be used in a plug-and-play
manner when replacing other pretrained models in solving downstream tasks. Our logical inductive
bias assumes that the “logic deduction skills” are shared across all natural language tasks; that is,
these skills learned during pretraining should be equally applicable to solving diverse downstream
tasks. For this reason, FOLNet learns language representations that have much stronger transfer
generalization capabilities. Experimental results on several language understanding tasks (GLUE,
SQuAD 2.0 and FOLIO) show that our FOLNet model outperforms the transformer architecture by a
large-margin when they are pretrained using similar losses. The results clearly show that advantage
of using the logical inductive bias for learning language representations.

2 LOGICAL INDUCTIVE BIAS FOR LANGUAGE REPRESENTATIONS

Natural language text can be viewed as a sequence of discrete symbols, and language representations
learning considers the problem of mapping the discrete symbols into certain more computable forms.
One widely used approach is distributed representation, which maps the discrete token ids into dense
vectors (Mikolov et al., 2013; Pennington et al., 2014; Peters et al., 2018). Many different functional
forms, such as LSTM (Hochreiter & Schmidhuber, 1997), and more recently, transformer models
(Vaswani et al., 2017), have been used to implement such mappings. They generally encode different
kinds of inductive bias for modeling natural languages. For example, RNNs use the same set of
model parameters to update the hidden states over time, which encodes translation-invariance over
time (Battaglia et al., 2018). These forms of inductive bias continuously push the state-of-the-arts in
solving natural language tasks. In this section, we introduce a new form of inductive bias, named
logical inductive bias, which will work together with distributed representations to design more
effective representation mappings. Our main idea is to view the language representation mapping as
a logic reasoning process; that is, the language representations are deduced step-by-step from the
original discrete token sequences. Specifically, we treat the tokens in the input sequence as terms
(or objects) in logic programming, and treat their properties and relations as predicates of different
arities. In light of logical inductive bias, the language representations that we seek to compute are
the (advanced) properties and relations that can be deduced from these input (basic) properties and
relations. Most importantly, we require the construction of such deduction process to follow the
principles of first-order logic, in order to encode the logical inductive bias into the representation
learning process. We now formulate the language representation learning as a logic programming
problem by adopting similar (logic programming) notations used in Evans & Grefenstette (2018).

• Terms: We consider a first-order logic system without function symbols, so that terms can only be
variables or constant. They are used to represent general objects or a particular object of interest,
respectively. In the context of language representation learning, we model each instance of text
sequence x (of length T ) as a collection of constants x = {x1, . . . , xT }, where each token xt is a
constant (t = 1, . . . , T ). We use lower-case letters to denote constants and upper case for variables
as in logic programming. For example, X is a variable to represent a general object (e.g., token).

• Atoms: For each term, we will define its properties and relations as an r-ary predicate
p(X1, . . . , Xr), which takes the value of T (True) or F (False) depending on whether a cer-
tain property/relation regarding (X1, . . . , Xr) holds or not. For example, whether the a token a
takes the v-th id in the vocabulary is a unary predicate TokenIDv(a) for v = 1, . . . , V , where V
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Language representations Logic programming FOLNet

Tokens xt in the text sequence Constant: xt The argument: xt in tensor ul(xt)
Token ids, relative distances, etc Input (basic) atoms: C0 = B Input tensors: {u0(x),u0(x, y)}
Final langauge representation Deduced (advanced) atoms: CL Output tensors: {uL(x),uL(x, y)}
Representation mapping (partial) Modus Ponens using generic clause (8) Neural logic operator: see Table 2
Representation mapping (partial) 1-step deduction: Cl = conR(Cl−1) Forward pass: 1-layer
Representation mapping (full) L-step deduction: forward-chaining (3) Forward pass: L-layer

Table 1: Identification of language representation learning as a logic programming problem.

is the vocabulary size, and whether the distance between two tokens a and b is equal to d is a
binary predicate Distd(a, b), for |d| < T . An atom is ground if it has no variables, e.g., the above
TokenIDv(a) and Distd(a, b) are all ground atoms.
• Clauses: The reasoning process is constructed by a set of “if-then” clauses in the form of:

q ← p1 ∧ · · · ∧ pm, (1)
where p1, . . . , pm and q are the body atoms and head atoms, respectively, and∧ denotes conjunction
(i.e., logical AND). These atoms play the roles of premises and conclusions: if p1, . . . , pm are true,
then q is also true. Clauses of the above form are known as definite Horn clauses (Horn, 1951).
We call a clause a ground rule if all its variables are substituted by constants. For example, when
applying a substitution θ , {a/X, b/Y } to a clause q(X,Y )← p(X,Y ), we get a ground rule:
q(a, b)← p(a, b). It can be viewed as applying a general clause to a particular instantiation.

Our objective is to learn a collection of clauses and compose them into a mapping from input
predicates (e.g., TokenIDv(xt) and RelDistd(xt, xτ )) to language representations. Specifically,
let R be a set of clauses and ground(R) be the corresponding set of ground rules. We define the
immediate consequences of applying the ground rules in ground(R) to a set of ground atoms X as

conR(X ) = X ∪
{
q
∣∣∣q ← p1 ∧ · · · ∧ pm ∈ ground(R),

m∧
i=1

pi ∈ X
}
. (2)

It can be understood as a set of ground atoms that can be deduced from X together with X itself.
Given a set of input ground atoms B, we can repeatedly apply the ground rules inR for L steps:

Cl = conR(Cl−1), C0 = B and l = 1, . . . , L. (3)
Then, CL is all the possible ground atoms (predicates) that can be deduced from B (including B
itself) in L steps. The above procedure is known as forward-chaining: it deduces all the possible
conclusions from the input premises (i.e., B) by repeatedly applying (i.e., chaining) clauses. If we
want to verify whether a predicate q′ holds (i.e., can be entailed), it suffices to check if q′ is in CL. In
language representation learning, we start, for example, from the following input (basic) atoms:

B = {TokenIDv(xt), RelDistd(xt, xτ ), . . . |t, τ = 1, . . . , T}, (4)
and deduce CL as the final representations by forward-chaining our (learned) clauses. For example,
in solving an (extractive) question answering problem, whether a certain token is the beginning (or
end) of the answer span is modeled as an advanced deduced property of this token, i.e.,

CL = {AnswerStartsAt(xt), AnswerEndsAt(xt)|t = 1, . . . , T}. (5)
In autoregressive language modeling, the advanced deduced property becomes the next token ids. Ta-
ble 1 summarizes the above identifications between language representations and logic programming.
Next, we will develop a neural architecture to encode such logical inductive bias. Throughout the
paper, we will use boldface letters to denote vectors (lowercase) and matrices (uppercase).

3 FOLNET: A NEURAL ARCHITECTURE WITH LOGICAL INDUCTIVE BIAS

In this section, we develop a novel neural architecture, named First-Order Logic Network (FOLNet),
which encodes the logical inductive bias presented in Section 2. Specifically, we focus on: (i) how to
represent the atoms as continuous vectors (Section 3.1), (ii) how to devise a neural inference step
that approximates (2) (Section 3.2), and (iii) how to forward-chain them into a fully-differentiable
architecture based on (3) (Section 3.3). The overall neural architecture and its correspondence to the
logical inductive bias are shown in Figure 1. Next, we will discuss step-by-step how we devise the
architecture, its advantages, and also some important connections to existing approaches.
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Figure 1: Overview of the FOLNet architecture and how it encodes the logical inductive bias. The
neural logic operators model the clauses, which are forward-chained into a differentiable model. The
“mixer ops” refer to the operators c, j, m, and t in Table 2 as they reduce over the object dimension.

3.1 VECTOR REPRESENTATIONS OF ATOMS

Recall that we use an r-ary ground atom pd(x1, . . . , xr) to characterize whether the d-th prop-
erty/relation holds for a tuple of tokens (x1, . . . , xr), where d = 1, . . . , Dr. To overcome the
difficulty of learning these discrete-valued atoms, which takes values in {T,F}, we introduce
ud(x1, . . . , xr) ∈ R as its continuous representation and characterizes the extent to which the atom
pd is true. For example, in ProbLog (De Raedt et al., 2007; De Raedt & Kimmig, 2015; Fierens et al.,
2012; Manhaeve et al., 2018), ud(·) gives the probability of the atom pd(·) being true. In this paper,
we consider ud(·) to be the logit of the corresponding atom, i.e., Pr{pd(·) = T} = 1/(1 + e−ud(·));
a larger value of ud(·) implies a higher chance of the atom pd(·) being true. And we can also easily
verify that the logit for the negated atom of pd(·) is simply −ud(·). Let u(x1, . . . , xr) ∈ U ⊂ RDr

be a Dr-dimensional vector that collects ud(x1, . . . , xr) as its d-th element. Then, u(x1, . . . , xr)
will be a continuous (logit) vector representation for Dr atoms with arity r. For example, for an input
text sequence x = (x1, . . . , xT ), we can use u(xt) to represent D1 (unary) properties for each token
xt, and use u(xt, xτ ) to characterize D2 (binary) relations between any pair of tokens. Both the input
(basic) properties/relations and the deduced (advanced) ones will be represented in the same logit
vector space, where the deduction process will be carried out. For convenience, we may also directly
refer to a set of atoms by their logit vector representation u(·).

3.2 NEURAL MODUS PONENS INFERENCE

We now develop a set of neural operators for implementing the deduction step characterized in (2).
To begin with, we first introduce the Modus Ponens (MP) rule from first-order logic (Andrews, 2013),
which states that if clause B ← A and statement A hold, then B is true:

B ⇐ {B ← A and A}. (6)

In the context of (2), when choosing A = p1 ∧ · · · ∧ pm and B = q, the deduction in (2) can be
viewed as an applications of the MP inference using all the ground clauses in ground(R). In this
paper, we restrict our focus to the setting where all the atoms have arity of either one or two. That
is, we will only consider atoms of the form u(xt) and u(xt, xτ ) (represented in their vector forms),
respectively.2 Then, we will need to develop the MP inference from a set of atoms {v(a),v(a, b)} to
another set of atoms {u(x),u(x, y)}, which can be categorized into the following four groups:

u(x)⇐ RUU,v(a); u(x)⇐ RUB,v(a, b); u(x, y)⇐ RBU,v(a); u(x, y)⇐ RBB,v(a, b) (7)

where RUU, RUB, RBU and RBB denote the sets of rules that deduce atoms of a certain arity from
another arity. For example, RBU defines a collection of clauses that derives binary (B) atoms from
unary (U) atoms. We now proceed to model these clauses and their inference in logit space. Given a
set of premise atoms P1, . . . , PM , we consider N clauses of the following generic form:

Qn ←
( ∧
m∈Mn,+

Pm

)∧( ∧
m∈Mn,−

¬Pm
)
, n = 1, . . . , N, (8)

2Generalizing our work to higher arities is relatively straighforward in principle but will lead to high
computation complexities in practice. We leave such an extension as a future work.
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Sym. Ops. Typing B-dim. R-dim. Neural operator in logit space Kernel act. Remarks

b bool U← U× U x w uhs(x) =
∑

w Khw(x)vws(x) Identity
c cjoin U← U× B h a uhs(x) =

∑
a Khs(a)vh(x, a) Softmaxa

j join U← B× U h a uhs(x) =
∑

a Kh(x, a)vhs(a) Softmaxa Self-attention
m mu U← B× B x a uhs(x) =

∑
a Kh(x, a)vs(x, a) Softmaxa General RPE

a assoc B← U× U h w uh(x, y) =
∑

w Khw(x)vhw(y) Identity Self-attention
p prod B← U× B x w uh(x, y) =

∑
w Khw(x)vw(x, y) Identity General RPE

t trans B← B× B h a uh(x, y) =
∑

a Kh(x, a)vh(a, y) Softmaxa

Table 2: List of all our neural logic operators with restricted kernels (see Appendix A.1 for our
naming protocols). Note that each operator has a unique batching dimension (B-dim) and a unique
reduction dimension (R-dim). The typing of the operator defines the arities of the kernel, the premise
and the output atom. For example, U← B× U means the arities of the kernel, the input atom, and the
output atom are 2, 1 and 1, respectively. We also list the activation functions that are used to compute
the corresponding kernels, where the normalization dimension of Softmax is listed in its subscript.

where Qn is the head atom, ¬ denotes logical negation (i.e., NOT), andMn,+ andMn,− are two
subsets ofM = {1, . . . ,M} withMn,+ ∩Mn,− = ∅. Then, the logit vector u for the head atoms
{Qn} can be approximately inferred from the logit vector v of the premises {Pm} by a matrix
multiplication followed by an (optional) elementwise nonlinear activation function (Appendix D):

u = σ(Kv), (9)

where K is an N ×M kernel matrix that represents the clauses in (8), and σ(z) = ln(1 + 2ez) is the
activation function. Notably, each row of K characterizes the conjunction pattern on the right-hand
side of (8): a positive (negative) value of its (n,m)-th element, Knm, means that m is more likely in
Mn,+ (Mn,−) for the n-th clause. It follows that the kernels forRUU,RUB,RBU andRBB in (7) would
be in the form of KUU(x, a), KUB(x, a, b), KBU(x, y, a) and KBB(x, y, a, b), respectively, which are
D1 ×D1, D1 ×D2, D2 ×D1 and D2 ×D2 matrices. And (9) would become matrix multiplications
between them and their corresponding premises (i.e., v(a), v(a, b), v(a) or v(a, b)) followed by a
summation over a and b whoever appear therein (see (30)–(33) in Appendix D). Finally, the activation
function σ(·) can be dropped when “←” is replaced with “≡”, where A ≡ B iff A← B and B ← A.

One major limitation of directly implementing (9) for the inference rules in (7) is the high memory
and computation costs. For example, the kernel KBB(x, y, a, b) needs O(D2

2T
4) to store its value.

And the MP inference (9), which now becomes u(x, y) =
∑
a,bK(x, y, a, b)v(a, b), also has a

computation complexity of O(D2
2T

4). Therefore, we have to restrict the size of the kernel and reduce
the overall complexity by using different methods, such as sharing the values of KBB(x, y, a, b) across
different dimensions. We now provide a systematic approach based on the following principles:

1. We restrict all the kernels to be in the form of {K(ω),K(ω, ν)}, i.e., the arity r = 1, 2.
2. We pick one reduction dimension and one batching dimension in the matrix multiplication.

With the above assumption, we factor the predicate dimensions of unary kernels and unary atoms
so that Kd(ω) = Khs(ω) and ud(x) = uhs(x), where d = (h − 1)S + s with h = 1, . . . ,H and
s = 1, . . . , S. This is inspired by the multi-head attention mechanism (Vaswani et al., 2017), where h
is akin to the head index, H is the number of heads and S is the size of the head. Then, we enumerate
all possible neural logic operators that can compatibly multiply a kernel from {K(ω),K(ω, ν)} with
a premise from {v(a),v(a, b)} by properly choosing different reduction and the batching dimensions.
With this, we list the resulting neural logic operators for each typing in Table 2, which are further
discussed in Appendix A.1 for their different roles in (restricted) Modus Ponens reasoning.

Connection with transformers Interestingly, we find that the j-operator and the a-operator share
similar forms as the self-attention mechanism in transformers, where the a-operator computes the self-
attention scores and the j-operator performs the self-attention operation. Furthermore, the m-operator
and the p-operator indeed generalize the existing relative positional encodings developed in (Shaw
et al., 2018), which are widely used in different transformer variants, such as in T5 models (Raffel
et al., 2020). Specifically, we show in Appendix E that by making vw(x, y) instance-independent,
the p-operator computes the second term in equation (5) of Shaw et al. (2018), where vw(x, y) play
the role of aKij . And by setting vs(x, a) instance-independent, the m-operator computes the second
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term in equation (3) of Shaw et al. (2018), where vs(x, a) plays the role of aVij . That is, under such
degenerated settings, these two operators will compose the relative positional encoding developed
therein. Note that their aKij and aVij are static learnable embeddings, while our vw(x, y) and vs(x, a)
are dynamically computed for each instance (as we will discuss in Section 3.3). Therefore, our m-op
and p-op can also be viewed as a more adaptive relative positional encoding, whose advantages will
be further demonstrated in our experiments (Section 4).

3.3 FORWARD-CHAINING AND DIFFERENTIABLE LEARNING

Note that, in general, a logic operator takes a kernel K and a premise v to infer an outcome u (Table
2). Specifically, it “neuralizes” the logic deduction in (2) for a particular typing (e.g., U← B× U).
Applying all the neural logic operators amounts to have a full execution of (2), which is one recursion
step in (3) that maps a set of {ul−1(x),ul−1(x, y)} into {ul(x),ul(x, y)}. Therefore, we can
naturally forward-chain L stages of them together to create a fully-differentiable architecture that
models the reasoning chain in (3). Figure 1 depicts such a forward-chaining process and also how it
encodes the logical inductive bias described in Section 2. One remaining problem is how to obtain
the kernels K(·) and the premises v(·) from our FOLNet architecture in Figure 1. We do this simply
by applying two linear projections (one for the premise and one for the kernel) to the previous
layer’s output {ul(x),ul(x, y)}. For the kernel, we may further apply an activation function after
the linear projection to compute the kernel (see Table 2 for the list of kernel activation functions
for each operator). In other words, we parameterize the kernels K(·) and the premises v(·) by
(the intermediate deduction results of) FOLNet itself. This is based on the observation that clauses
are themselves predicates since A ← B is defined as A ∨ ¬B (Andrews, 2013), where ∨ denotes
disjunction (logical OR). We now describe the input and the output of FOLNet in Figure 1. At the
input, we can encode the discrete token ids for a token xt into vectors of the form u0(xt) by standard
embedding lookup. Likewise, we also convert the (discrete) relative distance between two tokens
xt and xτ into a vector of the form u0(xt, xτ ). The {u0(xt),u0(xt, xτ )}t,τ will be used as vector
representations of the base atoms B and fed into the FOLNet model (Figure 1). After L layers (i.e., L
steps of deduction), the output {uL(xt),uL(xt, xτ )}t,τ becomes the vector representations of CL in
(3), which is used as the final language representations. Therefore, our FOLNet model has the same
input-output interface as other transformer models and can be used in a plug-and-play manner for
solving downstream tasks. Because of this, our model can also be pretrained over large-scale texts
using the same losses (e.g., MLM, NSP, SOP, etc) as other encoder-only models — see Appendix A.4
for how to compute these losses from {uL(xt),uL(xt, xτ )}t,τ . Our model can also be extended to
the decoder-only and the encoder-decoder versions by slightly modifying the neural logic operators
(see Appendix A.5), which can then be pretrained to predict the next words auto-regressively. We
will conclude this section by discussing several important properties of FOLNet architecture.

The dual-branch architecture Note that the FOLNet model in Figure 1 has two branches: (i) a
unary predicate branch for reasoning over ul(x), and (ii) a binary predicate branch for reasoning over
ul(x, y). This is in sharp contrast to the single-branch architecture of the transformer models (Figure
3 in Appendix A.2). We further note that when FOLNet is only loaded with j-operator and a-operator,
it degenerates into a dual-branch variant of the transformer architecture. In our experiments, we will
show that, even in such degenerated setting, FOLNet still outperforms transformer. This is probably
because the binary predicate branch explicitly maintains the pairwise relations ul(x, y) throughout
the reasoning process. In addition, the explicit binary predicate branch also allows us to directly
input the relative distance knowledge into the model without performing the less-intuitive operations
as in existing RPEs (Shaw et al., 2018). In our experiments in Section 4, we will demonstrate the
advantage of such a simple yet effective approach for consuming the relative positional information,
along with some other advantages of the dual-branch architecture of FOLNet.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We now evaluate our FOLNet models under different settings and seek to answer the following
question: Can the neural architecture (FOLNet) that encodes the logical inductive bias learn better
language representations than the transformer models? To this end, we need to eliminate other
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Model Params PE D2 Loss MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

1 BERT 110M APE - MLM.NSP 84.5/- 91.3 91.7 93.2 58.9 89.5 87.3 68.6 83.1
2 BERT (ours) 110M APE - MLM.NSP 83.9/84.1 90.9 88.2 92.6 61.5 89.2 88.2 66.8 82.7
3 FOLNet: j.a 110M APE 12 MLM.NSP 84.9/84.5 91.1 91.6 92.2 61.1 89.6 89.5 72.2 84.0
4 FOLNet: j.a 109M RPE 12 MLM.NSP 85.0/84.9 91.4 91.4 93.5 63.8 90.1 89.9 72.9 84.7
5 FOLNet: j.a 110M RPE? 12 MLM.NSP 84.7/84.9 91.4 91.5 93.8 63.4 89.8 90.6 72.6 84.7
6 FOLNet: jm.ap 123M RPE 12 MLM.NSP 85.7/85.3 91.6 91.8 93.8 65.7 90.4 91.0 73.5 85.4

7 FOLNet: j.a 109M RPE 16 MLM.NSP 85.2/85.2 91.3 91.8 93.7 64.1 89.9 89.3 71.8 84.6
8 FOLNet: j.a 109M RPE 32 MLM.NSP 85.8/85.7 91.4 92.0 93.7 64.2 90.0 90.5 71.8 84.9
9 FOLNet: j.a 110M RPE 64 MLM.NSP 85.7/85.5 91.4 91.8 93.2 63.5 90.1 90.2 74.7 85.1

10 FOLNet: j.at 110M RPE 64 MLM.NSP 86.7/86.6 91.6 92.8 93.1 63.6 91.1 89.9 80.9 86.2
11 FOLNet: j.atp 117M RPE 64 MLM.NSP 87.4/87.4 91.9 93.3 94.0 62.9 91.3 91.4 81.6 86.7
12 FOLNet: jm.atp 124M RPE 64 MLM.NSP 88.1/87.6 91.7 93.9 94.2 64.7 91.2 91.4 83.2 87.3
13 FOLNet: jmc.atp 138M RPE 64 MLM.NSP 88.2/87.9 91.9 94.1 94.5 66.9 91.6 91.5 83.5 87.7
14 FOLNet: jmc.atp 137M RPE 12 MLM.NSP 85.9/86.3 91.6 92.7 93.6 63.4 90.5 91.0 75.8 85.6

15 FOLNet: jmc.atp 138M RPE 64 MLM.SOP 88.3/87.9 91.8 94.2 94.7 65.6 91.1 91.1 83.2 87.5

Table 3: Analysis of FOLNet on the development sets of GLUE benchmark. All the results are
medians of five random seeds. From top to bottom, the first block shows the advantage of dual-branch
architecture and compares our new positional encoding to others, the second block analyzes the
influence of the binary predicate dimension, the third block performs ablation study of all the logic
operators, and the last block shows the results of other pretraining losses for FOLNet. APE stands for
absolute positional encoding, RPE? denotes the relative positional encoding used by T5 (Shaw et al.,
2018; Raffel et al., 2020), and RPE means our proposed relative positional encoding. We have also
pretrained a BERT (base) model (line #2) by using the same settings as FOLNet for a fair comparison.

confouding factors and make sure the only difference lies in the model architecture itself. First, we
choose to pretrain our FOLNet model using the widely used masked language modeling (MLM) loss
(Devlin et al., 2018), and add an extra loss of either the next sentence prediction (NSP) (Devlin et al.,
2018) or sentence-order prediction (SOP) (Lan et al., 2019). Many different variants of widely used
encoder-only transformer models such as BERT, RoBERTa, ALBERT, DeBERTa and Megatron-LM
are pretrained with these losses. Therefore, we will also use these models as our primary baselines.
Although there could be other more efficient pretraining losses such as the ones in (Bao et al., 2020;
Clark et al., 2020; Yang et al., 2019; Meng et al., 2021), we believe that developing a new model
architecture with a better inductive bias is an orthogonal line of research. Therefore, we leave the
exploration of other pretraining loss for FOLNet as a future work. In addition, we consider two
settings of pretraining dataset: (i) Wikipedia + BookCorpus (Zhu et al., 2015) (16GB in texts) and
(ii) a larger set of 160GB texts consisting of Wikipedia, BookCorpus2, OpenWebText2, and Pile-CC
(extracted from the Pile dataset (Gao et al., 2020)). We use the BERT tokenizer with 32,768 uncased
BPE vocabulary (Sennrich et al., 2016) throughout our experiments.3 We consider FOLNet models
of two different sizes: FOLNetBase and FOLNetLarge, which are comparable in size to the base (e.g.,
BERTBase) and large models (e.g., BERTLarge) in literature. Finally, the FOLNet model will always be
pretrained with a sequence length of 128 tokens, although it will be evaluated on different downstream
tasks with longer sequence lengths (e.g., 384 or 512). For evaluation, we consider three benchmarks:
GLUE (Wang et al., 2019), SQuAD 2.0 (Rajpurkar et al., 2016b), and FOLIO (Han et al., 2022),
where we finetune our pretrained models on each individual task separately for evaluation. More
details about these downstream tasks and hyper-parameters can be found in Appendix B.

4.2 ANALYSIS OF THE FOLNET ARCHITECTURE

We begin with in-depth analysis of FOLNet to demonstrate its advantage over the transformer
architecture. To this end, we first pretrain our FOLNetBase model on the dataset of Wikipedia and
BookCorpus, which is the same as the one used by BERT. And we further use MLM and NSP as our
pretraining losses to make it consistent with BERT. We analyze FOLNet from different aspects on
GLUE benchmark and report the results in Table 3. We now proceed to discuss the results below.

3Although Liu et al. (2019) pointed out that it would be more ideal to use the byte-level BPE for preprocessing
the much larger 160GB texts, we use the same BERT tokenizer (based on character-level BPE) to process the
160GB text to simplify our logistics, and it already demonstrates the strong performance of our models. Using
the byte-level BPE tokenizer with a larger 50K vocabulary as in (Liu et al., 2019; Radford et al., 2019; Brown
et al., 2020) may further improve our FOLNet models that are pretrained on the 160GB texts.
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Model Params GLUE SQuAD 2.0 FOLIO

MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg EM F1 Acc

BERTBase 110M 84.5/- 91.3 91.7 93.2 58.9 89.5 87.3 68.6 83.1 73.7 76.3 57.8
RoBERTaBase 110M 85.8/85.5 91.3 92.0 93.7 60.1 88.5 87.3 68.2 83.3 77.7 80.5 -
DeBERTaBase 134M 86.3/86.2 - - - - - - - - 79.3 82.5 -
FOLNetBase 138M 88.2/87.9 91.9 94.1 94.5 66.9 91.6 91.5 83.5 87.7 84.7 87.9 64.2

BERTLarge 340M 86.6/- 91.3 92.3 93.2 60.6 90.0 88.0 70.4 84.1 79.0 81.8 62.3

RoBERTaBase 125M 87.6/- 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4 80.5 83.7 64.7
DeBERTaBase 134M 88.8/88.5 - - - - - - - - 83.1 86.2 -
FOLNetBase 138M 89.4/89.7 92.2 94.4 95.6 69.9 92.5 92.0 87.0 89.2 85.5 88.6 64.2

RoBERTaLarge 356M 90.2/90.2 92.2 94.7 96.4 68.0 92.4 90.9 86.6 88.9 86.5 89.4 67.7
DeBERTaLarge 384M 91.1/91.1 92.3 95.3 96.8 70.5 - - - - 88.0 90.7 -
ALBERTXXL 235M 90.4/- 92.0 95.2 96.8 68.7 92.7 90.2 88.1 89.3 87.2 89.9 -
ALBERTXXL+ 235M 90.8/- 92.2 95.3 96.9 71.4 93.0 90.9 89.2 89.9 87.4 90.2 -
FOLNetLarge 437M 91.2/91.3 92.5 95.8 96.8 71.5 92.2 93.5 91.1 90.6 88.5 91.5 70.6

Megatron1.3B 1.3B 90.9/91.0 92.6 - - - - - - - 87.1 90.2 -
Megatron3.9B 3.9B 91.4/91.4 92.7 - - - - - - - 88.5 91.2 -

Table 4: Overall results on the development sets of GLUE, SQuAD 2.0 and FOLIO. The upper block
(separated by the solid line) of the table shows the results of the models pretrained on Wikipedia
+ BookCorpus (16GB), and the lower block are the models pretrained on extended data (160GB).
We use dashed lines to separate models of different sizes within each block. All the results are
medians of five random seeds. The baseline results of FOLIO are provided by the authors of Han
et al. (2022). Here we use ALBERTXXL to refer to the ALBERT model pretrained by 1M steps and
use ALBERTXXL+ to refer to the ALBERTXXL modeled pretrained by 1.5M steps.

The advantage of the dual-branch architecture Recall that when FOLNet only has the join and
assoc operators, it can be viewed as a dual-branch version of the transformer architecture. To have a
fair comparison, we pretrain a FOLNet model with the same absolute positional encoding (APE) as
BERT (line #3 of Table 3). Note that, even in such overly degenerated case, FOLNet still noticeably
outperforms BERT on average. When equipping FOLNet with our new relative positional encoding
(RPE) (line #4 of Table 3), we will outperform BERT by 2 points on average. Notably, it achieves on
par (or slightly better) average performance compared to the one with T5 relative positional encoding
(RPE? in line #5). As we discussed in earlier section, the T5 RPE are degenerated version of our
mu and prod operators. Line #6 of Table 3 show that adding mu and prod operators to the FOLNet
would further boost the performance by a noticeable amount.

The benefits of a larger D2 We can see (lines #7-9 of Table 3) that increasing the dimension D2

will steadily improves the performance. As we will reveal soon, when FOLNet is fully loaded with
all the operators, having a larger D2 is essential to unleash their full power; that is, the performance
improvement from increasing D2 would be even larger for a fully-loaded FOLNet.

Contribution of the logic operators We now analyze the contributions of the logic operators
by adding them one-by-one into FOLNet until being fully loaded. We see from line #9 to line
#13 in Table 3 that this drastically improves the average performance. In line #14, we evaluate a
fully-loaded FOLNet with D2 decreased from 64 to 12, which shows a significant performance drop.
This confirms the importance of having a relatively large D2 in order to store the deduced relations.

4.3 OVERALL PERFORMANCE

Having closely examined various aspects of FOLNet architecture, we now proceed to evaluate it
comprehensively on three benchmarks (GLUE, SQuAD 2.0, and FOLIO). We will also examine its
performance when we further scale up the pretraining data size and model size. To pretrain the model
on a larger (160GB) dataset, we find it more efficient to generate the pretraining data with SOP losses.
This is because NSP losses require us to sample negative sentences from another document. To
begin with, we verify the performance by pretraining a FOLNetBase with SOP loss on Wikipedia and
BookCorpus. The result (line #15 in Table 3) shows that it could slightly degrade the performance
compared to the one with NSP (line #13). However, this is relatively tolerable given its convenience
when pretraining on a large corpus. Therefore, we will replace NSP with SOP when pretraining

8



Published as a conference paper at ICLR 2023

FOLNetBase and FOLNetLarge on the 160GB dataset. We show our results on the GLUE benchmark
in Table 4 and compare them with other baseline methods. Observe that our FOLNetBase models
pretrained on both 16GB data and 160GB significantly outperform other transformer-based models on
all three benchmarks. Our FOLNetBase pretrained on 16GB data outperforms BERTLarge model that is
3× larger in model size. In addition, it even outperforms RoBERTaBase that is pretrained on 160GB
data. When pretraining our FOLNetBase model on 160G data, we even surpass the RoBERTaLarge
model (89.3 vs 88.9) on GLUE benchmark. Likewise, our FOLNetLarge model also significantly
outperforms all other baselines. It even outperforms ALBERTXXL+ that is pretrained by 1.5M steps
(i.e., 50% more tokens during pretraining). Notably, our FOLNetLarge model achieves comparable
performance as the Megatron3.9B model on both GLUE and SQuAD 2.0 benchmark, which is 10
times larger than our model. Furthermore, although our FOLNet model is not designed for solving
reasoning problem (but incorporating reasoning as an inductive bias at the token-level), our model still
consistently demonstrates stronger first-order logic reasoning capability on FOLIO task (e.g., +3.9
over RoBERTaLarge). Finally, we would like to highlight that all the FOLNetBase and FOLNetLarge
models are pretrained with sequence length of 128, in contrast to 512 as in other baselines. However,
they are evaluated on GLUE, SQuAD 2.0 and FOLIO with sequence length of 128, 384 and 512,
respectively. In particular, by finetuning with merely 1,004 training examples on FOLIO, it is able to
generalize to much longer sequences (512), which have never been seen during pretraining.

5 RELATED WORKS

Transformer language models There have been a long line of research on neural language models
since Bengio et al. (2000). Recently, it has achieved great success by exploring different variants of
pretrained transformer models (Vaswani et al., 2017) for solving downstream language tasks, such as
with finetuning (Radford et al., 2018; Devlin et al., 2018; Lan et al., 2019; Liu et al., 2019; Yang et al.,
2019) or with zero/few-shot learning using large language models (Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2022). Another line of active research focuses on developing more effective
pretraining losses (Yang et al., 2019; Clark et al., 2020; Bao et al., 2020; Tay et al., 2022) beyond the
widely used autoregressive or masked language modeling objectives. There have been limited works
on developing new neural architectures for learning better language representations. In this paper, we
seek to move in this direction and develop a new neural architecture based on logical inductive bias.

Logic programming and neural reasoning Our logical inductive bias is inspired by logic pro-
grammings (Horn, 1951; De Raedt et al., 2007; De Raedt & Kimmig, 2015; Fierens et al., 2012;
Manhaeve et al., 2018) and inductive logic programming (Evans & Grefenstette, 2018; Muggleton,
1991; 1996; Friedman et al., 1999). Different from these works, we do not directly work on reasoning
problems. Instead, we seek to encode the logical inductive bias into the neural model to learn better
language representations. Another line of related works focuses on developing neural models that can
perform reasoning in a broad sense. For example, different variants of memory augmented networks
are developed (Le et al., 2020; Santoro et al., 2018; Graves et al., 2014; 2016; Santoro et al., 2016; Le
et al., 2019), which augment a control network with memory units and the associated neural read/write
modules. Besides, Rocktäschel & Riedel (2017) and Minervini et al. (2020) consider the problem
of proving structured queries to knowledge base, by constructing differentiable neural networks via
backward-chaining. Bergen et al. (2021) develop a triangular attention to deduce relations from other
relations, which can be viewed as a transformer with a single relational branch. These methods are
effective in solving (relatively small-scale) reasoning tasks. However, it remains unclear whether they
can be effectively pretrained on large-scale texts to solve diverse downstream natural language tasks.

6 CONCLUSION

We introduce a novel logical inductive bias, which treats language representation learning as a logic
programming problem. We then develop a fully-differentiable neural architecture (FOLNet) that
effectively encodes this inductive bias by forward-chaining a rich set of neural logic operators. The
proposed FOLNet architecture has the same input-output interface as the transformer models and
can be pretrained over large-scale text data. Experimental results demonstrate that the FOLNet
architecture significantly outperforms different variants of transformer models, and has many inherent
advantages due to the new dual-branch architecture along with its rich set of neural logic operators.
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Supplementary Materials

A ADDITIONAL DETAILS OF THE FOLNET ARCHITECTURE

A.1 MORE DISCUSSIONS ON THE NEURAL LOGIC OPERATORS

Modus Ponens inference with restricted kernels. First, it is straightforward to show that the
neural logic operators in Table 2 can be implemented as batch matrix multiplications (Figure 2),
where multiple slices of matrix multiplications are executed in parallel to obtain the outputs. Different
operators pick their own reduction dimensions (R-dim) and batching dimensions (B-dim) for the
matrix multiplication (see Table 2). For example, the join operator picks the a-dimension as the
R-dim and the h-dimension as the B-dim so that matrix multiplications are carried out in parallel over
h. According to (9), each slice of the matrix multiplication can be viewed as an independent neural
Modus Ponens inference based on its own set of clauses. For example, in the join operator, let Kjoin,h

denote a matrix that collects Kh(x, a) as its (x, a)-th element. Then, Kjoin,h is the h-th kernel slice
that represents a particular group of clauses for the join operator. In addition, recall that the values at
each row of the kernel slice characterize the conjunction pattern on the right-hand side of (8), with
positive (or negative) values determine whether the original premise Pm (or the negated premise
¬Pm) should be used for conjunction (see Section 3.2 and Appendix D). Therefore, the R-dim in the
matrix multiplication shall be understood as the conjunction dimension in (8). In the join operator,
it implies that the conjunction operation is over the a-dimension of the premises vhs(a), with the
conjunction pattern determined by the x-th row of Kjoin,h if we want to infer uhs(x). In contrast,
a full Modus Ponens infernece from unary atoms to unary atoms (the first expression in (7)) shall
perform its conjunction over the joint dimensions of (h, s, a), which is much higher in complexity.
Therefore, the join operator controls the complexity of Modus Ponens inference by restricting the
conjunction operation over the a-dimension. Furthermore, it is noteworthy that the join operator
is applying the same kernel slice to premises of different s; that is, it implements kernel-sharing
across the s-dimension. This is another complexity-reduction strategy resulted from the principles
in Section 3.2. Likewise, the same conclusion holds for all other operators, who pick their own
conjunction-dimensions and kernel-sharing dimensions (see Figure 2).
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Figure 2: Our neural logic operators can be efficiently implemented as batch matrix multiplications by
using hardware accelerators (e.g., GPUs and TPUs). Each slice of matrix multiplications represents
an independent neural Modus Ponens inference based on its own set of clauses.

Naming protocols and examples. We now explain the naming protocols for the logic operators
along with concrete examples to demonstrate how each of them help reasoning in different aspects.
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• bool: It operates over the predicate dimension and plays the role of Boolean functions over a set
of input truth values, which leads to its name of bool-operator. It is used to deduce a property of
x from other properties regarding the same x via certain Boolean operations. For example, it can
model inferences like Edible(x)← IsMushroom(x) ∧ ¬IsToxic(x), where the conjunction
pattern on the right-hand side is determined by the kernel.

• join: We name this operator as join-operator because it is in a similar form as the join operation
in λ-DCS (Liang, 2013). For example, when the kernel represents IsBornIn(x, y), it can be
used to infer CitizenOfUSA(x) from premise CountryIsUSA(y), where the kernel determines
the conjunction pattern of CountryIsUSA(y) over y.

• cjoin: Since it simply swaps the roles of the kernel and the premise in the join-operator, we
name it as the conjugate join operator. It plays a similar role as the join operator.

• mu: We name it as mu-operator because it is can be viewed as a more general-form of the
mu-abstraction operation in λ-DCS (Liang, 2013). For example, when the kernel models
ApplyJobAt(x, y), it can deduce HasAJob(x) from premise ReceiveOfferFrom(x, y), where
the kernel determines the conjunction pattern of ReceiveOfferFrom(x, y) over y.

• assoc: We name it as assoc-operator because it can be viewed as computing the association
between two vectors. For example, when the kernel represents LosAngeles(y), it can be
used to infer SameStateAs(x, y) from SanFrancisco(x), where the kernel determines the
conjunction pattern of SanFrancisco(x) over the predicate dimension. In this example, we
only have one premise atom over the predicate dimension. In the general case, a particular
conjunction pattern would be applied to multiple premise atoms to yield the output.

• prod: We name it as prod-operator because it is in resemblance of computing the product over
the predicate dimension. For example, when the kernel models Graduated(x), it can be used to
infer GraduatedFrom(x, y) from StudyAt(x, y), where the kernel determines the conjunction
pattern of StudyAt(x, y) over the predicate dimension. In this example, we only have one
premise atom over the predicate dimension. In the general case, a particular conjunction pattern
would be applied to multiple premise atoms to yield the output.

• trans: We name it as trans-operator because its form is in reminiscent of reasoning with
transitive properties. For example, when the kernel models FatherOf(x, z), it can be used to
infer GrandFatherOf(x, y) from ParentOf(z, y), where the kernel determines the conjunction
pattern of ParentOf(z, y) over the dimension z.

Note that we do not have a logic operator corresponding to the typing B← B× U because it will be
identical to the prod operator when the kernel action function is chosen to be the identity mapping.
In addition, the above examples further show that the kernels (i.e., the clauses) themselves are also
atoms or can be computed from certain atoms. This justifies our strategy of parameterizing the kernels
by (the intermediate deduction results of) FOLNet itself in Section 3.3.

A.2 COMPARING TO THE TRANSFORMER ARCHITECTURE

Figure (3) show that the transformer architecture can be understood as a single-branch version of the
FOLNet architecture with only join-operator and assoc-operator.

+

LayerNorm Join op

+

LayerNorm Boolean ×"
LayerNorm

Assoc op

Figure 3: Overview of the Transformer architecture. It can be understood as a single-branch version
of the FOLNet architecture with only join-operator and assoc-operator.
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A.3 THE BOOLEAN OPERATOR

In FOLNet, we do not chain the Boolean operators in parallel with other operators but chain it with
others in a cascade manner. This is akin to cascading the FFN with the self-attention module in
transformers. Nevertheless, we may also place it in parallel to other operators just as making FFN in
parallel to self-attention in transformer, which is done in Chowdhery et al. (2022). In addition, we
also adopt the same FFN architecture (i.e., a multilayer perceptron with GeLU units) for the Boolean
operator in order to make FOLNet directly comparable with transformer architectures.

A.4 THE INPUT-OUTPUT INTERFACE

Computing the pretraining losses (e.g., MLM, NSP and SOP) from the output atoms As we
pointed out, FOLNet models will have a similar input-output interface as the existing transformer
models, so that we can seamless adopt existing pretraining losses (e.g., MLM, NSP and SOP)
by computing them from {uL(x)}. Recall that uL(xt) is the vector that represents the derived
(advanced) properties for the object (token) xt, where t = 1, . . . , T . For a masked token xt, uL(xt)
contains its properties that could be deduced from other tokens via their input properties and relations.
Therefore, these deduced properties in uL(xt) can be used to predict the original masked token. For
example, we can apply a linear classifier followed by a softmax operator to compute a probability
distribution over the vocabulary and the MLM loss. Likewise, to compute NSP and SOP losses,
we add a special “[CLS]” token at the beginning of the input sequence, so that the uL(x) that
corresponds to the “[CLS]” token will be fed into a binary classifier for computing the NSP or SOP
loss. The usage of {uL(xt)} in downstream tasks (such as sequence classification, multiple-choice
and sequence labeling) are also similar. On the other hand, we have not used the output binary
predicates {uL(xt, yτ )} for computing any losses. The main reason is that we would like to adopt
the existing off-the-shelf pretraining losses for an apple-to-apple comparison regarding the proposed
model architecture. Since most of these losses are developed for the transformer architecture, which is
a single-branch model with only unary predicates on its main pathway (Figure 3), it is not surprising
that these losses are mainly computed from the unary properties {uL(xt)}. Nevertheless, we believe
that our newly introduced binary predicate branch could open a new avenue for developing additional
pretraining losses using uL(xt, yτ ) (i.e., the token relations). For example, we may randomly swap
two tokens xt and xτ and use uL(xt, xτ ) to predict whether they have been swapped or not. We will
leave the development of more effective pretraining losses for FOLNet as a future work.

The input base atoms in B and their logit vector representations Throughout our work, we only
consider plain texts as the input, which is similar to other pretrained language models. Therefore, the
base atoms at the input should only encode the information that is directly available from the plain text,
which include the token ids in the input sequence (denoted by TokenIDv(xt)) and the relative distance
between any of the two tokens (denoted by RelDistd(xt, xτ )). Specifically, TokenIDv(xt) = T if
the token xt takes the v-th id in the vocabulary for v = 1, . . . , V , and TokenIDv(xt) = F otherwise.
When the input sequence consists of a pair of sequences, we will construct the input sequence as:

“[CLS] Sequence #0 [SEP] Sequence #1 [SEP] [PAD] . . .[PAD]”,

which is similar to the input format used in BERT and other transformer models. In this case, we
will introduce an additional base atom SeqIDs(xt) to characterize whether a token xt belongs to the
s-th sequence (s = 0, 1); that is, SeqIDs(xt) = T if token xt belongs to the s-th sequence and is F
otherwise. This atom is akin to the segment ids (or token type ids) in existing pretrained transformer
models. Furthermore, the relative positional atom RelDistd(xt, xτ ) = T if d = dist∆(xt, xτ ) and
is F otherwise, where dist∆(xt, xτ ) is a clipped distance function with a clipping parameter ∆:

dist∆(xt, xτ ) =



max(1−∆,min(τ−t,∆−1)) t > 0, τ > 0 and SeqIDs(xt) = SeqIDs(xτ )

∆ + 1 t > 0, τ > 0 and SeqIDs(xt) 6= SeqIDs(xτ )

∆ t = 0, τ > 0

−∆ t > 0, τ = 0

0 t = 0, τ = 0

.

The above clipped distance function clamps the relative distance to be within [−∆ + 1,∆− 1] when
the two tokens are from the same sequence. And it also assigns a special distance id whenever they
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belong to two different sequences. In other words, the distance between any two tokens would be the
same if they belong to two separate sequences. Likewise, we also characterize the distances between
the [CLS] token (t = 0 or τ = 0) and the other tokens (τ > 0 or t > 0) with two special distance
ids, which sets all the regular tokens to have the same distance towards (or from) the special [CLS]
token. Such relative positional encoding (atom) preserves the translational invariance of the text
sequence and generalizes better than the absolute positional encodings used in BERT and RoBERTa.
Notably, it allows FOLNet to generalize to much longer sequences that are unseen during pretraining.
In summary, we consider the following base atoms as the inputs to the FOLNet model:

B = {TokenIDv(xt), SeqIDs(xt), RelDistd(xt, xτ )|t, τ = 1, . . . , T}. (10)

By stacking TokenIDv(xt) and SeqIDs(xt) over v and s, stacking RelDistd(xt, xτ ) over d, and
using the values of 1 and 0 to represent T and F, respectively, we will have the 0-1 vectors to
represent all the input atoms in B. Then, we may further convert them into dense vector represen-
tations {u0(xt),u0(xt, xτ )}t,τ via embedding lookup. The embedding lookup process can also be
understood as finding a set of more fine-grained learnable properties (or relations) to characterize a
given token xt (or a token-pair (xt, xτ )), where these properties (or relations) are represented in the
same logit space as the neural logic operators in Table 2, which carry out Modus Ponens inferences.
Finally, the above base atoms are just one particular design for our FOLNet model, and there could be
other alternatives for encoding the input information. And when there is extra information available
besides plain texts, we may also encode it as the new unary or binary base atoms in B.

A.5 EXTENDING FOLNET TO TEXT-TO-TEXT VERSIONS

So far, we have mainly focused on the encoder-only version of the FOLNet model. We now show
that it can be extended to the decoder-only and the encoder-decoder counterparts in a relatively
straightforward manner. Such extension would be useful for text-to-text generation tasks.

Decoder-only To develop the decoder-only version of FOLNet, we need to let the model auto-
regressively generate the output tokens. In the context of FOLNet, this requires the unary and binary
atoms {u(xt),u(xt, xτ )} to be inferred only from the premises in the past: {v(xω),v(xω, xν) : ω ≤
t}. In addition, we further restrict the binary atoms to have a causal pattern, i.e., u(xt, xτ ) = 0 and
u(xω, xν) = 0, whenever t < τ and ω < ν. Figure 4(a) illustrates these patterns for the unary and
the binary atoms. Note that the causal structure for the binary atoms translates into a lower triangular
pattern for the nonzeros. In particular, the dark blue atoms are directly responsible for the generation
of the next token (word), and the auto-regressive generation requires the model to update them only
from the light blue atoms. We enforce such auto-regressive property by multiplying a proper 0-1
mask to the binary kernels and premises in the neural logic operators. In the last column of Table 5,
we list the kernels and the premises that should be masked, and in Figure 4(b), we show the masks
that correspond to two variants of decoder-only models: (i) Causal Langauge Model (CausalLM)
(Radford et al., 2018; 2019; Brown et al., 2020; Chowdhery et al., 2022), and (ii) Prefix Langauge
Model (PrefixLM) (Liu et al., 2018; Raffel et al., 2020). The CausalLM has a lower triangular mask
for the binary atoms so that the information pattern is always unidirectional. On the other hand,
the PrefixLM will have a bi-directional mask for the input segment (the top-left part in Figure 4(b))
and a unidirectional mask for the output (target) segment (the bottom-right part in Figure 4(b)).
Accordingly, the binary atoms of the PrefixLM version will share a similar pattern as its mask in
Figure 4(b), which models the relatons for the prefix and the output segments separately. With such
simple modifications, our decoder-only FOLNet model will have the same input-output interface as
the decoder-only transformers; it can be pretrained to predict the next tokens using a linear classifier
over the unary atoms uL(xt). After the training, it can generate tokens in an auto-regressive manner.

Encoder-Decoder For the encoder-decoder variant, we use two separate stacks of FOLNet for the
encoder and decoder, where each of them has the same overall architecture as in Figure 1 with its own
set of atoms (the green and blue blocks in Figure 4(c)). In particular, the encoder will be identical to
the encoder-only version that we have thoroughly discussed earlier in the main paper. Meanwhile,
the decoder part will be similar to the decoder-only variant with a few additional modifications. First,
the decoder needs to maintain a slightly different version of binary atoms (Figure 4(c)). Specifically,
besides the relations between the output tokens, the decoder also has to model the (unidirectional)
relations from the input tokens to the output tokens (i.e., the bottom-left part of uh(x, y) in Figure
4(c)). These relations are crucial in deducing the output tokens from the input ones, which plays a
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(d) Masks for encoder-decoder FOLNet

Figure 4: Extending FOLNet to text-to-text versions. The top row illustrates the atoms and the
masking strategy for the decoder-only version, and the bottom row shows the encoder-decoder variant.
On the left side, we visualize the unary and the binary atoms {ud(x),uh(x, y)} for these cases, where
d = (h− 1)S + s. The green and blue colors characterize the nonzero patterns for the atoms of the
encoder and the decoder, respectively. The green-colored atoms are associated with the encoder part
in the encoder-decoder variant. The dark blue color represents the atoms that are directly responsible
for generating the next token in the decoder. Notably, they are deduced only from the light blue atoms,
so that the entire generation process retains an auto-regressive nature. On the right side, the white and
the orange blocks represent the 0-1 masking positions, where the light orange part are associated with
the prefix segment in PrefixLM. Likewise, the encoder-decoder variant has separate sets of masks for
the encoder and the decoder, respectively, where the mask for the encoder part are designed to have a
bi-directional information pattern. Similar design also holds for the prefix part in PrefixLM.

Sym. Ops. Typing B-dim. R-dim. Neural operator in logit space Mask

b bool U← U× U x w uhs(x) =
∑

w Khw(x)vws(x) -
c cjoin U← U× B h a uhs(x) =

∑
a Khs(a)vh(x, a) vh(x, a)

j join U← B× U h a uhs(x) =
∑

a Kh(x, a)vhs(a) Kh(x, a)
m mu U← B× B x a uhs(x) =

∑
a Kh(x, a)vs(x, a) Kh(x, a), vs(x, a)

a assoc B← U× U h w uh(x, y) =
∑

w Khw(x)vhw(y) -
p prod B← U× B x w uh(x, y) =

∑
w Khw(x)vw(x, y) vw(x, y)

t trans B← B× B h a uh(x, y) =
∑

a Kh(x, a)vh(a, y) Kh(x, a), vh(a, y)

Table 5: The binary kernels and premises to be masked for decoder-only versions of FOLNet. In the
encoder-decoder variant, similar part of the kernels and premises would be masked in its decoder.

similar role as the cross-attention scores in transformers. Accordingly, we also need to adjust the
masks to handle these relations separately (see Figure 4(d)). Second, the neural logic operators in
Table 5 should also be slightly adjusted in order to incorporate the additional premise atoms from the
encoder output. For example, the premise vhs(a) in join-operator should now be a concatenation
of the unary atoms from the encoder output (with a linear projection) and the decoder premises.
Likewise, the premise vhw(y) in assoc-operator should also be a concatenation of the encoder output
(with a linear projection) and the decoder premises. These two modified operators share a similar
spirit as the self-attention and the cross-attention mechanisms in transformer decoders. The cjoin
operator is similar to join operator, except now the concatenation happens at the kernel Khs(a) (with
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a linear projection). The mu-operator and the prod-operator stay the same as before. Meanwhile, the
trans-operator for the decoder needs to be implemented according to the following new expression:

uh(x, y) =

{∑
a∈T Kh(x, a)vD

h (a, y) y ∈ T∑
a∈IKh(x, a)vE

h (a, y) +
∑
a∈T Kh(x, a)vD

h (a, y) y ∈ I

where T and I are defined to be the target and the input sequences, respectively, the kernel Kh(x, a)
are obtained by applying a linear projection to the binary atoms u(x, a) in the decoder, and the
superscript E or D in the premises vh(a, y) denotes whether they are from the encoder or the decoder.
Notably, we observe that the encoder-decoder version of FOLNet retains the dual-branch architecture
in its decoder module as well. This is in sharp contrast to the standard transformer decoder, which is
a single-branch architecture with only unary atoms on its main pathway.

B EXPERIMENTAL DETAILS

B.1 OVERVIEW OF THE DOWNSTREAM TASKS

GLUE The GLUE benchmark (Wang et al., 2019) consists of 9 tasks: MNLI (Williams et al.,
2018), QQP (Iyer et al., 2017), QNLI (Rajpurkar et al., 2016a), SST-2 (Socher et al., 2013), CoLA
(Warstadt et al., 2019), STS-B (Cer et al., 2017), MRPC (Dolan & Brockett, 2005), RTE (Dagan et al.,
2005; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), WNLI (Levesque et al.,
2012). They cover a wide range of natural language understanding tasks such as natural language
inference, paraphrasing, linguistic acceptability, and sentiment analysis. We finetune our FOLNet
models by following the same procedures from BERT (Devlin et al., 2018). We do not evaluate our
model on WNLI because it generally needs special procedures. The basic description of all the tasks
in GLUE (including their evaluation metrics) can be found in Table 6.

SQuAD 2.0 SQuAD 2.0 (Rajpurkar et al., 2016b) is an extractive question answering dataset built
from Wikipedia. The objective of the task is to predict an answer span from the context paragraphs.
SQuAD 2.0 is an updated version that adds additional 50,000 unanswerable questions to the original
SQuAD 1.1 version. The performance metrics are exact match (EM) and F1 scores.

FOLIO FOLIO (Han et al., 2022) is a natural language reasoning dataset that contains first-order
logic reasoning problems. It requires the models to decide whether a conclusion statement is correct
or not given a world defined by a set of premises. It is formulated as a 3-class classification problem
with the labels being “True”, “False”, “Unknown”. We follow the same procedure as Han et al. (2022)
by formulating the problem as a sequence pair classification problem. Specifically, we concatenate
all the the premises into one sequence (i.e., sequence A), and then further concatenate it with the
conclusion (i.e., sequence B), where the two sequences are separated by a [SEP]. In addition, we
add a [CLS] token at the beginning and a [SEP] in the end before padding (in the end). By doing
so, the task has the same format as a natural language inference task (e.g., MNLI). Table 7 (quoted
from the original FOLIO paper (Han et al., 2022)) shows an example from the FOLIO dataset, which
demonstrate that it requires strong first-order reasoning capabilities to solve the problem. The dataset
has an official train/validation/test split with 1,004/204/227 examples, respectively. By the time of
this submission, the test set is not available and thus we only report performance on the validation set.

MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B

Size 393K 364K 108K 67K 8.5K 2.5K 3.7K 5.7K
Task Inference Similarity QA/Inference Sentiment Acceptability Inference Paraphrase Similarity
Metric(s) Accuracy Accuracy/F1 Accuracy Accuracy Matthews corr. Accuracy Accuracy/F1 Pearson/Spearman.
#Classes 3 2 2 2 2 2 2 1 (regression)

Table 6: Basic information about different tasks in GLUE benchmark.

B.2 IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

We implement both our pretraining and finetuning pipelines using PyTorch (Paszke et al., 2019) and
automatic mixed precision (AMP) learning (Micikevicius et al., 2018) based on the Apex library
(Nvidia, 2019). For pretraining, we use large-batch training (with a batch-size 131K) using LAMB
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A FOLIO example based on the Wild Turkey Wikipedia page

NL premises NL Conclusion -> Labels
1. There are six types of wild turkeys: Eastern wild turkey, Osceola wild turkey, Gould’s wild turkey, A. Tom is an Ocellated wild turkey. -> True
Merriam’s wild turkey, Rio Grande wild turkey, and the Ocellated wild turkey. B. Tom is an Eastern wild turkey. -> False
2. Tom is not an Eastern wild turkey. C. Joey is a wild turkey. -> Unknown
3. Tom is not an Osceola wild turkey.
4. Tom is also not a Gould’s wild turkey, or a Merriam’s wild turkey, or a Rio Grande wild turkey.
5. Tom is a wild turkey.

FOL Premises FOL conclusion -> Labels
1. ∀x(WildTurkey(x)→ (Eastern(x) ∨ Osceola(x) ∨ Goulds(x) A. Ocellated(tom) -> True
∨ Merriams(x) ∨ Riogrande(x) ∨ Ocellated(x))) B. Eastern(tom) -> False
2. ¬(WildTurkey(tom) ∧ Eastern(tom)) C. WildTurkey(joey) -> Unknown
3. ¬(WildTurkey(tom) ∧ Osceola(tom))
4. WildTurkey(tom)→ ¬(Goulds(tom) ∨ Merriams(tom) ∨ Riogrande(tom))
5. WildTurkey(tom)

Table 7: We show an example from the FOLIO dataset, which is quoted directly from the original
FOLIO paper (Han et al., 2022). It demonstrates that it requires strong first-order reasoning capabil-
ities to solve the problem. “NL” stands for “natural language” and “FOL” stands for “First-Order
Logic”. We only use the natural language part to solve the task in our experiments.

optimizer (You et al., 2020). The pretraining of FOLNetBase on Wikipedia + BookCorpus (16GB) for
8K steps takes about 12 hours using 512 V100 GPUs. The pretraining of FOLNet Base on 160GB data
for 128K steps takes 7 days using 512 V100 GPUs. And the pretraining of FOLNetLarge on 160GB
data for 128K steps takes 19 days using 512 V100 GPUs. For the finetuning of all downstream tasks,
we also use AMP learning based on Apex, and the optimizers are FusedAdam from Apex library.

We report the hyper-parameters of pretraining FOLNet in Table 8. The hypper-parameters for
finetuning different downstream tasks are included in Table 9. The hyper-parameters for the finetuning
tasks are searched per task, and the results are the median of five random seeds.

Hyperparams FOLNetBase FOLNetBase FOLNetLarge

Pretraining data size 16G 160G 160G
Number of Layers (L) 12 12 24
Unary Hidden size (D1) 768 768 1024
Binary Hidden size (D2) 64 64 64
Unary Boolean (FFN) intermediate size 3072 3072 4096
Binary Boolean (FFN) intermediate size 256 256 256
Number of Attention heads (H) 12 12 16
Attention head size (S) 64 64 64
RPE clipping parameter (∆) 64 64 64
Dropout rate 0.1 0.1 0.1
Attention Dropout rate 0.1 0.1 0.1
Warmup Ratio 1% 1% 1%
Peak Learning Rate 1e-2 2e-3 1.6e-3
Batch Size 131,072 131,072 131,072
Weight Decay 0.01 0.01 0.01
Max Steps 8K 128K 128K
Learning rate Decay Linear Linear Linear
LAMB ε 1e-6 1e-6 1e-6
LAMB β1 0.9 0.9 0.9
LAMB β2 0.999 0.999 0.999
Gradient Clipping 0.0 0.0 0.0
Sequence length (T ) 128 128 128

Table 8: The hyper-parameters for pretraining FOLNet in different settings.

C ADDITIONAL EXPERIMENTS

Zero-shot performance on GLUE We evaluate the zero-shot performance of our FOLNet model
on GLUE benchmark. Specifically, we perform zeros-shot predictions by using the same method
and prompt templates from Gao et al. (2021). We only consider the FOLNetLarge model and compare
it to RoBERTaLarge, which are similar in model-size, pretraining dataset and pretraining losses. In
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Hyperparams GLUE-small/big SQuAD 2.0 FOLIO

Max epochs {5, 10, 20} / {2, 3, 5} {2, 3} {60, 80}
Peak lr for Base (16G): {6e-5, 8e-5 1e-4, 2e-4} { 8e-5, 9e-5, 1e-4 } { 6e-5, 7e-5, 8e-5}
Peak lr for Base/Large (160G): {1e-5, 2e-5, 3e-5, 4e-5} {1e-5, 2e-5, 3e-5, 4e-5} { 1e-5, 2e-5, 3e-5}
Batch size {16, 32} / {32} {16, 32} {16, 32}
Learning rate decay Linear Linear Linear
Warmup ratio {6%, 25%} / {6%} 6% {6%, 25%}
Sequence length 128 384 512
Adam ε 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Gradient clipping 0.0 0.0 0.0
Dropout rate 0.1 0.1 0.1
Weight decay 0.01 0.01 0.01

Table 9: The hyperparameters for finetuning on GLUE, SQuAD 2.0, and FOLIO tasks. GLUE-small
refers to CoLA, STS-B, MRPC and RTE. GLUE-big stands for MNLI, QQP, QNLI and SST-2.

Model Method Data MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE AvgAcc F1 Acc Acc mcc Pear. F1 Acc

Majority guess - - 32.7/33.0 0.0 49.5 50.9 0.0 - 81.2 52.7 33.3

RoBERTaLarge MLM 160G 50.8/51.7 49.7 50.8 83.6 2.0 -3.2 61.9 51.3 44.3
FOLNetLarge MLM 160G 50.8/52.6 55.4 59.7 79.5 6.4 23.6 77.2 58.2 51.5

Table 10: The zero-shot performance on the GLUE development set. “Acc” stands for accuracy, “mcc”
means Matthews’s correlation coefficient, and “Pear.” is short for Pearson’s correlation coefficient.

addition, the zero-shot prediction methods are also similar: they both predict the label words using
their own MLM heads. The results are summarized in Table 10, which demonstrates that FOLNetLarge
outperforms RoBERTaLarge on 7 out of 8 tasks with average gain of 7.2 points.

Performance on CLUTRR To further examine the reasoning capabilities, we evaluate our FOL-
Net models on the CLUTRR (Compositional Language Understanding and Text-based Relational
Reasoning) dataset (Sinha et al., 2019). CLUTRR is a semi-synthetic diagnostic benchmark designed
to evaluate the systematic generalization ability of a model. Specifically, for a given natural language
story, a model is asked to infer the (implicit) relationship between two family members. To solve
the problem, it has to extract relationships between entities and master the logical rules governing
these relationships. CLUTRR examines the systematic generalization by testing a model on stories
that contain unseen combinations of logical rules as well as stories that require more reasoning steps.
Following the same setting as Sinha et al. (2019), we first finetune our FOLNet models with clauses
of length k = 2, 3 and k = 2, 3, 4, respectively, and then we evaluate them on clauses of length
k = 2, . . . , 10. Specifically, for each input instance, we concatenate the natural language story with
the text query (separated by a [SEP] token), and cast the problem as a sequence-pair classification.
In addition, we add a [CLS] token at the beginning and append a [SEP] token in the end. However,
unlike Sinha et al. (2019), for simplicity, we do not replace entities with special task-specific embed-
dings but treat them as regular English words. And we leave such entity representation techniques as
a future work, which may further improve our performance. We finetune FOLNetBase for 100 epochs
using an Adam optimizer with a learning rate of 5× 10−5, a batch-size of 16 and a warmup ratio of
6%. In our experiment, we mainly compare to transformer-based baselines that also use the natural
language inputs. Specifically, we compare to the results of BERTBase and BERT-LSTM from Sinha
et al. (2019), which share the same model size and pretraining corpus. There is also a rich set of
approaches that work directly on the symbolic inputs from CLUTRR, such as the Graph Attention
Network (GAT) (Veličković et al., 2018). Since these methods directly use the structured logical
graph underlying the story as their input, they circumvent the difficulty of parsing natural language
stories and generally perform much better than the text-based counterparts. We include GAT as a
reference to examine whether our FOLNet model could narrow such a performance gap with the help
of our logical inductive bias. The full results are reported in Figure 5. First, our FOLNetBase performs
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(a) Training clause length k = 2, 3
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(b) Training clause length k = 2, 3, 4

Figure 5: Systematic generalization performance on CLUTRR benchmark.

significantly better than both text-based methods (i.e., BERTBase and BERT-LSTM) by a large margin.
In particular, when the testing k is out of the training set, we improve BERTBase by as much as
8% ∼ 41% (in absolute improvement). Meanwhile, this advantage further improves to 54% ∼ 81%
when the testing k has been seen during training, and FOLNetBase achieves competitive performance
as GAT. Notably, FOLNetBase even achieves substantially better performance (10% ∼ 20%) than
GAT when the testing k = 10. The results confirms the benefit of encoding logical inductive bias.

D NEURAL MODUS PONENS

In this section, we show that generic Modus Ponens inference using clauses of the form (8) can be
expressed as a matrix multiplication followed by an optional nonlinear activation function.

Suppose P1, . . . , PM areM premise atoms andQ is the head (i.e., conclusion) atom. We partition the
setM = {1, . . . ,M} into three non-overlapping setsM+,M0 andM−, and define the following
general clause (where we have dropped the subscript n in (8) for simplicity of notation):

Q←
( ∧
m∈M+

Pm

)∧( ∧
m∈M−

¬Pm
)
. (11)

Note that the expression (11) can be used to represent a general clause that infers Q from any subset
of the premises in {P1, . . . , PM ,¬P1, . . . ,¬PM}, where the setsM+ andM− contain the indexes
of the selected original and negated premises, respectively, and the set M0 indexes the ignored
premises. Therefore, each particular partitionM =M+ ∪M0 ∪M− also corresponds to a unique
clause. To apply Modus Ponens inference with the clause (11), we can proceed in two steps: (i)
evaluate the body of the clause (i.e., the right-hand side of (11)) according to

P ≡
( ∧
m∈M+

Pm

)∧( ∧
m∈M−

¬Pm
)
, (12)

and (ii) apply the generic Modus Ponens inference rule: Q ⇐ {Q ← P and P}. In the following
two subsections, we will derive the neural operations that implement these two steps, respectively.
Specifically, the neural operations will be carried out in the logit space under the ProbLog setting.

D.1 THE MATRIX MULTIPLICATION FOR THE COMPOSITIONS OF THE BODY ATOMS

To derive the operations for the logic expression (12), we define the probabilities of the atoms
P, P1, . . . , PM being true in the following logistic form:

Pr{P = T} =
1

1 + e−z
, Pr{Pm = T} =

1

1 + e−vm
, m = 1, . . . ,M, (13)
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where z and vm are the logits corresponding to the atoms P and Pm, respectively. In addition, for
each m, we further introduce a variable Wm = +1, 0,−1 to indicate whether m is inM+,M0 and
M−, respectively. Then, (12) can be characterized by the following conditional probability:

Pr{P =T|W,P} =

{
1
∧M
m=1

[
(Wm=1∧Pm=T)∨(Wm=−1∧Pm=F)∨(Wm=0)

]
0 otherwise

, (14)

where W , {W1, . . . ,WM} and P , {P1, . . . , PM}. We further assume that the variables
P1, . . . , PM are independent of each other and are also independent of W1, . . . ,WM . In addition,
for a given set ofW = {W1, . . . ,WM}, we introduce the following random event of P1, . . . , PM :

E ,

{
(P1, . . . , PM ) :

M∧
m=1

[
(Wm=1 ∧ Pm=T) ∨ (Wm=−1 ∧ Pm=F) ∨ (Wm=0)

]}
, (15)

along with its indicator function I((P1, . . . , PM ) ∈ E). An indicator function I(·) is one if the
expression inside its parenthesis is true and zero otherwise. Then, we can derive Pr{P = T|W} as:

Pr{P = T|W} =
∑
P

Pr{P = T|W,P}Pr{P1, . . . , PM |W}

(a)
=
∑
P

Pr{P = T|W,P}Pr{P1, . . . , PM}

(b)
=
∑
P

I
(
(P1, . . . , PM ) ∈ E

)
Pr{P1, . . . , PM}

(c)
=
∑
P

I
(
(P1, . . . , PM ) ∈ E

) M∏
m=1

Pr{Pm}

(d)
=

∑
(P1,...,PM )∈E

∏
m∈M+

Pr{Pm}
∏

m∈M−

Pr{Pm}
∏

m∈M0

Pr{Pm}

(e)
=

∑
(P1,...,PM )∈E

∏
m∈M+

Pr{Pm = T}
∏

m∈M−

Pr{Pm = F}
∏

m∈M0

Pr{Pm}

(f)
=

∏
m∈M+

Pr{Pm = T}
∏

m∈M−

Pr{Pm = F}
∑

{Pm: m∈M0}

∏
m∈M0

Pr{Pm}

(g)
=

∏
m∈M+

Pr{Pm = T}
∏

m∈M−

Pr{Pm = F}

(h)
=

∏
m∈M+

1

1 + e−vm

∏
m∈M−

1

1 + evm

(i)
=

M∏
m=1

1

(1 + e−vm)I
+
m

M∏
m=1

1

(1 + evm)I
−
m

=

M∏
m=1

1

(1 + e−vm)I
+
m

· 1

(1 + evm)I
−
m

(j)

≤ 1

1 + e−
∑M

m=1(I+m−I−m)vm
(16)

where step (a) uses the independence between P1, . . . , PM and W1, . . . ,WM , step (b) substitutes
the definition of the conditional probability (14), step (c) uses the assumption that P1, . . . , PM are
independent of each other, step (d) substitutes the decompositionM =M+ ∩M0 ∩M−, step (e)
is obtained by following the definition (15) for the event E (i.e., within event E , we have Pm = T
for m ∈M+, Pm = F for m ∈M− and Pm being arbitrary value in {T,F}), step (f) takes out the
common factors of the summands and keeps the remaining summation over all possible values in
{Pm : m ∈ M0} (based on the definition (15)), step (g) uses the fact that the total probability of
the event {Pm : m ∈ M0} is one, step (h) substitutes the second logistic expression in (13), step
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(i) introduces variables I+
m , I(m ∈M+) and I−m , I(m ∈M−), and the upper bound in step (j)

is obtained by expanding the multiplications in the denominator and dropping all the cross-terms,
all of which are nonnegative. Note that the upper bound (16) is tight when only one unique I+

m or
I−m (among all I+

1 , . . . , I
+
M and I−1 , . . . , I

−
M ) is nonzero. The above result in (16) is conditioned on a

particular realization of W1, . . . ,WM , which are discrete variables. Therefore, it is difficult to learn
them directly in a differentiable manner. To address this issue, we further assume that W1, . . . ,WM

are random variables. Then, taking expectation over W1, . . . ,WM , we have:

Pr{P = T} ≤ E

{
1

1 + e−
∑M

m=1(I+m−I−m)vm

}
, (17)

where the randomness inside the expectation comes from I+
m and I−m, which are further from

W1, . . . ,WM . We now adopt a simple yet effective strategy to approximate the right-hand side in
order to obtain a differentiable implementation. Specifically, we use the following approximation:

E

[
1

1 + eX

]
≈ 1

1 + eEX
, (18)

which becomes more accurate when the distribution of X gets more concentrated around a single
peak (i.e., becoming determinisitic). Using the above approximation, we obtain

Pr{P = T} ≈ 1

1 + e−
∑M

m=1(κ+
m−κ−

m)vm
(19)

where κ+
m , E[I+

m] = Pr{Wm = +1} and κ−m , E[I−m] = Pr{Wm = −1}. Substituting the first
expression in (13) into the left-hand side of (19), we conclude that the logit of Pr{P = T} can be
approximated via:

z =

M∑
m=1

(κ+
m − κ−m)vm = 〈κ,v〉 (20)

where κ and v denote the vectors that collect κ+
m − κ−m and vm as their m-th elements, respectively.

The above expression implies that the logit z for the atomP can be computed by a simple inner product
operation between the two vectors κ and v. Further recall that different realizations of W1, . . . ,WM

correspond to different partitions ofM =M+ ∪M0 ∪M−, which further defines different logic
expressions for P in (12). Since κ is a vector that collects Pr{Wm = +1} − Pr{Wm = −1} as
its m-th element, it can also be viewed as a signature vector of the logic expression (12), which
is the body of the clause (11). Therefore, κ is also the signature vector for the clause in (11) as it
determines the logic compositions among the body atoms. When we have multiple logic expressions,
represented by κ1, . . . ,κN , that compose N logic expressions from the atoms P1, . . . , PM , then we
can compute the logits of the output logic expressions by the following matrix multiplication:

z = Kv, (21)

where z is a logit vector for the N output atoms, and K is a matrix consists of κn as its n-th row.

D.2 THE NONLINEAR ACTIVATION FOR THE IMPLICATION OPERATION

In this subsection, we proceed to derive the the neural operator for generic Modus Ponens inference,
Q ⇐ {Q ← P and P}, in the logit space. Likewise, we consider the ProbLog setting, where the
atoms P and Q will be assigned with probabilities Pr{P = T} and Pr{Q = T}, respectively, which
characterize the chances of them being true. Let C , (Q ← P ) be the clause. Our objective is to
infer the outcome probability Pr{Q = T} from Pr{P = T} based on the fact that C = T.

To this end, we first derive the conditional probability Pr{Q = T|P,C = T}. We will first need
to establish the conditional probability Pr{C = T|P,Q} based on the definition of the logical
implication “←” (Andrews, 2013) and then apply Bayes rule. Note that C = (Q← P ) is defined as
C , (Q ∨ ¬P ), which can be expressed as the following conditional probability:

Pr{C = T|P,Q} =

{
0 if P = T and Q = F

1 otherwise
. (22)
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That is, the clause C will be false only when the premise P is true and the conclusion Q is false.
To proceed, we further assume that Pr{Q = T|P} = Pr{Q = F|P} = 1/2. The intuition of the
assumption is that we do not have any prior knowledge about the outcome Q when we are only given
the input premise P (without C). Then, by Bayes rule, we have

Pr{Q = T|P,C = T} =
Pr{Q = T,C = T|P}

Pr{C = T|P}

=
Pr{Q = T|P}Pr{C = T|P,Q = T}∑
Q∈{F,T} Pr{Q|P}Pr{C = T|P,Q}

(a)
=

Pr{C = T|P,Q = T}
Pr{C = T|P,Q = T}+ Pr{C = T|P,Q = F}

(b)
=

{
1 if P = T

0.5 if P = F
, (23)

where steps (a) and (b) substitute Pr{Q = T|P} = Pr{Q = F|P} = 1/2 and (22), respectively.

Next, we derive Pr{Q = T|C = T} with the assumption that the premise P is independent of the
clause C that is used in the current Modus Ponens inference step. We have

Pr{Q = T|C = T} =
∑

P∈{T,F}

Pr{Q = T|P,C = T}Pr{P |C = T}

(a)
=

∑
P∈{T,F}

Pr{Q = T|P,C = T}Pr{P}

(b)
= Pr{P = T}+

1

2
Pr{P = F}

=
1

2
+

1

2
Pr{P = T}, (24)

where step (a) uses the assumption that P is independent of C, and step (b) substitutes (23).

Finally, we derive the expression for the conditional probability (24) in the logit space. Specifically,
let q and p be the logits for Q and P , respectively, which parameterize their probabilities:

Pr{P = T} =
1

1 + e−z
, Pr{Q = T|C = T} =

1

1 + e−u
. (25)

Substituting the first expression in (25) into (24) followed by some simple algebra, we obtain

Pr{Q = T|C = T} =
1

1 + e− ln(1+2ez)
. (26)

Comparing the right-hand side of (26) with that of (25), we obtain the logit for P as

u = ln(1 + 2ez). (27)

vThe above expression implies that, to implement Modus Ponens in logit space, we only need to
apply the above simple nonlinear activation function to the input premise logit p. To gain further
insights into the above logit-space Modus Ponens inference, we carry out further analysis of the
above nonlinear activation function. Note that ln(1 + ex) is a non-negative convex function. By using
Jensen’s inequality and the non-negativity, we can prove that the above nonlinear activation function
can be lower bounded as ln(1 + 2ex) ≥ ReLU(x+ ln 2), where the right-hand side is indeed a good
approximation of the left-hand side. Therefore, we can implement the generic Modus Ponens by
applying the (shifted) ReLU function in the logit space with much lower computation complexity.

D.3 PUTTING EVERYTHING TOGETHER

Given N different clauses of the form (11) and M input premises P1, . . . , PM , the deduction of the
N outcome atoms Q1, . . . , QN using Modus Ponens rule can be implemented (approximately) via

z = Kv (28)
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u = ln(1 + 2ez), (29)

where K is an N ×M matrix with its n-th row being the signature vector of the n-th clause, v
is an M -dimensional vector consisting of the logits for the input premises P1, . . . , PM , u is an
N -dimensional vector that contains the logits of the output atoms Q1, . . . , QN . Note that the Modus
Ponens inference usingN clauses can be implemented in parallel by first multiply matrix K to the left
of the logit vector v and then pass through a special element-wise nonlinear activation function (which
can be approximated by a shifted ReLU function). For this reason, we call K the kernel-of-clauses
(or kernels for short) in this paper. Furthermore, we note that, when the implication “←” in (11) is
replaced by the logical equivalence “≡”, the original clause (11) becomes (12), so that the activation
function in (29) can be dropped. Finally, it is straightforward to show that the neural Modus Ponens
inference (28) for the four categories of rules in (7) can be expressed (equivalently) as:

u(x) =
∑
a

KUU(x, a)v(a) (30)

u(x) =
∑
a,b

KUB(x, a, b)v(a, b) (31)

u(x, y) =
∑
a

KBU(x, y, a)v(a) (32)

u(x, y) =
∑
a,b

KBB(x, y, a, b)v(a, b), (33)

where KUU(x, a), KUB(x, a, b), KBU(x, y, a) and KBB(x, y, a, b) are D1 ×D1, D1 ×D2, D2 ×D1

and D2 ×D2 matrices that correspond toRUU,RUB,RBU andRBB, respectively.

E COMPOSITION OF EXISTING RELATIVE POSITIONAL ENCODING

We now show that we can compose the existing relative positional encoding (denoted as RPE? in
our paper) from our m-operator and p-operator. To begin with, we first write the expressions of
existing RPE? from Shaw et al. (2018) by using their original notation. Specifically, RPE? computes
the (multi-head) self-attention outputs according to the following expressions (with the notation of
self-attention head h being dropped for simplicity):

zi =

n∑
j=1

αij(xjW
V + aVij) =

n∑
j=1

αijxjW
V +

n∑
j=1

αija
V
ij (34)

eij =
xiW

Q(xjW
K + aKij )T

√
dz

=
xiW

Q(xjW
K)T + xiW

Q(aKij )T
√
dz

, (35)

where zi is the self-attention output at the i-th token, eij is the unnormalized self-attention scores,
αij is the self-attention probability (which is obtained by applying softmax to eij , normalized over
j), xi is the vector of the i-th token at the attention input, WQ/WK /WV are the weight matrices for
query/key/value in the self-attention operation, respectively, n is the sequence length, and dz is the
dimension of each head. Notably, aVij and aKij are the learnable relative positional embedding vectors,
defined as

aKij = wKclip(j−i,k)

aVij = wVclip(j−i,k)

clip(x, k) = max(−k,min(k, x)).

That is, aVij and aKij are the embedding vectors corresponding to the (clipped) relative distance between
the i-th and the j-th tokens, where k is the clipping threshold. Therefore, the second terms in both
(34)–(35) are the RPE? bias terms that seep into the computations of self-attention mechanism. We
now proceed to show that these two terms can be viewed as the degenerated form of our m-operator
and p-operator in Table 2. For convenience, we first rewrite the expressions for these two operators:

m : uhs(x) =
∑
a

Kh(x, a)vs(x, a) (36)
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p : uh(x, y) =
∑
w

Khw(x)vw(x, y). (37)

We first show that the second terms in (34) can be composed from the m-operator (36). To see this,
note that tokens x and a in (36) can be identified as i and j in (34), respectively. In addition, the
kernel Kh(x, a) and the premise vs(x, a) can be identified as the self-attention probability αij and
the relative positional embedding vector aVij , respectively. Therefore, the m-operator shares the same
form as the second term in (34), except our “head” index h. Likewise, we can show that the second
term in (35) can be composed from the p-operator. Observe that the second term in (35) is an inner
product between vector xiWQ and vector aKij . Let kh(x) be a vector that collects Khw(x) as its w-th
element and let v(x, y) be a vector that collects vw(x, y) as its w-th element. Then, the p-operator
can also be viewed as an inner product between the vectors kh(x) and v(x, y). By identifying kh(x)
and v(x, y) as the vectors xiWQ and aKij , respectively, we conclude that the second term in (35) can
be composed from the p-operator. Besides these similarities, our m-operator and p-operator are more
general and powerful than the original RPE? in the following aspects. First, recall from Section 3.3
that both the kernels K and v are parametrized by the FOLNet (by linearly projecting the intermediate
representations {ul(x),ul(x, y)} followed by possible activation functions). Therefore, our vs(x, a)
and vw(x, y) are instance-dependent and are different across input instances. In contrast, aVij and
aKij in (34)–(35) are static embedding vectors that are the same for all input instances. Furthermore,
our m-operator and p-operator are adaptive in a layerwise manner; that is, each layer will compute
their own m-operator and p-operator adaptively based on their own intermediate representations
{ul(x),ul(x, y)}, whereas in RPE? the vectors aVij and aKij are generally identical across layers.
Therefore, the existing operations in RPE? can be viewed as the degenerated special cases that are
composable from our m-operator and p-operator.
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