Under review as a conference paper at ICLR 2026

SPUS: A LIGHTWEIGHT AND PARAMETER-EFFICIENT
FOUNDATION MODEL FOR PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Small PDE U-Net Solver (SPUS), a compact and efficient foun-
dation model (FM) designed as a unified neural operator for solving a wide
range of partial differential equations (PDEs). Unlike existing state-of-the-art
PDE FMs—primarily based on large complex transformer architectures with high
computational and parameter overhead—SPUS leverages a lightweight residual
U-Net-based architecture that has been largely underexplored as a foundation
model architecture in this domain. To enable effective learning in this minimalist
framework, we utilize a simple yet powerful auto-regressive pretraining strategy
which closely replicates the behavior of numerical solvers to learn the underly-
ing physics. SPUS is pretrained on a diverse set of fluid dynamics PDEs and
evaluated across 7 challenging unseen downstream PDEs spanning various phys-
ical systems. Experimental results demonstrate that SPUS using residual U-Net
based architecture achieves state-of-the-art generalization on these downstream
tasks while requiring significantly fewer parameters and minimal fine-tuning data,
highlighting its potential as a highly parameter-efficient FM for solving diverse
PDE systems.

1 INTRODUCTION

Partial differential equations (PDEs) are fundamental mathematical tools for modeling a wide range
of complex spatio-temporal phenomena in science and engineering, including fluid dynamics, elec-
tromagnetism, materials science, and climate systems (Neumann et al., [2012}; |Schaa et al., 2016;
Miiller & Scheichl, 2014). Traditional numerical solvers—such as finite difference and finite ele-
ment methods—are widely used for PDE simulation but often come with high computational costs,
especially when repeated simulations are required for varying coefficients or boundary conditions
(Herde et al.l 2024). To address these limitations, deep learning—based approaches like the Fourier
neural operator (Li et al., |2021)), convolutional neural operator (Raonic et al.|[2023)), and DeepONet
(Lu et al., [2021) have been proposed. While these models have shown promising performance, they
are typically designed for specific PDE families and require retraining when applied to new classes
of governing equations, leading to significant computational overhead.

Some simulation data is more computationally expensive to produce from numerical solvers than
others; and so multiphysics PDE FMs take advantage of pretraining on large benchmark PDE data
to finetune on limited PDE data from more expensive simulations. PDE FMs—including MPP (Mc-
Cabe et al., 2024), POSEIDON (Herde et al., 2024)), PROSE FD (Liu et al., 2024}, DISCO (Morel
et al |2025) and DPOT (Hao et al.| |2024)—have emerged as a promising paradigm. These models
aim to learn unified representations by incorporating multiple physical systems into a single frame-
work, demonstrating the ability to generalize to unseen PDE families using limited data. However,
current state-of-the-art FM approaches predominantly utilize transformer-based architectures with
high parameter counts in the hundreds of millions, resulting in increased computational and data
demands (McCabe et al., 2024 Herde et al., [2024; [Hao et al., [2024). To overcome these limita-
tions, in this work, we propose a efficient yet effective Small PDE U-Net Solver (SPUS), with an
order of magnitude fewer parameters, for PDE foundation modeling. To the best of our knowledge,
this is the first work to explore a residual U-Net architecture as an FM pretrained on a large and
diverse PDE dataset, beyond single-family PDE prediction. U-Net has been shown to significantly
outperform neural operators such as FNO in solving PDEs (Gupta & Brandstetter, [2023). How-
ever, recent transformer-based FM approaches primarily compare against U-Net on a single family

Under review as a conference paper at ICLR 2026

of PDEs (McCabe et al.l [2024; Hao et al., [2024; [Shen et al.| [2024), overlooking its potential as a
foundation model architecture—particularly given the availability of large-scale PDE datasets from
diverse systems.

PDE FMs are formulated in various ways with different assumptions on the form of input data
and output predictions. Other FMs rely on multiple previous timesteps as input and predict output
trajectories, or include temporal information in the input (McCabe et al.l [2024; Herde et al.| 2024;
Hao et al.}[2024])). SPUS is trained autoregressively as an operator predicting a single timestep; which
closely replicates the behavior of numerical solvers; potentially learning the underlying physics
(Lippe et al.l [2023). We demonstrate that the autoregressive training produces a foundation model
that generalizes to time-independent PDEs via finetuning.

This work addresses the following key questions regarding FMs for PDEs:

(a) Rather than designing a new and complex architecture, can we utilize a simple, existing
one—such as residual U-Net—as an FM for PDEs?

(b) Can a lightweight, low-parameter FM achieve state-of-the-art generalization on unseen
PDEs?

(c) Can pretraining on a set of simpler PDEs but exhibiting diverse physical behaviors (e.g.,
shocks, shear, vorticity) enable effective transfer to downstream tasks governed by complex
PDEs and dominant dynamics, such as vortex evolution from piecewise-constant or shear-
layer initial conditions?

(d) Can an FM be pretrained to emulate the behavior of numerical solvers by autoregressively
predicting the next time step from the current one, thereby potentially learning the under-
lying physics?

Finally, we demonstrate that SPUS, built on a simple residual U-Net and pretrained to emulate the
behavior of numerical solvers, achieves state-of-the-art generalization with a lightweight design,
transfers knowledge effectively from simpler PDEs to more complex ones, and thereby establishes
a path toward efficient, generalizable PDE foundation models.

2 PRELIMINARIES

PDEs model a wide range of physical phenomena and include equations such as Navier-Stokes,
compressible Euler, the Wave equation and others. The general form of a time-dependent PDE is:

duu(p, t) + Lu, Vyu, Vgu,) =0, Vpe D cCRY te(0,T),
B(u) =0, Y(p,t) € 6D x (0,T), (1)

for given boundary conditions 3 and initial conditions wug. Note that we use atypical PDE notation
with p for the position variable (reserving x for the input as is typical in machine learning). Many
PDE datasets are discretized in space and time. We denote the discretized spatial state at each

timestep as u; = {(p’,u]) : p’ € P},t € [0,1,...,n] where P is the discretized spatial mesh and
n is the number of discretized timesteps. Initial conditions are given by u;—o and each u; € RY
where d is the dimensionality of system variables.

3 RELEVANT WORK

The closest PDE FMs to ours fall into three distinct formulations.

(a) PDE FMs which take {u;—[o,m)} of a PDE trajectory as input and autoregressively predict
{ut=[m+17”]}; where m = 15 for MPP (McCabe et al.,[2024), and m = 9 for DPOT (Hao
et al., 2024). MPP projects normalized field variables from diverse physical systems into
a unified latent space and utilizes an axial attention vision transformer-based architecture
to perform autoregressive prediction over multiple systems. On the other hand, DPOT
injects small-scale noise to {u;—[o,,} and utilize a Fourier attention based transformer
architecture to perform autoregressive prediction over multiple systems.

Under review as a conference paper at ICLR 2026

(b) PROSE FD (Liu et al., 2024) which takes {u;—[o,»)} of a PDE trajectory as input and si-
multaneously predict {t;—[;,11,,} as a trajectory where m = 9 and n = 19. PROSE FD
introduces a multimodal transformer framework which takes {Ut:[o,m]} of a PDE trajec-
tory and mathematical description of the physical behavior as input and performs simulta-
neous prediction for multi-physics systems.

(c) POSEIDON (Herde et all [2024) which takes (u:—o,At) as input and predicts
{us=n+}VAt € [1,T] where T = 14. POSEIDON proposes a multiscale operator trans-
former architecture enhanced with time-conditioned normalization to perform prediction
on multiple physical systems. Similar to SPUS, POSEIDON uses only a single time step
(rather than a trajectory) as input; however, instead of performing autoregressive rollout,
it predicts arbitrary future time steps directly. For a dataset with n time steps, POSEI-
DON trains on O(n?) input-output pairs, whereas our approach is more sample-efficient,
requiring only O(n) sequential pairs.

4 METHODS

SPUS is a lightweight, low-parameter residual U-Net architecture designed for modeling PDE dy-
namics. To enable effective learning within this compact model, we utilize an auto-regressive pre-
training scheme. This method facilitates the efficient modeling of temporal dynamics of PDEs with
reasonable accuracy and low computational overhead.

Problem statement Given an initial state u;—¢ of a trajectory governed by a specific PDE, where
u; € R? represents the system state at time step ¢ with d variables, our objective is to predict the
future states uy—1, Ug—2, - - . , Ug—n.

Auto-regressive pretraining and finetuning We formulate the problem as a first-order Markov
process (Pillai, [2002), in which the evolution of the system depends only on the immediately pre-
ceding state. That is, the prediction of w4 is conditioned solely on w,, satisfying the Markov
property:

P(ugyr | e, up—1,up—2,. .., u0) = P(usq1 | ug). 2

This formulation allows the system dynamics to be modeled using an autoregressive framework
consistent with the Markov assumption.

The proposed auto-regressive training methodology for the U-Net-based FM is illustrated in Fig-
ure[I} During pretraining, the proposed FM takes a randomly sampled ground-truth state u, from a
PDE trajectory in the pretraining dataset and predicts the next state u; ;. More specifically, during
pretraining, only ground-truth states are used as inputs; predicted states are not used to generate
future predictions. During finetuning, the pretrained model is adapted to a specific downstream PDE
using the same input-output structure as in pretraining: the model receives u; and predicts u;_ ;.
At inference time, however, we provide the model with the initial state u;—¢ and auto-regressively
generate predictions wuj_y, uj_o, ..., u;_,, where each prediction u;_ is based on the previously
predicted state u; as shown in Figure

4.1 MODEL ARCHITECTURE

Figure E] shows the residual U-Net architecture (Lan & Zhang| |2020; Ronneberger et al., [2015) with
36 million parameters we have utilized for designing the FM for PDEs. The U-Net model takes any
current state u; of shape d x 128 x 128, where d is the number of system variables and applies a 3 x 3
convolutional layer to project it into a 32-dimensional feature space. The residual encoder path com-
prises four hierarchical levels, each of which processes features through two residual blocks. Each
residual block includes two 3 x 3 convolutional layers, with batch normalization (Bjorck et al.; 2018))
and GELU activation (Hendrycks & Gimpel, 2016) applied after each convolution, and incorporates
a skip connection to preserve feature integrity and support gradient flow. Strided convolution is
applied for downsampling at each label of encoder except the last. The encoder processes features
through 32-channel blocks at Level 0, increases to 64 channels at Levels 1 and 2, and reaches 128
channels at Level 3. The residual bottleneck consists of two residual blocks that operate on 128-
channel feature maps, effectively capturing high-level representations. The residual decoder mirrors

Under review as a conference paper at ICLR 2026

Pre-training Fine-tuning Inference

Multiple PDE Downstream PDE Unseen Downstream
datasets datasets PDE datasets

Start with initial condition u'y = ui=g
U u u',

't t t
l l l utoregressive Rollout
UNet-based FM (= >| UNet-based FM |=>| UNet-based FM
U'teq U'tsq U'tsq

Figure 1: Proposed auto-regressive training methodology for the U-Net-based FM. During both pre-
training and finetuning, the FM randomly samples a ground truth state u;, where u; € R¢ represents
the system variables at time step ¢, and learns to predict the next state u;_, ;. During inference, the full
trajectory is predicted autoregressively from the initial condition u;—o. The FM takes u} = us—q as
input and recursively predicts subsequent states based on its own previous outputs fort = 1,...,n,
where n is the length of the trajectory under consideration.

Label 0

128 x 128 '
128 x 128 '

128 x 128

128 x 128 '
-

128 x 128

128 x 128

. 128x128
» '
128 x 128

64 64

Label 1

642

| % %l %
3| 2 3 3

128 64 64
%%H mp residual block
a8 ‘ sl g

copy and concat

64

' 64 64
Label 2
o
' 2 Label 3 128 64

128
256 learnable
[s] [T
p S s = 3 =
\ learnable upsampling
128 ’ ‘

o D > conv 33

©

-

Figure 2: Illustration of the residual U-Net based FM architecture for PDEs with 36M parameters.
The network takes an input of shape d x 128 x 128, representing the current time step of a PDE tra-
jectory, and predicts the next time step of the same shape. It employs an encoder—decoder structure
with residual blocks, skip connections, and progressive downsampling and upsampling to preserve
spatial and contextual information.

the encoder with three upsampling stages implemented with transposed convolution layers. At each
stage, the upsampled features are concatenated with the corresponding encoder feature maps via skip
connections, facilitating the recovery of spatial details. After concatenation, the features are passed
through two residual blocks, each followed by batch normalization and GELU activation. The de-
coder progressively reduces the feature dimensionality from 128 to 64, and subsequently from 64
to 32 across its stages. Finally, a 3 x 3 convolution maps the decoder output back to the number of
system variable d.

During pretraining, the model was trained for 200 epochs using the Adam optimizer (Kingma & Bal
2014) with a linear learning rate schedule starting from 10~%, and a batch size of 10. The learning
rate decreased linearly over the course of training. The model achieving the best performance on the
evaluation set of the pretraining dataset was saved for downstream use.

Under review as a conference paper at ICLR 2026

4.2 THEORETICAL FOUNDATIONS OF RESIDUAL U-NET EFFICIENCY AND
GENERALIZATION IN PDE LEARNING

Design choices are driven by theoretical motivation: a) convolutional layers for spatial bias, b)
residual blocks for numerical stability, c) U-Net architecture for encoder-bottleneck-decoder com-
pact representation, and d) multi-PDE pre-training for generalization.

Convolutional Layers The step-to-step evolution of nonlinear PDEs on uniform grids exhibits a
locally translation-equivariant structure: each grid cell interacts primarily with its spatial neighbors
through couplings that decay smoothly with distance (LeVequel [2007). This locality aligns naturally
with the inductive bias of the residual U-Net architecture, whose convolutional encoder captures
spatially local dependencies and whose decoder reconstructs fine-scale features through upsampling
and skip connections (Ronneberger et al., 2015 Ruthotto & Haber, 2020). By progressively reducing
and restoring spatial resolution, the U-Net builds a multiscale hierarchy that aggregates coarse and
fine spatial information, enabling efficient representation of both local interactions and long-range
dependencies. This hierarchical design allows the network to approximate global spatial couplings
without the quadratic computational overhead of transformer-based attention mechanisms.

Residual Blocks Residual connections enhance both stability and learning efficiency by predicting
incremental field updates rather than full mappings, analogous to time-stepping schemes in numeri-
cal PDE solvers. These design principles collectively make the residual U-Net a parameter-efficient
and numerically stable architecture for learning complex, nonlinear PDE operators across diverse
physical regimes.

The following section formalizes a theoretical error decomposition, illustrating how the residual
encoder—bottleneck—decoder hierarchy reduces approximation, projection, and statistical errors, and
how multi-PDE pretraining further enhances cross-family generalization.

4.2.1 THEORY

Encode-Bottleneck-Decoder Architecture Let W : X — Y denote the one-step solution operator
of a time-dependent PDE. Given a field state u; € R¢ at time ¢, representing the spatial distributions
of system variables (e.g., density, velocity, or pressure), the operator ¥ produces the evolved field
usr1 = U(ug) € Y at the next timestep. For notational convenience, we denote 2z = u; € X as the
input field and y = ¥U(x) = w41 € Y as the corresponding evolved field. In the residual U-Net
framework, this mapping is approximated by a multiscale neural surrogate Fy : X — Y, parame-
terized by weights 6, where each stage of the network (encoder, bottleneck, and decoder) performs
local residual updates that emulate incremental field evolution consistent with the underlying PDE
dynamics across spatial scales. Let ;. denote the probability measure associated with the sampling
of input fields z at time ¢ within the function space X. Each sample z ~ p therefore represents a
physical state of the PDE system at the previous timestep, and the network is trained to predict the
corresponding evolved field y = W(x) at time ¢ + 1, yielding the expected mean-squared prediction
error

E(0) = Eonp [¥(x) = Fo(2) 3], 3)
which quantifies the average discrepancy between the true PDE evolution and the residual U-Net
prediction across all field states encountered in the data. Following the generalization frame-
work of Bhattacharya et al.| (2021)), this error can be decomposed into three fundamental contri-
butions—neural approximation, model reduction, and finite-sample statistics:

2 N4 L
E0) S g TRV TR+ O(K) @
neural approximation model reduction / projection finite-sample term

Here, neural approximation denotes the best achievable error of the residual U-Net within the learned
subspaces; V; C X and V,, C Y denote the encoder and decoder subspaces, respectively. The pro-
jection terms quantify the residual energy of the data distributions outside these learned subspaces.
Specifically, R*(V,) = Ey,. [||z — Iy, (2)]|3] measures the expected reconstruction error of input
fields x € X, where Ily, denotes the projection or learned feature mapping induced by the encoder
onto the subspace V,. Likewise, RY##(V,)) = Ey~w,,,.[|ly — Iy, (y)||3] measures the correspond-
ing residual energy of output fields y = ¥(x) € Y, where U is the output distribution induced

Under review as a conference paper at ICLR 2026

by the PDE operator W, that is, the distribution of evolved fields obtained by mapping input samples
x ~ p through W. Here, Ily, denotes the decoder-side projection onto the subspace V,, and N
represents the number of training samples. In a residual U-Net, the encoder, bottleneck, and decoder
all contain residual blocks of the form

RUHD = O 4 RV (hD), (5)

where h()) denotes the feature tensor at depth [within the current stage, and each residual oper-

ator Réh) is a local convolutional transformation acting on the corresponding feature space. The
residual encoder £ progressively constructs a hierarchical latent subspace V, that captures coarse-
to-fine spatial and dynamical modes. By composing small residual updates, the encoder acts as a
data-driven reduced-basis generator, minimizing the input projection error R*(V,.) in equation
At the network’s core, the residual bottleneck B captures cross-scale and nonlocal interactions in
the latent feature space, providing an efficient, low-dimensional approximation of global coupling
that further reduces the intrinsic neural approximation error €ypprox. The residual decoder D then
reconstructs the output subspace V,, through a sequence of incremental updates, which refine hier-
archical features and approximate stable step-to-step updates of the underlying PDE evolution. The
complete network composition is thus

Fy=DoBoE=(Id+R")o(1d+ R{”)o (1d+ R, (6)

where Id denotes the identity mapping on the corresponding feature space of each component (en-
coder, bottleneck, or decoder). This composition can be interpreted as a multiscale residual in-
tegrator in feature space, in which each component performs a small, well-conditioned update
aligned with the underlying PDE dynamics. Combining Equations [5H6| with the error decomposi-
tion in Equation[d] we find that the residual encoder-bottleneck—decoder hierarchy reduces all three
error sources simultaneously: (a) the multiscale residual encoder—decoder minimizes the projection
errors R*(V,) and RY##(V,,); (b) the bottleneck and residual formulation lower the intrinsic ap-
proximation error €,pprox by capturing local-to-global nonlinear interactions; and (c) convolutional

weight sharing limits parameter growth, thereby reducing the statistical term O(N~1/2). In contrast
to transformer-based operator learners that rely on global self-attention—incurring quadratic com-
putational and memory complexity with respect to input size and requiring large parameter counts
to infer spatial locality from data—the residual U-Net embeds these spatial priors directly through
its convolutional and multiscale hierarchical design. This inductive bias enables the residual U-
Net to achieve comparable or superior accuracy with substantially fewer parameters and improved
numerical stability in PDE operator learning.

Multi-PDE Pretraining When the residual U-Net is pretrained across multiple PDE families
{W,,}M_, defined on the same grid class, the model learns a shared multiscale encoder-
bottleneck—decoder representation that captures structural invariants common to these operators,
including spatial locality, smooth spectral decay, and hierarchical coupling across scales. Assuming
that these structural invariants exist in the downstream finetuning PDEs, then model error will be
reduced compared to training from scratch (Bhattacharya et al.| 2021} Ben-David & Borbely} 2008)).
Let u,, denote the probability measure associated with sampling the variable fields at time ¢ from
trajectories of the m-th PDE family within the function space X, and let ¥,,, . (1,,, denote the cor-

responding measure of their evolved fields at time ¢ + 1. Define i = ﬁ Zf:f:l L as the mixture

of input field distributions and WV = ﬁ 2%21 W, 4 b, as the corresponding mixture of output
field measures. Under the same decomposition as in equation (4 the expected joint training error

satisfies

M
1 _ _
=D B, (10 (@) = Fo(@)3] S el + B (Va) + B #7(V) + O 5). (D

m=1

Here, the projection terms depend on the shared mixture distributions rather than on any single
PDE family. By exposing the network to diverse yet structurally related dynamics, multi-PDE pre-
training enables the residual encoder, bottleneck, and decoder to learn common multiscale feature
subspaces that align with recurring spatial and spectral patterns across PDE families. This shared
representation captures a greater portion of the underlying functional variability with the same latent
dimensionality, thereby reducing the average projection error. As a result, during downstream fine-
tuning, the pretrained residual U-Net requires only minor residual adaptations in its local blocks,

Under review as a conference paper at ICLR 2026

leading to improved numerical stability, and strong cross-family generalization without increasing
parameter count.

4.3 PRETRAINING AND FINETUNING DATASET

SPUS is pretrained on a diverse set of PDE types from the PDEGYM dataset (Herde et al.| [2024)),
which includes four operators derived from the compressible Euler (CE) equations:

* CE-RP, containing trajectories initialized with four-quadrant Riemann problems;
* CE-CRP, initialized with multiple curved Riemann problems;
* CE-KH, representing shear-driven Kelvin—Helmholtz instabilities; and

* CE-Gauss, featuring initial conditions with Gaussian vorticity profiles.

Each dataset consists of 10,000 trajectories. Each trajectory has 21 time steps and each time step
consists of five physical fields: density p, horizontal velocity u, vertical velocity v, pressure p, and
energy F with spatial grid of resolution 128 x 128.

We fine-tune SPUS on seven previously unseen downstream PDEs from the PDEGYM dataset, using
128 trajectories for each PDE task. These downstream PDEs include three operators governed by
the CE equations, three operators governed by the incompressible Navier-Stokes (NS) equations,
and one based on the wave equation:

* CE-RPUI: consisting of trajectories initialized with four-quadrant Riemann problems fea-
turing uncertain interfaces;

* CE-RM: representing the Richtmyer-Meshkov instability problem;
* NS-PwC: initialized from piecewise-constant vorticity fields;

e NS-SL: initialized with double shear layer conditions;

* FNS-KF: also initialized from piecewise-constant vorticity fields;

* Wave-Gauss: containing trajectories initialized as a sum of Gaussians that are propagated
by the spatially varying wave speed.

* SE-AF: contains contains the steady-state density over airfoils

Each CE-RPUI and CE-RM trajectory contains 21 time steps. Each time step has five physical
fields: density p, horizontal velocity u, vertical velocity v, pressure p, and energy F. On the other
hand, each trajectory in the three NS datasets also has 21 time steps but only two physical fields:
horizontal velocity u, and vertical velocity v. For the Wave-Gauss dataset, trajectories have 15 time
steps with one physical field, spatially varying wave speed w. For the SE-AF dataset, the samples
are time-independent and solution operator maps a shape coefficient into the steady state solution.
All fine-tuning datasets share a common spatial resolution of 128 x 128 grid points.

4.4 FINETUNING STRATEGIES AND BASELINE MODELS

In downstream tasks, the number of variables per time step may differ from those used during
pretraining. To adapt the pretrained model to downstream tasks with different input and output
dimensions than pretraining, we introduce lightweight input and output adapters. Specifically, we
use 1 x 1 convolutional layers as adapters:

» The InputAdapter maps the task-specific input (e.g., 2 fields for NS-SL) to the 5-field
format expected by the pretrained SPUS model.

* The OutputAdapter maps the model’s 5-field output back to the task-specific output di-
mensionality (e.g., 2 fields for NS-SL).

These adapters are simple, efficient, and allow the pretrained model to be flexibly applied to a
variety of downstream tasks without modifying its internal architecture. For each downstream task,
we fine-tuned either the pretrained model or the pretrained model with adapters (if the number of
the fields differed from five) using 128 trajectories. The model was fine-tuned for 200 epochs using

Under review as a conference paper at ICLR 2026

Table 1: Comparison of model performance (average MSE over all predicted timesteps from the
initial conditions of the trajectories) on six unseen downstream PDE datasets fine-tuned with 128
trajectories. Lower is better. The U-Net* is trained from scratch using 128 trajectories for each
downstream PDE dataset.

Dataset SPUS (Ours, 36M) DPOT (122M) POSEIDON (158M) U-Net* (36M)
CE-RPUI 0.0054 0.0570 0.0085 0.0337
CE-RM 0.0159 0.0222 0.4181 0.0218
NS-PwC 0.0048 0.0294 0.0004 0.0048
FNS-KF 0.0015 0.0301 0.0017 0.0047
NS-SL 0.0163 0.1461 0.0163 0.0165
SE-AF 0.0006 - 0.0031 0.0040
Wave-Gauss 0.0069 0.0107 0.0068 0.0071

the Adam optimizer with a linear learning rate schedule starting from 10~*, and a batch size of 10.
The learning rate decreased linearly over the course of training.

To ensure a fair comparison, we fine-tune two baseline FMs: DPOT “M” (122M parameters) (Hao
et al.| [2024) and POSEIDON “B” (158M parameters) (Herde et al.,[2024). DPOT was pretrained on
12 PDE datasets governed by the Navier-Stokes, diffusion-reaction, and shallow-water equations,
whereas POSEIDON was pretrained on 6 PDE datasets governed by the compressible Euler and
Navier-Stokes equations. For both baselines, we adopt the exact hyperparameter settings recom-
mended in their original papers and accompanying code repositories (Hao et al., 2024; Herde et al.,
2024). All models, including SPUS, are fine-tuned separately on each downstream PDE task using
the same set of 128 trajectories for 200 epochs with MSE loss. Performance is evaluated on testing
dataset corresponding to each PDE task.

DPOT recommends a context window of 10 timesteps. Accordingly, to predict trajectories from
their initial conditions, we follow the same fine-tuning methodology described inHerde et al.| (2024),
padding input sequences with timestep 0 when predicting steps earlier than the 10", For instance,
to predict the state at timestep 4, the input sequence is padded as follows:

[tSo, tSo, tsg, tSo, tSg, tSo, tSg, tS1, tS2, tS3}.

POSEIDON, on the other hand, is designed to take a single timestep as input, along with the corre-
sponding At, and directly predict any future frame within the trajectory. This allows POSEIDON to
predict any timestep (using only the initial timestep as context) without requiring an autoregressive
rollout. In practice, such “direct” predictions result in higher average accuracy compared to predic-
tions generated via autoregressive rollout. Therefore, we report POSEIDON’s performance based
on its direct prediction accuracy.

To further assess the parameter efficiency and architectural simplicity of SPUS, we trained a U-
Net model with 36M parameters—sharing the same architecture as SPUS—from scratch using the
same set of 128 trajectories per downstream dataset on which SPUS, POSEIDON, and DPOT were
fine-tuned, and compared its performance with these foundation models.

The comparison of model performance—measured as average mean squared error (MSE) across all
predicted timesteps from the initial condition of the trajectories—on seven unseen downstream PDE
datasets fine-tuned with 128 trajectories is presented in Table

5 EXPERIMENTS

Is SPUS an effective lightweight PDE emulator? Does SPUS with only 36 million parameters
generalize as accurately as larger models? To address these questions, we design and evaluate
the following three experiments.

(A). Does SPUS generalize to unseen systems governed by the compressible Euler (CE) equa-
tions, consistent with its pretraining? We investigate whether SPUS can generalize to previously

Under review as a conference paper at ICLR 2026

unseen physical systems that are governed by CE equations, consistent with its pretraining. To evalu-
ate this, we fine-tune the pretrained SPUS model on the CE-RPUI dataset. While this dataset adheres
to the same underlying physical laws, its distribution of initial conditions differs from those seen
during pretraining, presenting a clear out-of-distribution (OOD) generalization challenge (Herde
et al., 2024). As shown in Table |1} SPUS achieves strong performance in autoregressively predict-
ing full trajectories from initial conditions, despite having only 36 million parameters. Notably,
it outperforms both the substantially larger POSEIDON model (158 million parameters) and the
DPOT model (122 million parameters) in terms of average mean squared error (MSE) across 240
test trajectories. A randomly selected trajectory prediction from the CE-RPUI test set is shown in
Figure [A.2] where the SPUS predictions closely match the ground truth at each time step. These
results demonstrate the effectiveness and computational efficiency of the lightweight SPUS model
relative to significantly larger architectures.

We also fine-tune the pretrained SPUS model on the CE-RM dataset, which exhibits significantly
more complex dynamics compared to CE-RPUI. SPUS demonstrates strong generalization capabil-
ity in predicting entire trajectories from initial conditions, as illustrated in Figure[A.3] Furthermore,
as shown in Table [T} SPUS achieves a lower average MSE across 130 test trajectories compared to
both the POSEIDON and DPOT models, despite their substantially larger parameter counts.

(B). Does SPUS generalize to systems governed by equations different from those used in pre-
training? We investigate the ability of SPUS to generalize to previously unseen physical systems
governed by equations different from those used during pretraining. Specifically, we fine-tune the
pretrained SPUS model on three datasets governed by incompressible NS equations that were not
part of the pretraining data: NS-PwC, NS-SL, and FNS-KF. As shown in Table[I] despite not being
exposed to incompressible NS dynamics during pretraining, surprisingly, SPUS achieves superior
time-step prediction performance compared to DPOT across all three datasets—even though DPOT
was pretrained on operators of both compressible and incompressible NS equations. For the PO-
SEIDON model, whose pretraining data includes two operators governed by NS equations, SPUS
outperforms it on FNS-KF, matches its performance on NS-SL, and is outperformed on NS-PwC,
as summarized in Table[I] These results demonstrate the strong generalization capability of SPUS
to new physical regimes outside its pretraining distribution and highlight its effective transferability
to downstream tasks governed by equations different from those seen during pretraining. Randomly
selected trajectory predictions from the test datasets of NS-PwC, NS-SL, and FNS-KF are shown in
Figure [A.4] and Figure [A.5] (in Appendix). As observed, SPUS demonstrates strong generalization
performance on each of the NS dataset; however, the predicted variables gradually deviate from the
ground truth over time. We also fine-tuned SPUS on the Wave-Gauss dataset, which is governed by
the wave equation. As shown in Table [T SPUS outperforms DPOT and is narrowly outperformed
by POSEIDON for 240 Wave-Gauss testing trajectories.

(C). Does SPUS generalize to time-independent PDEs although it is pretrained on time-
dependent PDEs? We fine-tune the pretrained SPUS model on the time-independent SE-AF tra-
jectories to evaluate its generalization capability beyond time-dependent PDEs. Although SPUS is
originally pretrained on time-dependent PDEs, it can be readily adapted to time-independent prob-
lems because it does not explicitly take time as an input variable. Instead, the model simply learns
the mapping between input and output fields required for prediction in static PDEs. As shown in
Table (1} SPUS achieves better performance than both POSEIDON and the unpretrained U-Net on
the SE-AF testing dataset. A randomly selected prediction from the SE-AF test set is illustrated in

Figure[A7]

Does SPUS show scalability with dataset size? Table[d]|reports the average MSE of predicting the
time steps of entire trajectories from the initial condition of the trajectories across six downstream
PDEs using SPUS, finetuned with 32, 128, and 256 trajectories. As shown, increasing the fine-
tuning set size reduces the MSE across the six downstream PDEs, demonstrating that SPUS scales
favorably with additional data.

Summaries of the experiments Based on the above experiments, we observe that SPUS, built
on a residual U-Net architecture with only 36 million parameters, achieves state-of-the-art general-
ization on downstream tasks, outperforming significantly larger models such as POSEIDON (158
million parameters) and DPOT (122 million parameters). These results highlight that a simple, well-

Under review as a conference paper at ICLR 2026

established architecture—specifically, a residual U-Net—can be effectively leveraged as a founda-
tion model (FM) for PDEs. Despite its architectural simplicity and relatively small parameter count,
SPUS is capable of capturing complex dynamics and performs competitively with more sophisti-
cated, larger models. We also observe that SPUS, when pretrained on a diverse set of simpler PDEs
(such as CE), demonstrates strong performance on complex downstream PDEs (such as NS). This
indicates the effective transferability of SPUS across distinct physical regimes, despite differences
in the underlying governing equations. Furthermore, this suggests that even when the pretraining
data are derived from PDEs governed by simple CE equations, a sufficiently diverse pretraining
dataset—spanning variations in initial and boundary conditions, domain geometries, and external
forcing—can enable the FM to generalize effectively. Moreover, SPUS is pretrained to emulate the
behavior of numerical solvers by autoregressively predicting the next time step from the current one.
The results on downstream tasks for SPUS suggest that this pretraining strategy helps the FM learn
the underlying physics of PDEs, enabling more accurate and physically consistent predictions.

Additional results on the performance evaluation of SPUS on downstream tasks, as well as visual
comparisons of SPUS’s performance on trajectory prediction from initial conditions with larger
models (POSEIDON and DPOT), are presented in Appendices[A.THA.6|

6 LIMITATIONS

SPUS is pretrained on a limited set of PDE families, using only four CE datasets. Despite this
narrow pretraining scope, SPUS shows promising transferability across equation types, generalizing
from compressible Euler to incompressible Navier—Stokes and wave equations. Currently, SPUS
cannot simultaneously predict multiple future timesteps from an initial condition. In future work, we
plan to extend SPUS to support both direct and autoregressive temporal prediction. We also expect
that pretraining on a broader range of governing equations would further enhance its generalization
capability. Moreover, the current architecture is restricted to regular geometries, and extending
SPUS to irregular domains remains an important direction for future research.

7 CONCLUSIONS

We propose SPUS, a compact and lightweight FM for PDEs, capable of handling a broad range of
physical systems. The model is based on a simple residual U-Net architecture and is trained us-
ing a straightforward autoregressive pretraining strategy. Despite its relatively small size—only 36
million parameters—SPUS demonstrates strong generalization capabilities across six diverse down-
stream PDE tasks. SPUS consistently outperforms the significantly larger DPOT model across all
downstream datasets. When compared to the POSEIDON model, which also has substantially more
parameters, SPUS achieves superior performance on three datasets, matches performance on one,
is narrowly outperformed on another (MSE: 0.0069 vs. 0.0068), and is outperformed on one task.
These results establish SPUS as a highly parameter-efficient foundation model, capable of solving a
wide range of complex PDE systems with competitive accuracy. Furthermore, we demonstrate that
pretraining SPUS on simpler PDEs (such as CE) with autoregressive training to emulate a numerical
solver enables effective transfer to more complex PDEs (such as NS), reducing the amount of data
required for finetuning even when the downstream task involves more complex dynamics than those
seen during pretraining.

REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available. The code will be released at the time of
publication.

REFERENCES

Shai Ben-David and Reba Schuller Borbely. A notion of task relatedness yielding provable multiple-
task learning guarantees. Mach. Learn., 73(3):273-287, 2008.

10

Under review as a conference paper at ICLR 2026

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. The SMAI journal of computational mathematics,
7:121-157, 2021.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. Advances in Neural Information Processing Systems, 31, 2018.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized PDE
modeling. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer for large-
scale PDE pre-training. In Proceedings of the 41st International Conference on Machine Learn-
ing, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Kippeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for PDEs. Advances
in Neural Information Processing Systems, 37:72525-72624, 2024.

Z Huang, H Wang, Z Deng, J Ye, Y Su, H Sun, J Junjun He, Y Gu, L Gu, S Zhang, et al. Stu-
net: Scalable and transferable medical image segmentation models empowered by large-scale
supervised pre-training. arXiv preprint arXiv:2304.06716, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yancheng Lan and Xuming Zhang. Real-time ultrasound image despeckling using mixed-attention
mechanism based residual UNet. IEEE Access, 8:195327-195340, 2020.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2021.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. PDE-
refiner: Achieving accurate long rollouts with neural PDE solvers. Advances in Neural Informa-
tion Processing Systems, 36:67398-67433, 2023.

Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, and Hayden Schaeffer.
PROSE-FD: A multimodal PDE foundation model for learning multiple operators for forecasting
fluid dynamics. arXiv preprint arXiv:2409.09811, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218-229, 2021.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer, Al-
berto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for spatiotemporal surrogate models. Advances in Neural Informa-
tion Processing Systems, 37:119301-119335, 2024.

Rudy Morel, Jiequn Han, and Edouard Oyallon. Disco: learning to discover an evolution operator
for multi-physics-agnostic prediction. arXiv preprint arXiv:2504.19496, 2025.

Eike H Miiller and Robert Scheichl. Massively parallel solvers for elliptic partial differential equa-
tions in numerical weather and climate prediction. Quarterly Journal of the Royal Meteorological
Society, 140(685):2608-2624, 2014.

11

Under review as a conference paper at ICLR 2026

Philipp Neumann, Hans-Joachim Bungartz, Miriam Mehl, Tobias Neckel, and Tobias Weinzierl. A
coupled approach for fluid dynamic problems using the PDE framework Peano. Communications
in Computational Physics, 12(1):65-84, 2012.

S Unnikrishna Pillai. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 2002.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of PDEs. Advances in Neural Information Processing Systems, 36:77187—
77200, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 234-241. Springer, 2015.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3):352-364, 2020.

R Schaa, L Gross, and J Du Plessis. PDE-based geophysical modelling using finite elements: Ex-
amples from 3d resistivity and 2d magnetotellurics. Journal of Geophysics and Engineering, 13
(2):859-S73, 2016.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. UPS: Efficiently building foundation models
for PDE solving via cross-modal adaptation. Transactions on Machine Learning Research, 2024.

Anthony Zhou and Amir Barati Farimani. Masked autoencoders are pde learners. arXiv preprint
arXiv:2403.17728, 2024.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ERROR GROWTH OVER TIME

Figure|A.1|presents the average mean squared error (MSE) of trajectory predictions over time for the
FNS-KF test datasets. As shown, the SPUS model—with only 36 million parameters—exhibits an
approximately linear increase in prediction error over time, a behavior consistently observed across
our downstream datasets. POSEIDON, a larger FM with 158 million parameters, demonstrates a
similar error growth pattern as shown in Figure[A.Tb] As can be seen, SPUS achieves comparable
performance to POSEIDON (Direct) at early time steps and surpasses it at later time steps. These
results highlight the potential of SPUS to deliver accurate long-term predictions despite having sig-
nificantly fewer parameters.

Table 2: Comparison of model performance (average MSE across all predicted 20 timesteps from the
initial conditions of the trajectories) on the CE-RM, NS-SL, and FNS-KF PDE datasets, fine-tuned
with 128 trajectories using three different pretrained model sizes. SPUS demonstrates scalability
with increasing model size.

Dataset SPUS-9M SPUS-36M SPUS-76M

CE-RM 0.0203 0.0159 0.0129
NS-SL 0.0247 0.0163 0.0027
FNS-KF 0.0045 0.0015 0.0008

—e— SPUS
Poseidon(Direct)

0.004 /

0.0001 &

25 5.0 7.5 10.0 125 15.0 17.5 20.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Time Step Time Step

—e— SPUS
Poseidon(Direct)
0.08{ —=— Poseidon (AR)

0.005

Average Mean Squared Error
Average Mean Squared Error

=3 o o
o =) 1=}
=1 S =3
= N @

0.00

(a) Prediction error over time for FNS-KF with Posei- (b) Prediction error over time for FNS-KF with Posei-
don (Direct), Poseidon (AR), and SPUS don (Direct), and SPUS

Figure A.1: Average MSE of trajectory predictions over time for the FNS-KF test datasets. SPUS
(36M) shows approximately linear error growth similar to POSEIDON (Direct). It surpasses PO-
SEIDON (direct) at later steps on FNS-KF, highlighting its efficiency and long-term accuracy as
shown in Figure (b).

Table 3: Performance analysis of SPUS with different numbers of residual blocks at each stage.
The table reports the average MSE across all 20 predicted timesteps from the initial timestep on the
CE-RM, NS-SL, and FNS-KF test datasets. Using five residual blocks per stage in SPUS reduces
the prediction MSE across all downstream tasks.

Model Number of Residual Blocks CE-RM NS-SL FNS-KF
SPUS-36M 2 0.0159 0.0163 0.0015
SPUS-76M 5 0.0129 0.0027 0.0008

A.2 SPUS SCALES WITH MODEL SIZE
We pretrain SPUS with three model sizes to study scalability:
* SPUS-9M: This variant contains approximately 9 million parameters. Its architecture is

identical to SPUS-36M except that the number of channels in each encoder and decoder
stage is reduced by half.

13

Under review as a conference paper at ICLR 2026

Table 4: Evaluation (average MSE on all predicted timesteps from initial condition) of SPUS on
downstream datasets under different numbers of finetuned trajectories

Downstream Dataset | Number of Trajectories
32 128 256
CE-RPUI 0.0057 0.0054 0.0041
CE-RM 0.0246 0.0159 0.0130
NS-PwC 0.0076 0.0048 0.0025
NS-SL 0.0286 0.0163 0.0004
FNS-KF 0.0098 0.0015 0.0012
Wave-Gauss 0.0097 0.0069 0.0068

» SPUS-36M: The baseline configuration illustrated in Figure 2] It includes two residual
blocks at each level of the encoder, decoder, and bottleneck.

» SPUS-76M: This larger variant follows the same architecture as SPUS-36M but increases
the number of residual blocks in each encoder, decoder, and bottleneck stage from two to
five following |Huang et al.| (2023)) .

All three pretrained models are fine-tuned on three downstream datasets: CE-RM, NS-SL, and FNS-
KF. Table 2 summarizes the average test MSE across all predicted timesteps for each dataset and
model configuration. As shown, increasing model size consistently reduces the test error across for
all three downstream datasets, demonstrating that SPUS scales effectively with model size.

A.3 PERFORMANCE EVALUATION OF SPUS WITH DIFFERENT NUMBERS OF RESIDUAL
BLOCKS PER STAGE

As shown in Table [3] increasing the number of residual blocks in each stage of SPUS improves
model accuracy. Specifically, the larger variant, SPUS-76M with five residual blocks per encoder,
decoder, and bottleneck stage, achieves lower prediction errors on all three downstream PDE datasets
compared to the configuration with two residual blocks (SPUS-36M), demonstrating the benefit of
deeper residual refinement within each stage.

A.4 PERFORMANCE EVALUATION OF SPUS WITH AUTOREGRESSIVE TRAINING UNDER A
FIRST-ORDER MARKOV ASSUMPTION

We formulate the autoregressive training of SPUS as a first-order Markov process, where the evo-
lution of the system depends only on its immediately preceding state. This formulation contrasts
with DPOT, which conditions on the previous ten timesteps to predict the next one. Relying on
multiple past states, as in DPOT, to start inference, it requires the 10 past states to be generated from
expensive numerical simulator. On the other hand, SPUS only need the initial condition which has
no computational cost to start the inference.

Relying on multiple past states, as in DPOT, can accumulate redundant temporal information and
potentially introduce compounding errors during long rollouts. As shown in Table |1} our first-
order Markov formulation enables SPUS to achieve lower prediction errors and improved long-term
stability across all downstream datasets compared to DPOT.

A.5 PERFORMANCE EVALUATION OF SPUS oON THE CE-RPUI, CE-RM, FNS-KF AND
WAVE-GAUSS DATASETS

Figure[A.2|presents randomly selected trajectory prediction from the CE-RPUI test dataset. Notably,
the predicted variables closely match the ground truth at each time step, although the deviation
between prediction and ground truth increases more noticeably over time for CE-RM compared to
CE-RPUI due to its more complex dynamics.

Figure [A.3] presents randomly selected trajectory prediction from the CE-RM test dataset. Notably,
the predicted variables closely match the ground truth at each time step.

14

Under review as a conference paper at ICLR 2026

Predicted v at t=1

Truevatt=1 Predicted p at t=1 Truepatt=1 Predicted E at t =1 True Eat t=1

Trueuatt=1

Predicted p at t=1 Truepatt=1 Predicted u at t=1

Predicted v at t=6 True vatt=6 Predicted p at t=6 True p att=6 Predicted E at t=6 True Eatt=6

Trueuatt=6

Predicted p at t=6 True patt=6 Predicted u at t=6

Predicted E at t=11

Predicted v at t=11 True E at t=11

Predicted uatt=11 Trueuatt=11 Truevatt=11 Predictedpatt=11 Truepatt=11

Predicted pat t=11 Truepatt=11

P N

~ ~
.

Predicted Eatt=16 True Eat t=16

Truevatt=16 Predictedpatt=16 Truepatt=16

Predicted p at t= 16 Predicted v at t = 16

True p at t=16

Predicted uat t=16 True uat t=16

2

1.5

=
=]

0.25 0.50 .75 1.00 -0.5 0. 0.5 -0.5 0.0 0.5 1.0 0.5

=3
o

Figure A.2: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the CE-RPUI testing dataset (240 test trajectories). The figure shows example
results at time steps ¢ = 1,6,11,16 for five system variables: density p, horizontal velocity w,
vertical velocity v, pressure p, and energy E. SPUS takes the initial condition u; = us—¢ as input
and recursively predicts subsequent states based on its own previous outputs for ¢ = 1,...,20, as
described in Figure [T] (inference step). As shown, the predicted variables closely match the ground
truth at each time step.

True Eatt=1

Truevatt=1 Predicted vatt=1 Truevatt=1 Predicted p at t=1 Truep att=1 Predicted E at t=1

Predicted p at t=1 True pat t=1 Predicted u at t=1

—

Predicted E at t=6

Trueuatt=6 Predicted v at t=6 Truevatt=6 Predicted p at t =6 True Eatt=6

Predicted pat t=6 Truepatt=6 Predicted uatt=6 True pat t=6

Predicted E at t=11

True E at t=11

Predicted patt=11 Truepatt=11 Predicteduatt=11 Trueuvatt=11 Predictedvatt=11 Truevatt=11 Predictedpatt=11 Truepatt=11

Predicted E at t =16

True E at t =16

Predicted patt=16 Truepatt=16 Predicteduatt=16 Trueuatt=16 Predictedvatt=16 Truevatt=16 Predictedpatt=16 Truepatt=16

10 15

Figure A.3: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the CE-RM testing dataset (130 test trajectories). The figure shows example
results at time steps ¢ = 1, 6, 11, 16 for five system variables: density p, horizontal velocity u,
vertical velocity v, pressure p, and energy E. SPUS takes the initial condition uj = uy—¢ as input
and recursively predicts subsequent states based on its own previous outputs for ¢ = 1,...,20, as
described in Figure [T] (inference step). As shown, the predicted variables closely match the ground
truth at each time step, although the deviation between prediction and ground truth increases more
noticeably over time for CE-RM compared to CE-RPUI due to its more complex dynamics.

Figure [A4] presents randomly selected trajectory prediction from the NS-PwC and NS-SL test
dataset. Notably, although SPUS was not pretrained on incompressible Navier—Stokes dynamics,
its predictions closely follow the ground truth variables at each time step, demonstrating robust
generalization to the NS-PwC and NS-SL system.

15

Under review as a conference paper at ICLR 2026

Predicted u at t=1 Trueuatt=1 Predicted vat t=1 Truevatt=1 Predicted u at t=1 Trueuatt=1 Predicted vat t=1 Truevatt=1

Predicted u at t=6 Trueu att=6 Predicted v at t=6 Truevatt=6 Predicted u at t=6 Trueuatt=6 Predicted vatt=6 Truevatt=6

Predicted u at t=11 Trueuatt=11 Predicted vat t=1 True v at t=11 Predicted u at t=11 Trueuatt=11 Predicted v at t=11 Truevatt=11

Predicted u at t=16 True u at t=16 Predicted v at t=16 True v at t=16 Predicted u at t=16 True u at t=16 Predicted v at t =16 True vatt=16

|
-
) !

1
-
o
|
e
w

-0.5 0.0 0.5 -0.5 0.0 0.5 0 0.0 05 1.0

(a) Autoregressive trajectory prediction from initial (b) Autoregressive trajectory prediction from initial
state for NS-PwC state for NS-SL

Figure A.4: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the NS-PwC and NS-SL testing datasets (each with 240 test trajectories). The
figure shows example results at time steps ¢ = 1, 6, 11, 16 for two system variables: horizontal
velocity u, vertical velocity v. As shown, despite not being exposed to incompressible NS dynamics
during pretraining, the predicted variables by SPUS closely match the ground truth at each time
step. The deviation between prediction and ground truth (GT) increases more noticeably over time
for NS-PwC compared to NS-SL.

Figure [A.3] presents randomly selected trajectory prediction from the FNS-KF test dataset. No-
tably, although SPUS was not pretrained on incompressible Navier—Stokes dynamics, its predictions
closely follow the ground truth variables at each time step, demonstrating robust generalization to
the FNS-KF system.

Figure [A.6] illustrates a representative trajectory prediction from the Wave-Gauss test set, demon-
strating SPUS’s ability to generalize to the Wave-Gauss system. However, in comparison to the
Navier—Stokes downstream tasks, the deviation between the predicted variables and the ground truth
increases more noticeably over time for Wave-Gauss.

A.6 VISUALIZATION OF SPUS PERFORMANCE ON TRAJECTORY PREDICTION COMPARED
WITH POSEIDON AND DPOT

Figure [A:8]shows a random trajectory predictions for FNS-KF made by SPUS (36M), POSEIDON
(158M), and DPOT (122M). Each model is finetuned with 128 trajectories.

Figure [A.9] shows a random trajectory predictions for NS-SL made by SPUS (36M), POSEIDON
(158M), and DPOT (122M). Each model is finetuned with 128 trajectories.

A.7 CAN SPUS GENERALIZE TO DIFFERENT INPUT RESOLUTIONS?

We fine-tuned SPUS-36M using 128 PDE trajectories governed by the Burgers equation
2024). Each trajectory consists of 100 time steps, with the velocity field represented on a
spatial grid of size 64 x 64. For comparison, we also trained an unpretrained U-Net model with 36M
parameters—sharing the same architecture as SPUS—from scratch, using the same 128 trajectories.

We evaluated both models on 64 test trajectories, predicting all 99 future time steps from the initial
condition. The average mean squared error (MSE) across all 99 predicted time steps for the 64
trajectories was 0.0035 for SPUS and 0.0079 for the unpretrained U-Net. These results demonstrate

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Predictedu att=1 Trueuatt=1 Predictedvatt=1 Truevatt=1

Predictedu att==6 Trueuatt=6 Predicted vatt=6 Truevatt=6

Predicted uatt=11 Trueuatt=11 Predicted vatt=11 Truevatt=11

Predicted u at t=16 Trueu att=16 Predicted vatt=16 Truevatt=16

—-0.50 -0.25 0.00 0.25 0.50 -0.5 0.0 0.5

Figure A.5: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the FNS-KF testing dataset (240 trajectories). The figure shows example results
at time steps t = 1,6, 11,16 for two system variables: horizontal velocity u, vertical velocity v.
SPUS takes the initial condition uj = wu;—¢ as input and recursively predicts subsequent states based
on its own previous outputs for ¢ = 1, ..., 20, as described in Figure I] (inference step). As shown,
the predicted variables closely match the ground truth at each time step.

the strong generalization capability of SPUS to different spatial resolutions and its robustness for
longer rollouts. Figure shows a randomly selected trajectory prediction for PDEs governed
by the Burgers equation, generated by SPUS (36M) and an unpretrained U-Net (36M). The figure
shows example results at time steps ¢ = 21,31, 41,51, 99 for the velocity field on a 64 x 64 spatial
grid. As shown, the unpretrained U-Net begins to deviate from the ground truth (GT) after ¢t = 41,
whereas SPUS remains close to the GT across all time steps, demonstrating its potential for longer
rollouts. Figure [A-TT| shows the average MSE over 99 predicted time steps for 64 test trajectories
of Burgers equation. As shown, SPUS (36M) maintains a nearly constant MSE after timestep 40,
remaining stable through the final prediction. In contrast, the unpretrained U-Net (36M) exhibits a
steadily increasing MSE.

Under review as a conference paper at ICLR 2026

Predicted w at r=1 Truew atr=1

Predicted w at t=06 Truew at t=6

Predicted w atr=11 Truewatr=11

-0.2 0.0 0.2 0.4 0.6

Figure A.6: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the Wave-Gauss testing dataset (240 trajectories). The figure shows example
results at time steps ¢ = 1,6, 11 for one system variable: wave speed uw. SPUS takes the initial
condition u; = us—¢ as input and recursively predicts subsequent states based on its own previous
outputs for t = 1,...,14, as described in Figure] (inference step). As shown, the predicted vari-
ables deviates very quickly from ground truth at each time step for Wave-Gauss compared to other
downstream tasks.

A.8 CAN SPUS SCALE TO PDES WITH HIGHER SPATIAL RESOLUTIONS THAN THOSE USED
IN PRETRAINING?

SPUS is pretrained on PDEs with a spatial resolution of 128 x 128. To evaluate its scalability to
higher-resolution PDEs, we finetuned the pretrained SPUS model using 128 trajectories governed by
the Burgers equation (Zhou & Farimani|, [2024)). Each trajectory contains 20 time steps, with the ve-
locity field represented on a 256 x 256 spatial grid. For comparison, we also trained a 36 M-parameter
U-Net—matching the architecture of SPUS—from scratch using the same 128 trajectories.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prediction (SPUS)

Ground Truth

0.5

uatt=1(GT)

u at t=6 (GT)

u at t=11 (GT)

u at t=16 (GT)

0.6

0.7

0.8

0.9

1.0 1.1

Figure A.7: A randomly selected predicted samples by SPUS for SE-AF

uat t=1 (SPUS)

u at t=6 (SPUS)

u at t=11 (SPUS)

u at t=16 (SPUS)

u at t=1 (POSEIDON)

u at t=6 (POSEIDON)

u at t=11 (POSEIDON)

u at t=16 (POSEIDON)

u at t=1 (DPOT)

u at t=6 (DPOT)

u at t=11 (DPOT)

u at t=16 (DPOT)

vatt=1(GT)

v at t=6 (GT)

v at t=11 (GT)

v at t=16 (GT)

v at t=1 (SPUS) v at t=1 (POSEIDON)

v at t=6 (SPUS) v at t=6 (POSEIDON)

v at t=11 (SPUS) v at t=11 (POSEIDON)

v at t=16 (SPUS) v at t=16 (POSEIDON)

=

2

v at t=1 (DPOT)

v at t=6 (DPOT)

v at t=11 (DPOT)

v at t=16 (DPOT)

-0.8 -0.6

-0.4

-0.2 0.0 0.2

0.4 0.6

Figure A.8: A random trajectory predictions for FNS-KF made by SPUS (36M), POSEIDON
(158M), and DPOT (122M). The figure shows example results at time steps ¢t = 1,6,11,16 for

two system variables: horizontal velocity u, vertical velocity v.

We evaluated both models on 64 test trajectories, predicting all 19 future time steps from the initial
condition. The average mean squared error (MSE) across the 19 predicted time steps was 0.0017
for SPUS and 0.0023 for the U-Net trained from scratch. These results demonstrate the strong
generalization capability of SPUS to spatial resolutions higher than those used during pretraining.

Figure [A.12] shows a randomly selected trajectory prediction for the Burgers equation generated
by SPUS (36M) and the unpretrained U-Net (36M). Example velocity-field snapshots at time steps

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

uatt=1(GT) uat t=1 (SPUS)

u at t=1 (POSEIDON) u at t=1 (DPOT) vatt=1(GT)

u at t=6 (GT) u at t=6 (SPUS) u at t=6 (POSEIDON) u at t=6 (DPOT) v at t=6 (GT)

\

-

uat t=11 (GT) uat t=11 (SPUS) u at t=11 (POSEIDON) uatt=11 (DPOT) v at t=11 (GT)

u at t=16 (GT) u at t=16 (SPUS) u at t=16 (POSEIDON) u at t=16 (DPOT) v at t=16 (GT)

v at t=1 (SPUS)

v at t=6 (SPUS)

v at t=11 (SPUS)

v at t=16 (SPUS)

v at t=1 (POSEIDON)

v at t=6 (POSEIDON)

v at t=11 (POSEIDON)

v at t=16 (POSEIDON)

v at t=1 (DPOT)

v at t=6 (DPOT)

v at t=11 (DPOT)

v at t=16 (DPOT)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.0

0.5

0.

0

0.5

1.0

Figure A.9: A random trajectory predictions for NS-SL made by SPUS (36M), POSEIDON (158M),
and DPOT (122M). The figure shows example results at time steps ¢ = 1,6, 11, 16 for two system

variables: horizontal velocity u, vertical velocity v.

t = 2,6,11,16,19 on the 256 x 256 grid are presented. As illustrated, SPUS remains close to
the ground truth across all time steps, whereas the U-Net trained from scratch develops noticeable
periodic striping artifacts at later time steps that are absent in the ground-truth (GT) solution. These
findings show that SPUS successfully scales to PDEs with higher spatial resolutions than those seen

during pretraining.

20

Under review as a conference paper at ICLR 2026

u at t=21 (SPUS) u at t=21 (U-Net-Scratch) u at t=21 (GT)
0.4
f. 0.2
/ 0.0
-0.2
-0.4
u at t=31 (SPUS) u at t=31 (U-Net-Scratch) u at t=31 (GT)
F
0.2 0.2
0.0 0.0
=02 -0.2
u at t=41 (SPUS) u at t=41 (U-Net-Scratch) u at t=41 (GT)
0.2 04 0.2
0.1 0.1
0.2
/ 0.0 0.0
' -01 0.0 -01
—02 —0.2 -0.2
-0.3
u at t=51 (SPUS) u at t=51 (U-Net-Scratch) u at t=51 (GT)
0.2 1.0 0.2
01 0.8 o1
0.6
/ 0.0 04 " 0.0
’ -0.1 0.2 ' o1
02 0.0
’ 0.2 -0.2
u at t=99 (SPUS) u at t=99 (U-Net-Scratch) u at t=99 (GT)

0.10
0.6
0.05 0.05
0.00 0.4
~0.05 0.00
0.2
-0.10 —0.05
-0.15 0.0 010
-0.20 |

Figure A.10: A randomly selected trajectory prediction for PDEs governed by the Burgers equation,
generated by SPUS (36M) and an unpretrained U-Net (36M). The figure shows example results
at time steps ¢ = 21,31,41,51,99 for the velocity field on a 64 x 64 spatial grid. As shown,
the unpretrained U-Net begins to deviate from the ground truth (GT) after ¢ = 41, whereas SPUS
remains close to the GT across all time steps, demonstrating its potential for longer rollouts.

21

Under review as a conference paper at ICLR 2026

Rollout Error over Time

0.0175
—— SPUS-36M
0.0150 1 U-Net (Unpretrained)-36M
0.0125
0.0100
= 0.0075
0.0050
0.0025 1 ///
0.0000 -
0 20 40 60 80 100
Time step

Figure A.11: Average MSE over 99 predicted time steps for 64 test trajectories of Burgers equa-
tion. As shown, SPUS (36M) maintains a nearly constant MSE after timestep 40, remaining stable
through the final prediction. In contrast, the unpretrained U-Net (36M) exhibits a steadily increasing
MSE.

22

Under review as a conference paper at ICLR 2026

u at t=2 (SPUS) u at t=2 (U-Net-Scratch) u at t=2 (GT)

075 0.75
0.50 0.50
0.25 0.25
0.00 0.00
-0.25 -0.25 -0.25
—0.50 —0.50 —0.50
-0.75 -0.75 -0.75
u at t=6 (SPUS) u at t=6 (U-Net-Scratch) u at t=6 (GT)
0.4 0.4
0.2 0.2
0.0 0.0
-0.2 -0.2
—0.4 -0.4
-06 106
u at t=11 (SPUS) u at t=11 (U-Net-Scratch) uatt=11 (
0.4
02 0.2
0.2
0.0 0.0
0.0
-0.2 —0.2 —0:2
—04 -0.4
u at t=16 (SPUS) u at t=16 (U-Net-Scratch) u at t=16 (GT)
0.2
0.2
0.2 01
0.1
0.0 0-0 0.0
—01 -0.1
-0.2
4 0 -0.2 -0.2
1 -0.3 -0.3
u at t=19 (SPUS) u at t=19 (U-Net-Scratch) u at t=19 (GT)

0.2
0.2 01
0.1 0.1
0.0
0.0
0.0
-0.1 -0.1
0.2 -0.1
4 ’ -02
-0.3 -0.2

Figure A.12: Scalability of SPUS to PDE resolutions higher than those used in pretraining
(128 x 128). Shown is a randomly selected trajectory prediction for PDEs governed by the Burgers
equation, generated by SPUS (36M) and an unpretrained U-Net (36M). The figure shows example
results at time steps ¢ = 2,6, 11, 16, 19 for the velocity field on a 256 x 256 spatial grid. As il-
lustrated, SPUS remains close to the ground truth across all time steps, whereas the U-Net trained
from scratch develops noticeable periodic striping artifacts at later time steps that are absent in the
ground-truth (GT) solution.

23

	Introduction
	Preliminaries
	Relevant Work
	Methods
	Model Architecture
	Theoretical Foundations of Residual U-Net Efficiency and Generalization in PDE Learning
	Theory

	Pretraining and Finetuning Dataset
	Finetuning strategies and Baseline Models

	Experiments
	Limitations
	Conclusions
	APPENDIX
	Error Growth over Time
	SPUS scales with model size
	Performance evaluation of SPUS with different numbers of residual blocks per stage
	Performance evaluation of SPUS with autoregressive training under a first-order Markov assumption
	Performance Evaluation of SPUS on the CE-RPUI, CE-RM, FNS-KF and Wave-Gauss Datasets
	Visualization of SPUS Performance on Trajectory Prediction Compared with POSEIDON and DPOT
	Can SPUS generalize to different input resolutions?
	Can SPUS scale to PDEs with higher spatial resolutions than those used in pretraining?

