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ABSTRACT

We introduce Small PDE U-Net Solver (SPUS), a compact and efficient foun-
dation model (FM) designed as a unified neural operator for solving a wide
range of partial differential equations (PDEs). Unlike existing state-of-the-art
PDE FMs—primarily based on large complex transformer architectures with high
computational and parameter overhead—SPUS leverages a lightweight residual
U-Net-based architecture that has been largely underexplored as a foundation
model architecture in this domain. To enable effective learning in this minimalist
framework, we utilize a simple yet powerful auto-regressive pretraining strategy
which closely replicates the behavior of numerical solvers to learn the underly-
ing physics. SPUS is pretrained on a diverse set of fluid dynamics PDEs and
evaluated across 7 challenging unseen downstream PDEs spanning various phys-
ical systems. Experimental results demonstrate that SPUS using residual U-Net
based architecture achieves state-of-the-art generalization on these downstream
tasks while requiring significantly fewer parameters and minimal fine-tuning data,
highlighting its potential as a highly parameter-efficient FM for solving diverse
PDE systems.

1 INTRODUCTION

Partial differential equations (PDEs) are fundamental mathematical tools for modeling a wide range
of complex spatio-temporal phenomena in science and engineering, including fluid dynamics, elec-
tromagnetism, materials science, and climate systems (Neumann et al., 2012; Schaa et al., 2016;
Müller & Scheichl, 2014). Traditional numerical solvers—such as finite difference and finite ele-
ment methods—are widely used for PDE simulation but often come with high computational costs,
especially when repeated simulations are required for varying coefficients or boundary conditions
(Herde et al., 2024). To address these limitations, deep learning–based approaches like the Fourier
neural operator (Li et al., 2021), convolutional neural operator (Raonic et al., 2023), and DeepONet
(Lu et al., 2021) have been proposed. While these models have shown promising performance, they
are typically designed for specific PDE families and require retraining when applied to new classes
of governing equations, leading to significant computational overhead.

Some simulation data is more computationally expensive to produce from numerical solvers than
others; and so multiphysics PDE FMs take advantage of pretraining on large benchmark PDE data
to finetune on limited PDE data from more expensive simulations. PDE FMs—including MPP (Mc-
Cabe et al., 2024), POSEIDON (Herde et al., 2024), PROSE FD (Liu et al., 2024), DISCO (Morel
et al., 2025) and DPOT (Hao et al., 2024)—have emerged as a promising paradigm. These models
aim to learn unified representations by incorporating multiple physical systems into a single frame-
work, demonstrating the ability to generalize to unseen PDE families using limited data. However,
current state-of-the-art FM approaches predominantly utilize transformer-based architectures with
high parameter counts in the hundreds of millions, resulting in increased computational and data
demands (McCabe et al., 2024; Herde et al., 2024; Hao et al., 2024). To overcome these limita-
tions, in this work, we propose a efficient yet effective Small PDE U-Net Solver (SPUS), with an
order of magnitude fewer parameters, for PDE foundation modeling. To the best of our knowledge,
this is the first work to explore a residual U-Net architecture as an FM pretrained on a large and
diverse PDE dataset, beyond single-family PDE prediction. U-Net has been shown to significantly
outperform neural operators such as FNO in solving PDEs (Gupta & Brandstetter, 2023). How-
ever, recent transformer-based FM approaches primarily compare against U-Net on a single family
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of PDEs (McCabe et al., 2024; Hao et al., 2024; Shen et al., 2024), overlooking its potential as a
foundation model architecture—particularly given the availability of large-scale PDE datasets from
diverse systems.

PDE FMs are formulated in various ways with different assumptions on the form of input data
and output predictions. Other FMs rely on multiple previous timesteps as input and predict output
trajectories, or include temporal information in the input (McCabe et al., 2024; Herde et al., 2024;
Hao et al., 2024). SPUS is trained autoregressively as an operator predicting a single timestep; which
closely replicates the behavior of numerical solvers; potentially learning the underlying physics
(Lippe et al., 2023). We demonstrate that the autoregressive training produces a foundation model
that generalizes to time-independent PDEs via finetuning.

This work addresses the following key questions regarding FMs for PDEs:

(a) Rather than designing a new and complex architecture, can we utilize a simple, existing
one—such as residual U-Net—as an FM for PDEs?

(b) Can a lightweight, low-parameter FM achieve state-of-the-art generalization on unseen
PDEs?

(c) Can pretraining on a set of simpler PDEs but exhibiting diverse physical behaviors (e.g.,
shocks, shear, vorticity) enable effective transfer to downstream tasks governed by complex
PDEs and dominant dynamics, such as vortex evolution from piecewise-constant or shear-
layer initial conditions?

(d) Can an FM be pretrained to emulate the behavior of numerical solvers by autoregressively
predicting the next time step from the current one, thereby potentially learning the under-
lying physics?

Finally, we demonstrate that SPUS, built on a simple residual U-Net and pretrained to emulate the
behavior of numerical solvers, achieves state-of-the-art generalization with a lightweight design,
transfers knowledge effectively from simpler PDEs to more complex ones, and thereby establishes
a path toward efficient, generalizable PDE foundation models.

2 PRELIMINARIES

PDEs model a wide range of physical phenomena and include equations such as Navier-Stokes,
compressible Euler, the Wave equation and others. The general form of a time-dependent PDE is:

δtu(p, t) + L(u,∇pu,∇2
pu, . . .) = 0, ∀p ∈ D ⊂ Rd, t ∈ (0, T ),

B(u) = 0, ∀(p, t) ∈ δD × (0, T ),

u(p, 0) = u0(p), p ∈ D.

(1)

for given boundary conditions B and initial conditions u0. Note that we use atypical PDE notation
with p for the position variable (reserving x for the input as is typical in machine learning). Many
PDE datasets are discretized in space and time. We denote the discretized spatial state at each
timestep as ut = {(pj , uj

t ) : p
j ∈ P}, t ∈ [0, 1, . . . , n] where P is the discretized spatial mesh and

n is the number of discretized timesteps. Initial conditions are given by ut=0 and each ut ∈ Rd

where d is the dimensionality of system variables.

3 RELEVANT WORK

The closest PDE FMs to ours fall into three distinct formulations.

(a) PDE FMs which take {ut=[0,m]} of a PDE trajectory as input and autoregressively predict
{ut=[m+1,n]}; where m = 15 for MPP (McCabe et al., 2024), and m = 9 for DPOT (Hao
et al., 2024). MPP projects normalized field variables from diverse physical systems into
a unified latent space and utilizes an axial attention vision transformer-based architecture
to perform autoregressive prediction over multiple systems. On the other hand, DPOT
injects small-scale noise to {ut=[0,m]} and utilize a Fourier attention based transformer
architecture to perform autoregressive prediction over multiple systems.
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(b) PROSE FD (Liu et al., 2024) which takes {ut=[0,m]} of a PDE trajectory as input and si-
multaneously predict {ut=[m+1,n]} as a trajectory where m = 9 and n = 19. PROSE FD
introduces a multimodal transformer framework which takes {ut=[0,m]} of a PDE trajec-
tory and mathematical description of the physical behavior as input and performs simulta-
neous prediction for multi-physics systems.

(c) POSEIDON (Herde et al., 2024) which takes (ut=0,∆t) as input and predicts
{ut=∆t}∀∆t ∈ [1, T ] where T = 14. POSEIDON proposes a multiscale operator trans-
former architecture enhanced with time-conditioned normalization to perform prediction
on multiple physical systems. Similar to SPUS, POSEIDON uses only a single time step
(rather than a trajectory) as input; however, instead of performing autoregressive rollout,
it predicts arbitrary future time steps directly. For a dataset with n time steps, POSEI-
DON trains on O(n2) input-output pairs, whereas our approach is more sample-efficient,
requiring only O(n) sequential pairs.

4 METHODS

SPUS is a lightweight, low-parameter residual U-Net architecture designed for modeling PDE dy-
namics. To enable effective learning within this compact model, we utilize an auto-regressive pre-
training scheme. This method facilitates the efficient modeling of temporal dynamics of PDEs with
reasonable accuracy and low computational overhead.

Problem statement Given an initial state ut=0 of a trajectory governed by a specific PDE, where
ut ∈ Rd represents the system state at time step t with d variables, our objective is to predict the
future states ut=1, ut=2, . . . , ut=n.

Auto-regressive pretraining and finetuning We formulate the problem as a first-order Markov
process (Pillai, 2002), in which the evolution of the system depends only on the immediately pre-
ceding state. That is, the prediction of ut+1 is conditioned solely on ut, satisfying the Markov
property:

P (ut+1 | ut, ut−1, ut−2, . . . , u0) = P (ut+1 | ut). (2)

This formulation allows the system dynamics to be modeled using an autoregressive framework
consistent with the Markov assumption.

The proposed auto-regressive training methodology for the U-Net-based FM is illustrated in Fig-
ure 1. During pretraining, the proposed FM takes a randomly sampled ground-truth state ut from a
PDE trajectory in the pretraining dataset and predicts the next state u′

t+1. More specifically, during
pretraining, only ground-truth states are used as inputs; predicted states are not used to generate
future predictions. During finetuning, the pretrained model is adapted to a specific downstream PDE
using the same input-output structure as in pretraining: the model receives ut and predicts u′

t+1.
At inference time, however, we provide the model with the initial state ut=0 and auto-regressively
generate predictions u′

t=1, u
′
t=2, . . . , u

′
t=n, where each prediction u′

t+1 is based on the previously
predicted state u′

t as shown in Figure 1.

4.1 MODEL ARCHITECTURE

Figure 2 shows the residual U-Net architecture (Lan & Zhang, 2020; Ronneberger et al., 2015) with
36 million parameters we have utilized for designing the FM for PDEs. The U-Net model takes any
current state ut of shape d×128×128, where d is the number of system variables and applies a 3×3
convolutional layer to project it into a 32-dimensional feature space. The residual encoder path com-
prises four hierarchical levels, each of which processes features through two residual blocks. Each
residual block includes two 3×3 convolutional layers, with batch normalization (Bjorck et al., 2018)
and GELU activation (Hendrycks & Gimpel, 2016) applied after each convolution, and incorporates
a skip connection to preserve feature integrity and support gradient flow. Strided convolution is
applied for downsampling at each label of encoder except the last. The encoder processes features
through 32-channel blocks at Level 0, increases to 64 channels at Levels 1 and 2, and reaches 128
channels at Level 3. The residual bottleneck consists of two residual blocks that operate on 128-
channel feature maps, effectively capturing high-level representations. The residual decoder mirrors
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Multiple PDE
datasets

Pre-training

UNet-based FM

ut

u't+1

 Downstream PDE
datasets

UNet-based FM

ut

u't+1

Fine-tuning

 Unseen Downstream
PDE datasets

UNet-based FM

u't

u't+1

Inference

Start with initial condition u't = ut=0

Autoregressive Rollout

Figure 1: Proposed auto-regressive training methodology for the U-Net-based FM. During both pre-
training and finetuning, the FM randomly samples a ground truth state ut, where ut ∈ Rd represents
the system variables at time step t, and learns to predict the next state u′

t+1. During inference, the full
trajectory is predicted autoregressively from the initial condition ut=0. The FM takes u′

t = ut=0 as
input and recursively predicts subsequent states based on its own previous outputs for t = 1, . . . , n,
where n is the length of the trajectory under consideration.

residual block

copy and concat

learnable 
downsampling

learnable upsampling

conv 3x3

Label 0

Label 1

Label 2

Label 3

Figure 2: Illustration of the residual U-Net based FM architecture for PDEs with 36M parameters.
The network takes an input of shape d× 128× 128, representing the current time step of a PDE tra-
jectory, and predicts the next time step of the same shape. It employs an encoder–decoder structure
with residual blocks, skip connections, and progressive downsampling and upsampling to preserve
spatial and contextual information.

the encoder with three upsampling stages implemented with transposed convolution layers. At each
stage, the upsampled features are concatenated with the corresponding encoder feature maps via skip
connections, facilitating the recovery of spatial details. After concatenation, the features are passed
through two residual blocks, each followed by batch normalization and GELU activation. The de-
coder progressively reduces the feature dimensionality from 128 to 64, and subsequently from 64
to 32 across its stages. Finally, a 3× 3 convolution maps the decoder output back to the number of
system variable d.

During pretraining, the model was trained for 200 epochs using the Adam optimizer (Kingma & Ba,
2014) with a linear learning rate schedule starting from 10−4, and a batch size of 10. The learning
rate decreased linearly over the course of training. The model achieving the best performance on the
evaluation set of the pretraining dataset was saved for downstream use.
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4.2 THEORETICAL FOUNDATIONS OF RESIDUAL U-NET EFFICIENCY AND
GENERALIZATION IN PDE LEARNING

Design choices are driven by theoretical motivation: a) convolutional layers for spatial bias, b)
residual blocks for numerical stability, c) U-Net architecture for encoder-bottleneck-decoder com-
pact representation, and d) multi-PDE pre-training for generalization.

Convolutional Layers The step-to-step evolution of nonlinear PDEs on uniform grids exhibits a
locally translation-equivariant structure: each grid cell interacts primarily with its spatial neighbors
through couplings that decay smoothly with distance (LeVeque, 2007). This locality aligns naturally
with the inductive bias of the residual U-Net architecture, whose convolutional encoder captures
spatially local dependencies and whose decoder reconstructs fine-scale features through upsampling
and skip connections (Ronneberger et al., 2015; Ruthotto & Haber, 2020). By progressively reducing
and restoring spatial resolution, the U-Net builds a multiscale hierarchy that aggregates coarse and
fine spatial information, enabling efficient representation of both local interactions and long-range
dependencies. This hierarchical design allows the network to approximate global spatial couplings
without the quadratic computational overhead of transformer-based attention mechanisms.

Residual Blocks Residual connections enhance both stability and learning efficiency by predicting
incremental field updates rather than full mappings, analogous to time-stepping schemes in numeri-
cal PDE solvers. These design principles collectively make the residual U-Net a parameter-efficient
and numerically stable architecture for learning complex, nonlinear PDE operators across diverse
physical regimes.

The following section formalizes a theoretical error decomposition, illustrating how the residual
encoder–bottleneck–decoder hierarchy reduces approximation, projection, and statistical errors, and
how multi-PDE pretraining further enhances cross-family generalization.

4.2.1 THEORY

Encode-Bottleneck-Decoder Architecture Let Ψ : X → Y denote the one-step solution operator
of a time-dependent PDE. Given a field state ut ∈ Rd at time t, representing the spatial distributions
of system variables (e.g., density, velocity, or pressure), the operator Ψ produces the evolved field
ut+1 = Ψ(ut) ∈ Y at the next timestep. For notational convenience, we denote x = ut ∈ X as the
input field and y = Ψ(x) = ut+1 ∈ Y as the corresponding evolved field. In the residual U-Net
framework, this mapping is approximated by a multiscale neural surrogate Fθ : X → Y , parame-
terized by weights θ, where each stage of the network (encoder, bottleneck, and decoder) performs
local residual updates that emulate incremental field evolution consistent with the underlying PDE
dynamics across spatial scales. Let µ denote the probability measure associated with the sampling
of input fields x at time t within the function space X . Each sample x ∼ µ therefore represents a
physical state of the PDE system at the previous timestep, and the network is trained to predict the
corresponding evolved field y = Ψ(x) at time t+ 1, yielding the expected mean-squared prediction
error

E(θ) = Ex∼µ

[
∥Ψ(x)− Fθ(x) ∥22

]
, (3)

which quantifies the average discrepancy between the true PDE evolution and the residual U-Net
prediction across all field states encountered in the data. Following the generalization frame-
work of Bhattacharya et al. (2021), this error can be decomposed into three fundamental contri-
butions—neural approximation, model reduction, and finite-sample statistics:

E(θ) ≲ ε2approx︸ ︷︷ ︸
neural approximation

+Rµ(Vx) +RΨ#µ(Vy)︸ ︷︷ ︸
model reduction / projection

+ O
(

1√
N

)
︸ ︷︷ ︸

finite-sample term

. (4)

Here, neural approximation denotes the best achievable error of the residual U-Net within the learned
subspaces; Vx ⊂ X and Vy ⊂ Y denote the encoder and decoder subspaces, respectively. The pro-
jection terms quantify the residual energy of the data distributions outside these learned subspaces.
Specifically, Rµ(Vx) = Ex∼µ

[
∥x−ΠVx

(x)∥22
]

measures the expected reconstruction error of input
fields x ∈ X , where ΠVx

denotes the projection or learned feature mapping induced by the encoder
onto the subspace Vx. Likewise, RΨ#µ(Vy) = Ey∼Ψ#µ

[
∥y −ΠVy

(y)∥22
]

measures the correspond-
ing residual energy of output fields y = Ψ(x) ∈ Y , where Ψ#µ is the output distribution induced
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by the PDE operator Ψ, that is, the distribution of evolved fields obtained by mapping input samples
x ∼ µ through Ψ. Here, ΠVy

denotes the decoder-side projection onto the subspace Vy , and N
represents the number of training samples. In a residual U-Net, the encoder, bottleneck, and decoder
all contain residual blocks of the form

h(l+1) = h(l) +R
(h)
θl

(h(l)), (5)

where h(l) denotes the feature tensor at depth l within the current stage, and each residual oper-
ator R(h)

θl
is a local convolutional transformation acting on the corresponding feature space. The

residual encoder E progressively constructs a hierarchical latent subspace Vx that captures coarse-
to-fine spatial and dynamical modes. By composing small residual updates, the encoder acts as a
data-driven reduced-basis generator, minimizing the input projection error Rµ(Vx) in equation 4.
At the network’s core, the residual bottleneck B captures cross-scale and nonlocal interactions in
the latent feature space, providing an efficient, low-dimensional approximation of global coupling
that further reduces the intrinsic neural approximation error εapprox. The residual decoder D then
reconstructs the output subspace Vy through a sequence of incremental updates, which refine hier-
archical features and approximate stable step-to-step updates of the underlying PDE evolution. The
complete network composition is thus

Fθ = D ◦B ◦ E = (Id +R
(D)
θ ) ◦ (Id +R

(B)
θ ) ◦ (Id +R

(E)
θ ), (6)

where Id denotes the identity mapping on the corresponding feature space of each component (en-
coder, bottleneck, or decoder). This composition can be interpreted as a multiscale residual in-
tegrator in feature space, in which each component performs a small, well-conditioned update
aligned with the underlying PDE dynamics. Combining Equations 5–6 with the error decomposi-
tion in Equation 4, we find that the residual encoder–bottleneck–decoder hierarchy reduces all three
error sources simultaneously: (a) the multiscale residual encoder–decoder minimizes the projection
errors Rµ(Vx) and RΨ#µ(Vy); (b) the bottleneck and residual formulation lower the intrinsic ap-
proximation error εapprox by capturing local-to-global nonlinear interactions; and (c) convolutional
weight sharing limits parameter growth, thereby reducing the statistical term O(N−1/2). In contrast
to transformer-based operator learners that rely on global self-attention—incurring quadratic com-
putational and memory complexity with respect to input size and requiring large parameter counts
to infer spatial locality from data—the residual U-Net embeds these spatial priors directly through
its convolutional and multiscale hierarchical design. This inductive bias enables the residual U-
Net to achieve comparable or superior accuracy with substantially fewer parameters and improved
numerical stability in PDE operator learning.

Multi-PDE Pretraining When the residual U-Net is pretrained across multiple PDE families
{Ψm}Mm=1 defined on the same grid class, the model learns a shared multiscale encoder–
bottleneck–decoder representation that captures structural invariants common to these operators,
including spatial locality, smooth spectral decay, and hierarchical coupling across scales. Assuming
that these structural invariants exist in the downstream finetuning PDEs, then model error will be
reduced compared to training from scratch (Bhattacharya et al., 2021; Ben-David & Borbely, 2008).
Let µm denote the probability measure associated with sampling the variable fields at time t from
trajectories of the m-th PDE family within the function space X , and let Ψm#µm denote the cor-
responding measure of their evolved fields at time t + 1. Define µ̄ = 1

M

∑M
m=1 µm as the mixture

of input field distributions and Ψ#µ = 1
M

∑M
m=1 Ψm#µm as the corresponding mixture of output

field measures. Under the same decomposition as in equation 4, the expected joint training error
satisfies

1

M

M∑
m=1

Ex∼µm

[
∥Ψm(x)− Fθ(x)∥22

]
≲ ε2approx +Rµ̄(Vx) +RΨ#µ(Vy) +O

(
1√
N

)
. (7)

Here, the projection terms depend on the shared mixture distributions rather than on any single
PDE family. By exposing the network to diverse yet structurally related dynamics, multi-PDE pre-
training enables the residual encoder, bottleneck, and decoder to learn common multiscale feature
subspaces that align with recurring spatial and spectral patterns across PDE families. This shared
representation captures a greater portion of the underlying functional variability with the same latent
dimensionality, thereby reducing the average projection error. As a result, during downstream fine-
tuning, the pretrained residual U-Net requires only minor residual adaptations in its local blocks,
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leading to improved numerical stability, and strong cross-family generalization without increasing
parameter count.

4.3 PRETRAINING AND FINETUNING DATASET

SPUS is pretrained on a diverse set of PDE types from the PDEGYM dataset (Herde et al., 2024),
which includes four operators derived from the compressible Euler (CE) equations:

• CE-RP, containing trajectories initialized with four-quadrant Riemann problems;

• CE-CRP, initialized with multiple curved Riemann problems;

• CE-KH, representing shear-driven Kelvin–Helmholtz instabilities; and

• CE-Gauss, featuring initial conditions with Gaussian vorticity profiles.

Each dataset consists of 10,000 trajectories. Each trajectory has 21 time steps and each time step
consists of five physical fields: density ρ, horizontal velocity u, vertical velocity v, pressure p, and
energy E with spatial grid of resolution 128× 128.

We fine-tune SPUS on seven previously unseen downstream PDEs from the PDEGYM dataset, using
128 trajectories for each PDE task. These downstream PDEs include three operators governed by
the CE equations, three operators governed by the incompressible Navier-Stokes (NS) equations,
and one based on the wave equation:

• CE-RPUI: consisting of trajectories initialized with four-quadrant Riemann problems fea-
turing uncertain interfaces;

• CE-RM: representing the Richtmyer-Meshkov instability problem;

• NS-PwC: initialized from piecewise-constant vorticity fields;

• NS-SL: initialized with double shear layer conditions;

• FNS-KF: also initialized from piecewise-constant vorticity fields;

• Wave-Gauss: containing trajectories initialized as a sum of Gaussians that are propagated
by the spatially varying wave speed.

• SE-AF: contains contains the steady-state density over airfoils

Each CE-RPUI and CE-RM trajectory contains 21 time steps. Each time step has five physical
fields: density ρ, horizontal velocity u, vertical velocity v, pressure p, and energy E. On the other
hand, each trajectory in the three NS datasets also has 21 time steps but only two physical fields:
horizontal velocity u, and vertical velocity v. For the Wave-Gauss dataset, trajectories have 15 time
steps with one physical field, spatially varying wave speed w. For the SE-AF dataset, the samples
are time-independent and solution operator maps a shape coefficient into the steady state solution.
All fine-tuning datasets share a common spatial resolution of 128× 128 grid points.

4.4 FINETUNING STRATEGIES AND BASELINE MODELS

In downstream tasks, the number of variables per time step may differ from those used during
pretraining. To adapt the pretrained model to downstream tasks with different input and output
dimensions than pretraining, we introduce lightweight input and output adapters. Specifically, we
use 1× 1 convolutional layers as adapters:

• The InputAdapter maps the task-specific input (e.g., 2 fields for NS-SL) to the 5-field
format expected by the pretrained SPUS model.

• The OutputAdapter maps the model’s 5-field output back to the task-specific output di-
mensionality (e.g., 2 fields for NS-SL).

These adapters are simple, efficient, and allow the pretrained model to be flexibly applied to a
variety of downstream tasks without modifying its internal architecture. For each downstream task,
we fine-tuned either the pretrained model or the pretrained model with adapters (if the number of
the fields differed from five) using 128 trajectories. The model was fine-tuned for 200 epochs using

7
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Table 1: Comparison of model performance (average MSE over all predicted timesteps from the
initial conditions of the trajectories) on six unseen downstream PDE datasets fine-tuned with 128
trajectories. Lower is better. The U-Net∗ is trained from scratch using 128 trajectories for each
downstream PDE dataset.

Dataset SPUS (Ours, 36M) DPOT (122M) POSEIDON (158M) U-Net∗ (36M)

CE-RPUI 0.0054 0.0570 0.0085 0.0337
CE-RM 0.0159 0.0222 0.4181 0.0218
NS-PwC 0.0048 0.0294 0.0004 0.0048
FNS-KF 0.0015 0.0301 0.0017 0.0047
NS-SL 0.0163 0.1461 0.0163 0.0165
SE-AF 0.0006 - 0.0031 0.0040
Wave-Gauss 0.0069 0.0107 0.0068 0.0071

the Adam optimizer with a linear learning rate schedule starting from 10−4, and a batch size of 10.
The learning rate decreased linearly over the course of training.

To ensure a fair comparison, we fine-tune two baseline FMs: DPOT “M” (122M parameters) (Hao
et al., 2024) and POSEIDON “B” (158M parameters) (Herde et al., 2024). DPOT was pretrained on
12 PDE datasets governed by the Navier-Stokes, diffusion-reaction, and shallow-water equations,
whereas POSEIDON was pretrained on 6 PDE datasets governed by the compressible Euler and
Navier-Stokes equations. For both baselines, we adopt the exact hyperparameter settings recom-
mended in their original papers and accompanying code repositories (Hao et al., 2024; Herde et al.,
2024). All models, including SPUS, are fine-tuned separately on each downstream PDE task using
the same set of 128 trajectories for 200 epochs with MSE loss. Performance is evaluated on testing
dataset corresponding to each PDE task.

DPOT recommends a context window of 10 timesteps. Accordingly, to predict trajectories from
their initial conditions, we follow the same fine-tuning methodology described in Herde et al. (2024),
padding input sequences with timestep 0 when predicting steps earlier than the 10th. For instance,
to predict the state at timestep 4, the input sequence is padded as follows:

[ts0, ts0, ts0, ts0, ts0, ts0, ts0, ts1, ts2, ts3].

POSEIDON, on the other hand, is designed to take a single timestep as input, along with the corre-
sponding ∆t, and directly predict any future frame within the trajectory. This allows POSEIDON to
predict any timestep (using only the initial timestep as context) without requiring an autoregressive
rollout. In practice, such “direct” predictions result in higher average accuracy compared to predic-
tions generated via autoregressive rollout. Therefore, we report POSEIDON’s performance based
on its direct prediction accuracy.

To further assess the parameter efficiency and architectural simplicity of SPUS, we trained a U-
Net model with 36M parameters—sharing the same architecture as SPUS—from scratch using the
same set of 128 trajectories per downstream dataset on which SPUS, POSEIDON, and DPOT were
fine-tuned, and compared its performance with these foundation models.

The comparison of model performance—measured as average mean squared error (MSE) across all
predicted timesteps from the initial condition of the trajectories—on seven unseen downstream PDE
datasets fine-tuned with 128 trajectories is presented in Table 1.

5 EXPERIMENTS

Is SPUS an effective lightweight PDE emulator? Does SPUS with only 36 million parameters
generalize as accurately as larger models? To address these questions, we design and evaluate
the following three experiments.

(A). Does SPUS generalize to unseen systems governed by the compressible Euler (CE) equa-
tions, consistent with its pretraining? We investigate whether SPUS can generalize to previously
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unseen physical systems that are governed by CE equations, consistent with its pretraining. To evalu-
ate this, we fine-tune the pretrained SPUS model on the CE-RPUI dataset. While this dataset adheres
to the same underlying physical laws, its distribution of initial conditions differs from those seen
during pretraining, presenting a clear out-of-distribution (OOD) generalization challenge (Herde
et al., 2024). As shown in Table 1, SPUS achieves strong performance in autoregressively predict-
ing full trajectories from initial conditions, despite having only 36 million parameters. Notably,
it outperforms both the substantially larger POSEIDON model (158 million parameters) and the
DPOT model (122 million parameters) in terms of average mean squared error (MSE) across 240
test trajectories. A randomly selected trajectory prediction from the CE-RPUI test set is shown in
Figure A.2, where the SPUS predictions closely match the ground truth at each time step. These
results demonstrate the effectiveness and computational efficiency of the lightweight SPUS model
relative to significantly larger architectures.

We also fine-tune the pretrained SPUS model on the CE-RM dataset, which exhibits significantly
more complex dynamics compared to CE-RPUI. SPUS demonstrates strong generalization capabil-
ity in predicting entire trajectories from initial conditions, as illustrated in Figure A.3. Furthermore,
as shown in Table 1, SPUS achieves a lower average MSE across 130 test trajectories compared to
both the POSEIDON and DPOT models, despite their substantially larger parameter counts.

(B). Does SPUS generalize to systems governed by equations different from those used in pre-
training? We investigate the ability of SPUS to generalize to previously unseen physical systems
governed by equations different from those used during pretraining. Specifically, we fine-tune the
pretrained SPUS model on three datasets governed by incompressible NS equations that were not
part of the pretraining data: NS-PwC, NS-SL, and FNS-KF. As shown in Table 1, despite not being
exposed to incompressible NS dynamics during pretraining, surprisingly, SPUS achieves superior
time-step prediction performance compared to DPOT across all three datasets—even though DPOT
was pretrained on operators of both compressible and incompressible NS equations. For the PO-
SEIDON model, whose pretraining data includes two operators governed by NS equations, SPUS
outperforms it on FNS-KF, matches its performance on NS-SL, and is outperformed on NS-PwC,
as summarized in Table 1. These results demonstrate the strong generalization capability of SPUS
to new physical regimes outside its pretraining distribution and highlight its effective transferability
to downstream tasks governed by equations different from those seen during pretraining. Randomly
selected trajectory predictions from the test datasets of NS-PwC, NS-SL, and FNS-KF are shown in
Figure A.4 and Figure A.5 (in Appendix). As observed, SPUS demonstrates strong generalization
performance on each of the NS dataset; however, the predicted variables gradually deviate from the
ground truth over time. We also fine-tuned SPUS on the Wave-Gauss dataset, which is governed by
the wave equation. As shown in Table 1, SPUS outperforms DPOT and is narrowly outperformed
by POSEIDON for 240 Wave-Gauss testing trajectories.

(C). Does SPUS generalize to time-independent PDEs although it is pretrained on time-
dependent PDEs? We fine-tune the pretrained SPUS model on the time-independent SE-AF tra-
jectories to evaluate its generalization capability beyond time-dependent PDEs. Although SPUS is
originally pretrained on time-dependent PDEs, it can be readily adapted to time-independent prob-
lems because it does not explicitly take time as an input variable. Instead, the model simply learns
the mapping between input and output fields required for prediction in static PDEs. As shown in
Table 1, SPUS achieves better performance than both POSEIDON and the unpretrained U-Net on
the SE-AF testing dataset. A randomly selected prediction from the SE-AF test set is illustrated in
Figure A.7.

Does SPUS show scalability with dataset size? Table 4 reports the average MSE of predicting the
time steps of entire trajectories from the initial condition of the trajectories across six downstream
PDEs using SPUS, finetuned with 32, 128, and 256 trajectories. As shown, increasing the fine-
tuning set size reduces the MSE across the six downstream PDEs, demonstrating that SPUS scales
favorably with additional data.

Summaries of the experiments Based on the above experiments, we observe that SPUS, built
on a residual U-Net architecture with only 36 million parameters, achieves state-of-the-art general-
ization on downstream tasks, outperforming significantly larger models such as POSEIDON (158
million parameters) and DPOT (122 million parameters). These results highlight that a simple, well-
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established architecture—specifically, a residual U-Net—can be effectively leveraged as a founda-
tion model (FM) for PDEs. Despite its architectural simplicity and relatively small parameter count,
SPUS is capable of capturing complex dynamics and performs competitively with more sophisti-
cated, larger models. We also observe that SPUS, when pretrained on a diverse set of simpler PDEs
(such as CE), demonstrates strong performance on complex downstream PDEs (such as NS). This
indicates the effective transferability of SPUS across distinct physical regimes, despite differences
in the underlying governing equations. Furthermore, this suggests that even when the pretraining
data are derived from PDEs governed by simple CE equations, a sufficiently diverse pretraining
dataset—spanning variations in initial and boundary conditions, domain geometries, and external
forcing—can enable the FM to generalize effectively. Moreover, SPUS is pretrained to emulate the
behavior of numerical solvers by autoregressively predicting the next time step from the current one.
The results on downstream tasks for SPUS suggest that this pretraining strategy helps the FM learn
the underlying physics of PDEs, enabling more accurate and physically consistent predictions.

Additional results on the performance evaluation of SPUS on downstream tasks, as well as visual
comparisons of SPUS’s performance on trajectory prediction from initial conditions with larger
models (POSEIDON and DPOT), are presented in Appendices A.1–A.6.

6 LIMITATIONS

SPUS is pretrained on a limited set of PDE families, using only four CE datasets. Despite this
narrow pretraining scope, SPUS shows promising transferability across equation types, generalizing
from compressible Euler to incompressible Navier–Stokes and wave equations. Currently, SPUS
cannot simultaneously predict multiple future timesteps from an initial condition. In future work, we
plan to extend SPUS to support both direct and autoregressive temporal prediction. We also expect
that pretraining on a broader range of governing equations would further enhance its generalization
capability. Moreover, the current architecture is restricted to regular geometries, and extending
SPUS to irregular domains remains an important direction for future research.

7 CONCLUSIONS

We propose SPUS, a compact and lightweight FM for PDEs, capable of handling a broad range of
physical systems. The model is based on a simple residual U-Net architecture and is trained us-
ing a straightforward autoregressive pretraining strategy. Despite its relatively small size—only 36
million parameters—SPUS demonstrates strong generalization capabilities across six diverse down-
stream PDE tasks. SPUS consistently outperforms the significantly larger DPOT model across all
downstream datasets. When compared to the POSEIDON model, which also has substantially more
parameters, SPUS achieves superior performance on three datasets, matches performance on one,
is narrowly outperformed on another (MSE: 0.0069 vs. 0.0068), and is outperformed on one task.
These results establish SPUS as a highly parameter-efficient foundation model, capable of solving a
wide range of complex PDE systems with competitive accuracy. Furthermore, we demonstrate that
pretraining SPUS on simpler PDEs (such as CE) with autoregressive training to emulate a numerical
solver enables effective transfer to more complex PDEs (such as NS), reducing the amount of data
required for finetuning even when the downstream task involves more complex dynamics than those
seen during pretraining.

REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available. The code will be released at the time of
publication.
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A APPENDIX

A.1 ERROR GROWTH OVER TIME

Figure A.1 presents the average mean squared error (MSE) of trajectory predictions over time for the
FNS-KF test datasets. As shown, the SPUS model—with only 36 million parameters—exhibits an
approximately linear increase in prediction error over time, a behavior consistently observed across
our downstream datasets. POSEIDON, a larger FM with 158 million parameters, demonstrates a
similar error growth pattern as shown in Figure A.1b. As can be seen, SPUS achieves comparable
performance to POSEIDON (Direct) at early time steps and surpasses it at later time steps. These
results highlight the potential of SPUS to deliver accurate long-term predictions despite having sig-
nificantly fewer parameters.

Table 2: Comparison of model performance (average MSE across all predicted 20 timesteps from the
initial conditions of the trajectories) on the CE-RM, NS-SL, and FNS-KF PDE datasets, fine-tuned
with 128 trajectories using three different pretrained model sizes. SPUS demonstrates scalability
with increasing model size.

Dataset SPUS-9M SPUS-36M SPUS-76M
CE-RM 0.0203 0.0159 0.0129
NS-SL 0.0247 0.0163 0.0027
FNS-KF 0.0045 0.0015 0.0008

(a) Prediction error over time for FNS-KF with Posei-
don (Direct), Poseidon (AR), and SPUS

(b) Prediction error over time for FNS-KF with Posei-
don (Direct), and SPUS

Figure A.1: Average MSE of trajectory predictions over time for the FNS-KF test datasets. SPUS
(36M) shows approximately linear error growth similar to POSEIDON (Direct). It surpasses PO-
SEIDON (direct) at later steps on FNS-KF, highlighting its efficiency and long-term accuracy as
shown in Figure (b).

Table 3: Performance analysis of SPUS with different numbers of residual blocks at each stage.
The table reports the average MSE across all 20 predicted timesteps from the initial timestep on the
CE-RM, NS-SL, and FNS-KF test datasets. Using five residual blocks per stage in SPUS reduces
the prediction MSE across all downstream tasks.

Model Number of Residual Blocks CE-RM NS-SL FNS-KF
SPUS-36M 2 0.0159 0.0163 0.0015
SPUS-76M 5 0.0129 0.0027 0.0008

A.2 SPUS SCALES WITH MODEL SIZE

We pretrain SPUS with three model sizes to study scalability:

• SPUS-9M: This variant contains approximately 9 million parameters. Its architecture is
identical to SPUS-36M except that the number of channels in each encoder and decoder
stage is reduced by half.
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Table 4: Evaluation (average MSE on all predicted timesteps from initial condition) of SPUS on
downstream datasets under different numbers of finetuned trajectories

Downstream Dataset Number of Trajectories
32 128 256

CE-RPUI 0.0057 0.0054 0.0041
CE-RM 0.0246 0.0159 0.0130
NS-PwC 0.0076 0.0048 0.0025
NS-SL 0.0286 0.0163 0.0004

FNS-KF 0.0098 0.0015 0.0012
Wave-Gauss 0.0097 0.0069 0.0068

• SPUS-36M: The baseline configuration illustrated in Figure 2. It includes two residual
blocks at each level of the encoder, decoder, and bottleneck.

• SPUS-76M: This larger variant follows the same architecture as SPUS-36M but increases
the number of residual blocks in each encoder, decoder, and bottleneck stage from two to
five following Huang et al. (2023) .

All three pretrained models are fine-tuned on three downstream datasets: CE-RM, NS-SL, and FNS-
KF. Table 2 summarizes the average test MSE across all predicted timesteps for each dataset and
model configuration. As shown, increasing model size consistently reduces the test error across for
all three downstream datasets, demonstrating that SPUS scales effectively with model size.

A.3 PERFORMANCE EVALUATION OF SPUS WITH DIFFERENT NUMBERS OF RESIDUAL
BLOCKS PER STAGE

As shown in Table 3, increasing the number of residual blocks in each stage of SPUS improves
model accuracy. Specifically, the larger variant, SPUS-76M with five residual blocks per encoder,
decoder, and bottleneck stage, achieves lower prediction errors on all three downstream PDE datasets
compared to the configuration with two residual blocks (SPUS-36M), demonstrating the benefit of
deeper residual refinement within each stage.

A.4 PERFORMANCE EVALUATION OF SPUS WITH AUTOREGRESSIVE TRAINING UNDER A
FIRST-ORDER MARKOV ASSUMPTION

We formulate the autoregressive training of SPUS as a first-order Markov process, where the evo-
lution of the system depends only on its immediately preceding state. This formulation contrasts
with DPOT, which conditions on the previous ten timesteps to predict the next one. Relying on
multiple past states, as in DPOT, to start inference, it requires the 10 past states to be generated from
expensive numerical simulator. On the other hand, SPUS only need the initial condition which has
no computational cost to start the inference.

Relying on multiple past states, as in DPOT, can accumulate redundant temporal information and
potentially introduce compounding errors during long rollouts. As shown in Table 1, our first-
order Markov formulation enables SPUS to achieve lower prediction errors and improved long-term
stability across all downstream datasets compared to DPOT.

A.5 PERFORMANCE EVALUATION OF SPUS ON THE CE-RPUI, CE-RM, FNS-KF AND
WAVE-GAUSS DATASETS

Figure A.2 presents randomly selected trajectory prediction from the CE-RPUI test dataset. Notably,
the predicted variables closely match the ground truth at each time step, although the deviation
between prediction and ground truth increases more noticeably over time for CE-RM compared to
CE-RPUI due to its more complex dynamics.

Figure A.3 presents randomly selected trajectory prediction from the CE-RM test dataset. Notably,
the predicted variables closely match the ground truth at each time step.
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Figure A.2: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the CE-RPUI testing dataset (240 test trajectories). The figure shows example
results at time steps t = 1, 6, 11, 16 for five system variables: density ρ, horizontal velocity u,
vertical velocity v, pressure p, and energy E. SPUS takes the initial condition u′

t = ut=0 as input
and recursively predicts subsequent states based on its own previous outputs for t = 1, . . . , 20, as
described in Figure 1 (inference step). As shown, the predicted variables closely match the ground
truth at each time step.

Figure A.3: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the CE-RM testing dataset (130 test trajectories). The figure shows example
results at time steps t = 1, 6, 11, 16 for five system variables: density ρ, horizontal velocity u,
vertical velocity v, pressure p, and energy E. SPUS takes the initial condition u′

t = ut=0 as input
and recursively predicts subsequent states based on its own previous outputs for t = 1, . . . , 20, as
described in Figure 1 (inference step). As shown, the predicted variables closely match the ground
truth at each time step, although the deviation between prediction and ground truth increases more
noticeably over time for CE-RM compared to CE-RPUI due to its more complex dynamics.

Figure A.4 presents randomly selected trajectory prediction from the NS-PwC and NS-SL test
dataset. Notably, although SPUS was not pretrained on incompressible Navier–Stokes dynamics,
its predictions closely follow the ground truth variables at each time step, demonstrating robust
generalization to the NS-PwC and NS-SL system.
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(a) Autoregressive trajectory prediction from initial
state for NS-PwC

(b) Autoregressive trajectory prediction from initial
state for NS-SL

Figure A.4: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the NS-PwC and NS-SL testing datasets (each with 240 test trajectories). The
figure shows example results at time steps t = 1, 6, 11, 16 for two system variables: horizontal
velocity u, vertical velocity v. As shown, despite not being exposed to incompressible NS dynamics
during pretraining, the predicted variables by SPUS closely match the ground truth at each time
step. The deviation between prediction and ground truth (GT) increases more noticeably over time
for NS-PwC compared to NS-SL.

Figure A.5 presents randomly selected trajectory prediction from the FNS-KF test dataset. No-
tably, although SPUS was not pretrained on incompressible Navier–Stokes dynamics, its predictions
closely follow the ground truth variables at each time step, demonstrating robust generalization to
the FNS-KF system.

Figure A.6 illustrates a representative trajectory prediction from the Wave-Gauss test set, demon-
strating SPUS’s ability to generalize to the Wave-Gauss system. However, in comparison to the
Navier–Stokes downstream tasks, the deviation between the predicted variables and the ground truth
increases more noticeably over time for Wave-Gauss.

A.6 VISUALIZATION OF SPUS PERFORMANCE ON TRAJECTORY PREDICTION COMPARED
WITH POSEIDON AND DPOT

Figure A.8 shows a random trajectory predictions for FNS-KF made by SPUS (36M), POSEIDON
(158M), and DPOT (122M). Each model is finetuned with 128 trajectories.

Figure A.9 shows a random trajectory predictions for NS-SL made by SPUS (36M), POSEIDON
(158M), and DPOT (122M). Each model is finetuned with 128 trajectories.

A.7 CAN SPUS GENERALIZE TO DIFFERENT INPUT RESOLUTIONS?

We fine-tuned SPUS-36M using 128 PDE trajectories governed by the Burgers equation (Zhou &
Farimani, 2024). Each trajectory consists of 100 time steps, with the velocity field represented on a
spatial grid of size 64×64. For comparison, we also trained an unpretrained U-Net model with 36M
parameters—sharing the same architecture as SPUS—from scratch, using the same 128 trajectories.

We evaluated both models on 64 test trajectories, predicting all 99 future time steps from the initial
condition. The average mean squared error (MSE) across all 99 predicted time steps for the 64
trajectories was 0.0035 for SPUS and 0.0079 for the unpretrained U-Net. These results demonstrate
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Figure A.5: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the FNS-KF testing dataset (240 trajectories). The figure shows example results
at time steps t = 1, 6, 11, 16 for two system variables: horizontal velocity u, vertical velocity v.
SPUS takes the initial condition u′

t = ut=0 as input and recursively predicts subsequent states based
on its own previous outputs for t = 1, . . . , 20, as described in Figure 1 (inference step). As shown,
the predicted variables closely match the ground truth at each time step.

the strong generalization capability of SPUS to different spatial resolutions and its robustness for
longer rollouts. Figure A.10 shows a randomly selected trajectory prediction for PDEs governed
by the Burgers equation, generated by SPUS (36M) and an unpretrained U-Net (36M). The figure
shows example results at time steps t = 21, 31, 41, 51, 99 for the velocity field on a 64× 64 spatial
grid. As shown, the unpretrained U-Net begins to deviate from the ground truth (GT) after t = 41,
whereas SPUS remains close to the GT across all time steps, demonstrating its potential for longer
rollouts. Figure A.11 shows the average MSE over 99 predicted time steps for 64 test trajectories
of Burgers equation. As shown, SPUS (36M) maintains a nearly constant MSE after timestep 40,
remaining stable through the final prediction. In contrast, the unpretrained U-Net (36M) exhibits a
steadily increasing MSE.
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Figure A.6: Autoregressive trajectory prediction by SPUS from the initial condition of a randomly
selected trajectory in the Wave-Gauss testing dataset (240 trajectories). The figure shows example
results at time steps t = 1, 6, 11 for one system variable: wave speed u. SPUS takes the initial
condition u′

t = ut=0 as input and recursively predicts subsequent states based on its own previous
outputs for t = 1, . . . , 14, as described in Figure 1 (inference step). As shown, the predicted vari-
ables deviates very quickly from ground truth at each time step for Wave-Gauss compared to other
downstream tasks.

A.8 CAN SPUS SCALE TO PDES WITH HIGHER SPATIAL RESOLUTIONS THAN THOSE USED
IN PRETRAINING?

SPUS is pretrained on PDEs with a spatial resolution of 128 × 128. To evaluate its scalability to
higher-resolution PDEs, we finetuned the pretrained SPUS model using 128 trajectories governed by
the Burgers equation (Zhou & Farimani, 2024). Each trajectory contains 20 time steps, with the ve-
locity field represented on a 256×256 spatial grid. For comparison, we also trained a 36M-parameter
U-Net—matching the architecture of SPUS—from scratch using the same 128 trajectories.
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Figure A.7: A randomly selected predicted samples by SPUS for SE-AF

Figure A.8: A random trajectory predictions for FNS-KF made by SPUS (36M), POSEIDON
(158M), and DPOT (122M). The figure shows example results at time steps t = 1, 6, 11, 16 for
two system variables: horizontal velocity u, vertical velocity v.

We evaluated both models on 64 test trajectories, predicting all 19 future time steps from the initial
condition. The average mean squared error (MSE) across the 19 predicted time steps was 0.0017
for SPUS and 0.0023 for the U-Net trained from scratch. These results demonstrate the strong
generalization capability of SPUS to spatial resolutions higher than those used during pretraining.

Figure A.12 shows a randomly selected trajectory prediction for the Burgers equation generated
by SPUS (36M) and the unpretrained U-Net (36M). Example velocity-field snapshots at time steps
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Figure A.9: A random trajectory predictions for NS-SL made by SPUS (36M), POSEIDON (158M),
and DPOT (122M). The figure shows example results at time steps t = 1, 6, 11, 16 for two system
variables: horizontal velocity u, vertical velocity v.

t = 2, 6, 11, 16, 19 on the 256 × 256 grid are presented. As illustrated, SPUS remains close to
the ground truth across all time steps, whereas the U-Net trained from scratch develops noticeable
periodic striping artifacts at later time steps that are absent in the ground-truth (GT) solution. These
findings show that SPUS successfully scales to PDEs with higher spatial resolutions than those seen
during pretraining.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure A.10: A randomly selected trajectory prediction for PDEs governed by the Burgers equation,
generated by SPUS (36M) and an unpretrained U-Net (36M). The figure shows example results
at time steps t = 21, 31, 41, 51, 99 for the velocity field on a 64 × 64 spatial grid. As shown,
the unpretrained U-Net begins to deviate from the ground truth (GT) after t = 41, whereas SPUS
remains close to the GT across all time steps, demonstrating its potential for longer rollouts.
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Figure A.11: Average MSE over 99 predicted time steps for 64 test trajectories of Burgers equa-
tion. As shown, SPUS (36M) maintains a nearly constant MSE after timestep 40, remaining stable
through the final prediction. In contrast, the unpretrained U-Net (36M) exhibits a steadily increasing
MSE.
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Figure A.12: Scalability of SPUS to PDE resolutions higher than those used in pretraining
(128× 128). Shown is a randomly selected trajectory prediction for PDEs governed by the Burgers
equation, generated by SPUS (36M) and an unpretrained U-Net (36M). The figure shows example
results at time steps t = 2, 6, 11, 16, 19 for the velocity field on a 256 × 256 spatial grid. As il-
lustrated, SPUS remains close to the ground truth across all time steps, whereas the U-Net trained
from scratch develops noticeable periodic striping artifacts at later time steps that are absent in the
ground-truth (GT) solution.
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