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Abstract

To develop a generalized automated sleep stag-
ing method based on the gold standard modality,
electroencephalograms (EEGs), requires a large
and accurately labeled training and test set ac-
quired from different individuals with diverse de-
mographics and medical conditions. However,
data in the training set may exhibit changes in
the EEG patterns that are very different from the
data in the test set, due to inherent inter-subject
variability, electrode misplacement, and the vari-
ability of medication use/response. Training an
algorithm on such data without accounting for
this diversity can lead to underperformance and
a lack of generalizability on novel data. Previ-
ous methods have attempted to address this by
developing robust representations across all indi-
viduals in the dataset using deep transfer learning
approaches. However, not all parts of the train-
ing data are as relevant as others to the test data.
Forcing the alignment of these nontransferable
data with the transferable data may lead to a neg-
ative impact on the overall performance. This
work jointly learns patient-invariant representa-
tions and weights features (spectrogram coeffi-
cients) to enhance the contribution of relevant
features in the final model and decrease the im-
pact of irrelevant features using an unsupervised
approach. The proposed method leverages trans-
ferable and discriminable knowledge from the
training set to the test set. Using a large public
database of 42,560 hours of EEG, recorded from
5,793 from Sleep Heart Health Study, we demon-
strate that adversarially learning a network with
an importance weighting scheme, significantly
boosts performance compared to state-of-the-art
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deep learning approaches in the cross-subject sce-
nario. The proposed method improves, on aver-
age, accuracy from 0.81 to 0.94, precision from
0.81 to 0.82, and sensitivity from 0.74 to 0.85.

1. Introduction

Approximately one-third of the US population experiences
less than the recommended amount of sleep, which in turn,
is linked to chronic diseases such as depression, obesity type
2 diabetes, and heart disease (con, 2015). Sleep patholo-
gies are increasingly being recognized as crucial factors in
many illnesses, both as effects and causes. In addition, the
increasing availability of low-cost sleep monitoring devices
and data storage continues to accelerate the field, and the
volume of data being collected continues to expand. Since
sleep staging and diagnostics is a labor-intensive and ex-
pensive process involving highly trained experts, there is
therefore a pressing need for automation, particularly in low
resource regions of the world. The ground truth for sleep
staging remains the multi-lead electroencephalogram (EEG)
and the standard rules for sleep staging are still focused on
30-sec windows of data (or ’epochs’) with manual labeling
by a sleep expert into five stages: Wake (W), Rapid Eye
Movement (REM), Non-REM 1 (N1), Non-REM 2 (N2)
and Non-REM 3 (N3) (Berry et al., 2012b). In addition
to the time and cost involved in manual sleep staging, the
significant inter-expert variability remains an issue (Younes
& Hanly, 2016). However, the lack of a sizeable public
database with heterogeneous populations has limited the
development of verifiable algorithms that generalize well
across the population. Due to the characteristics and com-
plexities of EEG signals, accurate interpretation of them by
human experts requires several years of training. Therefore,
developing an accurate classifier with high generalizability
on other datasets remains challenging. The non-stationary
nature of the EEG signal (Kaplan et al., 2005) and the con-
sequent changes in statistical characteristics of the signal
with time, results in poor generalization for a classifier that
is trained on a temporally-limited amount of data from an
individual recorded at a different time, even for the same
subject. Moreover, there exists high inherent inter-subject
variability in the characteristics of an EEG due to physio-



Importance Weighting with Adversarial Network for Large-Scale Sleep Staging

logical differences (e.g. skull shape) between individuals,
and because neural activity does not propagate in a similar
manner in different subjects. In particular, cortical folding,
tissue conductivity, and tissue shapes of brains are different
between individuals (Gayraud et al., 2017). Moreover, elec-
trode sensor montages (the points at which the electrodes
are attached and the references points) can vary based on
the preference of the clinical team or type of underlying ail-
ment under investigation. In addition, each manufacturers’
acquisition hardware may filter the EEG differently. Finally,
when electrodes are applied, small differences in the loca-
tions on the skull may exist, reflecting the EEG technicians’
different skill levels or training, or even attentiveness on a
given day. All these factors lead to significant variabilities
in EEG signals, which lead to different joint distributions,
P(X,Y) between different recordings, where X and Y are
the feature and label space, respectively.

Recently, multiple authors have focused on developing au-
tomated sleep scoring approaches based on applying deep
learning (DL) methods (Biswal et al., 2018; Malafeev et al.,
2018; Tagluk et al., 2010; Perslev et al., 2019). Due to the
spatio-temporal nature of the information in the EEG, most
convolutional and recurrent processing methodologies are
quite suitable for EEG analysis. However, these predictive
models do not generalize well to unseen patients due to
inter-subject variability, as explained earlier. The typical
solution is to further fine-tune these networks on new pa-
tients, where it is expensive and time-consuming to obtained
labeled data from them, and which further reduces their real-
life application in a clinical setting. Hence, there is strong
motivation to establishing effective algorithms to reduce
the labeling consumption by leveraging readily-available la-
beled data from different, but related patients. As note, due
to inherent inter-subject variability, information from some
training patients may not transfer well to the test set. Here,
a new framework is proposed to quantify the transferabil-
ity of features in the adversarial network to select relevant
features and weight them based on their transferability and
discriminability. Using the largest public EEG database for
sleep staging, 5,793 patients (= 42,560 hours) EEGs from
Sleep Heart Health Study (SHHS), an adversarially learned
network with a importance weighting scheme is used to
significantly boost performance compared to state-of-the-art
deep learning approaches in the cross-subject scenario.

2. Related Work

As noted, the spatial shift in data can be caused by the vari-
ation of sensors’ location on the brain in different datasets
or mismatching of electrodes in one dataset. This issue
can be partly solved by finding an invariant representation
across data-sets (Biswal et al., 2018). In the literature, it
has been shown that Symmetric Positive Definite (SPD)

matrices provide a strong ability to provide useful represen-
tations of brain signals (Congedo et al., 2017; Barachant
et al., 2010). The covariance matrix is a typical example of
an SPD matrix, which has been employed in several stud-
ies (Saifutdinova et al., 2019; Rodrigues et al., 2019; Li
et al., 2012). These studies showed that using second-order
statistics of multi-channel signals reduces inter-subject and
intra-subject variabilities between EEG signals. The spatial
covariance matrix is particularly good at separating useful
information about the brain’s functional connectivity struc-
ture (Barachant et al., 2010) and creates a feature space that
is comparable across subjects. Moreover, it has been shown
that SPD matrices have excellent robustness to the consider-
able variability of real-world environmental conditions such
as instrument noise (Congedo et al., 2017).

Other studies (Li et al., 2019; Ma et al., 2019; Tang &
Zhang, 2020) tackled this challenge using domain adapta-
tion techniques to increase generalization of a model that
is trained on EEG data and tested on unseen subjects in
Brain-Computer Interface (BCI), Motor Imagery (MI), and
emotion recognition tasks. In the literature, it has been
shown that domain adaption, which can be considered as
a particular case of transfer learning, solved dataset bias
of domain shifts, which is common in biomedical applica-
tions. The key technique of domain adaption is to diminish
the discrepancy between these two distributions using the
Maximum Mean Discrepancy (MMD) metric (Long et al.,
2015). Previous studies, which have employed domain adap-
tation in biomedical time-series data, bridge the training and
test datasets from different individuals by learning subject-
invariant representations or estimating feature importance
using labeled training features and unlabeled test features
(Ma et al., 2019; Li et al., 2019; Jayaram et al., 2016).

Other methods to increase the generalization ability of a
model involve transfer learning - finding subsets of known
(labeled) subjects to initialize a classifier for training on a
new subject (Zanini et al., 2017). Bolagh et al. (Bolagh
et al., 2016; 2017) proposed subject-selection and subject
clustering to select relevant individuals based on the similar-
ity between the EEG pattern of different individuals. Raza et
al. (Raza & Samothrakis, 2019) proposed bagging methods
to handle mismatching between training and test distribu-
tions. Chai et al. (Chai et al., 2017) proposed an adaptive
subspace feature matching to match both the marginal and
conditional distributions between EEG data from different
sessions/subjects. All of these studies tried to develop a
method for reducing inter-subject variability by removing
the irrelevant subjects in the training set and enabling effi-
cient knowledge transfer from previous subjects to a new
unseen patient.

Sors et al (Sors et al., 2018) used a 14-layer convolutional
neural network (CNN) which used an epoch of raw data
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from channel C4-A1, along with the next and previous
two epochs to achieve an accuracy of 87% on the SHHS
dataset. Phan et al (Phan et al., 2019) trained a CNN to
simultaneously classify one epoch and its neighbors from
the short-time Fourier transform of the C4-A1 EEG channel,
ROC-LOC EOG channel and Chin1-Chin2 EMG channel,
then used multiplicative voting to aggregate each classifica-
tion, which achieved an accuracy 82.3% on the Sleep-EDF
database and 83.6% on the MASS dataset. Biswal et al.
(Biswal et al., 2018) used a recurrent convolutional neural
network on the spectrogram of the EEG in each epoch to
achieve an accuracy of 77.7% when using the C4-Al and
C3-A2 channels of the SHHS dataset, 81.9% accuracy using
the C4-A1 and C3-A2 of their own private dataset and 87.5%
accuracy using the F3-M2, F4-M1, C3-M2, C4-M1, O1-M2
and O2-M1 channels of their own private dataset. Zhang et
al. (Zhang et al., 2019) fed spectrograms into CNN layers
and an LSTM layer to assess the generalization capability of
their model by testing their model on two different datasets.
Their model achieved F1-score of 0.81 and Cohen’s Un-
weighted kappa of « = 0.82. These methods have recently
gained attention since they simplify processing pipelines
through end-to-end learning, removing the need for domain-
specific knowledge for feature engineering. This is clearly
appealing, but it presents some dangers, and ignoring the
nature of the EEG and how it is acquired, has limited the
impact of DL in this domain. Although DL architectures
have been very successful in processing complex data such
as images, text, and audio signals (Liu et al., 2017; Hershey
et al., 2017), the generalization and interpretation of a DL
method across different patients are still the main challenges
for using DL in most clinical applications. DL architectures
are hard to ’trust’ due to their complexity and extreme non-
linearity, which further reduces their real-life application in
a clinical setting.

Recently, the use of generative adversarial networks (GANs)
(Goodfellow et al., 2014) to handle temporal and spatial
shifts has received more attention (Tzeng et al., 2017;
Sankaranarayanan et al., 2018; Liu et al., 2019). Notably,
Ganin et al. constructed a two-player minimax game (rather
like the appriach of GANs), in which the first player dis-
criminates between training and test sets and the second
player is adversarially trained to deceive the discriminator
and extract transferable features (Ganin et al., 2016). These
networks try to align the representations extracted from all
EEG channels across all subjects. It is evident that some
parts of the brain are more involved in a given task (or are
more active during a given state), thus all channels are not
equally transferable. Moreover, some parts of the EEG
pattern are significantly dissimilar across subjects. Those
patterns might be related to the specific health history of
the patient, which could affect EEG patterns. Therefore,
forcing the use of the irrelevant channels, and their EEG pat-

terns, may have a large impact on overall performance. An
attention mechanism (Vaswani et al., 2017) is an effective
method to focus on essential regions of data, with numer-
ous successes in deep learning tasks such as classification,
segmentation, and detection.

3. Methods

Ganin et al. inspired the idea of GANSs and used the same
idea for the domain adaptation problem, where adaptation
behavior is achieved via adversarial training (Ganin et al.,
2016). The feature extractor, similar to the generator in
GAN:, tries to perform some transformation on data from
two domains such that the transformed features have the
same distribution. The second network, (a discriminator
network), similar to GANSs, should be able to classify the
domains as source (i.e. training features) and target (i.e.
test features). This is achieved by training two networks in
such a way that the feature extractor is trying to confuse the
domain discriminator via adversarial training. The key idea
of domain-adversarial training is to use a Gradient Reversal
Layer (GRL), placed between feature extractor and domain
discriminator. The GRL acts like an identity function during
forwarding propagation and multiplies the gradient by a cer-
tain negative constant during the backpropagation, leading
to the opposite of gradient descent. The adversarial net-
work has three components; a feature extractor (G ¢ (-, 6y)),
a label classifier (G, (-, 6,)), and a domain discriminator
(G4(+,04)). The feature extractor is a neural network that
learns an invariant representation across domains by find-
ing a robust transformation. The label classifier is a neural
network that classifies extracted features from the source
(labeled) domain. Finally, the domain discriminator is a
neural network that predicts whether the feature is coming
from the source domain or target domain. The optimization
of this framework can be written as follows:

C(05,0,,00) =— > Ly(Gy(Gy(x:)),:)
" x;€Dyr
A
- Z La(Ga(Gf(x4)),ds)
X; €D UD¢e

)

where n = ny, + N¢e, Ny, and nyg are number of sample in
training (source) and test (target) sets, respectively, and A is
a hyper-parameter that trades-off the domain discriminator
loss Lg4 with the classification loss L, corresponding to the
training classifier G,.

As mentioned earlier, these networks try to align the ex-
tracted features from all EEG from the whole population.
It is obvious that forcefully aligning the feature from two
dissimilar patients might inject negative information to the
network. Therefore, in this work, we develop an algorithm
to transfer useful extracted features from the training set
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Figure 1. The proposed method for generalized sleep staging problem, where G/ is the feature extractor, Gy, is the training classifier,
G4 is domain discriminator (involved in adversarial training) for alignment features from traing and test; G is the auxiliary domain
discriminator (uninvolved in adversarial training) that quantifies the transferability W of each training feature, and Gy is the auxiliary
label predictor encoding the discriminative information to the auxiliary domain discriminator G4. Best viewed in color

to test set while mitigating from irrelevant features. The
proposed method uses the adversarial network and com-
bines it with a weighting scheme. Weights automatically
measure the transferability and discriminability. Let w(x!")
be the weight of each training feature x:”, which measures
its transferability to test set; thus, features with high weights
contribute more to the final model, and the impact of features
with lower weight is decreased. The entropy minimization
principle encourages the low-density separation between
classes by minimizing the entropy of class-conditional dis-
tribution on the test set, which is useful for refining the
classifier adaptation. In this work, we use this principle to
quantify the uncertainty of a test feature’s predicted label.
Let § = Gy(Gy(2%)) € RC, the entropy loss to quan-
tify the uncertainty of a test features’s predicted label is

H(Gy(Gy(a}))) = = X ely 9% log 1.

By Re-weighting training features in the loss of the dis-
criminator G4, and the training classifier G, and using
the entropy minimization principle, the optimization of this
framework can be written as follows:

P, = = YWl HG G 1)
oo nztﬁlmaymf(x;-e))) @)

Ecdz—ntrii;w( )10g(GalG(x!")))
GG )

Where  is a hyper-parameter to trade-off the labeled train-
ing and unlabeled test features. The transferability weight-
ing framework can be trained end-to-end by a minimax

optimization procedure as follows:

(éf,éy) = arg mlen Eg, — Eg,
05,0y

(éd) = arg r%ax Eg, 4
d

An auxiliary discriminator G is used to measure feature’s
transferability. This discriminator is not involved in ad-
versarial training, i.e., the features Gy are not learned to
confuse G4. The output of the auxiliary discriminator G
is a probability, where having lower probability means the
training features are similar to the test set. Besides, the
labeled information from the training set is injected into the
auxiliary discriminator G4, to enhance the discriminability.
Therefore, the output of the auxiliary discriminator can be
written as follows:

Ga(Gy(xi)) ZGC (Gy(xi)) )

Where G;(G #(x;)) can be interpreted as the probability
of each feature x; belonging to class c. Therefore, the
weight for measuring the transferability and discriminability
is defined as:

w(x") =1 - Ga(Gr(xi") (6)

The auxiliary label predictor G'y is trained with the leaky-
softmax by a multitask loss over 5 one-vs-rest binary classi-
fication tasks for the 5-stage sleep staging problem:

Nir

:_7zzyzcloch Gf( )))

T =1 c=1

+ (1 =yl log(1 = GS(Gr(xiM))] (D)

where y;", denotes whether class c is the ground-truth label
for training feature x§, and X is a hyper-parameter. There-
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fore, training of the auxiliary discriminator is done as:

Nty

o, =— — 3 log(Ga(G(x))
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Weights in each mini-batch of batch size B are normalized

as w(x) + ==L to make data from patients com-

B i=1 w(x;)
parable. Thus, the overall optimization can be written as

follow:

(éf,éy) = argemigl Eg, — Eg,
%

(64) = argmin Eg,
(97;) = arg rreli_n Eg, — Eg

€))

d

4. Experiments
4.1. Data

Sleep Heart Health Study: The SHHS database consists of
two rounds of polysomnographic recordings (SHHS-1 and
SHHS-2) sampled at 125 Hz in a sleep center environment.
The data used in the study are de-identified, and therefore
an ethics/institutional review board waiver was provided
for this research. Following (Duggal et al., 2020), we use
only the first round (SHHS-1) containing polysomnographic
records from participants included 52.9% women and 47.1%
men, over two channels (C4-A1 and C3-A2). Recordings
were manually classified into one of six classes (W, REM,
N1, N2, N3, and N4). As suggested in (Berry et al., 2012a),
we merge N3 and N4 stages into a single N3 stage. Table 1
shows number of sleep stages per class.

Table 1. Number of subjects and epochs per class for each dataset

Dataset | # Subjects | # Wake #N1 #N2 #N3 #REM

SHHS 5,792 1,690,997 | 217,535 | 2,397,062 | 739,230 | 817,330
train 4,054 1,183,252 | 152,744 | 1,678,666 | 515,730 | 5,725,780
test 1,738 507,745 64,791 718,396 | 223,500 | 244,752

4.2. Preprocessing

Before presenting the signal to the network, preprocessing
is performed to reduce the negative effects of signal artifacts.
Two filters were applied to the EEG channels: a notch filter
to remove 60 Hz power line interference, and a band-pass
filter to allow a frequency range of 0.5-180 Hz through. Nor-
malization of EEG amplitude is then carried out as the last
step to minimize the difference in EEG amplitudes using
min-max normalization across different subjects. After the
preprocessing steps, spectrograms are generated for each

EEG channel to transform data to the time-frequency do-
main. Each 30-second epoch is transformed into log-power
spectra via a short-time Fourier transform (STFT) with a
window size of two seconds and a 50 % overlap, followed
by logarithmic scaling. A Hamming window and 256-point
Fast Fourier Transform (FFT) are used on each epoch. This
results in an image S € R*T where F' = 129 (the number
of frequency bins), and T' = 29 (the number of spectral
columns).

4.3. Network Implementation

For extracting features for the adversarial neural network,
we use the same architecture of Biswal et al. (Biswal et al.,
2018). It includes a 3-layer of 1-D CNN (kernel size = 3),
which was applied to each EEG channel, followed by batch
normalization (BatchNorm), rectified linear (ReLU) units,
and max pooling units, we called it as SpectNet here. A
cross-entropy loss function is used as a discriminator £
and classification £,,. We apply back-propagation to train
the classifier layer and all domain discriminators. Mini-
batch stochastic gradient descent (SGD) is employed with
the momentum of 0.95 using the learning rate and progres-
sive training strategies as in (Ganin et al., 2016) to learn
the weights of a deep neural network and hyper-parameter
are optimized with importance weighted cross-validation
(Sugiyama et al., 2007). To address the class imbalance,
we balance each batch for positive and negative examples,
which leads to oversampling the positive class. The pro-
posed methods were implemented with PyTorch 1.0 and
Python3.6.

4.4. Results

The training data were randomly selected from 4054 patients
(= 70% of the total population) of the SHHS. Classification
results are based on the test set (= 30% of the total popu-
lation = 1738 patients), which not included in the training
set shown in Table (2). We also compare previous meth-
ods for sleep staging on this dataset. The proposed method
outperforms all other methods with respect to average ac-
curacy, sensitivity and F1-score, and Kappa, showing that
SSA performs well with different base networks for sleep
staging tasks. To evaluate the proposed approach perfor-
mance and see how adversarial domain adaption network
helps to develop a model with high generalizability, we ini-
tially conduct simple experiments. Similar to the literature
on sleep stage assessment, to evaluate model performance,
accuracy, specificity, sensitivity, and F1-score per class are
reported. The other primary metric that we have used for
performance evaluation of our proposed method is Cohen’s
Kappa coefficient (x). This metric measures the agreement
between the labels obtained by the algorithm and the ground
truth annotations.
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Table 2. Wide single-column table in a twocolumn document.

Sleep Stages Precision Sensitivity F1-Score Kappa Imbalanced Acc Number of Epochs
Wake 0.96 0.93 0.95 0.92 0.97 507745
REM 0.86 0.91 0.88 0.86 0.96 244752
N1 0.45 0.66 0.53 0.52 0.95 64791
N2 0.95 0.91 0.93 0.88 0.94 718396
N3 0.91 0.90 0.90 0.89 0.97 223500
avg 0.82 0.86 0.84 0.82 0.96 -
Ell 474335 10811 18135 3208 1166
§ 93.42% 2.13% 3.57% 0.65% 0.23%
600000
z 5653 223803 9471 5311 514 5
¥ 231% | 9144%  387% 217% 0.21% o
450000 E ESM .
E - 6168 7327 42926 7833 537 )
TZ  952%  1131%  6625%  12.00%  0.83% v
3 300000
o 3448 16092 21623 659561 17672 LY ‘
z 0.48% 2.24% 3.01% 91.81% 2.46% %
150000 : 2
P 424 357 2726 17835 202158 :
2 019% 0.16% 1.22% 7.98%  90.45% "
Wake REM N1 N2 N3 0

Predicted Label

Figure 2. Confusion Matrix for test set, which includes 1738 pa-
tients from SHHS dataset. The model is trainined on training set,
EEGs from 4054 patients. Note: training and test set do not overlap
in patients; i.e. cross-subject scenario

Figures (3) show the t-SNE embedded of the features
learned by CNN, the proposed method methods on the
SHHS dataset. It shows that features determined by the
proposed practice can better discriminate test features com-
pared to previous methods, specifically reduce the confusion
between the N1 stage with other stages.

Table (3) summarizes the average results and compares them
to the state-of-the-art. The methods proposed previously by
Biswal et al. (Biswal et al., 2018), Zhange et al. (Zhang
et al., 2019), and Sors et al. (Sors et al., 2018) which eval-
uated their method on the SHHS dataset imply that the
knowledge from irrelevant features from patients lead to
a negative impact on the overall performance on the test
set. The proposed method down-weights dissimilar features
to enhances the generalizability. Moreover, the proposed
method pays more attention to relevant features to test set
by assigning suitable weights. Injecting label information
into the discriminator improves the discriminability of the
model.

Based on this experiment, the proposed method boosts the

0
1SNE_1

1SNE_2

tSNE_1

((b)) With adversarial training

Figure 3. t-SNE visualization of the last hidden layer representa-
tions in the feature extraction network without/with adversarial
training. Colored points represent the different stages, showing
how the algorithm discriminate classes. Wake (blue), REM (green),
N1 (red), N2 (purple) and N3 (flax).
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performance by 5% on average. It shows that using adver-
sarial network with importance weighting framework boosts
the N1 class performance. The N1 stage is often confused
for wake and N2, and it is considered a transition period
from being awake to falling asleep. Colten et al. ((Altevogt
et al., 2006)) defined the N1 stage as "active sleep”, which
means N1 may also occur between other stages of sleep,
such as between N3 and REM. Therefore, it is often con-
fused with many other stages, as we can see in confusion
matrices in Figure (2).

5. Conclusion

In this work, adversarial training with a weighting scheme
was proposed for the sleep staging task across a heteroge-
neous dataset, which includes EEGs from 5792 patients.
Inherent inter-subject variability, electrode misplacement,
and heterogeneity in the medical history of patients in a
large dataset may lead to an algorithm having poor general-
ization across subjects/dataset. Potentially, individuals with
different biomedical demographics and phenotypes would
provide enough diversity in the dataset. However, a conven-
tional network cannot be robust to such variabilities, given
the need to factor in differences in montages, electrode place-
ment errors, the dataset would likely be prohibitively large.
The proposed method uses an adversarial network with an
importance weighting framework to assign a weight for
each feature based on its transferability and discriminabil-
ity. Features from patients with higher weight contribute
more to the final model, and irrelevant features are down-
weighted to mitigate their negative impact. The proposed
method achieves state-of-the-art performance (without prior
knowledge) on 1738 patients. The method developed in
this work can be applied to other biomedical signals (e.g.
the electrocardiogram (ECG), electromyogram (EMG) and
photoplethysmogram (PPG), where multiple datasets from
different hospitals are recorded for the same task. The ul-
timate goal of the research presented here, however, is to
solve real-world automate sleep stage classification prob-
lems.
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