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ABSTRACT

The remarkable natural language understanding, reasoning, and generation capa-
bilities of large language models (LLMs) have made them attractive for applica-
tion to video question answering (Video QA) tasks, utilizing video tokens as con-
textual input. However, employing LLMs for long video understanding presents
significant challenges and remains under-explored. The extensive number of video
tokens leads to considerable computational costs for LLMs while using aggre-
gated tokens results in loss of vision details. Moreover, the presence of abundant
question-irrelevant tokens introduces noise to the video QA process. To address
these issues, we introduce a simple yet effective retrieval-based video language
model (R-VLM) for efficient and interpretable long video QA. Specifically, given
a question (query) and a long video, our model identifies and selects the most
relevant K video chunks and uses their associated visual tokens to serve as con-
text for the LLM inference. This effectively reduces the number of video tokens,
eliminates noise interference, and enhances system performance. Our experimen-
tal results validate the effectiveness of our framework for comprehending long
videos. Furthermore, based on the retrieved chunks, our model is interpretable
that provides the justifications on where we get the answers.

1 INTRODUCTION

With the rapid development of the Internet and the widespread use of cameras and smartphones,
both individuals and businesses are generating massive amounts of video data every day in various
fields such as entertainment, education, and technology. In such era of information explosion, un-
derstanding and extracting information from video content has become increasingly important to
better meet people’s needs and promote social progress. In this context, Video Question Answering
(Video QA) emerges as an essential interface for extracting and delivering information from video
content. Video QA systems allow users to ask natural language questions about videos and receive
answers based on the visual (and auditory) information within the video.

There is a growing trend towards leveraging large language models (LLMs) for video QA (Maaz
et al., 2023 |Wang et al., [2023} |Li et al.| [2023b; |Zhang et al., 2023b)). On one hand, LLMs benefit
from the vast knowledge acquired through training on enormous text corpora; on the other hand, they
provide users with a more natural and intuitive way to interact with video data. Generally, vision
tokens extracted from a video snippet are transformed and used as input (prompt) to the LLM, along
with the text query. However, it is worth noting that the consumption of abundant vision tokens
by a LLM can significantly increase the memory and computational burden, making it unaffordable
for low-resource GPU agents. To mitigate this issue, [Maaz et al.| (2023)) perform global spatial
and temporal pooling on the video tokens, although this comes at the cost of losing detail due to
pooling. [Zhang et al.[(2023b) aggregate video tokens using a Q-former with cross attention. Most of
these methods are designed primarily for short-video QA tasks, where answer-related frames usually
spread over the trimmed video snippet.

In practical application scenarios, users often pose flexible questions related to long videos (e.g.,
longer than 1 minute), in which the segments containing pertinent information for answering the
questions constitute merely a small fraction of the entire video. The presence of answer-irrelevant
tokens are redundancy and may potentially interfere with the video QA process, diminishing its



Under review as a conference paper at ICLR 2024

Output: She is greeting to the camera and the person

Memory recording the video.
— 4
~ O [ﬂé LLM (e.g., Vicuna) ]
O |chunk1
: ? A
O :
]
% - f
— Chunk 2 Chunk j
® . unk j
S5 3 |ChunkST|
¢t | Chunk2 — 88 |—| | S B
; ] Q pooling *
& 3 0
: : — Retrieval -«
[ ' module 1
O [chunkN
J Chunk N : n N o
v N [ Question:
E ,___'____*___\ Why did the lady in red smile and
! SMloss | wave hand towards the camera in
[t et ! the middle of the video?

|

Figure 1: Illustration of our proposed retrieval-based video language model for efficient long video
question answering. We encode an input long video into a sequence of video chunks, with each
chunk represented by a set of spatial and temporal visual tokens. Question-guided retrieval is per-
formed to find the top K relevant video chunks, with their tokens as the context/prompt of the LLM
for answer generation. Soft matching (SM) loss is used to regularize the retrieval related learning.

effectiveness. Therefore, it is imperative to develop a simple yet efficient framework that can handle
long video QA tasks.

To address these challenges, we draw inspiration from biology and cognitive science. As we know,
human working memory is a cognitive system responsible for temporarily holding and manipulating
information necessary for complex tasks such as reasoning, learning, and comprehension (Thomp-
son & Madigan, |2013). Faced with the vast amount of information stored in long-term memory,
working memory selectively retrieves relevant information while filtering out irrelevant data for
further cognition. Motivated by this, we aim to design a framework that is capable of identifying
and concentrating on relevant video segments while filtering out irrelevant information, ensuring
accurate and efficient question answering without imposing excessive computational demands.

In this paper, we propose a retrieval-based video-language model, R-VLM, for efficient and inter-
pretable long-video question answering. Fig. [T]shows the overall framework. Specifically, given a
long video and a question (query), we divide the video into a sequence of non-overlapping video
chunks, with each chunk representing a short video segment, e.g., 4 seconds with a sample rate
of 1fps. Note that we sample at a low frame rate in considering the memory limitation and video
redundancy. To allow a chunk to contain dynamic temporal information, we use 4 seconds that are
expected to contain temporal dynamics as the chunk unit. We then aggregate the encoded tokens
within a chunk through spatial and temporal pooling to obtain chunk tokens, reducing some redun-
dancy while preserving considerable local details. We perform question-guided retrieval to obtain
the top K most relevant chunks, and subsequently use the small set of tokens (after projection) from
these chunks as input for the frozen LLM for video QA inference. In this way, we efficiently match
and pass the most question-pertinent visual information to the LLM for inference.

Our framework demonstrates superior zero-shot generalization performance on several video QA
datasets, outperforming the baseline method Video-ChatGPT (Maaz et al., 2023) by 6.8%, 2.8%,
4.8%, 6.0% in accuracy on the WildQA, QaEgo4D, lifeQA, and Social-1Q 2.0 dataset, respectively.
Notably, the retrieved video chunks provide justification for the model’s responses, offering inter-
pretability to the video language model on where matters for answering the question.

Our contributions can be summarized below:

* We propose a retrieval-based video language model for efficient long video understanding. To the
best of our knowledge, we are the first time to validate the feasibility of using retrieval for long
video question answering with large video-language model.

* Thanks to the retrieval-based context/prompt chunk selection mechanism, our model is more in-
terpretable, where the selected chunks provide insight on based on where and why the model
generates the answer.
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* Our method achieves significant performance improvement over the baseline method. The abla-
tion studies demonstrate the superiority of our retrieval mechanism.

2 RELATED WORK

Large Language Models. LLMs (Radford et al.| 2018 Brown et al.l 2020} |Ouyang et al.| [2022)
have experienced significant advances and demonstrated remarkable capabilities such as language
understanding, reasoning, generation, and in context learning. These abilities enable LLMs to tackle
diverse tasks with user prompts in a zero-shot fashion, reflecting their powerful adaptability and
generalization. The Instruction tuning strategy as used in ChatGPT (OpenAl, 2023) improves the
model’s alignment with user intentions and optimizes the quality of generation. At the same time,
many open-source instruction tuned models have emerged, such as LLaMA (Touvron et al.| |[2023),
OPT (Zhang et al.| 2022) and GML (Zeng et al., 2022), which have greatly promoted technological
advancement and made significant contributions to the community.

Vision-Language Models with Pre-trained LLMs. Recent advances in LLMs have inspired and
promoted the integration of pre-trained LLMs with visual processing components for multimodal
understanding (Alayrac et al.,[2022; |Li et al.,|2023a; |Zhu et al., [2023}; [Liu et al., 2023} |Huang et al.,
2023). Flamingo (Alayrac et al.,|2022) and BLIP-2 (Li et al.|[2023a)) are seminal works that leverage
the pre-trained LLM and CLIP image encoder for zero-shot image-text abilities. BLIP2 (Li et al.,
2023a)) introduces a Q-Former to map the image tokens from the CLIP encoder (Radford et al.,
2021) to the textual embedding space of LLMs. LLaVA (Liu et al.| 2023 maps the image spatial
tokens to the textual embedding space of LLMs using a linear projector. LLaVA (Liu et al.,|[2023)),
MiniGPT4 (Zhu et al | [2023), and mPLUG-owl (Ye et al.,[2023) promote instruction following using
image-instruction-following datasets.

Some works have focused on enabling video language understanding by integrating vision encoder
and LLMs (Zhang et al) 2023a; [Maaz et al 2023} [Li et al.| 2023b; |Wang et al., |2023). Video-
LLaMA (Zhang et al., 2023a) uses a video Q-former to assemble the features from the pre-trained
CLIP image encoder. Video-ChatGPT (Maaz et al., 2023) performs spatial and temporal pooling
of the feature maps encoded by the pre-trained CLIP image encoder. The ensembled vision tokens
are taken as input to the LLMs. Most of these works globally aggregate video tokens. They may
work well for short videos. But for the long video language comprehension, they would be less
efficient. The information of the question related video segments may be submerged to the global-
wise token representations, making the reasoning difficult. We aim to design a simple yet efficient
video language model for long video understanding. Chunk-wise representations and learnable
retrieval are introduce to address the challenges.

3 PROPOSED RETRIEVAL-BASED VIDEO LANGUAGE MODEL

Given a lengthy video, it is time-consuming to watch the entire content to obtain the desired infor-
mation. A Video QA system, which can automatically infer answers based on the long video and
user’s query (question), is in high demand. LLMs possess extensive world knowledge and reason-
ing capabilities, albeit at the expense of high computational complexity. Some previous works on
multi-modal language models utilize a set of projected vision tokens as input (context) to LLM for
inference (L1 et al.| 2023a; |[Zhu et al., 2023)), where the inference cost is proportional to the number
of input vision tokens.

Leveraging powerful LLMs to understand long videos presents challenges. Firstly, we expect to use
only a small set of tokens as input to reduce computational costs. Secondly, as the video length
increases, in general, there is a corresponding growth in the number of vision tokens and the overall
amount of information. Representing a long video with very few tokens becomes difficult. Fur-
thermore, question-irrelevant information may interfere with answer generation. Motivated by the
retrieval mechanism of brain, we introduce a question-guided retrieval mechanism to identify and
select a few relevant video chunks as context of LLM.

Fig. [I] illustrates the overall framework of our proposed retrieval-based video language model (R
-VLM), designed for efficient long video question answering. The framework comprises several
components: a frozen LLM, a frozen image encoder, a frozen text encoder, a memory for storing
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video chunk tokens, a retrieval module for selecting the question-relevant chunks, a learnable MLP
block, and a projector. Through end-to-end training with cross-entropy loss and the proposed soft
matching (SM) loss, the MLP block is optimized to learn to identify the most relevant /K chunks,
while the projector is optimized to align the selected vision tokens with the text (question) space. In
the following subsections, we provide a detailed explanation of the key components and designs.

3.1 VIDEO TOKENIZATION

Video tokenization involves encoding the raw video into vision tokens, which will be processed and
then passed to the LLM for inference.

Chunking the video. Given a long video sample V; € RT*HXWXC with T; frames, C channels,
height H, and width W EI, we divide it into small non-overlapped video chunks (see Fig.|l, which
are the basic units for question-guided retrieval. We set the duration of a chunk as 4 seconds, i.e.,
M = 4 frames when frame rate is 1fps. We have L; = [T;/M] chunks, where [-] denotes the
ceiling function.

Vision token extraction of a chunk. The vision tokens of a chunk are obtained by encoding the
images and performing spatial-temporal pooling. Following |Alayrac et al.| (2022)) and [Maaz et al.
(2023), we adapt the pretrained language-image model CLIP (Radford et al., [2021) to extract per
frame vision token features, which are suited for capturing high-level semantic information. For the
4t video chunk V;/ € RM*HXWXC "we obtain M x h x w vision tokens extracted by the CLIP
vision encoder, where h = H/p, w = W/p. p denotes the patch size (which is 14 for ViT-L/14).

The preliminary token number of a chunk is large, i.e., M x hxw = 4x 16 x 16 = 1024. This would
result in a high computational burden and large memory requirement for the LLM even though we
only select a few chunks as input to LLM. We found that reducing the spatial resolution by a factor
of 4 leads to marginal difference in performance while this can significantly reduce the number of
tokens by 75%. Therefore, we perform spatial average pooling with stride 2 to have M x h x w =
4 x 8 x 8 = 256 tokens per chunk, where h=h /2 and w=w /2. This is equivalent to that we take the
CLIP features of reduced resolution as the extracted feature. How to further reduce the number of
tokens while preserving spatial-temporal features of a chunk? Motivated by |[Maaz et al.| (2023)), we
perform spatial-temporal pooling on the token tensor. Particularly, global spatial average pooling for
each frame is performed and thus we obtain M tokens for the M frames (e.g., 4 tokens). Temporal
pooling for each spatial position is performed to have N=h x w = 8 x 8 = 64 tokens. We have
N + M = 64 +4 = 68 tokens F/ € RNVHEM)XD “\with D dimension for each token. Compared
with the original 1024 in a chunk, the number of tokens has been reduced to 6.6%, which brings
high calculation efficiency for the later LLM inference.

In contrast to/Maaz et al.|(2023)), which performs global spatial and temporal pooling over the entire
video, ours with chunks is capable of preserving local details and is better suited for long video QA.

3.2 QUESTION-GUIDED RETRIEVAL FOR CHUNK SELECTION

For a long video V; with abundant video chunks, we retrieve and select the K most relevant chunks
based on the question/query and use them as input to the LLM. The top K retrieval aims to efficiently
identify the most informative video segments for answering the given question, reducing the memory
and computational burden to LLM and excluding the interference from irrelevant content.

We encode the question Q; into a feature vector q; € R” using the frozen CLIP text encoder fy and
a learnable MLP block ) as

ai = ¥(fe(Qi)), (D

where the MLP block is a two-layer perceptron consisting of two fully connected layers and an ReLU
activation function in between. This MLP transformation strengthens the correlation between the
question representation and the potential corresponding chunk features for chunk selection. Achiev-
ing this is non-trivial, as we do not have any ground-truth locations of the question relevant chunks
for supervision.

"Note that in considering the abundant redundancy in video, the video is already temporal down sampled to
have the frame rate of one frame per second.
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To identify the question-related chunks, we measure the affinity between the text feature vector and
the chunk representation. For simplicity, we obtain the representation feature of the j*" chunk for
the. m.atchmg by aggregating its N + M vision tokens by averaging poghng as vi = Avgpool(F}).
This is parameter-free, avoiding the need for large memory in optimization. We store the chunk
representation features and chunk tokens in a memory to facilitate retrieval.

We compute the similarity scores between the question representation q; and each video chunk
representation vJ using cosine similarity metric as

%

J

. . q BV
s = cos(q;,v]) = 27’] (2)

llasll[vi ]l
We rank the video chunks based on their similarity scores sf (where j = 1,--- , L;) and select the

top K most relevant chunks. The K x (N 4+ M) vision tokens of these chunks are input to the LLM
after a linear projection (a fully connected layer) on each token.

3.3 END-TO-END OPTIMIZATION

We train the network using an end-to-end optimization approach with the video instruction data.
The image encoder, text encoder, and the LLM are frozen during the training. Only the parameters
of the MLP block and projector are optimized. For a video-text pair, besides the cross-entropy loss
between the generated prediction and groudtruth answer £ "ed we introduce soft matching (SM)
loss LM to regularize the similarity learning as

L; s7.,J
St efivy
LM = —cos(q;, V), wherev; = == _* 3)

25;1 es{

Here v, is a weighted combination of the £, chunk features, with weights determined by the similar-
ities between the query and chunk features (see Eq.(2)). In order to maximize the cosine similarity
score between query and the combined feature, the MLP block needs to be optimized to result in
higher similarity to those question relevant chunks. Better optimized similarity scores lead to better
selection of chunks to the LLM and thus superior performance.

The overall loss is as
L; =L LM, (4)

where ) is a hyper-parameter that balances the contribution of the regularization term. We determine
the value of A such that both loss terms are on the same order of magnitude. We set A = 10 in our
experiments.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Following Video-ChatGPT (Maaz et al.,2023)), we use the Language-aligned Large Vision Assistant
(LLaVA) (Liu et al., [2023)) as our base model. We utilize the pre-trained CLIP ViT-L/14 (Radford
et al.,[2021) as our image encoder and extract the feature from the second-to-last layer as the h x w
vision tokens of a frame. We use the fine-tuned Vicuna (7B) from LLaVA as our LLM. For the text
encoder, we use the pre-trained CLIP ViT-L/14 text encoder and extract the class token feature of
the penultimate layer. The number of neurons for the two fully connected layers of the MLP block
is 1024 and 1024, respectively. The number of neurons for the projector is 4096.

We only fine-tune the MLP block and the projector while keeping the image encoder, the text en-
coder and the LLM frozen. We fine-tune the model for 3 epochs using video instruction data, with a
learning rate of 2e-5 and a batch size of 40. Training our model takes about 24h on an A100 80GB
GPU. We set K to 5, resulting in 5 x (64 + 4) = 340 vision tokens as the input to the LLM. This is
comparable to the number of vision tokens used in Video-ChatGPT (356 vision tokens).
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Table 1: Information of the evaluation datasets, including the number of videos, the number of QA
pairs, and the average video duration.

Dataset #Vid #QA Duration (sec.)
WildQA 261 652 71.2
QaEgo4D 166 1854 495.1
lifeQA 49 372 74.0
Social-1Q 2.0 144 876 60.0

4.2 DATASETS

We use Video Instruction Data collected by Maaz et al.| (2023) for video instruction tuning. This
dataset contains about 100k question and answer pairs based on the Activitynet dataset (average
duration 180 seconds). The 100k QA pairs include various types of questions, including but not
limited to describing the general content of the video, questions related to appearance, movement,
trajectory, reasoning, and some tasks that require imagination.

We evaluate the generalization performance of our framework on four video datasets: WildQA
(Castro et al., [2022)), QaEgo4D (Barmann & Waibel, [2022)), lifeQA (Castro et al.,|2020), and Social-
1Q 2.0 (Wilf et al., |2023)). The average duration of these datasets is larger than one minute. The
average duration of QaEgo4D is more than eight minutes. Please see Table[I]for specific information
about each dataset. Note that long video datasets are rare. Many popular video QA datasets are
not suited for our study, where the average duration of videos are very short, e.g., 15 seconds for
MSRVTT-QA (Xu et al., 2017), 10 seconds for MSVD-QA (Xu et al., 2017)), and 3 seconds for
TGIF-QA (Jang et al.,[2019). The collection and annotation of long video dataset is highly desired.
We hope the research and industry committee work together to contribute large datasets of long
videos to inspire more investigation in future.

4.3 EVALUATION METRICS

In this paper, we follow the metrics of accuracy and average score as proposed by Maaz et al.
(2023) for performance evaluation, where we use ChatGPT (chatgpt35-turbo) to assist in judging
the correctness of model predictions. ChatGPT accepts questions, groundtruth answers, and the
model predictions as input. For each question answer pair, ChatGPT gives a binary judgment of
“yes” or “no” to identify whether the predicted answer is correct or not, for accuracy evaluation.
Moreover, a score of 0-5 is also given by ChatGPT to indicate how similar the prediction is to the
answer. 0 represents the lowest score and 5 represents the highest score.

4.4 COMPARISON WITH OTHER VIDEO LANGUAGE MODELS

Table 2: Comparison with the other video-language models, including Video-LLaMA and the base-
line method Video-ChatGPT. We report the accuracy (%)/ average score.

Model WildQA  QaEgo4D lifeQA Social-IQ 2.0
Video-LLaMA (Zhang et al.,[2023a)  63.19/3.18  35.35/1.94 35.75/232  55.78/2.90
Video-ChatGPT (Maaz et al.,|2023)  58.00/3.30 29.74/2.43 33.87/2.55  57.73/3.26

R-VLM (Ours) 64.82/3.39 32.51/245 38.71/2.61  63.65/3.40

We compare our final scheme R-VLM (Retrieval based video language model) with the baseline
method Video-ChatGPT (Maaz et al. 2023)) on four unseen datasets. We use the same training
dataset as Video-ChatGPT. Both Video-ChatGPT and our R-VLM are built based on LLaVA, with
similar model size. Table [2| shows the results. Our R-VLM outperforms Video-ChatGPT signifi-
cantly by 6.8%, 2.8%, 4.8%, 6.0% in accuracy on the WildQA, QaEgo4D, lifeQA, and Social-IQ
2.0 dataset, respectively. Ours consistently achieves higher average score. Note that the number of
vision tokens of our R-VLM is comparable to that of Video-ChatGPT (i.e., 340 vs. 356), making a
fair comparison. This demonstrates the effectiveness of our retrieval-based design. Our chunk-wise
retrieval design facilitates the exploration of the most informative vision tokens and preservation of
necessary vision details for QA.
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We also evaluate the performance of other video language model, e.g., Video-LLaMA (Zhang et al.|
2023a4), by testing their model directly. As shown in Table[2] our R-VLM achieves the best scores
on all the four datasets. We found Video-LLaMA is prone to give detailed description of the entire
video, whereas the answer is usually question-irrelevant. Fig. [2(a) shows some typical examples
on the QaEgo4D dataset, where the answer includes much information while the desired answer is
submerge in the overall answer. The accuracy metric is not perfect and trades such answer as correct.
In contrast, our model provides more concise and accurate answers.

4.5 ABLATION STUDIES

Table 3: Comparison of different methods and chunk selection strategies. All these models are
trained using the same video instruction data. R-VLM denotes our final scheme with learnable
retrieval. R-VLM w/ Uni. denotes uniform sampling of K chunks in our framework instead of
retrieval-based sampling. R-VLM w/ CLIP M. denotes that we use the final CLIP class token feature
of vision and text for matching in our framework, without learnable parameters for retrieval. We
report the accuracy (%) / average score.

Dataset Video-ChatGPT R-VLM w/ Uni. R-VLM w/ CLIP M. R-VLM
WildQA 58.00/3.30 61.23/3.36 60.31/3.27 64.82/3.39
QaEgo4D 29.74/2.43 31.57/2.44 31.52/2.43 32.51/2.45
lifeQA 33.87/2.55 36.56/2.56 31.45/2.42 38.71/2.61
Social-1IQ 2.0 57.73/3.26 57.96/3.24 61.17/3.28 63.65/3.40

In this section, we study and validate the effectiveness of our retrieval designs, chunk-wise design
and the soft matching loss, respectively.

Effectiveness of Retrieval for Chunk Selection. Under our framework, we compare our retrieval
mechanism and the uniform sampling strategy for the selection of K'=5 chunks as context input to
the LLM. For the uniform sampling setting which we name as R-VLM w/ Uni., the model selects K
from N video chunks uniformly instead of based on question guided retrieval. Table [3]shows that
our final scheme R-VLM with learnable retrieval-based strategy outperforms R-VLM w/ Uni. by
3.6%, 0.9%, 2.2%, and 5.7% on WildQA, QaEgo4D, lifeQA, and Social-1Q 2.0, respectively. For a
long video, the video chunks relevant to the question usually account for a small portion of the entire
video. It is difficult to hit these question-related chunks with uniform sampling. A large language
model may can not correctly answer a question when it accepts video chunks not correlated with the
question. In contrast, our learnable retrieval learns to select the chunks most relevant to the question,
providing more reliable and less redundancy information to the LLM for effective inference. Fig.
which visualizes the selected chunks also validate this. Our retrieval based model is interpretable,
providing where the model is based on to get the answer.

Learnable Retrieval vs. Off-the-shelf CLIP based Retrieval. The CLIP image encoder and text
encoder are pre-trained to achieve vision and text caption alignment through contrastive learning
over the last layer class token features (Radford et al., [2021). One may wonder how about the per-
formance when we use the CLIP class token features for question and chunk feature matching under
our framework. To answer this question, we design a scheme R-VLM w/ CLIP M. for comparison.
For a chunk, we use the averaged class token feature of the last layer of the CLIP image encoder
(CLIP ViT-L/14) as the vision chunk feature, and the class token feature of the last layer of the CLIP
text encoder as the question feature for matching. There is no learnable parameters for the retrieval.
From Table[3] we can see that our R-VLM with learnable retrieval consistently outperforms R-VLM
w/ CLIP M., upto 7.3% in accuracy on the lifeQA dataset. That may because the CLIP matching is
originally designed for image and caption matching, which is not robust to the image and question
matching. Thanks to the adaptation of the text encoder through a learnable MLP block, our question
guided retrieval can better identify the relevant video chunks.

Effectiveness of Chunk-wise Design. Video-ChatGPT performs video level spatial temporal pool-
ing to obtain 356 vision tokens. Such global pooling would result in loss of details, especially when
the question related video segments take a small portion of the entire video. In our design, we per-
form chunk level spatial temporal pooling to preserve more information about each chunk. Table 3]
shows that when we uniform sample the chunks to have 340 vision tokens, R-VLM w/Uni obviously
outperforms Video-ChatGPT, demonstrating the effectiveness of our chunk-wise design.
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Table 4: Influence of soft matching (SM) loss, evaluated by the accuracy (%) / average score.

Model WildQA QaEgo4D lifeQA Social-1Q 2.0
R-VLM w/o SM  59.94/3.28 31.12/2.36  36.29/2.47 57.22/3.17
R-VLM 64.82/3.39 32.51/2.43 38.71/2.61 63.65/3.40

Influence of Soft Matching (SM) Loss. In order to regularize the learning of the MLP block for
better retrieval, we introduce SM loss. Table E] shows the comparison of our framework without the
SM loss (R-VLM w/o SM) and that with SM loss (R-VLM). We can see that incorporating the SM loss
significantly improves the performance. Our final scheme with the SM loss i.e., R-VLM outperforms
that without SM Loss. SM Loss uses the cosine similarity between text embedding and video tokens
as weight to re-weight the video tokens to obtain new video tokens. Then maximize the similarity
between the new video tokens and the text embedding. This facilitates our learnable retrieval layer
to find the video clips most similar to the questions.

Influence of the Hyperparameter /K. In general, when K is too small, it may lead to a loss of
information necessary to answer the question. When K is too large, interference may be introduced,
confusing the LLM. We found K'=5 presents a good trade-off on most datasets and set K as 5. More
details can be found in our Appendix. We leave the adaptive design of K as the future work.

4.6 VISUALIZATION ANALYSIS

We visualize two examples from the QAEgo4D and WildQA datasets in Fig. [2], with the following
information. 1) The first row shows the video chunk samples by uniformly selecting 5 video chunks.
2) The second row shows the retrieved 5 chunks (ordered by time order) in our R-VLM. We mark
the groudtruth chunks by red box. 3) We show the learned similarity score (see Eq. (2)) curve
based on which the top K chunks are selected. The horizontal axis represents the identity of chunk
and the vertical axis denotes the similarity score of that chunk. The groundtruth chunks and our
retrieved chunks are also marked. 4) The question and answers from different models: R-VLM,
R-VLM w/Uni., Video-ChatGPT, and Video-LLaMA, respectively.

For the QAEgo4D dataset, the average duration is about 8 minutes (120 video chunks), whereas
the duration of the groundtruth segments is located 2% of the total video duration in average. It
is difficult to hit groundtruth video segments by uniformly sampling K (= 5) chunks among 120
video chunks. In Fig.[2Za] we can see that the fragments selected by uniform sampling are in general
irrelevant to the problem, which is not conducive to the LLM reasoning. Our learnable retrieval can
accurately find the segments where the answer lies in. Feeding the correct chunks to the LLM makes
it possible to obtain the correct answer to the question.

For the WildQA dataset, groundtruth segments usually locate at different locations in the video and
last for a period of time. Although uniform sampling sometimes hits a certain groundtruth segments,
there is no guarantee. In contrast, our learned retrieval can correctly hit the segments where the
groundtruth segments are located on. In this way, the LLM can better understand the video and
answer some detailed questions (refer to “vegetation types” in Fig. [2b).

The predicted answers of our R-VLM is more accurate than Video-ChatGPT, and Video-LLaMA.
More visualization can be found in our Supplementary.

Besides the successful cases, we present some failed cases in our Appendix (see Fig[5). There are
two main cases of failure. One is that the retrieval did not select the correct video chunks. The other
is that the retrieval correctly identified the correct video chunks, but the answer was wrong. For the
later cases, we think more powerful vision feature extractor and LLMs would alleviate the problem.

5 CONCLUSION

The comprehension of long videos using LLMs remains an under-explored area. There are two main
challenges associated with comprehending long videos. 1) Long videos generally lead to abundant
vision tokens, which increase computational cost for LLM inference. 2) Global aggregation of vision
tokens inevitably results in the loss of vision details especially when the question relevant video
chunks take only a small portion of the entire video. Moreover, question irrelevant chunks introduce
interference. In this work, we address these issues by introducing a simple yet effective retrieval-



Under review as a conference paper at ICLR 2024

based video language model (R-VLM) for long-video QA. Specifically, given a question (query) and
a long video, our model identifies and selects the most question-relevant K video chunks and uses
their associated visual tokens to serve as context for the LLM inference. This effectively reduces the
number of video tokens, preserves the most informative information, eliminates noise interference,
and thus enhances system performance. Our experimental results demonstrate the effectiveness of
our designs for comprehending long videos.

Uniform

Chunks:

Retrieved

Chunks:
Question: In what location did | see the kitchen towel? —ww
GT Answer: hanging at the top of sink. ase] 3 e OFchunk postionts
Retrieved chunks: [0, 90, 97, 101, 115], GT chunks:[90]
R-VLM (Ours): In the video, the kitchen towel is seen hanging on a hook on the ~ ***
wall. 052
R-VLM w/Uni.: The kitchen towel was placed on the counter next to the sink. gm
Video-ChatGPT: In the video, the kitchen towel is seen hanging on a hook in z
the kitchen. ase |
Video-LLaMA: The kitchen towel is seen in the first frame of the video, which 046
takes place in the kitchen. The towel is placed on the countertop in front of a
cutting board, and there is also a black pan seen on the counter. M— —

Chunk ios
(@)

Uniform
Chunks:

Retrieved
Chunks:

Question: What kinds of vegetation are there in the different terrains?

GT Answer: There are deciduous and coniferous forests, shrubbery, and grasses.

Retrieved chunks: [0, 1, 3, 10, 13], GT chunks:[0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15]

R-VLM(Ours): The video shows a variety of terrains with different types of vegetation. In the first scene,
there are trees and bushes, while in the second scene, there is a forest with trees and a river. In the third
scene, there is a grassy field with trees and a forest.

R-VLM w/Uni.: The video shows a variety of terrains, including mountains, forests, and a river. The
mountains are covered in snow, and the forest is filled with trees. The river is surrounded by mountains
and has a beautiful view of the mountains

Video-ChatGPT: The video shows a variety of terrains, including a mountain range, a forest, and a rocky
cliff. The mountain range has a mix of green and brown vegetation, while the forest has a mix of green and
brown trees. The rocky cliff has a mix of green and brown vegetation, with some areas appearing more
lush and green than others. The video also shows a waterfall in the background, adding to the overall
beauty of the landscape.

Video-LLaMA: The vegetation in the different terrains includes trees, grass, bushes, and green leaves on P
rocks. The types of vegetation vary depending on the landscape and location of the footage. Chunk 1ds:

— Rum
% Retrieved chunks
=== GT chunk positions

Similarity Score
I

(b)

Figure 2: Visualization of video QA examples from (a) QAEgo4D and (b) WildQA. (a)The kitchen
towel in question does not appear in the uniformly sampled video chunks. The second chunks
selected by our model contain kitchen towel. Our answer states that the tower is hunging on a hook
on the wall. Video-LLaMA answers incorrectly, where the towel does not appear in the first frame of
the video, and it is not be placed on the countertop in front of a cutting board. (b)In this video, two
clips show vegetation and the remaining clips show mountains, rivers, etc. Uniform sampling mainly
obtains segments such as mountains and rivers rather than segments with vegetation. Therefore, only
the terrain was answered, without giving vegetation types. In contrast, our retrieved chunks contain
video clips of vegetation. Thus the types of vegetation are predicted correctly: trees, bushes, forest.
Video-ChatGPT gives a global description and does not answer specific vegetation types.
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Appendix

A ABLATION STUDY ON INFLUENCE OF THE HYPERPARAMETER K

We study the influence of K. In general, when K is too small, it may lead to a loss of information
necessary to answer the question. When K is too large, interference may be introduced, confusing
the LLM. Table [ shows the results of using different K. We found that as K gradually increases
from 1 to 5, the average performance increases. When K increases from 5 to 7, the performance
decreases. We found K'=5 presents a good trade-off on most datasets, even though there are slight
differences on different datasets. We leave the adaptive design of K as the future work.

Table 5: Ablation study on the influence of K, evaluated in terms of accuracy (%)/score. We use
bold to mark the best performance and underline to mark the second-best performance.

Dataset Video-ChatGPT Ours(K=1) Ours(K=3) Ours(K=5) Ours(K=7)
WildQA 58.00/3.30 57.45/3.18 60.58/3.31 604.82/3.39 63.44/3.39
QaEgo4D 29.74/2.43 32.42/2.41 32.04/2.42 32.51/2.45 32.81/2.42
lifeQA 33.87/2.55 37.63/2.62 38.44/2.62 38.71/2.61 37.63/2.65
Social-1Q 2.0 57.73/3.26 63.92/3.44 60.89/3.34 63.65/3.40 62.89/3.34
Average 44.84/2.89 47.86/2.91 47.99/2.92 49.92/2.96 49.19/2.95

B MORE VISUALIZATION RESULTS

We visualize more examples from the QAEgo4D and WildQA datasets in Fig. 3] and Fig. ] with
the following information. 1) The first row shows the video chunk samples by uniformly selecting
5 video chunks. 2) The second row shows the retrieved 5 chunks (ordered by time order) in our
R-VLM. We mark the groudtruth chunks by red box. 3) We show the learned similarity score curve
based on which the top K chunks are selected. The horizontal axis represents the identity of chunk
and the vertical axis denotes the similarity score of that chunk. The groundtruth chunks and our
retrieved chunks are also marked. 4) The question and answers from different models: R-VLM,
R-VLM w/Uni., Video-ChatGPT, and Video-LLaMA, respectively.

We also show some failure examples in Fig.[5] A detailed analysis of the reasons for failure is given
in the figure caption. There are two main cases of failure. One is that the retrieval does not select
the correct video chunks. The other is that the retrieval correctly identified the correct video chunks,
but the answer is wrong. For the later cases, we think more powerful vision feature extractor and
LLMs would alleviate the problem.

C COMPUTATIONAL COMPLEXITY

The computational cost comes from two parts. The first part is to encode the video frames through
the CLIP encoder and the spatial-temporal pooling to get chunks. The second part is the retrieval of
K=5 chunks and put them to LLM for inference. The spatial-temporal pooing and retrieval is very
fast and negligible. On a single A100, we tested 120 60s videos from Social-IQ 2.0 and calculated
the average inference time cost for a video. For a single video, the first part for vision feature
extraction takes an average of 0.14s (in parallel for 60 frames), and the second part takes an average
of 2.42s. The total time is 2.56s. Actually, for an even longer video, the time consumption for the
second part does not increase since the input number of vision tokens is fixed (i.e., 68 x5=340) in
our scheme, which is favored for long video or streaming video understanding. The GPU memory
consumption is about 17GB. Note that the computational cost for the LLM is proportional to the
number of tokens.

The FLOPs for LLM inference can be roughly estimated as 2PD, where P denotes the number of
parameters (model size), and D denotes the number of tokens. The computational complexity of
LLM is proportional to the number of tokens which consists of text tokens (question and answer)

12
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and vision tokens. The LLM model size P is 6.7B. On the training dataset, the average number
of tokens for question and answers is 80, i.e., D, = 80. This varies on different datasets. For
simplicity, we assume the number is the same for all the datasets. We denote the number of vision
tokens as D,;s. The total number of tokens is D = Dy., + D,;s. For the four video datasets,
WildQA, QaEgo4D, lifeQA, Social-IQ 2.0, the average number of vision chunks is 19, 122, 20,
and 16, where each chunk has 68 tokens. Thanks to the retrieval, only K = 5 chunks (D.,, =

vis

5 X 68 = 340 tokens) instead of all the chunks are needed as the input to LLM. Therefore, the

computational cost (FLOPs) for LLM inference can be saved approximately %, which are

69% (i.e., (19 x 685 x 68)/(80 4+ 19 x 68)), 95%, 71%, and 64%, respectively.

Uniform
Chunks:

Retrieved
Chunks:

— v
% Retrieved chunks.

Question: Where was the grey car? -=- G chunk positonts)
GT Answer: on the parking area.
Retrieved chunks: [52, 53, 87, 88, 89], GT chunks: [53]
R-VLM (Ours): The grey car was parked in a parking lot. §
R-VLM w/Uni.: The grey car was in a garage.

Video-ChatGPT: The grey car was in a garage. s
Video-LLaMA: The grey car is located on the right side of the image 046
in frame 100. os

o 20 40 60 80 100 120
Chunk ids.

(a) We can see that the gray car does not appear in the uniformly sampled video chunks. Our R-VLM correctly
answers that the car was parked in the parking lot (outdoors), but R-VLM w/Uni.’s answer was the garage
(indoors). Video-LLaMA does not answer where the car is and the groundtruth frames do not appear in the
frame 100. Video-ChatGPT made the similar mistake as R-VLM w/Uni.

Uniform
Chunks:

Retrieved
Chunks:

Question: In what location did | see the broom? T :“w":mmb
GT Answer: on the floor. == G chunk positon(s)
Retrieved chunks: [87, 90, 91, 100, 103], GT chunks:[99, 100]
R-VLM (Ours): In the video, the broom is placed on the ground. 0575
R-VLM w/Uni.: The broom was located in a garage.

Video-ChatGPT: The broom is being used to sweep the floor.
Video-LLaMA: You saw the broom lying on the ground near a blue jean
jacket and a small boat in the grass. The broom is near a green trash can
and a car is parked on the street. The jean jacket is hanging from a tree,
and there is a piece of metal hanging from a tree. o

0525

similarity Score

H

0475

(b) The broom is small and is on the left in the red boxed image. Our R-VLM captures exactly where the broom
is, i.e., on the ground. R-VLM w/Uni. does not capture the video chunks with broom and thus does not answer
accurately. The answer of Video-ChatGPT is irrelevant to the question. The answer from Video-LLaMA is
redundancy and tedious, where the mentioned blue jean jacket and boat actually do not appear in the video.

Figure 3: Visualization of video QA examples from QAEgo4D.
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Uniform

Chunks:

Retrieved

Chunks:

Question: Why is the human running the knife along the piece of leather? —
GT Answer: The human is sharpening the knife with the piece of leather. * Z;‘:'::::;::m;
Retrieved chunks: [2, 3, 8, 10, 13], GT chunks:[1, 2, 3] .

R-VLM (Ours): The human is running the knife along the piece of leather to sharpen it. This

process is essential for maintaining the sharpness of the knife, ensuring that it can cut through

materials efficiently and safely. *®

R-VLM w/Uni.: The human is running the knife along the piece of leather to create a pattern or g

design on it. The person is likely using the knife to create a piece of art or to make a decorative gaﬂ

item, such as a wallet or a belt. 2

Video-ChatGPT: The man is using a knife to cut a piece of leather, likely to create a piece of "2

leather for a specific purpose, such as making a wallet, belt, or other leather goods. The

process of cutting leather requires precision and skill, and the man is likely using the knife to -

create a clean and accurate cut.

Video-LLaMA: In the first second of the video, the man is holding a knife and is using it to cut a 5 " L

€ 8
Chunk ids

piece of leather. It's not clear why he's doing this.

(a) The uniform sampling miss the chunks for sharpening process in GT-segs (at the beginning of video). As
aresult, LLM does not see the knife running along the leather, and only see the knife and some delicate small
objects. Therefore, R-VLM w/Uni. mistakenly thought that this individual was carving patterns or making
designs. Our retrieved chunks retain the process of the knife running on the leather and therefore R-VLM gives
the correct answer. Both Video-LLaMA and Video-ChatGPT answered that people are cutting leather with a
knife to make art, rather than sharpening the knife.

Uniform
Chunks:
Retrieved
Chunks:

L——

—

Question: Is the man gathering kindling? e pacuans
GT Answer: Yes, the man is gathering kindling. 1 A

Retrieved chunks: [0, 1, 2, 3, 11], GT chunks:[1, 2, 3, 4, 5]
R-VLM(Ours): Yes, the man is gathering kindling in the woods.
R-VLM w/Uni.: No, the man is not gathering kindling. He is using a
rock to dig a hole in the ground.

Video-ChatGPT: Yes, the man is gathering kindling.

Video-LLaMA: Yes, he is gathering kindling in the field with his hands.
He is also gathering deadwood and leaves.

Similarity Score

6 & 1
Chunk 14

(b) In this video, collecting the kindling takes a short time, while placing the tinder on the stones takes a
longer time. Uniform sampling makes LLM think that there is no process of collecting kindling and output the
wrong answer of “digging a hole”. Our R-VLM identified the relevant chunks of “gathering” even though those
chunks only take a small duration in the entire video, generating correct answer. Video-LLaMA'’s prediction is
not accurate since in fact the man did not gather deadwood and leaves in the video.

Figure 4: Visualization of video QA examples from WildQA.
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Groundtruth
Chunks:

Retrieved
Chunks:

Question: What is the man using the fire for?

GT Answer: Based off the man using a stick to coax the pottery object out of the fire, | am
assuming he used the fire to harden the object that was left in the fire for more than an hour.
R-VLM (Ours): The man is using the fire to cook food.

(a) A failure case from WildQA. This is a video of a person firing art. Although our method R-VLM retrieved
the correct chunks, it gave the wrong answer of “cook food”. We think this is due to the visual ambiguity of
the target object and the biases of the LLM.

Groundtruth
Chunks:

Retrieved
Chunks:

Question: What type of animals are there?
GT Answer: dolphins, human, seagulls.
R-VLM (Ours): There are two animals in the video.

(b) A failure case from WildQA. Groundtruth chunks correspond to the chunks where three types of animals
present, namely dolphins (the first chunk), seagulls, and human. Our method only retrieved the seagull and
human chunks, but missed the dolphin chunk. R-VLM provided wrong answer due to the imperfect retrieval
and the unsatisfactory reasoning capability of the used LLM.

Groundtruth
Chunks:

Retrieved
Chunks:

Question: Who did | talk to in the workshop?
GT Answer: woman.
R-VLM (Ours): In the workshop, you had a conversation with a man who was working on a project.

(c) A failure case from QAEgo4D. Our method did not find the correct chunks. Therefore, large language
model did not correctly answer the question and provided hallucinated answer.

Figure 5: Visualization of failure cases from WildQA and QAEgo4D.
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